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We present a method to perform fully self-consistent density-functional calculations that scales linearly with
the system size and which is well suited for very large systems. It uses strictly localized pseudoatomic orbitals
as basis functions. The sparse Hamiltonian and overlap matrices are calculated V@ areffort. The
long-range self-consistent potential and its matrix elements are computed in a real-space grid. The other matrix
elements are directly calculated and tabulated as a function of the interatomic distances. The computation of
the total energy and atomic forces is also donéifN) operations using truncated, Wannier-like localized
functions to describe the occupied states, and a band-energy functional which is iteratively minimized with no
orthogonality constraints. We illustrate the method with several examples, including carbon and silicon super-
cells with up to 1000 Si atoms and supercells ®C;N,. We apply the method to solve the existing
controversy about the faceting of large icosahedral fullerenes by performing dynamical simulatiogg,on C

Ca40, and G-

A large effort has been devoted in the last few years talways staying in the range of a few valence orbitals per
develop approximate methods to solve the electronic strucatom® As a first step, in this work we use minimal basis sets
ture of large systems with a computational cost proportionabf ones and threep orbitals per atom, the extension to larger
to its size! Several approaches are now sufficiently accuratdases being perfectly possible within the present formula-
and robust to obtain reliable results for systems with thoution. The choice of a basis obviously implies a possible error
sands of atoms. So far, however, most of these schemes hagesociated to its incompleteness. In the same way as for the
been useful only with simple Hamiltonians, like empirical error due to the linear scaling algorithm, the error in the basis
tight-binding models, which provide an ideal setting for can be reduced at the expense of an increase in computa-
orderN calculations. First-principles ordét- calculations tional effort. Its magnitude should be carefully checked, but
have been performed mainly in the non-self-consistent Harriglso compared with other sources of error to ensure that an
functional versiod of the local-density approximation increase of the basis is really worthwhile.

(LDA) for electronic exchange and correlati¢dC) using Our method uses standard LDA techniqués the va-
minimal base$:® Linear scaling algorithms in fully self- lence electrons, the core electrons being replaced by
consistent LDA have also been trigthut the results are far pseudopotentiaf The basis orbitals used in this work are
from the linear scaling regime, due to the relatively smallthe s and p pseudoatomic orbitals defined by Sankey and
number of manageable atoms in those simulations. HernamNiklewski,” in the context of non-self-consistent Harris func-
dez and Gillah have successfully produced LDA results in tional methods. These are slightly excited pseudoatomic or-
large silicon systems using a real-space grid method. Thbitals ¢,(r), obtained by solving the valence electron prob-
computational requirements that this kind of approach delem in the isolated atom, with the same pseudopotential and
mands are, however, extremely large, and calculations mustDA approximations, and with the boundary condition that
be performed in massive computational platforms. the atomic orbitals are strictly localized, vanishing outside a

We have developed a self-consistent density-functionagiven radiusr.. This radius cutoff is in principle orbital
formulation with linear scaling, capable of producing resultsdependent, but we do not make explicit this dependence in
for very large systems, whose computational demands ardae equations only for simplicity in the notation. The great
not overwhelmingly large, so that systems with many hun-advantage of these orbitals is that they give rise to sparse
dreds of atoms can be treated in modest computational plabverlap and Hamiltonian matricésince matrix elements be-
forms like work stations, and much larger systems can béween distant orbitals exactly vanjsand they display the
treated in massive platforms. The method is based on thgame structure as in conventional tight binding. The extent of
linear combination of atomic orbital6 CAO) approximation the interactions and the sparseness of the matrices depend on
as the basis of expansion of the electronic states. Nonothe cutoff radiusr, of each atom. These are not critical as
thogonal LCAO bases are very efficient, reducing the numiong as the maxima of the atomic wave functions are well
ber of variables dramatically, compared to plane-wgRd/)  within r.. For an analysis of the quality of pseudoatomic
or real-space grid approaches, so that larger systems can bebitals as a basis for solid state calculations we refer the
studied. Also, LCAO can provide extremely accurate basegeader to Ref. 10.
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The LDA Hamiltonian matrix elements for a given par- | | 1 T
ticle density are obtained using a combination of techniques, 03 7
adopting the most convenient one for each term of the
Hamiltonian. In a prior step, to avoid dealing with the long 0.2 1 T
range of the pseudopotentials, we rewrite the Kohn-Sham AE (eV)

Hamiltonian by adding and subtracting the Hartree potential 01r ]
created by the neutral-atom changg{r), defined as 0.0 L
| 1 | |
no(r):Z nMA(r—R)), 1) 0 25 Eci? (Ry) 75 100

Where_l runs oyer the atoms |_n the syste_m_, aﬂ\df\ is the FIG. 1. Convergence of the total energy per carbon atom vs grid
spherical atomic charge density of the atonm its neutral,  fineness(given by the cutoffE,, of the plane waves that it can
isolated state Withoﬁ electrons on each orbitap, . If we  represent The results of the present method are shown for a dia-
definesn(r)=n(r)—ny(r), wheren(r) is the actual charge mond supercell with 64 atomdull circles) and for a G cluster
density, the Hartree potential can be decomposed into tw@iamond$. Open circles show results of conventional plane-wave
contributionsV{, and VY, , created bysn(r) andny(r), re-  calculations for diamondRef. 12.
spectively. Using Eq(1), VE| can be expressed as a sum of
atomic contributions. Also, the pseudopotential is decombasis orbitals are defined in real space. Poisson’s equation for
posed into a short-range nonlocal tevty, and a long-range the Hartree potential can then be solved by the standard fast
local termV, . Following Sankey and NiklewsRiwe define  Fourier transform(FFT) method, assuming a supercell ge-
the neutral atom potential of a given atomRtas ometry, or by the multigrid methott. In spite of itsNInN
scaling, we presently use FFT’s for simplicity, since this part
niNA(r—Ri) represents a minor contribution to the total computational
VNA(T—Ri)ZVL(f—Ri)+ezf |r——r’|dr,' (2)  load. Note that only two FFT’s are necessary per cycle of
self-consistencySCF cycle, in contrast with PW-based cal-
Va is short ranged, since the core attraction and the electroculations, where an FFT is required for each electronic state.
Coulomb repulsion of the neutral atom charge cancel eaclihe LDA XC potential is trivially computed on each point of
other beyond .. The Kohn-Sham Hamiltonian is finally ob- the grid. Once the value of the Hartree and the XC potentials
tained as are known at every point, the integra4$b#|vf||¢y> and
(¢uVxcld,) are computed by direct summation on the grid.
These sums are carefully done to minimize the amount of
numerical workload involved. Only the nonzero integrals
(between orbitals on atoms closer than.)2are computed,
V() +Vye(r). (3)  and only the points of the grid for which both orbitals are
nonzero contribute to each integral. We use sparse-matrix
The overlap, kinetic energy term, neutral atom potentialmultiplication techniques optimized for this class of opera-
and nonlocal part of the pseudopotential, are all independenions. As a result, the computation of the integrals scales
of the charge density(r), and their matrix elements be- linearly with the size of the system.
tween atomic orbitals can be expressed as sums of two- |t is important to stress that the convergence with grid
center[S,,=(¢,|¢,) and(¢,|p*2m|$,)] or three-center spacing of our method is different from that in standard PW
[(¢,/Vn(r—R)|#,) and(,|Vna(r—Ri)|#,)] integrals, calculations, which are known to require large PW cutoffs
which only depend on the relative positions of pairs or trip-for systems containing atoms with hard pseudopotentials. In
lets of atoms. We follow the method proposed by SankeyFig. 1 we show the convergence of the total energy per atom
and Niklewsk? to compute all these integrals: they are cal-(referred to the converged valuer carbon, as a function of
culated beforehand and tabulated as a function of the relative_;, the kinetic energy cutoff of the plane waves that the
position of the centers. These tables are used during thgrid can represent. Full circles are for a diamond supercell of
simulation, to calculate all the nonzero integrals by interpo64 atoms, whereas diamonds are for a cluster of three carbon
lation. The details of the procedure can be found in Ref. 9atoms in a supercell of 2615x 15 A3. In both cases, the
Since all these integrals are zero for distant enough atomsesults are converged to below 2 meV/atom for a cutoff of 30
their number scales linearly with the size of the system, aRy. This is in sharp contrast with results of PW
well as the computation time. The contributions of thesecalculation$? (open circle in which the cutoff necessary to
terms to the Hamiltonian are computed only once for a giverachieve convergencéwith the same pseudopotenjiais
atomic configuration, since they do not depend on the selfmuch higher. Note, moreover, that the energy cutoff in our
consistent charge. case refers to the grid representation of the charge density,
The matrix elements of the Hartree potenﬁéﬂ(r) cre-  whereas in the PW case it refers to the wave functions, which
ated by the chargén(r) and the exchange-correlation po- implies an even higheffour time9 cutoff in the charge den-
tential Vyc[n(r)] both depend on the self-consistent charge sity. The reason for the fast convergence of our approach is
To calculate these integrals we compuig(r), n(r), and that most of the Hamiltonian term@nost importantly the
on(r), for a given LCAO density matrix, at the points of a kinetic energy and the neutral atom potentale not com-
regular grid in real space. This is straightforward since theputed in the grid.
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Once the Kohn-Sham Hamiltonian has been obtained, we . T T

use a recently proposed ordérmethod®*to compute the 200 - 250

band structure enerdygs (sum of occupied eigenvaluedn 150 b\ 4200

this approach, a modified band energy functibh¥l is SIZE |, L 1150 CPU
minimized" with respect to the electronic orbitals, by means (Mb) time
of a conjugate gradientG) algorithm, to yieldEgs. The o ., [0 (min)
orthonormality of the occupied states does not need to be oF 780
imposed, but it is obtained as a result of the minimization of : : ' —0

the energy functional. The elimination of the orthogonaliza- 0 250 500 750 1000

tion is the first step to achieve an ordeérscaling. The sec- Number of atoms

ond is the use of localized, Wannier-like wave functions

(LWF) to describe the electronic states entering the minimi- FIG. 2. CPU time per SCF cycle and job memory for a simula-
zation of the energy functional. Truncation of these localizedion of Si supercells with dl_fferent sizes. Times measured in an IBM
functions beyond a given cutofR, from the center of the PoWerPC with 17 MflopgLinpack 100< 100

LWF provides a linear scaling algorithm. The errors in-

volved in this truncation, which can be reduced arbitrarily by\yhere HO= p2/2m+V,y +Vya, and p., andE,, are the

increasing the value dR;, are analyzed in detail in Ref. 1. gensity and energy-density matrices, respectiléélryle first
After the band energy has been minimized and the LWF'Shree terms are calculated interpolating the table WYata,

obtained, the new charge density is computed, completing ghereas the last two terms are computed by numerical inte-

so-called SCF cycle. From the density, a new Hamiltonian igration in the grid, as was done for the matrix elements of

produced, the procedure being repeated until self-consistengje Hartree and XC potentials in the Kohn-Sham Hamil-

in the charge density or the Hamiltonian is achieved. At thisgpian.

point, the total energy can be computed as In order to show the linear scaling of the method, we have

performed calculations on supercells of silicon in the dia-

e? e’ mond structure, with different numbers of atoms from 64 to
_EF = il V) '
Eior=Ess 2 f Vu(r)n(r)dr+ 2 J Vi(r)ne(r)dr 1000. Only thel’ point was used to sample the Brillouin
zone, the cutoff for the charge density grid was 12 Ry, and
_ the LWF’s were truncated at 4.5 A. Figure 2 shows the linear
* f Lexc(m) =VxeMIn(rdr+Uii-ce, ) behavior of the CPU time and memory requirements with the

number of atoms. The CPU time shown represents the aver-
whereVy(r) is the Hartree potential of the self-consistent age cost to perform a SCF step in a MD simulation, includ-
chargen(r), and, following Sankey and NiklewsRiwe have  ing the calculation of the charge density and Hamiltonian
defined matrix elements, the minimization of the band structure en-
ergy, and the calculation of the atomic forces. The band
e, ZiZ e 5 structure energy minimization within each SCF cycle re-
Uii-ee:EE/ R-Ri/| ?f Vi(r)no(r). (3 quired an average of 20 CG iterations, while the number of
I SCF cycles depends largely on the simulation temperature,
As in the case of the Hamiltonian, we have added and sud€ngth of the time step, and mixing algorithm for self-
tracted the electrostatic energy of the neutral atom charg&Pnsistency. So far, in comparable simulation conditions, no
no(r) to obtain Eq.(4). The advantage, again, is tHalf; o significant dependen_ce of the number of CG iterations and
can be expressed as a sum of short-range contributionSCF cycles on the size of the system has been observed. As
which is easy to evaluate B(N) operationg, avoiding the W€ €an see, in the present method both the CPU time and
problems related with the long-range character of the ionid"€mory requirements are small enough to permit the calcu-
core interactions. The integrals appearing in &j.are cal- lation of a system of 1000 silicon atoms in a very modest
culated in the real-space grid. work station. _ o
In molecular dynamicéVID) simulations and geometrical ~ AAS @n example of a system with partially ionic character,
optimizations the atomic forces are needed. We comput@nd With atoms with compact orbitals, we have performed
them using a variation of the Hellman-Feynman theoremc@lculations on thgs phase of GN,, which was proposed as
which includes Pulay-like corrections to account for the fact® Potentially very hard material by Liu and CohénThe

that the basis set is not complete and moves with the atom§@lculations were done in supercells of 42 and 224 atoms,
The force on atoni is with nearly identical results. A cutoff of 200 Ry for the

charge density grid was used. We obtain an accuracy better
than 1% in both the lattice constants and the several in-

0
F=-> p IHyuy +S E @_ Wii-ee equivalent bond lengths, and 10% in the bulk modulus, com-
bom TR m T IR, IR pared to other LDA calculation. These results contrast
with those of the non-self-consistent Harris functional, which
I 22 po<%|Vf|l ¢ > yield errors of 5% and 16% for the distances and bulk modu-
= M\ IR K’ lus, respectively, showing that self-consistency is essential to

o obtain reliable results in this partially polar system.
—2 KIS 4\ , 6 We have applle(_j our method to study the structure of
% p"”< R Vi XC|¢”> © large, single-shell, icosahedral fullerene clusters. These are



R10 444 PABLO ORDEJQN, EMILIO ARTACHO, AND JOSEM. SOLER 53

important to understand the observed sphericity of multishell TABLE I. Average radius ), standard ¢5), and maximum
fullerenes. For the single-shell clusters, elasticity theory, ageviation [ on=( max—T'min)/2] of radii, and nonplanarity angfe
well as empirical potential calculations, predict markedly ¢ around pentagongoing from 0° for a planar pentagonal site to
polyhedral shapes. Calculations performed by ladhal, 16 12° for a truncated icosahednoior the fullerene clusters. We com-
using the Harris functional ordeN- method? agree qualita- Pare thg result; of the prgsent wprk with those of leblal. (Ref.
tively with these results. However, similar non-self- 16) obtained with the Harris functional.

consistent calculatiofispredict that even the large clusters
are spherical. Here we have repeated the calculations with _ = TR _ i
self-consistent LDA using the present method, thus improv- r (A o/t onlt ¢ 1 (A) oIt onlt ¢

i_ng on the_: non-self-con_sistent nature of the_former calcula-c60 359 0000 0000 12.0° 355 0.000 0.000 12.0°
tions. Using a dyn_aml_cal guenching algorlthm_, we have oo 718 0023 0027 85° 7.06 0021 0.028 7.9°
computed the equilibrium structure of three |cosahedraE 10.69 0038 0054 9.6° 1053 0033 0053 9.2°
fullerene clusters: €, Co4o, and Gy,o. A supercell geom- 0 = ' ' ' ' ' ' '
etry was assumed, with a cubic cell with sides of 12 A for

Ceo, 22 A for Coso, and 34 A for Gyo. The calculations  geifconsistent LDA calculations with linear scaling. We
were done using a cutoff of 100 Ry for the representation of,5,e analyzed the performance versus system size and grid

I6ut01‘f, and shown that simulations of systems with hundreds

40 A tiveh/® | ing the localizati dius t of atoms are possible with small work stations. This should
-0 A, respectively ™ Increasing the localization radius 1o open the possibility of very large scadd initio simulations
4.1 A (both for o and ), and/or increasing the grid cutoff in the near future

to 150 Ry in the simulations changes the relaxed interatomic

distances less than 0.4%. The results are summarized in We acknowledge R. M. Martin and Paul von Allmen for
Table I. We see that our results are very similar to thosenany useful discussions, and D. A. Drabold and O. F. San-
obtained by lItotet al, and confirm that, except for &g, the  key for allowing us the use of many of their codes. P.O. is
single-shell clusters tend to be polyhedral, instead of spherindebted to R. M. Martin and J. B. Adams for continuous
cal, and that this polyhedral character is more pronounced agipport and encouragement. This work was partially
the cluster size increases. supported by DOE Grant No. DEFG 02-91ER45439 and

In conclusion, we have presented an efficient method foDGICYT (Spair) Grant No. PB92-0169.
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