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Models of resonant-tunneling diodes based on the envelope-function approximation often give unsatisfac-
tory results. In order to address some of the shortcomings of these models, we employ a tight-binding model
that allows more careful treatment of heterointerfaces than is possible in the envelope-function approach. We
use a scattering-matrix technique to carry out the calculation and present an improved method that allows us to
calculate transfer across larger device dimensions. The method is applied to the calculation of transmission
amplitudes for a single-barrier heterostructure.

I. INTRODUCTION

Semiconductor tunnel structures having negative differen-
tial resistance have been studied for many years. Interest in
the development of resonant-tunneling structures grew due to
rapid advances in semiconductor growth technology, such as
molecular-beam epitaxy, that made it possible to control the
composition and doping of the grown material on an atomic
scale. This work has been followed by many other theoretical
and experimental investigations into the tunneling process.
For these structures, the simple one-band effective-mass
model has been utilized to explain the main features of the
tunneling. However, it is difficult to accommodate various
critical factors such as the multiband and band-mixing effect,
indirect-energy-band-gap and intervalley transfer, band non-
parabolicity, and our understanding of the electronic struc-
ture of the semiconductor double-barrier quantum-well het-
erostructure remains incomplete.

Recently, it was reported that theX-point conduction-
band minima play an important or dominant role in several
heterostructures such as GaAs/AlAs.1 Furthermore, the
nearly lattice-matched InAs/GaSb/AlSb structure has re-
ceived considerable attention because of the flexibility it of-
fers for heterostructure design.2,3 Its interband tunneling na-
ture comes from the fact that the tunneling involves the
coupling between the InAs conduction- and the GaSb
valence-band states. Devices built using this structure are
attractive for use in high-frequency oscillators, logic circuits,
and digital and analog applications. It has been recognized
that the prediction and the analysis of electrical and optical
properties of double-barrier quantum-well structures requires
one to take into account the band structures of the constituent
materials. The heterointerfaces must be treated more care-
fully than is possible in the usual envelope-function model.
For the purpose of extending the model, one might try to
extend the envelope-function approximation to include
valley-mixing effects at a heterointerface.4–7 However, the
connection rule of the envelope function at the heterointer-
face is very complicated and varying the location of the in-
terface within a lattice constant leads to the deviation of the
eigenergies.8

Another method to treat semiconductor heterostructures is
to use localized basis tight-binding models, which is the
technique commonly used to calculate the bulk band struc-

ture. By employing the multiorbital tight-binding Hamil-
tonian, one can deal with the multiband effect, band-mixing
effect, bulk-material-specific characteristics, and symmetry
considerations in the constituent materials. Because all of
these structures involve a lack of translational invariance on
an atomic scale, a transfer-matrix approach is widely used.
However, it is well known the transfer matrices used in these
types of calculations are fraught with numerical instabilities,
or in other words, exponential blowup. Schulman and
co-workers,9–12 Boykin, van der Wagt, and Harris,13 Ting,
Yu, and McGill,14 and Sto”vneng and Lipavsky´15 have ad-
dressed this problem by using some modified matrix meth-
ods. However, the transfer matrices in their models have a
large dimension and the treated matrices are complicated. Ko
and Inkson’s model16 employed the scattering-matrix tech-
nique based on extended states at every transfer step, and in
contrast to local-orbital-type models, it was based on a
pseudopotential framework. Though their method is effec-
tive, it has never been extended to the tight-binding model.

In this work, we employ ansp3s* empirical tight-binding
model to treat heterostructures lacking translational symme-
try in one direction. To overcome the numerical instabilities
and to make the formulation intuitively clear, we use a
scattering-matrix approach for the electronic structures of
semiconductor heterostructures, where the basis function is
chosen as eigenvectors of a transfer matrix. The memory
required is very small, i.e., proportional to the number of
orbitals per unit cell. The method has been successfully ap-
plied to the calculation of transmission probabilities for
GaAs/AlAs/GaAs and InAs/GaSb/InAs single-barrier struc-
tures and has been confirmed to be numerically stable in the
calculation of the transmission coefficient for wide hetero-
structures.

In Sec. II, we define the current operator that exactly sat-
isfies continuity. Using the eigenvectors of the transfer ma-
trix and the current operator, we introduce the scattering ma-
trix. In Sec. III, we demonstrate this numerical technique by
calculating transmission probabilities of GaAs/AlAs/GaAs
and InAs/GaSb/InAs single-barrier structures. Multiband ef-
fects on tunneling processes are explained there.

II. MODEL

A. Tight-binding model

We consider the heterostructure as a sequence of mono-
layers parallel to the heterointerfaces. LetM be the number
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of orbitals per unit cell in our tight-binding basis set
(M510 in our case!. The basis orbitals may be written in the
form uRisa&, where s is an integer monolayer label
(s51,2, . . . ,N), and a51,2, . . . ,M labels the orbitals
within a unit cell. We consider the nearest-neighbor interac-
tion in the calculation, in which each atomic plane is a layer.
Since the in-plane crystal momentum,ki , is a good quantum
number, the wave function may be written as

uc&5(
s,a

Csausa,ki&, ~1!

where usa,ki& is a planar orbital formed by taking Bloch
sums of tight-binding orbitals over theNi unit cells in the
sth monolayer:

usa,ki&5
1

ANi
(
Ri

exp~ iki•Ri!uRisa&. ~2!

Here,Ri is the in-plane component of the unit cell coordi-
nate.

In the tight-binding model, the Schro¨dinger equation is

Hs,s21Cs211H̄s,sCs1Hs,s11Cs1150, ~3!

whereCs is a vector of lengthM ,

Cs5S Cs1

Cs2

A

CsM

D , ~4!

andHs,s8 andH̄s,s areM3M matrices whose elements are
given by, respectively,

~Hs,s!a,a85^sa,kiuHus8a8,ki& ~5!

and

~H̄s,s8!a,a85^sa,kiu~H2E!us8a8,ki&. ~6!

Equation~2! can be rewritten in an extended matrix formula
as

SCs21

Cs
D 5S 2Hs,s21

21 H̄s,s 2Hs,s21
21 Hs,s11

1 0
D S Cs

Cs11
D

[TsS Cs

Cs11
D , ~7!

whereTs is the so-called transfer matrix.

We may invoke the Bloch theorem to calculate the basis
in the semi-infinite regions on either side of the device. In
the nearest-neighbor interaction approximation,s and
s22 are layers composed of the same kinds of atoms, either
anion or cation. Therefore, bulk states can be expressed as

Bs5eik'dBs22 . ~8!

Substituting Eq.~8! into Eq. ~7!, the bulk Bloch state is ex-
pressed as the eigenstate of the matrix equation,

Ts21TsSBs

Bs
D 5lSBs

Bs
D , ~9!

wherel5eik'd and k' is the wave number. In the case of
l smaller than 1, the vector expresses the evanescent state,
which cannot travel a long distance in the material.

B. Current continuity

In the envelope-function method, the transmission and re-
flection probability are calculated as the ratio of the current
flow, which is carried by the incoming and outgoing states in
the semi-infinite boundary of both sides. This definition of
probabilities is legitimated by the continuity of the current
whole through the system. However, it is not clear whether
this definition of the current can be applied in this model. In
the tight-binding model, probabilities are usually calculated
as the ratio of the group velocities, (1/\)]E(k)/]k, of in-
coming and outgoing states of both sides without the exact
verification of the continuity of this current. In this section,
we will define the exact conserving current carried by the
basis state for the tight-binding model.

Let us introduce the valueW, defined as

Wab~ i !5Ca* ~ i !Hi ,i11Cb~ i11!2Ca* ~ i11!Hi11,iCb~ i !,
~10!

whereCa,b( i ) is the solution of the Schro¨dinger equation
~2!. This valueW( i ) has layer dependency and can be inter-
preted as the matrix element of the operator,

Ŵ[S 0 Hi ,i11~s!

Hi11,i~s! 0 D . ~11!

The valueW(s) can be probed so as to be conserved
through all the layers. From the subtraction of Eq.~10! for
neighboring layers, we obtain

Wab~ i11!2Wab~ i !5Ca* ~ i11!Hi11,i12Cb~ i12!2Ca* ~ i12!Hi12,i11Cb~ i11!2Ca* ~ i !Hi ,i11Cb~ i11!

1Ca* ~ i11!Hi11,iCb~ i !

5Ca* ~ i11!@Hi11,i12Cb~ i12!1Hi11,iCb~ i !#2@Ca* ~ i12!Hi12,i111Ca* ~ i !Hi ,i11#Cb~ i11!.

~12!

By substituting the Schro¨dinger equation,

EC~ i !5Hi ,i21C~ i21!1Hi ,iC~ i !1Hi ,i11C~ i11! ~13!
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and its complex conjugate equation,

EC* ~ i !5C* ~ i21!Hi21,i1C* ~ i !Hi ,i1C* ~ i11!Hi11,i , ~14!

into Eq. ~12!, we get

Wab~ i11!2Wab~ i !5Ca* ~ i11!~Eb2Hi11,i11!Cb~ i11!2Ca* ~ i11!~Ea2Hi11,i11!Cb~ i11!

5~Eb2Ea!Ca* ~ i11!Cb~ i11!. ~15!

This equation represents the continuity of

Wab~ i11!2Wab~ i !50 ~16!

for the solution of the Schro¨dinger equation with the same energyEa5Eb .
For the Bloch state, the coefficientsCa,b at each layer obey the relations

Ca~ i !5laCa~ i12!,

Ca~ i11!5laCa~ i13!,

Cb~ i !5lbCb~ i12!,

Cb~ i11!5lbCb~ i13!. ~17!

Substituting Eq.~17! into

Wab~ i !5Ca* ~ i !Hi ,i11Cb~ i11!2Ca* ~ i11!Hi11,iCb~ i ! ~18!

yields

Wab~ i !5la*Ca* ~ i12!Hi12,i13lbCb~ i13!2la*Ca* ~ i13!Hi13,i12lbCb~ i12!5la* lbWab~ i12!. ~19!

For the statesCa andCb which are the eigenvectors of Eq.
~9! with eigenvaluesla andlb , the value ofW also satisfies
the following relation:

Wab~ i12!5Wab~ i !. ~20!

When Ca and Cb are the same traveling states, Eq.~19!
represents current conservation and whenCa andCb corre-
spond to different traveling states, this equation means
Wab50.

When stateC is expressed as the linear combination of
Ca andCb ,

C5aaCa1abCb . ~21!

The expectation value ofŴ for the stateC is

^CuŴuC&5uaau2Waa1uabu2Wbb . ~22!

This relation means that the components of the expectation
value for the incoming state and reflected state can be sepa-
rated and the total expectation value is the sum of each cur-
rent component.

Because the value ofW is imaginary, the electric current
is defined withW as

J5e\ Im~W!, ~23!

where Im means imaginary part.
J can be rewritten with the coefficientC explicitly as

J~ i !5ReS e\

2i
C* ~ i !Hi ,i11C~ i11! D . ~24!

If we define the layer-dependent derivative in tight-binding
form as

¹ iC~ i !5Hi ,i11C~ i11!2Hi ,iC~ i !, ~25!

J( i ) can be expressed as

J~ i !5ReS e\

2i
C* ~ i !¹ iC~ i ! D , ~26!

which is a tight-binding form of the current and coincides
with the usual definition of the current,

J5ReS e\

2i
C* ~x!¹C~x! D , ~27!

in the envelope-function method.

C. Scattering matrix

The coefficientsC of the solution at the layers have the
relation

SCs21

Cs
D 5TsTs11SCs11

Cs12
D . ~28!

This equation relates the traveling states and evanescent
states of a certain layer to the states of an adjacent layer in a
certain direction of heterostructure. Treated states inevitably
include exponentially divergent states as well as diminishing
states. In matrix multiplication in the transfer-matrix method,
this means that the multiplication of exponentially large
numbers with exponentially small numbers is inevitable. Nu-
merical errors will be introduced in this process.
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On the other hand, the scattering matrix relates incoming
states with outgoing states. In general, which state is defined
as the incoming state or outgoing state is arbitrary. If this
definition is chosen properly, the calculation will include
only small numbers. We define the direction of the propaga-
tion of states by the current for the traveling states or the
direction of the evanescent state~see Fig. 1!. In this method,
there are only multiplications of small numbers, which re-
duces numerical error a great deal.

By eigenvectors ofTsTs11 , state vectors are expressed
as

SCs21

Cs
D 5DsS as21

bs21
D , ~29a!

SCs11

Cs12
D 5Ds12S as11

bs11
D . ~29b!

Ds is a 2M32M matrix whose column vectors are the
eigenvectors ofTsTs11 and, for convenience, the eigenvec-
tors are sorted according to their direction of propagation.
Using the same basis, the transfer matrix is

Ds
21TsTs11Ds125Ms . ~30!

With this representation, Eq.~28! is rewritten as

S as21

bs21
D 5MsS as11

bs11
D . ~31!

Changing the order of elements to all incoming states to the
right-hand side and outgoing states to the left, this equation
is written in the scattering matrix form,

S bs21

bs11
D 5SM21M11

21 M222M21M11
21M12

M11
21 2M12

D S as21

as11
D .

~32!

This equation relates the coefficient of the incoming state
from either layer to the outgoing state. When we have two
Smatrices of adjacent layers,

S bs21

bs11
D 5S S11A S12

A

S21
A S22

A D S as21

as11
D , ~33a!

and

S bs11

bs13
D 5S S11B S12

B

S21
B S22

B D S as11

as13
D , ~33b!

the combinedSmatrix for these layers is

S bs21

bs13
D 5SS11 S12

S21 S22
D S as21

as13
D , ~34!

where matricesSi j are

S115S11
s 1S12

s ~12S11
s12S22

s !21S11
s12S21

s , ~35a!

S125S12
s ~12S11

s12S22
s !21S12

s12 , ~35b!

S215S21
s ~12S22

s S11
s12!21S21

s , ~35c!

S225S22
s121S21

s ~12S22
s S11

s12!21S22
s S12

s12 . ~35d!

By performing these procedures successively, we can obtain
the finalS matrix that expresses the transition of states be-
tween the semi-infinite regions on either side of the device.

To calculate the scattering state for the heterostructure, the
boundary condition for these semi-infinite regions is set as

uc:L&5I 0uJ0
1 ;L&1(

j51

M

r j uJj1M
2 ;L&, ~36a!

uc:R&5(
j51

M

t j uJj
1 ;R&, ~36b!

where uc;L& and uc;R& are the states in the left and right
regions andJ1 and J2 express the positive and negative
current states, i.e., propagating to the right and left, respec-
tively. With the S matrix, the relation between coefficients
t j and r i is

S rt D 5SS11 S12
S21 S22

D S I 00 D . ~37!

The transmission and reflection probabilities can be defined
as the ratio between the current flow in the semi-infinite re-
gion of either side of the heterostructure. The transmission
probability is

T5(
i

ut i u2
Ji

1

J0
1 , ~38!

whereJi
1 is the current calculated bŷJi

1 ;RuJuJi
1 ;R& and

J0
1 is ^J0

1 ;LuJuJ0
1 ;L&. The summation is performed for all

right-traveling states in the right semi-infinite region. The
reflection probability is

R5(
i

ur i u2
Ji1M

2

J0
1 , ~39!

where the summation is performed for all left-traveling states
in the left semi-infinite region.

III. RESULTS

In this section we present the results of a systematic study
of electron tunneling in single-barrier structures to illustrate
the stability of the technique. No problems were encountered
with the scattering-matrix method even for systems as large
as 1500 Å. The transfer-matrix method, however, failed for
systems as large as 150 Å. Furthermore, the method has a

FIG. 1. The coefficients of eigenvectors of either side of an
interface. Coefficientai corresponds to incoming states andbi to
outgoing states for a scattering matrix.
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memory cost proportional to the number of considered orbit-
als in a layer and not to the number of layers. We use the
same tight-binding parameters used by Boykin, van der
Wagt, and Harris13 for GaAs and AlAs, which include the
amount of band discontinuity between GaAs and AlAs. For
InAs and GaSb, we use the parameters used by Vogl, Hjal-
marson, and Dow.17

A. GaAs/AlAs/GaAs single-barrier structure

We shall first investigate the heterostructure composed of
GaAs and AlAs, which is an indirect-gap semiconductor.
Figure 2 shows a schematic energy-band diagram for the
GaAs/AlAs/GaAs single-barrier structure. In ordinary ap-
proaches using the envelope function, the effective mass at
the G state band edge for each material is used, and theX
point or L point of AlAs is not considered. However, it has
been indicated thatX-point conduction-band minima play an
important role.1

The bulk-band structure is calculated from the eigenval-
ues of the transfer matrix as in Eq.~8!. Figure 3 shows the
band structures for the GaAs and AlAs in the@111# and@100#
directions. In the@111# direction, theL state of AlAs is lower
than theG state and near to theL state of GaAs. In the@100#
direction, the AlAsX-valley minimum is very low compared
to theG state and comparable to the GaAsG-state energy.
The second GaAsX2 state and AlAsX2 are also lower than
the AlAs G state, so traversing through these states becomes
important in the GaAs/InAs heterostructure.

Figure 4 shows the effects of varying barrier widths on
the transmission amplitude. For energies smaller than the
AlAs L-valley minimum, the diminishing amplitude of the
wave function in the AlAs layer decreases the transmission
probabilities for the large barrier width, as expected. How-
ever, the transmission probabilities oscillate for energies
higher than the AlAsL-valley minimum. The period of this
oscillation becomes small for large barrier widths. For ener-
gies larger than the AlAsL-valley minimum, the probability
has a value around 0.01 for wide AlAs layers. Antiresonance
appears around 0.5 eV, which corresponds to the GaAs
L-valley minimum. The details of these characteristics can
be clarified by the transmission probability to the GaAsL
valley.

Figure 5 shows the probability of transmission from the
GaAsG state to the GaAsL state. For narrow AlAs layers,
the transmission probability is large throughout the calcu-
lated energy region. For wide AlAs layers, the probability for
the energy range from the GaAsL-valley minimum to the
AlAs L-valley minimum becomes small. This is because for
these energies there are no traveling states in AlAs and the

amplitude is evanescent. For energies larger than the AlAs
L-valley minimum, an electron inserted into the GaAsG
state traverses to the AlAsL-valley state, which is not an
evanescent state. The figure shows a probability value of
around 0.1 for large barrier width. This suggests that the
transmission from the resonance is due to the resonant tun-
neling through the quasibound states. The antiresonance is
due to destructive interference between theG-X-G and the
G-G-G channels.

FIG. 2. Energy-band diagram of an GaAs/AlAs/GaAs single-
barrier structure. The solid lines depict the band edges at theG
point and the dashed lines depict theX point of AlAs.

FIG. 3. Band structure of GaAs and AlAs~a! in the @111# direc-
tion and~b! in the @100# direction.

FIG. 4. Transmission probability for the GaAs/AlAs/GaAs
single-barrier structure in the@111# direction as a function of elec-
tron energy for four structures with different barrier widths. The
electron is incident from theG valley of the GaAs withki50 and
transfers to theG valley of the GaAs. Energy is referenced from the
GaAsG-valley minimum in the figure.
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For the @100# direction, the transmission probability
shows complex characteristics because of the low AlAs
X-valley minimum and because of the contributions of the
secondX2 valley of GaAs and AlAs. Figure 6 shows the
effects of varying the barrier width on the transmission am-
plitude for the state inserting into theG state of GaAs trans-
mitting in theG state of GaAs. For the energy range from the
GaAs conduction-band minimum to the AlAsX-valley mini-
mum, the transmission probability decreases for large AlAs
layer widths. For energies between the AlAsX-valley mini-
mum and the GaAsX-valley minimum, probability reso-
nance appears and its energy half-width and its interval be-
come narrow. In this process, theG-X-G channel is the main
contributor. From the GaAsX-valley minimum to AlAs
G-valley minimum,G-X transfer andG-X2 transfer occur as
well asG-G and for energies larger than the AlAsG-valley
minimum, theG-G probability represents resonance charac-
teristics similar to the results obtained by the envelope-

function method. The resonances are related to quasibound
states localized in the AlAs layers by the effective quantum-
well potential defined by theX andX2 minima profiles.

B. InAs/GaSb/InAs single-barrier structure

Figure 7 shows a schematic energy-band diagram for the
InAs/GaSb/InAs single-barrier structure. At the flat bias con-
dition, electrons inserted into the InAs conduction band will
traverse to the GaSb valence band and finally to the InAs
conduction band. Under certain bias conditions, electrons in-
serted into the InAs conduction band will be blocked by the
band gap of GaSb. This structure has attracted much interest
for device applications. Figure 8 shows the band structure for
InAs and GaSb bulk in the@111# direction. The valence-band
edge of GaSb is higher than the conduction-band edge of
InAs for 0.15 eV and the band gap of GaSb is about 0.78 eV.
Incoming electrons with energies below 0.15 eV in the InAs
conduction band will traverse through the valence-band
state, without dropping in amplitudes. However, incoming
electrons with energies corresponding to the GaSb band gap
will be blocked.

The transmission probability from the InAsG state to
InAs G state in the@111# direction is shown in Fig. 9 as a
function of GaSb layer width. The transmission probability is
smaller for larger GaSb layer widths: In particular, the prob-
ability for energies from 0.15 eV to 0.93 eV is greatly sup-
pressed with the width of the GaSb layer because this region
corresponds to the band gap of GaSb. For a comparatively
narrow GaSb layer, however, the blocking effect of the band
gap is not conspicuous. For wider GaSb layers, the transmis-
sion probability for these energies becomes small and the
blocking effects of the band gap become apparent. For ener-
gies smaller than 0.15 eV, where electrons traverse through
the GaSb valence band, resonance characteristics appear for
wide GaSb. The resonance is related to quasibound states

FIG. 5. Transmission probability for the GaAs/AlAs/GaAs
single-barrier structure in the@111# direction as a function of elec-
tron energy for four structures with different barrier widths. The
electron is incident from theG valley of the GaAs withki50 and
transfers to theL valley of the GaAs. Energy is referenced from the
GaAsG-valley minimum in the figure.

FIG. 6. Transmission probability for the GaAs/AlAs/GaAs
single-barrier structure in the@100# direction as a function of elec-
tron energy for four structures with different barrier widths. The
electron is incident from theG valley of the GaAs withki50 and
transfers to theG valley of the GaAs. Energy is referenced from the
GaAsG-valley minimum in the figure.

FIG. 7. Energy-band diagram of an InAs/GaSb/InAs single-
barrier structure. The lines depict the band edges at theG point.

FIG. 8. Band structure of InAs and GaSb in the@111# direction.
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localized in the GaSb layers by the effective quantum-well
potential defined by the valence-band-edge profile. For ener-
gies higher than 0.93 eV, similar resonance appears. These
resonances are attributed to quasibound states localized in
the GaSb layers by the effective quantum-well potential de-
fined by theL minima profile. Above the second GaSb
L-valley minimum, the transmission probability becomes
complicated because of the contribution of the channel
through theL-valley state. However, the transmission prob-
ability in the @100# direction does not show this complicated
resonance structure within the calculated energy, because in
the @100# direction theX2-valley minimum energy is much
larger.

Figure 10 shows the transmission probabilities for a wide
GaSb layer~300 ML!. In this structure, the blocking effect of
the GaSb band gap is clear and many resonances appear in
theG-H-G transmission below 0.15 eV and in the transmis-

sion probability beyond 0.93 eV. The half-width of the reso-
nant peaks and the distances between peaks are very small
because of the wide effective quantum-well width in GaSb.

IV. CONCLUSIONS

We have formulated a tight-binding model by introducing
anS-matrix description based on a detailed discussion of the
definition of conserving current. Our method is numerically
stable, efficient, and simple to implement, making it possible
to compute transmission coefficients effectively in wide het-
erostructures using realistic multiband band-structure mod-
els.
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FIG. 9. Transmission probability for the InAs/GaSb/InAs single-
barrier structure in the@111# direction as a function of electron
energy for four structures with different barrier widths. The electron
is incident from theG valley of the InAs withki50 and transfers to
the G valley of the InAs. Energy is referenced from the GaAs
G-valley minimum in the figure.

FIG. 10. Transmission probability for the InAs/GaSb/InAs
single-barrier structure in the@100# direction as a function of elec-
tron energy for 300 layers of GaSb. The electron is incident from
theG valley of the InAs withki50 and transfers to theL valley of
the InAs. Energy is referenced from the GaAsG-valley minimum in
the figure.
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