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Scattering-matrix method for the tight-binding model of heterostructure electronic states

H. Taniyama and A. Yoshii
NTT LSI Laboratories, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-01, Japan
(Received 2 November 1995; revised manuscript received 27 December 1995

Models of resonant-tunneling diodes based on the envelope-function approximation often give unsatisfac-
tory results. In order to address some of the shortcomings of these models, we employ a tight-binding model
that allows more careful treatment of heterointerfaces than is possible in the envelope-function approach. We
use a scattering-matrix technique to carry out the calculation and present an improved method that allows us to
calculate transfer across larger device dimensions. The method is applied to the calculation of transmission
amplitudes for a single-barrier heterostructure.

[. INTRODUCTION ture. By employing the multiorbital tight-binding Hamil-
tonian, one can deal with the multiband effect, band-mixing
Semiconductor tunnel structures having negative differeneffect, bulk-material-specific characteristics, and symmetry
tial resistance have been studied for many years. Interest fPnsiderations in the constituent materials. Because all of
the development of resonant-tunneling structures grew due {hese structures involve a lack of translational invariance on
rapid advances in semiconductor growth technology, such atomic s_cale, a transfer-matrix approa_ch IS W'de.ly used.
molecular-beam epitaxy, that made it possible to control th owever, it is well known the transfer matrices used in these

o . - . fypes of calculations are fraught with numerical instabilities,
gggl]go'?g:g?/vz?lf hdaospg;%r?fféngvgég\’\én mgt:“g:h?r S}Zg:gggg@r in other words, exponential blowup. Schulman and
: y many o-workers’~'2 Boykin, van der Wagt, and Harris, Ting,

and experimental investigatic_ms into the tunneling Processy, “and McGill** and Staneng and Lipavsky have ad-
For these structures, the simple one-band effective-masgessed this problem by using some modified matrix meth-
model has been utilized to explain the main features of theys However, the transfer matrices in their models have a
tunneling. However, it is difficult to accommodate various |arge dimension and the treated matrices are complicated. Ko
critical factors such as the multiband and band-mixing effectangd Inkson’s modéf employed the scattering-matrix tech-
indirect-energy-band-gap and intervalley transfer, band nomique based on extended states at every transfer step, and in
parabolicity, and our understanding of the electronic struccontrast to local-orbital-type models, it was based on a
ture of the semiconductor double-barrier quantum-well hetpseudopotential framework. Though their method is effec-
erostructure remains incomplete. tive, it has never been extended to the tight-binding model.
Recently, it was reported that thé-point conduction- In this work, we employ asp’s* empirical tight-binding
band minima play an important or dominant role in severalmodel to treat heterostructures lacking translational symme-
heterostructures such as GaAs/AlAsEurthermore, the try in one direction. To overcome the numerical instabilities
nearly lattice-matched InAs/GaSb/AISb structure has reand to make the formulation intuitively clear, we use a
ceived considerable attention because of the flexibility it of-Sscattering-matrix approach for the electronic structures of
fers for heterostructure desigri.Its interband tunneling na- semiconductqr heterostructures, where the .basis function is
ture comes from the fact that the tunneling involves thechosen as eigenvectors of a transfer matrix. The memory
coupling between the InAs conduction- and the Gasygequired is very small, i.e., proportional to the number of
valence-band states. Devices built using this structure ar@rPitals per unit cell. The method has been successfully ap-

: P : oo plied to the calculation of transmission probabilities for
attractive for use in high-frequency oscillators, logic circuits,P . \
and digital and analog applications. It has been recognize aAs/AlAs/GaAs and InAs/GaSbh/InAs single-barrier struc-

that the prediction and the analysis of electrical and optical ures and has been confirmed to be numerically stable in the

i : .~ “calculation of the transmission coefficient for wide hetero-
properties of double-barrier quantum-well structures requireg

. . ructures.
one to take into account the band structures of the constltuen{

il he h interf b d In Sec. Il, we define the current operator that exactly sat-
materials. The heterointerfaces must be treated more Carggias continuity. Using the eigenvectors of the transfer ma-

fully than is possible in the usual envelope-function model.yix and the current operator, we introduce the scattering ma-
For the purpose of extending the model, one might try toyix. |n Sec. Ill, we demonstrate this numerical technique by
extend the envelope-function approximation to includecajculating transmission probabiliies of GaAs/AlAs/GaAs

valley-mixing effects at a heterointerfat®. However, the  and InAs/GaSb/InAs single-barrier structures. Multiband ef-
connection rule of the envelope function at the heterointerfects on tunneling processes are explained there.

face is very complicated and varying the location of the in-
terface within a lattice constant leads to the deviation of the Il. MODEL
eigenergie$.

Another method to treat semiconductor heterostructures is
to use localized basis tight-binding models, which is the We consider the heterostructure as a sequence of mono-
technique commonly used to calculate the bulk band struclayers parallel to the heterointerfaces. Mtbe the number

A. Tight-binding model
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of orbitals per unit cell in our tight-binding basis set We may invoke the Bloch theorem to calculate the basis
(M =10 in our casg The basis orbitals may be written in the in the semi-infinite regions on either side of the device. In
form |Rjoa), where o is an integer monolayer label the nearest-neighbor interaction approximatiom, and
(c=12,...N), and «=1,2,... M labels the orbitals o—2 are layers composed of the same kinds of atoms, either
within a unit cell. We consider the nearest-neighbor interacanion or cation. Therefore, bulk states can be expressed as
tion in the calculation, in which each atomic plane is a layer.
Since the in-plane crystal momentuky, is a good quantum B,=e*9B,_,. (8)
number, the wave function may be written as

Substituting Eq(8) into Eq. (7), the bulk Bloch state is ex-

|l//>22 C,.loa k) 1) pressed as the eigenstate of the matrix equation,
where|aa,ku> is a planar orbital formed by taking Bloch T T BU) :)\(BU) 9)
sums of tight-binding orbitals over thd; unit cells in the o-1eiB, B,/

oth monolayer: _
wherex=¢e'*19 andk, is the wave number. In the case of
1 ) N\ smaller than 1, the vector expresses the evanescent state,
loa k)= W, ;H exp(iky-R)[Rjoa). (2)  which cannot travel a long distance in the material.
Here, R, is the in-plane component of the unit cell coordi-

B. Current continuity
nate.

In the tight-binding model, the Schdimger equation is In the envelope-function method, the transmission and re-
_ flection probability are calculated as the ratio of the current
H,,-1Co-1tH, ,CotH, ,11Crr1=0, (3)  flow, which is carried by the incoming and outgoing states in

the semi-infinite boundary of both sides. This definition of

whereC, is a vector of lengtiM, probabilities is legitimated by the continuity of the current

Cy1 whole through the system. However, it is not clear whether
7 this definition of the current can be applied in this model. In
C - Co2 4) the tight-binding model, probabilities are usually calculated

as the ratio of the group velocities, fAPE(k)/ ok, of in-

c coming and outgoing states of both sides without the exact
B oM verification of the continuity of this current. In this section,

andH, .. andH, , areM XM matrices whose elements are we will define the exact conserving current carried by the

given By, respecfively, basis state for the tight-binding model.

Let us introduce the valu®/, defined as

(Hayg)aya,=<a’a,kH|H|a"a',kH> (5)
and W,p(i)=Ch()Hii+1Cp(i+1) = CL(i+ 1)H; 11, Chli),
_ (10
(Hoo)a,ar =(aak|(H=E)|o"a’ k). Q) o . - .
Equation(2 b itten | tended matrix f | where C, 4(i) is the solution of the Schdinger equation
quation(2) can be rewritten in an extended matrix formula (2). This valueW(i) has layer dependency and can be inter-
as preted as the matrix element of the operator,
CO'— _H;](;'— ﬁtTo‘ —H;](}_ HUU CO’
( C 1):( T "o H)(C ) W 0 Hunlo) (11)
o o+1 =
Hi+1,i(0) 0
Co
=T, c , (1) The valueW(o) can be probed so as to be conserved
ol through all the layers. From the subtraction of EtQ) for
whereT, is the so-called transfer matrix. neighboring layers, we obtain

Wi +1) =W,p(i) = C5 (i + D)Hi 114 2C (i +2) = CR(i +2)H 4 2j+1Cp(i + 1) = CL(I)H; j+1Cp(i +1)
+CL(i+1)Hi1;Cp(i)
=Coli+DHit1j4+2C(1 +2) + Hit1;Cp(i)]-[CRI +2)H 4 211+ C(1)H; i4+1]Cp(i +1).
(12)
By substituting the Schringer equation,

EC(i)=H;i-1C(i—1)+H;;C(i)+H;;+,C(i+1) (13
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and its complex conjugate equation,
EC*(i)=C*(i—1)H;_1; +C*(i)H; ; + C* (i + 1)H; 1, (14
into Eqg. (12), we get
Wop(i+1) =W (i) =CL(i+ 1)(Eg—Hi11;+1)Cp(i+1) = CL(i+ 1)(Ef—Hi11;41)Cpli+1)
=(Ep—En)CL(i+1)Cy(i+1). (15
This equation represents the continuity of
W, 5(i +1) =W, 4(i) =0 (16)
for the solution of the Schainger equation with the same energy=E.
For the Bloch state, the coefficients, ; at each layer obey the relations
Ca(i)=A,Ch(i+2),
C,i+1)=\,C,(i+3),

Substituting Eq(17) into
Wop(i)=Cr(i)Hii+1Cp(i+1)—Cr(i+1)H; 1 1;Cpli) (18)
yields
Wog(i)=NGCL>I+2)H 15130 gCpli +3) =ML CL (i + 3)H 1 34 oA gCpli +2) = NN sW (i +2). (19

For the state€,, and Cz which are the eigenvectors of Eq. If we define the layer-dependent derivative in tight-binding
(9) with eigenvalues. , and\ 4, the value olW also satisfies form as
the following relation:

ViC(i)=H;;+1C(i+1)—H;;C(i), (25
Wop(i +2)=Wqp(i). (20 3(i) can be expressed as
When C, and C,z are the same traveling states, E@9) of
represents current conservation and wkgnandC corre- J(i)= Re(—.c*(i)ViC(i)), (26)
spond to different traveling states, this equation means 2i
W,z=0. which is a tight-binding form of the current and coincides

When stateC is expressed as the linear combination ofith the usual definition of the current,
C, andCy,

efi
C=a,C,+a,Cy. (21 J=RG(E‘P*(X)V‘P(X)), (27)
The expectation value IV for the stateC is in the envelope-function method.
(CIWIC)=a,|* W+ |aﬁ|2Wﬁ,8- (22) C. Scattering matrix

This relation means that the components of the expectation The coefficientsC of the solution at the layers have the

value for the incoming state and reflected state can be sepeelation

rated and the total expectation value is the sum of each cur-

rent component. Co1)| Cot1
Because the value & is imaginary, the electric current C =ToTos1

is defined withW as

28
Co’+2 ( )

o

This equation relates the traveling states and evanescent

J=eh IM(W), (23 states of a certain layer to the states of an adjacent layer in a

certain direction of heterostructure. Treated states inevitably
where Im means imaginary part. include exponentially divergent states as well as diminishing
J can be rewritten with the coefficie@ explicitly as states. In matrix multiplication in the transfer-matrix method,

" this means that the multiplication of exponentially large
. € . . numbers with exponentially small numbers is inevitable. Nu-
IO Re( 21 © (DH;i+1C+1) ). 29 merical errors will be introduced in this process.
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the combinedS matrix for these layers is

8 Qjyq
Dy—1 St Sz @1
= : (34)
b b Dysi3 S Sl \ g4
-— T where matricess;; are
4/ \\u Su=S71+ ST 1- 87, 2S5, 187, sy, (353
—_ . . . S :So'(l_sa+2 0')—180'+2 (35b)
FIG. 1. The coefficients of eigenvectors of either side of an 127 912 11 2 12 s
interface. Coefficien; corresponds to incoming states andto ” > ot 2 —1leo
outgoing states for a scattering matrix. So1=S51(1=85,511 ) "S5y, (350
On the other hand, the scattering matrix relates incoming S2=S5, 2+ S5(1-S5,87, %) 185,88, 2. (350

states with outgoing states. In general, which state is deﬁnegy performing these procedures successively, we can obtain

as .th.e. Incoming state or outgoing state is afb'tfarY- It thISthe final S matrix that expresses the transition of states be-
definition is chosen proper!y, the cglcul'atlon will include tween the semi-infinite regions on either side of the device.
only small numbers. We define the direction of the propaga- To calculate the scattering state for the heterostructure, the

tion of states by the current for the traveling states or theo o P : ;
o . . oundary condition for these semi-infinite regions is set as
direction of the evanescent statee Fig. 1 In this method, y 9

there are only multiplications of small numbers, which re- M
duces numerical error a great deal. lp:Ly=1o|dg ;L) + >, rild5msLl), (363
By eigenvectors ofl T, State vectors are expressed =1
as M
(Ca-l (a3 98 Iw:R>=JZl 4197 R), (36b)
C(r 7 b(r*l ’

where ;L) and|#;R) are the states in the left and right
C regions andJ® and J~ express the positive and negative
( "*1) — +2( a"”) (290 current states, i.e., propagating to the right and left, respec-
7 tively. With the S matrix, the relation between coefficients
t; andr; is

Ca’+2 bo’+1

D, is a 2M X2M matrix whose column vectors are the

eigenvectors of , T, 1 and, for convenience, the eigenvec- r Sy S\ /[ lo

tors are sorted according to their direction of propagation. ( ):(52 s, )( )
1 2

Using the same basis, the transfer matrix is
The transmission and reflection probabilities can be defined

¢ (37

-1 —
Do ToTor1Dyr2=M, . (30 as the ratio between the current flow in the semi-infinite re-
With this representation, E@28) is rewritten as gion of either side of the heterostructure. The transmission
probability is
a,-1 ( Ay+1
=M, . (32 Jr
(ba'l b0+1 TZE |t| 2\]%, (38)
[ 0

Changing the order of elements to all incoming states to the . . .
right-hand side and outgoing states to the left, this equatiowhereJ;” is the current calculated b§d;" ;R[J|J;" ;R) and

is written in the scattering matrix form, Jg is (Jg ;L|J|Jg ;LY. The summation is performed for all
right-traveling states in the right semi-infinite region. The
(b,,1> (M21M 1 Myp—MyM'™ 12) ( agl) reflection probability is
byt1 M7 —My, i1/ Jiim
R:Ei |ri|2J—+, (39)
0

This equation relates the coefficient of the incoming state o )
from either layer to the outgoing state. When we have twovhere the summation is performed for all left-traveling states

S matrices of adjacent layers, in the left semi-infinite region.
(bgl) (S’i\l S’fz) ( aal) 33 Ill. RESULTS
Dyr1 591 8’2*2 ari1)’ In this section we present the results of a systematic study

of electron tunneling in single-barrier structures to illustrate

the stability of the technique. No problems were encountered

B B with the scattering-matrix method even for systems as large
<b0+l)_<s Sm)(%n)

and

s (33  as 1500 A. The transfer-matrix method, however, failed for
S Sy systems as large as 150 A. Furthermore, the method has a

Dys+3 85+3
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FIG. 2. Energy-band diagram of an GaAs/AlAs/GaAs single- u GaAs e ——
barrier structure. The solid lines depict the band edges afi'the 2r p
point and the dashed lines depict tHepoint of AlAs. i
1‘5". ] .|...|,...|...-
. . . r L
memory cost proportional to the number of considered orbit- Wave number
als in a layer and not to the number of layers. We use the
same tight-binding parameters used by Boykin, van der
Wagt, and HarriS for GaAs and AlAs, which include the
amount of band discontinuity between GaAs and AlAs. For 35—
InAs and GaSh, we use the parameters used by Vogl, Hjal- [
marson, and Dow/ 3

A. GaAs/AlAs/GaAs single-barrier structure

Energy (eV)
n
[6)]

N .

We shall first investigate the heterostructure composed of

GaAs and AlAs, which is an indirect-gap semiconductor.

Figure 2 shows a schematic energy-band diagram for the A
GaAs/AlAs/GaAs single-barrier structure. In ordinary ap- 15 E
proaches using the envelope function, the effective mass at

the T state band edge for each material is used, andXthe Wave number

point or L point of AlAs is not considered. However, it has q ¢ d AIA8) in th i
been indicated thaX-point conduction-band minima play an tionF:aC;;j?l.))lsigr;hes[t%%t]uc?iar:cticc;‘)?qs and AlAg) in the [111] direc-
important role* '

The bulk-band structure is calculated from the eigenval- ) ) _
ues of the transfer matrix as in E¢8). Figure 3 shows the amplitude |'s.evanescent. For energies Ia_rger than the AlAs
band structures for the GaAs and AlAs in {id.1] and[100] L-valley minimum, an electron inserted |nt<_) th_e GaRBs
directions. In thé111] direction, thel state of AlAs is lower ~ State traverses to the AlAs-valley state, which is not an
than thel state and near to tHe state of GaAs. In thE100] evanescent state. The figure shows a probability value of
direction, the AlAsX-valley minimum is very low compared around_ O.'l for large barrier W|dtr_1. This suggests that the
to the T state and comparable to the GaRsstate energy. transmission from the resonance is due to the resonant tun-
The second GaA¥,, state and AlAsX, are also lower than neling through the quasibound states. The antiresonance is
the AIAs T" state, so traversing through these states becomd/€ 0 destructive interference between Ih&-I" and the
important in the GaAs/InAs heterostructure. -I'-I' channels.

Figure 4 shows the effects of varying barrier widths on
the transmission amplitude. For energies smaller than the

0

AlAs L-valley minimum, the diminishing amplitude of the 10 LT T

wave function in the AlAs layer decreases the transmission £ 10 | ]
probabilities for the large barrier width, as expected. How- § E ]
ever, the transmission probabilities oscillate for energies § 102 ) E
higher than the AIAd. -valley minimum. The period of this & ) B -7 % ]
oscillation becomes small for large barrier widths. For ener- .2 7 b E
gies larger than the AlA&-valley minimum, the probability é’ 104 [ Astayers [111] ; ]
has a value around 0.01 for wide AlAs layers. Antiresonance @ - 1
appears around 0.5 eV, which corresponds to the GaAs"_E 10° T3 4
L-valley minimum. The details of these characteristics can . —30 ]
be clarified by the transmission probability to the GaAs 10 0 0.2 0.4 06 08 ] 1.2

valley. Energy (eV)
Figure 5 shows the probability of transmission from the

GaAsT state to the GaAs state. For narrow AlAs layers, FIG. 4. Transmission probability for the GaAs/AlAs/GaAs
the transmission probability is large throughout the calCusingle-barrier structure in thel11] direction as a function of elec-
lated energy region. For wide AlAs layers, the probability for tron energy for four structures with different barrier widths. The
the energy range from the GaAsvalley minimum to the electron is incident from th& valley of the GaAs withkj=0 and
AlAs L-valley minimum becomes small. This is because fortransfers to thd" valley of the GaAs. Energy is referenced from the
these energies there are no traveling states in AlAs and th@aAsT -valley minimum in the figure.
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100 E ' ' 1 ' 1 T g
Conduction band
Z 10| 1
N ;
8 107k ,
n& 10 E r->L ] Valence band
s O N
é’ 104 - 1 Y ] FIG. 7. Energy-band diagram of an InAs/GaSh/InAs single-
@ :‘_‘:‘_‘:?0 barrier structure. The lines depict the band edges af'tpeint.
= 10° ¢ ——30 -
10_65 o . ] function method. The resonances are related to quasibound
0 02 04 06 08 1 1.2 states localized in the AlAs layers by the effective quantum-
Energy (eV) well potential defined by th& and X, minima profiles.
FIG. 5. Transmission pI’Obablllty for the GaAs/AlAs/GaAs B. InAs/GaSb/InAs Single_barrier structure

single-barrier structure in thel11] direction as a function of elec- . ] .
tron energy for four structures with different barrier widths. The ~ igure 7 shows a schematic energy-band diagram for the
electron is incident from th& valley of the GaAs withk;=0 and InAs/GaSb/InAs single-barrier structure. At the flat bias con-

transfers to thé. valley of the GaAs. Energy is referenced from the dition, electrons inserted into the InAs conduction band will
GaAsT-valley minimum in the figure. traverse to the GaSb valence band and finally to the InAs
conduction band. Under certain bias conditions, electrons in-
For the [100] direction, the transmission probability serted into the InAs cqnduction band will be blocked py the
shows complex character’istics because of the low AIASEand gap of G?‘Sb_- This structure has attracted much interest
X-valley minimum and because of the contributions of the or device apphcatlon_s. Figure 8. ShO.WS the band structure for
secondX, valley of GaAs and AlAs. Figure 6 shows the InAs and GaShb .bulk. in thgL11] direction. Th(=T valence-band
edge of GaSb is higher than the conduction-band edge of

ef_fects of varying th? barr_ler \.N'dth on the transmission M nAs for 0.15 eV and the band gap of GaSb is about 0.78 eV.
plitude for the state inserting into tHé state of GaAs trans- ; X . ;
Incoming electrons with energies below 0.15 eV in the InAs

mitting in thel state of GaAs. For the energy range from theconduction band will traverse through the valence-band

GaAs conductlon?ba.nd minimum to the AlAGvalley mini- state, without dropping in amplitudes. However, incoming
mum, the transmission probability decreases for large AIAselectrons with energies corresponding to the GaSb band gap
layer widths. For energies between the AlXsvalley mini- will be blocked

mum and the GaAsX-valley minimum, probability reso- y
nance appears and its energy half-width and its interval bq—n
come narrow. In this process, theX-I" channel is the main

contributor. From the GaAsX-valley minimum to AlAs

The transmission probability from the InA state to
As I' state in the[111] direction is shown in Fig. 9 as a
function of GaSb layer width. The transmission probability is
- smaller for larger GaSb layer widths: In particular, the prob-
I"-valley minimum,’-X transfer and"-X, transfer occur as ability for energies from 0.15 eV to 0.93 eV is greatly sup-

W(.a”. asI-T' and for energ_i_es larger than the AlAsvalley pressed with the width of the GaSb layer because this region
minimum, thel'-I" probability represents resonance Charac'corresponds to the band gap of GaSb. For a comparatively
teristics similar to the results obtained by the envelope

narrow GaSb layer, however, the blocking effect of the band
gap is not conspicuous. For wider GaSb layers, the transmis-
sion probability for these energies becomes small and the

0

107 R 3 blocking effects of the band gap become apparent. For ener-
Z 10} LHTH ¢ gies smaller than 0.15 eV, where electrons traverse through
9 Fat the GaSb valence band, resonance characteristics appear for
-g 102 wide GaSb. The resonance is related to quasibound states
a
5 10°
& 4
€ 10 3
(2]
§ 10° :
= E .

o i S N N ) ! !

0 02 04 06 038 1 12 14
Energy (eV)

FIG. 6. Transmission probability for the GaAs/AlAs/GaAs
single-barrier structure in theL00] direction as a function of elec-
tron energy for four structures with different barrier widths. The T L
electron is incident from th&' valley of the GaAs withk;=0 and Wave number
transfers to th&" valley of the GaAs. Energy is referenced from the
GaAsTI -valley minimum in the figure. FIG. 8. Band structure of InAs and GaSb in fi4.1] direction.

0.4_\\ ‘l“ 1 ! Ll 1 1
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g e g oy [ =P A e S =T T T 100 T T T T
= z
3 3
[+] ©
S 10\ Tl L 8 107
[ a
_é GaSb-layers [111] C—>T ,é GaSb-layers [111] [>T
é’ g 1021 ——300
7] =10 7] E
8 —30 g
= = [
L P 10‘3 ! 1 N 1
0.6 0.8 . 0 0.2 0.4 0.6 0.8
Energy (eV) Energy (eV)

FIG. 9. Transmission probability for the InAs/GaSb/InAs single-  FIG. 10. Transmission probability for the InAs/GaSh/InAs
barrier structure in thé111] direction as a function of electron single-barrier structure in thel00] direction as a function of elec-
energy for four structures with different barrier widths. The electrontron energy for 300 layers of GaSb. The electron is incident from
is incident from thel" valley of the InAs withk;=0 and transfers to  thel’ valley of the InAs withk;=0 and transfers to thie valley of
the I' valley of the InAs. Energy is referenced from the GaAs the InAs. Energy is referenced from the GalAwalley minimum in
I'-valley minimum in the figure. the figure.

sion probability beyond 0.93 eV. The half-width of the reso-

localized in the GaSb layers by the effective quantum-welinant peaks and the distances between peaks are very small
potential defined by the valence-band-edge profile. For enebecause of the wide effective quantum-well width in GaSh.
gies higher than 0.93 eV, similar resonance appears. These
resonances are attributed to quasibound states localized in IV. CONCLUSIONS
the GaSb layers by the effective quantum-well potential de- e have formulated a tight-binding model by introducing
fined by theL minima profile. Above the second GaSb anS-matrix description based on a detailed discussion of the
L-valley minimum, the transmission probability becomesdefinition of conserving current. Our method is numerically
complicated because of the contribution of the channetable, efficient, and simple to implement, making it possible
through thelL-valley state. However, the transmission prob-to compute transmission coefficients effectively in wide het-
ability in the [100] direction does not show this complicated erostructures using realistic multiband band-structure mod-
resonance structure within the calculated energy, because éis.
the [100] direction theX,-valley minimum energy is much
larger. ACKNOWLEDGMENTS
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