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In the quantum Hall regime, electronic correlations in double-layer two-dimensional electron systems are
strong because the kinetic energy is quenched by Landau quantization. We point out that these correlations are
reflected in the way the partitioning of charge between the two layers responds to a bias potential. We report
on illustrative calculations based on an unrestricted Hartree-Fock approximation, which allows for spontaneous
interlayer phase coherence. The possibility of studying interlayer correlations by capacitive coupling to sepa-
rately contacted two-dimensional layers is discussed in detail.

I. INTRODUCTION sured interlayer current to the compressibility of the electron
layer closest to the gate. In Sec. Il we use an idealized model

Technological progress has made it possible to fabricatwith infinitely narrow quantum wells to generalize their
epitaxially grown semiconductor systems with nearby two-analysis to the case where interlayer correlations are impor-
dimensional electron layers and has led to interest in théant. In a strong perpendicular magnetic field, the electronic
physics of the various interlayer coupling effects that occuiproperties of double-layer systems are extremely subtle. To
as a consequence. As shown in Fig. 1, these systems consigiate most studiés of double-layer systems have focused on
of two parallel electron layers confined by narrow rectangu-systems with equal density in each layer. In this paper we use
lar quantum wells. In standard GaAs|8a, _,As structures an unrestricted Hartree-Fock approximation to obtain quali-
with the width of the wells of order 10 nm and the barrier tative results as a function of layer separation over the full
height about 250 meV, electron wave functions are stronglyange of total filling factors and bias potentials in the quan-
localized around the center of each quantum well and théum Hall regime. The Hartree-Fock approximation allows for
overlap between layers is very small. To date coupling efspontaneous interlayer phase coheréraed is developed
fects have been observed primarily in the transport propertieisom two different points of view in Secs. 11l and IV. In Sec.
of double-layer systems. For example, interlayer electronV we present and discuss the results predicted for Eisen-
electron interactions ledd to frictional drag voltages when stein’s double-layer capacitance measurement by the unre-
charge in one layer is moved relative to charge in the nearbgtricted Hartree-Fock approximation. Finally, we present our
layer. Interlayer tunneling leads to quantum interference efeonclusions in Sec. VI.
fects, which are responsible for interesting dependence of
both in-plané and intgrplan‘éconductances on the strength Il. NARROW-WELL DOUBLE-LAYER MODEL
of a magnetic field oriented parallel to electron layers. In a
strong perpendicular magnetic field, the kinetic energy of the In this section we assume that only the lowest-energy sub-
electrons is quenched by Landau quantization and, at least ipand is relevant in each quantum well and, for convenience,
high-mobility systems, electron-electron interactions domi-we take the two quantum wells to be identical. We further
nate the physics. For double-layer systems interlayer interac-
tions are responsible for novel broken symmetriasd, if d
tunneling between layers also occurs, for inordinate sensitiv-
ity to small tilts of the field away from the normal to the — |[T—
electron layers.

In this paper we discuss the effect of interlayer coupling
on equilibrium properties of double-layer systems. In par-
ticular we consider the variation of the partitioning of charge e
between the two layers as the total electron density is modi- ||
fied by adjusting an external gate potential. Eisenstein and |
co-worker$ have measured this quantity for the case of more
remotely spaced layers by combining a standard capacitive
method with a measurement of the charge transferred be- GaTE
tween layers when the gate voltage is changed. Using the
assumption(valid in that work that interlayer correlations FIG. 1. Simplified band diagram for a gated double-quantum-
could safely be neglected, they were able to relate the meavell structure in a strong perpendicular magnetic field.
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assume that each quantum well is sufficiently narrow that weotentials and would be the full chemical potential if, as in
can replace the charge density in each by a zero-thicknesonventional electron gas literature, neutralizing positive
layer located at the center of the quantum well. With theseharges in each layer were assumed. It follows from (Ep.
assumptions it follows that for fixed external chargas- that

sumed to reside away from the double-layer sy3tdma en-

ergy of the double-layer system is given up to an irrelevant R.— die—dre ®)
constant by E d+d +dgr—dr —dRr’
E €% ) where we have followed Eisenstein, Pfeiffer, and West
A~ 2¢ (Ne=No)"+&(N—=Ng,Ng), (1) introducind a set of lengths defined by
whereA is the area of the systerhlzr andN, =N—Np are 4N Noy= = dpua(NL,Ng) ;
the areal densities of electrons in the right and left layers, as(NL.NR)= e? dNg ' @)

N is the total electron density, and, is determined by ex- )
ternal charges as discussed below. In Ef. e(N, ,Ng) In Eq.(?)-A andB are layer labels. When interlayer electron-
would be the energy per area of the double-layer system flectron interactions can be neglecthg;=dg =0 and
neutralizing external charges were located in each layer of

. . . . €
the_ double-layer system. This quantity is the convenponal daa(Na) = 57—, (8)
point of contact between electron gas theory and experiment. e“kaN}
For a given configuration of external charge, the charge dis- : . .
tribution is determined by minimizing the sum of where k5 is the compressibility of the electron system in

e(N_,NR) and the electrostatic energy. The zero—thickneséayerA with the. usual ponventlon of a neutralizing pack—
layers, with areal charge densitied), andeNg, yield dis- ground. For noninteraction electrons and zero magnetic field

continuities in the dependence of the electric field along th an=de=a5/4 IS independent _Of the el_ectron _densn_y n
direction between layerwhich we take to be thé direc-  12YS'A; herede is the length defined by Eisenstein, Pfeiffer,
tion) across each layer. We assume that any charges induc@gd West and, =%“e/m* e is the effective Bohr radius of
by variation of the gate voltage go entirely into the electronthe semiconductor. For GaAz; ~10 nm sodg~2.5 nm.
layers so the electric fielé, at the right boundary of the FOr noninteracting electrons in a strong magnetic field,
double layer in Fig. 1 is independent of the voltage and endaa=0 when a Landau level is partially filled anig ,= o at
ters the problem as an input parameter. From the PoissdAteger Landau level filling factor.
equation we then obtain
I1l. UNRESTRICTED HARTREE-FOCK APPROXIMATION

el el FOR INTERLAYER CORRELATIONS:

SELF-CONSISTENT-FIELD EQUATION APPROACH

le| 2 For decoupled layers, electron-electron interactions can
E;=Eg— —(Ng+Np). reduce or evehchange the sign ofi,s. In the following
€ sections we discuss the effect of interlayer couplingRan
No is defined by this equation. Note that changiig is In the absence of a magnetic field interlayer interactions have
equivalent to changin®l=Ng+ N, . (See Fig. 1. little effect!® on R at experimentally accessible layer sepa-
The double-layer capacitance technique of Eisenstejdations. The_sitgation is different at strong_magnetic fields
Pfeiffer, and West measuresRg, the ratio of the electric Where the kinetic energy of the electrons is quenched and
field change between the electron layers to the electric fielénteraction effects are very strong. The problem of finding

change between the gate and the nearest electron layer: accurate results for the dependence of the ground-state en-
ergy in this regime on the density in each layer and on the

dE; dNg layer separation is a difficult one which is largely unsolved
EEd_Ez: aN - ©) because perturbative approaches are unsuitable. Numerical
exact-diagonalization results can provide guidance and some

GivenN, Ng is determined by minimizing the total energy result§ are already available using this approach. In the fol-

described in Eq(1) yielding lowing sections we follow an alternate line by developing a
2 simple Hartree-Fock approximation for biased double-layer

N—Ng Ng)= N—Ng Ng)+ — (Ng—No), sy_stems. In our Hartree-Fock app_rOX|mat|on interlayer corre-
#l roNR) = 1R( roNR)+ = (Nr=No) lations can be generated by forming broken-symmetry states

(4)  with spontaneous interlayer phase coherence, as we describe
in more detail below. Such a broken symmetry does ir°fact

where ) . o
occur in double-layer systems in strong magnetic fields, al-
de(NL ,NR) though not over as wide a range of densities and layer sepa-
HL(NL ,NR)E&—NL (5  rations as in our calculations. The correlations that appear

only in connection with a broken symmetries in the single
and ug(N_,Ng) is defined similarly..«, (N ,Ng) includes Slater determinant states of the Hartree-Fock approximation
all contributions to the chemical potential for electrons in theare more generically associated with correlated quantum
left layer except for the contribution from the electrostaticfluctuations in the electronic configuration. Nevertheless, we
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believe that the approximation for the energy of the doublefor smallerd the charge distribution depends on intralayer
layer system that is obtained in the Hartree-Fock approximaand interlayer correlations. In what follows we use dimen-
tion is meaningful and that our results will be helpful in the sionless units expressing energy in unitsedf4we/ and
interpretation of double-layer capacitance studies. lengths in units of the magnetic lengti. Deriving the
We will assume that the electronic spins are fully polar-Hartree-Fock self-consistent equation we will, for simplicity,

ized by the magnetic field and adopt a useful pseudospineglect tunneling between the two layers. We will return to a
language to describe the layer degree of freedom. In thisdiscussion of the influence of tunneling later. We will assume
formalism the total Hilbert space” is expressed as a direct that the translational symmetry within each two-dimensional
product of the orbital Hilbert spac#’, and pseudospin Hil- layer is not broken so that the orbital degeneracy of the Lan-
bert space”Zs. Choosingegom(X,y), symmetric-gauge two- dau levels is maintained.

dimensional free particle eigenstatem the lowest Landau In our Hartree-Fock calculations we do not requiieto
level, as a basis aof”Z, and assuming zero layer thickness, be a good quantum number. Allowing this symmetry to be
the basis vectors of#Z can be written as broken gives rise to a much better variational estimate of the
ground-state energy and results in states with spontaneous
Y phase coherence between the layers. We seek eigenstates
Yam=0(2=2x) Gom(X.y), © |W) of the Hartree-Fock Hamiltonian with, generally, non-
wherez, =0 andzg=d. Then the 7, spinors zero expectation value of the andy components of the

pseudospin operator. The general form of the two orthogonal
pseudospinors for the lowér —") and highel* +") energy
(10) Landau levels are:

ol

describe states in which an electron is localized in the left or _ (o |V_) cog 6/2)
right qguantum well, respectively. This language suggests a a-—= (Pl W) = ei®sin( 4/2) (13
magnetic analogy for the double-layer system. For example,
with the definition in Eq.(10) the z component of the total and
pseudospin operatcé is proportional to the difference in
density between the layers sin¢g?) =(N_—Ng)/2. Thex (| ¥,) sin( 6/2)
- . = = . . 14
andy components of the pseudospin operators correspond to a, (<¢R|‘P+)) (—e“f’cos( 0/2)> (14

components of the density operator, which are off diagonal in
layer indices; nonzero expectation values are possible on
when there is interlayer phase coherence. In a special limit
d=0 interactions between electrons in the same layer are
identical to those between electrons in different layers and
the Hamiltonian has S@) symmetry{H,$*]=0 and eigen- H— ( er O ) + ( i ELR) (15)
states occur in multiplets with pseudospin quantum number 0 &g Skl 2rr/’
S and degeneracy 2+ 1. For finite layer separation only
S, is a good quantum number. where the Hartree potential appears:jnandsg and; are

In the limit of larged, the equilibrium charge distribution matrix elements of the exchange self-energy. The orbital in-
is determined solely by electrostatic considerations and theices are omitted in Eq$13)—(15) since the exchange self-
functions(9) describe eigenstates of the corresponding Harenergy is independent of the orbital quantum number of the
tree Hamiltonian. In this limit, it follows from Eq(4) that ~ Landau level, as we will explicitly prove. The self-consistent
the two layers can be brought into equilibrium only if pseudospinor orientations, and consequently the charge dis-
Ng=Ny, i.e., only if the electric field between the layers is tribution, can be determined by solving the Hartree-Fock
equal to zero. Any change in the gate voltage will result in @quations iteratively using the expression for the self-energy
change in charge density exclusively in the left well. In thegiven below.
strong magnetic field limit considered here, equilibrium can
be established only if the total filling factors=2m/?N A. Total filling factor »<1
e (vg,1+ vg), where the threshold filling factor

: he Hamiltonian in the pseudospin Hilbert space has a 2
2 matrix representation

In the case when the total filling factar<1 only the
lower energy pseudospingil) is occupied and we obtain

2% for the filling factor in the right layer
VO:—EO (11)
C
. : . .. 0
and the magnetic lengtii=(%/|e|B)Y2. Outside this inter- VR=v sinzz. (16)

val the left layer lowest Landau level is either empty or is

completely filled. Therefore, Including the Hartree self-energy and choosing the zero of

energy so thatr=0 it follows directly from the Poisson that
v for v<<y

vr=1 Yo for yo<v=<1l+yy (12

.0
v—1 for v>1+vy,. 8|_=2d(vo—VSIn2§). (7
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some; we describe the derivation in detail ¥yr, . The same H=
procedure can be directly applied to all other self-energy
matrix elements. Assuming that for the low-energy pseudos-
pinor all orbital states are occupied with probabilitywe

find that

The evaluation of the exchange self-energy is more cumber- ( 2d[ vo— v sir’(6/2)] 0)

0 0
( coZ(6/2)1 5 sin( 6/2)cog 0/2)e'?1 ¢
-V

sin( 6/2)coq 6/2)e "¢l ¢ SiP(0/2)1 5
(23

A 2ok g * e
2 (mm’)= V; f drgfl m(r) W= n(rz) The eigenfunctions of this Hamiltonian are easily found by

) ) L expanding it in terms of Pauli spin matrices:
XW_ (r) g m(r2)V(ri—ry). (18

, , , H=Hq,+.%a, (24)
The fractional occupation results from taking the zero-
temperature limit of a finite-temperature Hartree-Fock ex-where
pressions and occurs because of the Landau level degeneracy
of the Hartree-Fock eigenvalues. Usif@), (13) and per-

. . . . EL 14

forming a Fourier transformation of the Coulomb potential Ho=%— = (25)

. 2 A
V(r,—r5), Eq.(18) can be rewritten as 2 2

and the effective Zeeman field has components

0 2 d’q,
S (mm’)=—v cos’-EE Jd rlJW )
n Sy==7 sind cospl,
X V(A1) Pam(T L 1) €0 110 (T 1 1)
* —iq,r (r
X pon(ri2)e N2 0 (T o), (19 = g — 6
where
s LV
. € da, elz-2) g2 Sp=— = 5 COF 5.
Veﬁ(qL):_f de—ﬁ(zl)a(zz) SE— _
) 2 aitg,  2ela The low-energy eigenspinor ¢ will be the spinor that is

aligned with. 7. Self-consistency is therefore achieved when

The sum oven in Eq. (19) can be evaluated analytically as % has the same orientation as the spinor from which the

shown in the Appendix, and is proportional &, Thus. exchange self-energy was constructed. This condition re-
’ rom- ] . .

the exchange self-energy is diagonal and independent of duces to an algebraic equation for the polar argle

and every state in the Landau level has the same spinor as

anticipated. Finally we obtain v sindl g
tanf= ——. 27
14 CO$I AT €L

(21) If 6+#0,m, exchange electron-electron interactions lead to
phase coherence between electrons in different layers. The
direction of the ground-state pseudospin is specified by the

where for the case of Coulomb interactions the intralaye@nglesd and¢. Note that the azimuthal angle is arbitrary.

exchange integrdly= /2.

A similar calculation shows th& g is given by the same B. Total filling factor »>1

expression with cd$6/2) replaced by s#{6/2). For the in-

terlayer exchange self-energies , the poteMiglis modified

because of the layer separatidnFor Coulomb interactions
the interlayer exchange integral is

0
ELL:_V CO§§IA,

At v>1 all states in the low-energy Landau level are full
and the high-energy Landau level is partially occupied. The
contribution of the higher-energy Landau level to both Har-
tree and exchange self-energies has to be included. For ex-
ample, the filling factor in the right layer for>1 is given

- 9 by
IEzf dq ex;{———dq). (22
0 2

Using the explicit expressions for the Hartree and ex-
change self-energies derived above in 8d) we obtain the We again obtain degenerate Landau levels. In this case we
Hamiltonian find that the pseudospinor Hamiltonian is given by

vR=sinzg+(v—1)cos?g. (29
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<2d[vo—sin2( 6/2)— (v—1)cog(6/2)] o) ( coZ(0/2)l 5 sin( 6/2)cog 0/2)e'¢l ¢
H= - , —(v—1)
0 0 sin(6/2)coq 6/2)e ¢l ¢ SiNP(0/2)1 5 '
( SIr?(6/2)1 5 —sin(#/2)cog 6/2)e' ¢ E)
x _ : (29)
—sin(6/2)cod 0/2)e ¢l ¢ coS(012)1

When this is expanded in terms of Pauli spin matrices itwhereHy is the exchange contribution to the Hartree-Fock

results in a effective Zeeman field given by Hamiltonian. (Explicit expressions foHy were derived for
both »<1 andv>1 in the previous section.Using Egs.
2—v (23), (29), (33), and the definition of the filling factor we
Hy=— 5 sind cosple, obtain the following results, in dimensionless units, for the

dependence of the exchange energy on pseudospin orienta-
tion. Forv<1

2—v
=——5—sind sinpl g, 30
' 2 e %9 Ex__ ) (st cos 2] + 21 it L co2?
A - A Al Sl 2 co 2 =2 > Cco >
& 2—v 34
ﬁf%- 5 Cotl 5. (34)
and forv>1
IV. UNRESTRICTED HARTREE-FOCK APPROXIMATION: Ex 1 40 0
' ; ' —=———|lal sin*5 +cod 5 |[1+(v—1)?]
TOTAL ENERGY A 4qr 2 2

Equation(27) often has more than one solution. The best
unrestricted Hartree-Fock approximation to the ground state
of the double-layer system is the solution with the lowest L )
energy. In the Hartree-Fock approximation the total energyNOte that minimizing the total energy with respect to the
Eqor for two-dimensional electron systems in the strong@ndl€é. i.e., solving the equation
magnetic field limit can be separated into electrostdiiar-
treeg and exchange contributic?nSThe quantized kinetic en- dEror/A_ d(EntEQ/A ,
ergy is absorbed into the zero of energy and correlation ef- dé dé
fects are neglected in the Hartree-Fock approximatiéor a  yields an equation identical to that resulting from requiring
given v constant the Hartree energy (8p to an arbitrary the pseudospinor to self-consistently solve Exy). If more
constank proportional to the energy density in the intralayer than one solution occurs we choose the solution with the
electric field: lowest energy.

. (39

. sinzg co§§[|A<V—1>+|E<2—v>2]

(36)

edAE] 31) V. NUMERICAL RESULTS

H 2 .

o i We find that solutions to Eq.36) can occur at9=0, at
The electric fieldE; can be expressed as a function of pseu-y— ;- and at most at onée (0,7). =0 solutions corre-

dospin orientation using Eq&2), (11), (16), and(28). Using  gpond, fory<1, to all the electrons being in the left well,

the dimensionless variables introduced in Sec. I, while §= solutions correspond, for<1, to all electrons
. ) being in the right well. Fonw>1 these two solutions corre-
dlvo—v sin(0/2)]°/2m for v<1 spond to the full Landau levels in the left and right well,
= ] respectively. FoW e (0,77) both layers are partially occupied
A ") dlvo—sin(6/2)— (v—1)cos(0/2) 1’12 B2 andin equilibrium. These solutions occur when
for v=1. (29— 1)/ v(15—1g—d) for v=1
In evaluating the exchange energy it is necessary to avoid Ccosy=
double-counting electron-electron interactions. Feo 1l d(2vo—v)/(2=v)(Ia—1g—d) for »v>1.
only the low-energy pseudospinor is occupied while for (37)
v>1 both spinors are occupied and we find that From Eq.(37) we see that both layers can be partially occu-
pied only in the region of the-d plane where the absolute
Ey (1/2)a’ Hya for v<1 value of the right-hand side of E€37) is less than 1(Recall
—— = thatlg has a dependence ahthat is implicit in these equa-
NA (1/12v)[a" Hya_+(v— 1)a1Hxa+] for v>1, tions) For 0< =<1 the boundary of this region is defined by

(33)  the curves
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FIG. 2. Results for the threshold filling factep=1/4 (no inter-
layer hopping: (a) Hartree-Fock phase diagrarth) Filling factor
of the right quantum well as a function of the total filling factor for
d=1,5¢. (c) Eisenstein ratio as a function of the total filling factor
for the same layer separations ag(fm.

FIG. 3. Results for the threshold filling facteg= 1/2 (no inter-
layer hopping: (a) Hartree-Fock phase diagraith) Filling factor
of the right quantum well as a function of the total filling factor for
d=1,5¢0. (c) Eisenstein ratio as a function of the total filling factor
for the same layer separations agtm.

[vl(v—wo)](Ip—1g)/2 for v=2vy,
d=
(vIvo)(Ia—1g)/2

while for 1<v<2 the boundary is defined by the curves
[(2=)/(1=vo)J(Ia—1E)/2

[(2=v)[(1=v+vy)](lpo—1g)2 for v>2v,.

a coherent linear combination of states localized in the two
wells. We do not believe that this spontaneous phase coher-
ence exists throughout the the entire region Il as indicated
schematically by the dashed lines in region Il. For example,
for the casevy=1/2, v=1, which has been studied exten-
sively both theoreticalR*?*3and experimentall§;}* sponta-
neous coherence is expected to occur onlydfsr2. It is very
difficult to predict theoretically where, within region II,
spontaneous phase coherence will occur; the dashed lines in
eﬁhe figures are intended to suggest only that it is most likely
nearv=1 and at small layer separations where the Hartree-
solution does not exist, the polar angle0 for »>2v, and Fock .app.roximation is most relia_ble. We beIi_eve that this
9= for v<2v,. In the cases,,<0 or ;=1 §=0 or Juestion is best addressed experimentally. Stimulating such
6= throughout the strong magnetic field regime. In Figs.eXPeriments is part of the motivation for this work.

2, 3, and 4 we show results obtainedgt=1/4, vy=1/2, The middle panels in Figs. 2, 3, and 4 shows the optimal
and vo=3/4 when there is no interlayer hopping. The upper(self-consistentfilling factor in the right well as a function
panel of each figure is a phase diagram that shows the sta@ the total filling factor ford=1, d=5, andd—c. These

of the system as a function of layer separation and total fillthree-layer separations correspond to strongly coupled lay-
ing factor. Note that there is a mirror symmetry along theers, weakly coupled layers, and decoupled layers. For
line v=1 between the phase diagrams fgy=x (x<1/2)  d— all the charge goes into the right layer until the electric
and vo=1—x. In region | in these phase diagrams the twofield reaches zero between the layers. When this point is
layers are not in equilibrium. In the left region | all the elec- reached all the incremental charge goes to the left layer until
trons are in the right layer and the Hartree-Fock eigenenergigs Landau level is filled. Only then does the filling of the
for the left layer lies above the chemical potential. In theright layer resume. Exchange tends to favor unequal layer
right region | the left Landau level is completely filled and its occupations except at the point where the layers are bal-
Hartree-Fock eigenenergy lies below the Fermi energy. Iranced,v=2v,, so that the left layer is not occupied until
region Il, # e (0,7), and each Hartree-Fock eigenfunction is larger total filling factors at smalled. Once the occupation

(39
for v>2vg,

for v=2y,
(39

The solution with the two layers in equilibrium is always
lowest in energy whenever it is self-consistent, i.e., whenev
a local energy minimum occurs fafe (0,7). When this
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FIG. 5. Eisenstein ratio in region Il as a function of the layer
06 separation with interlayer interaction taken into accdsotid line)
0.5 : : : . . and forlg=0 (dotted ling.
1.0 T "
06 | E | this limit the Hartree-Fock theory giveRg= — /2/7/d, di-
8 oal o) | ! | verging ford—0. The Hartree-Fock Eisenstein ratio within
~ ol — — ] region Il is a negative monotonically increasing function of
' d for all de (0,), as shown in Fig. 5. Neglecting the inter-
| ) layer interactions yields an unphysical divergenceRefat
50 075 100 1A.25 1.I50 1.I75 2.00 d=la. . . o .
v In the discussion of equilibrium properties of the double-

layer electron system presented above, tunneling between the
FIG. 4. Results for the threshold filling facteg=3/4 (no inter- 2D layers was neglected. In a tight-binding model, the tun-

layer hopping: (a) Hartree-Fock phase diagrari) Filling factor  neling contribution to the Hartree-Fock Hamiltonian is
of the right quantum well as a function of the total filling factor for

d=1,5¢. (c) Eisenstein ratio as a function of the total filling factor (0 t

for the same layer separations ag(lm. H,= , (42

t O

of the left layer begins, the right layer occupation gradually . . C
decreasess the left layer Landau level is filled. v_vheret IS a phenomen_ologlcal parameter, which is in prac-
tice chosen to match either experimental or calculated values

The bottom panels of Figs. 2, 3, and 4 show the depenc—)f the splitting between the two lowest subbands of the

dence of the Eisenstein ratRe on total filling factor. In double-layer system. The self-consistent procedure derived
region II both layers are in equilibrium and Eq€)-(8) for t=0 is readily generalized to include this term in the

apply. From Eqgs(34) and (35) we obtain the Hartree-Fock Hamiltonian. We find that fot# 0 both layers are partially

values for the length parameters filled and in equilibrium throughout the strong magnetic field
Ia regime. The tunneling term in the Hamiltonian favors equal
dLL=dRR=—§, layer densities and therefore competes with the exchange
electron-electron interactions. The filling facteg and the

le Eisenstein ratidRg as a function ofv are shown in Fig. 6 for

d gr=dr =— > (40 several values of and for vy=1/2. Note that the steps in
Re associated with establishing equilibrium between the two
and the Hartree-Fock Eisenstein ratio reads layers are smeared by tunneling.
Re=— &_ (41) VI. CONCLUSIONS
B 2(d—la+1p)

] . ) In this paper we have shown how electron-electron inter-
For large layer separationts- | , and interlayer coupling can  actions beyond a simple electrostatic approximation influ-
be neglected so thakg is proportional to the reciprocal ence the dependence on a remote gate voltage of the parti-
value to the compressibility of an individual two- tioning of electric charge in a double-layer system. Our
dimensional(2D) layer. For the Coulomb interaction the cajculations are based on an unrestricted Hartree-Fock ap-
Hartree-Fock theory in this limit givesRg=—14/2d  proximation that can introduce interlayer correlations by
= — \m/8/d, missing the anomaliémssociated with incom-  forming a broken symmetry state with spontaneous interlayer
pressible fractional quantum Hall states seen experimentallphase coherence. We have made contact with potential ex-
At smallerd the electrostatic term in the denominator be-periments by expressing our results in terms of the Eisenstein
comes less dominant and interlayer interactions become inratio, which is proportional to the rate of charge transfer
portant. For smalll, |,—lg=d—d?\/m/8+--- sothatin between layers when the gate voltage is varied. Our calcula-
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we believe that our calculation provides a useful qualitative
picture that will be helpful in guiding and interpreting ex-

perimental studies of coupled double-layer electron systems.
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APPENDIX

The sum overn in Eq. (19 can be calculated using
known identities for symmetric-gauge eigenfunctions. It is
useful to introduce a factdg; (k) (G is a function of com-
plex wave vectok=k,+iky) defined as

kk AL
| (A1

e

i\ =ik
Gij(k=|:r N j
where L}‘j(@/Z) is the generalized Laguerre polynomial.

The relation betweer and matrix elements of exi(r)
reads

fd2r¢§vi(r)ei'z';gb0’j(r)=e_‘k‘2’ZGi,j(kl). (A2)

Then, since

2Gi,n<kl>en,j<kz>=e*E1k2’ZGi,j<k1+k2> (A3)

tions demonstrate the essential role of interlayer correlations;
if they were neglected in our calculations the Eisenstein ratiave obtain

would have an unphysical divergence @t Jml2. The

Hartree-Fock approximation we use has deficiencies that arg® D (7L 1) €N L 1eho (1) 1) bhn(T L 0)€ T 2ghg (T )
known to be important in this system. In particular, it does™n

not capture the anomalies in the Eisenstein ratio that are

associated with the fractional quantum Hall effect. However, (A4)

= Smmexp(—a?).
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