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We present a method to perform fully self-consistent density-functional calculations that scales linearly with
the system size and which is well suited for very large systems. It uses strictly localized pseudoatomic orbitals
as basis functions. The sparse Hamiltonian and overlap matrices are calculated with anO(N) effort. The
long-range self-consistent potential and its matrix elements are computed in a real-space grid. The other matrix
elements are directly calculated and tabulated as a function of the interatomic distances. The computation of
the total energy and atomic forces is also done inO(N) operations using truncated, Wannier-like localized
functions to describe the occupied states, and a band-energy functional which is iteratively minimized with no
orthogonality constraints. We illustrate the method with several examples, including carbon and silicon super-
cells with up to 1000 Si atoms and supercells ofb-C3N4 . We apply the method to solve the existing
controversy about the faceting of large icosahedral fullerenes by performing dynamical simulations on C60,
C240, and C540.

A large effort has been devoted in the last few years to
develop approximate methods to solve the electronic struc-
ture of large systems with a computational cost proportional
to its size.1 Several approaches are now sufficiently accurate
and robust to obtain reliable results for systems with thou-
sands of atoms. So far, however, most of these schemes have
been useful only with simple Hamiltonians, like empirical
tight-binding models, which provide an ideal setting for
order-N calculations. First-principles order-N calculations
have been performed mainly in the non-self-consistent Harris
functional version2 of the local-density approximation
~LDA ! for electronic exchange and correlation~XC! using
minimal bases.1,3 Linear scaling algorithms in fully self-
consistent LDA have also been tried,4 but the results are far
from the linear scaling regime, due to the relatively small
number of manageable atoms in those simulations. Hernan-
dez and Gillan5 have successfully produced LDA results in
large silicon systems using a real-space grid method. The
computational requirements that this kind of approach de-
mands are, however, extremely large, and calculations must
be performed in massive computational platforms.

We have developed a self-consistent density-functional
formulation with linear scaling, capable of producing results
for very large systems, whose computational demands are
not overwhelmingly large, so that systems with many hun-
dreds of atoms can be treated in modest computational plat-
forms like work stations, and much larger systems can be
treated in massive platforms. The method is based on the
linear combination of atomic orbitals~LCAO! approximation
as the basis of expansion of the electronic states. Nonor-
thogonal LCAO bases are very efficient, reducing the num-
ber of variables dramatically, compared to plane-wave~PW!
or real-space grid approaches, so that larger systems can be
studied. Also, LCAO can provide extremely accurate bases,

always staying in the range of a few valence orbitals per
atom.6 As a first step, in this work we use minimal basis sets
of ones and threep orbitals per atom, the extension to larger
bases being perfectly possible within the present formula-
tion. The choice of a basis obviously implies a possible error
associated to its incompleteness. In the same way as for the
error due to the linear scaling algorithm, the error in the basis
can be reduced at the expense of an increase in computa-
tional effort. Its magnitude should be carefully checked, but
also compared with other sources of error to ensure that an
increase of the basis is really worthwhile.

Our method uses standard LDA techniques7 for the va-
lence electrons, the core electrons being replaced by
pseudopotentials.8 The basis orbitals used in this work are
the s and p pseudoatomic orbitals defined by Sankey and
Niklewski,9 in the context of non-self-consistent Harris func-
tional methods. These are slightly excited pseudoatomic or-
bitalsfm(r ), obtained by solving the valence electron prob-
lem in the isolated atom, with the same pseudopotential and
LDA approximations, and with the boundary condition that
the atomic orbitals are strictly localized, vanishing outside a
given radiusr c . This radius cutoff is in principle orbital
dependent, but we do not make explicit this dependence in
the equations only for simplicity in the notation. The great
advantage of these orbitals is that they give rise to sparse
overlap and Hamiltonian matrices~since matrix elements be-
tween distant orbitals exactly vanish! and they display the
same structure as in conventional tight binding. The extent of
the interactions and the sparseness of the matrices depend on
the cutoff radiusr c of each atom. These are not critical as
long as the maxima of the atomic wave functions are well
within r c . For an analysis of the quality of pseudoatomic
orbitals as a basis for solid state calculations we refer the
reader to Ref. 10.
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The LDA Hamiltonian matrix elements for a given par-
ticle density are obtained using a combination of techniques,
adopting the most convenient one for each term of the
Hamiltonian. In a prior step, to avoid dealing with the long
range of the pseudopotentials, we rewrite the Kohn-Sham
Hamiltonian by adding and subtracting the Hartree potential
created by the neutral-atom chargen0(r ), defined as

n0~r !5(
i
ni
NA~r2Ri !, ~1!

where i runs over the atoms in the system, andni
NA is the

spherical atomic charge density of the atomi in its neutral,
isolated state withrm

0 electrons on each orbitalfm . If we
definedn(r )5n(r )2n0(r ), wheren(r ) is the actual charge
density, the Hartree potential can be decomposed into two
contributionsVH

d andVH
0 , created bydn(r ) andn0(r ), re-

spectively. Using Eq.~1!, VH
0 can be expressed as a sum of

atomic contributions. Also, the pseudopotential is decom-
posed into a short-range nonlocal termVNL and a long-range
local termVL . Following Sankey and Niklewski,

9 we define
the neutral atom potential of a given atom atRi as

VNA~r2Ri !5VL~r2Ri !1e2E ni
NA~r2Ri !

ur2r 8u
dr 8. ~2!

VNA is short ranged, since the core attraction and the electron
Coulomb repulsion of the neutral atom charge cancel each
other beyondr c . The Kohn-Sham Hamiltonian is finally ob-
tained as

HKS5
p2

2m
1(

i
@VNL~r2Ri !1VNA~r2Ri !#

1VH
d ~r !1VXC~r !. ~3!

The overlap, kinetic energy term, neutral atom potential,
and nonlocal part of the pseudopotential, are all independent
of the charge densityn(r ), and their matrix elements be-
tween atomic orbitals can be expressed as sums of two-
center@Smn5^fmufn& and ^fmup2/2mufn&# or three-center
@^fmuVNL(r2Ri)ufn& and ^fmuVNA(r2Ri)ufn&# integrals,
which only depend on the relative positions of pairs or trip-
lets of atoms. We follow the method proposed by Sankey
and Niklewski9 to compute all these integrals: they are cal-
culated beforehand and tabulated as a function of the relative
position of the centers. These tables are used during the
simulation, to calculate all the nonzero integrals by interpo-
lation. The details of the procedure can be found in Ref. 9.
Since all these integrals are zero for distant enough atoms,
their number scales linearly with the size of the system, as
well as the computation time. The contributions of these
terms to the Hamiltonian are computed only once for a given
atomic configuration, since they do not depend on the self-
consistent charge.

The matrix elements of the Hartree potentialVH
d (r ) cre-

ated by the chargedn(r ) and the exchange-correlation po-
tentialVXC@n(r )# both depend on the self-consistent charge.
To calculate these integrals we computen0(r ), n(r ), and
dn(r ), for a given LCAO density matrix, at the points of a
regular grid in real space. This is straightforward since the

basis orbitals are defined in real space. Poisson’s equation for
the Hartree potential can then be solved by the standard fast
Fourier transform~FFT! method, assuming a supercell ge-
ometry, or by the multigrid method.11 In spite of itsNlnN
scaling, we presently use FFT’s for simplicity, since this part
represents a minor contribution to the total computational
load. Note that only two FFT’s are necessary per cycle of
self-consistency~SCF cycle!, in contrast with PW-based cal-
culations, where an FFT is required for each electronic state.
The LDA XC potential is trivially computed on each point of
the grid. Once the value of the Hartree and the XC potentials
are known at every point, the integrals^fmuVH

d ufn& and
^fmuVXCufn& are computed by direct summation on the grid.
These sums are carefully done to minimize the amount of
numerical workload involved. Only the nonzero integrals
~between orbitals on atoms closer than 2r c) are computed,
and only the points of the grid for which both orbitals are
nonzero contribute to each integral. We use sparse-matrix
multiplication techniques optimized for this class of opera-
tions. As a result, the computation of the integrals scales
linearly with the size of the system.

It is important to stress that the convergence with grid
spacing of our method is different from that in standard PW
calculations, which are known to require large PW cutoffs
for systems containing atoms with hard pseudopotentials. In
Fig. 1 we show the convergence of the total energy per atom
~referred to the converged value! for carbon, as a function of
Ecut, the kinetic energy cutoff of the plane waves that the
grid can represent. Full circles are for a diamond supercell of
64 atoms, whereas diamonds are for a cluster of three carbon
atoms in a supercell of 15315315 Å3. In both cases, the
results are converged to below 2 meV/atom for a cutoff of 30
Ry. This is in sharp contrast with results of PW
calculations12 ~open circles!, in which the cutoff necessary to
achieve convergence~with the same pseudopotential! is
much higher. Note, moreover, that the energy cutoff in our
case refers to the grid representation of the charge density,
whereas in the PW case it refers to the wave functions, which
implies an even higher~four times! cutoff in the charge den-
sity. The reason for the fast convergence of our approach is
that most of the Hamiltonian terms~most importantly the
kinetic energy and the neutral atom potential! are not com-
puted in the grid.

FIG. 1. Convergence of the total energy per carbon atom vs grid
fineness~given by the cutoffEcut of the plane waves that it can
represent!. The results of the present method are shown for a dia-
mond supercell with 64 atoms~full circles! and for a C3 cluster
~diamonds!. Open circles show results of conventional plane-wave
calculations for diamond~Ref. 12!.
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Once the Kohn-Sham Hamiltonian has been obtained, we
use a recently proposed order-N method13,14 to compute the
band structure energyEBS ~sum of occupied eigenvalues!. In
this approach, a modified band energy functional13,14 is
minimized15 with respect to the electronic orbitals, by means
of a conjugate gradients~CG! algorithm, to yieldEBS. The
orthonormality of the occupied states does not need to be
imposed, but it is obtained as a result of the minimization of
the energy functional. The elimination of the orthogonaliza-
tion is the first step to achieve an order-N scaling. The sec-
ond is the use of localized, Wannier-like wave functions
~LWF! to describe the electronic states entering the minimi-
zation of the energy functional. Truncation of these localized
functions beyond a given cutoffRc from the center of the
LWF provides a linear scaling algorithm. The errors in-
volved in this truncation, which can be reduced arbitrarily by
increasing the value ofRc , are analyzed in detail in Ref. 1.

After the band energy has been minimized and the LWF’s
obtained, the new charge density is computed, completing a
so-called SCF cycle. From the density, a new Hamiltonian is
produced, the procedure being repeated until self-consistency
in the charge density or the Hamiltonian is achieved. At this
point, the total energy can be computed as

Etot5EBS2
e2

2 E VH~r !n~r !dr1
e2

2 E VH
0 ~r !n0~r !dr

1E @eXC~n!2VXC~n!#n~r !dr1Uii -ee, ~4!

whereVH(r ) is the Hartree potential of the self-consistent
chargen(r ), and, following Sankey and Niklewski,9 we have
defined

Uii -ee5
e2

2(
l l 8

8
ZlZl 8

uRl2Rl 8u
2
e2

2 E VH
0 ~r !n0~r !. ~5!

As in the case of the Hamiltonian, we have added and sub-
tracted the electrostatic energy of the neutral atom charge
n0(r ) to obtain Eq.~4!. The advantage, again, is thatUii -ee
can be expressed as a sum of short-range contributions,
which is easy to evaluate inO(N) operations,9 avoiding the
problems related with the long-range character of the ionic
core interactions. The integrals appearing in Eq.~4! are cal-
culated in the real-space grid.

In molecular dynamics~MD! simulations and geometrical
optimizations the atomic forces are needed. We compute
them using a variation of the Hellman-Feynman theorem,
which includes Pulay-like corrections to account for the fact
that the basis set is not complete and moves with the atoms.
The force on atomi is

Fi52(
mn

rmn

]Hmn
0

]Ri
1(

mn
Emn

]Smn

]Ri
2

]Uii -ee

]Ri

12(
m

rm
0 K ]fm

]Ri
uVH

d ufmL
22(

mn
rmnK ]fm

]Ri
uVH

d 1VXCufnL , ~6!

whereH05p2/2m1VNL1VNA , and rmn and Emn are the
density and energy-density matrices, respectively.9 The first
three terms are calculated interpolating the table data,9

whereas the last two terms are computed by numerical inte-
gration in the grid, as was done for the matrix elements of
the Hartree and XC potentials in the Kohn-Sham Hamil-
tonian.

In order to show the linear scaling of the method, we have
performed calculations on supercells of silicon in the dia-
mond structure, with different numbers of atoms from 64 to
1000. Only theG point was used to sample the Brillouin
zone, the cutoff for the charge density grid was 12 Ry, and
the LWF’s were truncated at 4.5 Å. Figure 2 shows the linear
behavior of the CPU time and memory requirements with the
number of atoms. The CPU time shown represents the aver-
age cost to perform a SCF step in a MD simulation, includ-
ing the calculation of the charge density and Hamiltonian
matrix elements, the minimization of the band structure en-
ergy, and the calculation of the atomic forces. The band
structure energy minimization within each SCF cycle re-
quired an average of 20 CG iterations, while the number of
SCF cycles depends largely on the simulation temperature,
length of the time step, and mixing algorithm for self-
consistency. So far, in comparable simulation conditions, no
significant dependence of the number of CG iterations and
SCF cycles on the size of the system has been observed. As
we can see, in the present method both the CPU time and
memory requirements are small enough to permit the calcu-
lation of a system of 1000 silicon atoms in a very modest
work station.

As an example of a system with partially ionic character,
and with atoms with compact orbitals, we have performed
calculations on theb phase of C3N4, which was proposed as
a potentially very hard material by Liu and Cohen.17 The
calculations were done in supercells of 42 and 224 atoms,
with nearly identical results. A cutoff of 200 Ry for the
charge density grid was used. We obtain an accuracy better
than 1% in both the lattice constants and the several in-
equivalent bond lengths, and 10% in the bulk modulus, com-
pared to other LDA calculations.17 These results contrast
with those of the non-self-consistent Harris functional, which
yield errors of 5% and 16% for the distances and bulk modu-
lus, respectively, showing that self-consistency is essential to
obtain reliable results in this partially polar system.

We have applied our method to study the structure of
large, single-shell, icosahedral fullerene clusters. These are

FIG. 2. CPU time per SCF cycle and job memory for a simula-
tion of Si supercells with different sizes. Times measured in an IBM
PowerPC with 17 Mflops~Linpack 1003100!.
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important to understand the observed sphericity of multishell
fullerenes. For the single-shell clusters, elasticity theory, as
well as empirical potential calculations, predict markedly
polyhedral shapes. Calculations performed by Itohet al.,16

using the Harris functional order-N method,1 agree qualita-
tively with these results. However, similar non-self-
consistent calculations3 predict that even the large clusters
are spherical. Here we have repeated the calculations with
self-consistent LDA using the present method, thus improv-
ing on the non-self-consistent nature of the former calcula-
tions. Using a dynamical quenching algorithm, we have
computed the equilibrium structure of three icosahedral
fullerene clusters: C60, C240, and C540. A supercell geom-
etry was assumed, with a cubic cell with sides of 12 Å for
C60, 22 Å for C240, and 34 Å for C540. The calculations
were done using a cutoff of 100 Ry for the representation of
the charge density in reciprocal space, and a different local-
ization radius fors- andp-type Wannier functions~2.5 and
4.0 Å, respectively!.16 Increasing the localization radius to
4.1 Å ~both fors andp), and/or increasing the grid cutoff
to 150 Ry in the simulations changes the relaxed interatomic
distances less than 0.4%. The results are summarized in
Table I. We see that our results are very similar to those
obtained by Itohet al., and confirm that, except for C60, the
single-shell clusters tend to be polyhedral, instead of spheri-
cal, and that this polyhedral character is more pronounced as
the cluster size increases.

In conclusion, we have presented an efficient method for

self-consistent LDA calculations with linear scaling. We
have analyzed the performance versus system size and grid
cutoff, and shown that simulations of systems with hundreds
of atoms are possible with small work stations. This should
open the possibility of very large scaleab initio simulations
in the near future.

We acknowledge R. M. Martin and Paul von Allmen for
many useful discussions, and D. A. Drabold and O. F. San-
key for allowing us the use of many of their codes. P.O. is
indebted to R. M. Martin and J. B. Adams for continuous
support and encouragement. This work was partially
supported by DOE Grant No. DEFG 02-91ER45439 and
DGICYT ~Spain! Grant No. PB92-0169.

1P. Ordejón, D. A. Drabold, R. M. Martin, and M. P. Grumbach,
Phys. Rev. B51, 1456~1995!, and references therein.

2J. Harris, Phys. Rev. B13, 1770~1985!.
3D. York, J. P. Lu, and W. Yang, Phys. Rev. B49, 8526~1994!; J.
P. Lu and W. Yang,ibid. 49, 11 421~1994!.

4W. Hierse and E. B. Stechel, Phys. Rev. B50, 17 811~1994!.
5E. Hernandez and M. Gillan, Phys. Rev. B51, 10 157 ~1995!;

~unpublished!.
6R. Poirier, R. Kari, and I. G. Csizmadia,Handbook for Gaussian
Basis Sets~Elsevier Science, New York, 1985!, and references
therein.

7W. Kohn and L. J. Sham, Phys. Rev.140, 1133 ~1965!. The
exchange-correlation potential is taken from D. M. Ceperley and
G. J. Alder, Phys. Rev. Lett.45, 566~1980!, as parametrized by
J. Perdew and A. Zunger, Phys. Rev. B23, 5048~1981!.

8G. B. Bachelet, D. R. Hamman, and M. Schlu¨ter, Phys. Rev. B
26, 4199~1982!.

9O. F. Sankey and D. J. Niklewski, Phys. Rev. B40, 3979~1989!.

10D. Sanchez-Portal, E. Artacho, and J. M. Soler~unpublished!;
Solid State Commun.95, 685 ~1995!.

11W. H. Presset al., Numerical Recipes~Cambridge University,
New York, 1989!.

12N. Troullier and J. L. Martins, Phys. Rev. B43, 1993~1991!.
13P. Ordejón, D. A. Drabold, M. P. Grumbach, and R. M. Martin,

Phys. Rev. B48, 14 646~1993!; F. Mauri, G. Galli, and R. Car,
ibid. 47, 9973~1993!.

14J. Kim, F. Mauri, and G. Galli, Phys. Rev. B52, 1640~1995!.
15The variables of the minimization are the coefficientscm i of the

expansion of the localized wave functions in terms of the atomic
orbitals:c i5(mcm ifm .

16S. Itoh, P. Ordejo´n, D. A. Drabold, and R. M. Martin~unpub-
lished!.

17A. Y. Liu and M. L. Cohen, Phys. Rev. B41, 10 727~1989!; A.
Reyes-Serrato, D. H. Galva´n, and I. L. Garzo´n, ibid. 52, 6293
~1995!, and references therein.

TABLE I. Average radius (r̄ ), standard (ss), and maximum
deviation @sm5(rmax2rmin)/2# of radii, and nonplanarity angle3

f around pentagons~going from 0° for a planar pentagonal site to
12° for a truncated icosahedron! for the fullerene clusters. We com-
pare the results of the present work with those of Itohet al. ~Ref.
16! obtained with the Harris functional.

This work Itohet al.

r̄ ~Å! ss / r̄ sm / r̄ f r̄ ~Å! ss / r̄ sm / r̄ f

C60 3.59 0.000 0.000 12.0° 3.55 0.000 0.000 12.0°
C240 7.18 0.023 0.027 8.5° 7.06 0.021 0.028 7.9°
C540 10.69 0.038 0.054 9.6° 10.53 0.033 0.053 9.2°
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