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In the quantum Hall regime, electronic correlations in double-layer two-dimensional electron systems are
strong because the kinetic energy is quenched by Landau quantization. We point out that these correlations are
reflected in the way the partitioning of charge between the two layers responds to a bias potential. We report
on illustrative calculations based on an unrestricted Hartree-Fock approximation, which allows for spontaneous
interlayer phase coherence. The possibility of studying interlayer correlations by capacitive coupling to sepa-
rately contacted two-dimensional layers is discussed in detail.

I. INTRODUCTION

Technological progress has made it possible to fabricate
epitaxially grown semiconductor systems with nearby two-
dimensional electron layers and has led to interest in the
physics of the various interlayer coupling effects that occur
as a consequence. As shown in Fig. 1, these systems consists
of two parallel electron layers confined by narrow rectangu-
lar quantum wells. In standard GaAs/AlxGa12xAs structures
with the width of the wells of order 10 nm and the barrier
height about 250 meV, electron wave functions are strongly
localized around the center of each quantum well and the
overlap between layers is very small. To date coupling ef-
fects have been observed primarily in the transport properties
of double-layer systems. For example, interlayer electron-
electron interactions lead1,2 to frictional drag voltages when
charge in one layer is moved relative to charge in the nearby
layer. Interlayer tunneling leads to quantum interference ef-
fects, which are responsible for interesting dependence of
both in-plane3 and interplane4 conductances on the strength
of a magnetic field oriented parallel to electron layers. In a
strong perpendicular magnetic field, the kinetic energy of the
electrons is quenched by Landau quantization and, at least in
high-mobility systems, electron-electron interactions domi-
nate the physics. For double-layer systems interlayer interac-
tions are responsible for novel broken symmetries5 and, if
tunneling between layers also occurs, for inordinate sensitiv-
ity to small tilts of the field away from the normal to the
electron layers.6

In this paper we discuss the effect of interlayer coupling
on equilibrium properties of double-layer systems. In par-
ticular we consider the variation of the partitioning of charge
between the two layers as the total electron density is modi-
fied by adjusting an external gate potential. Eisenstein and
co-workers7 have measured this quantity for the case of more
remotely spaced layers by combining a standard capacitive
method with a measurement of the charge transferred be-
tween layers when the gate voltage is changed. Using the
assumption~valid in that work! that interlayer correlations
could safely be neglected, they were able to relate the mea-

sured interlayer current to the compressibility of the electron
layer closest to the gate. In Sec. II we use an idealized model
with infinitely narrow quantum wells to generalize their
analysis to the case where interlayer correlations are impor-
tant. In a strong perpendicular magnetic field, the electronic
properties of double-layer systems are extremely subtle. To
date most studies8,9 of double-layer systems have focused on
systems with equal density in each layer. In this paper we use
an unrestricted Hartree-Fock approximation to obtain quali-
tative results as a function of layer separation over the full
range of total filling factors and bias potentials in the quan-
tum Hall regime. The Hartree-Fock approximation allows for
spontaneous interlayer phase coherence5 and is developed
from two different points of view in Secs. III and IV. In Sec.
V we present and discuss the results predicted for Eisen-
stein’s double-layer capacitance measurement by the unre-
stricted Hartree-Fock approximation. Finally, we present our
conclusions in Sec. VI.

II. NARROW-WELL DOUBLE-LAYER MODEL

In this section we assume that only the lowest-energy sub-
band is relevant in each quantum well and, for convenience,
we take the two quantum wells to be identical. We further

FIG. 1. Simplified band diagram for a gated double-quantum-
well structure in a strong perpendicular magnetic field.
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assume that each quantum well is sufficiently narrow that we
can replace the charge density in each by a zero-thickness
layer located at the center of the quantum well. With these
assumptions it follows that for fixed external charges~as-
sumed to reside away from the double-layer system! the en-
ergy of the double-layer system is given up to an irrelevant
constant by

E

A
5
e2d

2e
~NR2N0!

21«~N2NR ,NR!, ~1!

whereA is the area of the system,NR andNL5N2NR are
the areal densities of electrons in the right and left layers,
N is the total electron density, andN0 is determined by ex-
ternal charges as discussed below. In Eq.~1! «(NL ,NR)
would be the energy per area of the double-layer system if
neutralizing external charges were located in each layer of
the double-layer system. This quantity is the conventional
point of contact between electron gas theory and experiment.
For a given configuration of external charge, the charge dis-
tribution is determined by minimizing the sum of
«(NL ,NR) and the electrostatic energy. The zero-thickness
layers, with areal charge densitieseNL andeNR , yield dis-
continuities in the dependence of the electric field along the
direction between layers~which we take to be theẑ direc-
tion! across each layer. We assume that any charges induced
by variation of the gate voltage go entirely into the electron
layers so the electric fieldE0 at the right boundary of the
double layer in Fig. 1 is independent of the voltage and en-
ters the problem as an input parameter. From the Poisson
equation we then obtain

E15E02
ueu
e
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ueu
e

~N02NR!,

~2!

E25E02
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e

~NR1NL!.

N0 is defined by this equation. Note that changingE2 is
equivalent to changingN5NR1NL . ~See Fig. 1.!

The double-layer capacitance technique of Eisenstein,
Pfeiffer, and West7 measuresRE , the ratio of the electric
field change between the electron layers to the electric field
change between the gate and the nearest electron layer:

RE[
dE1
dE2

5
dNR

dN
. ~3!

GivenN, NR is determined by minimizing the total energy
described in Eq.~1! yielding

mL~N2NR ,NR!5mR~N2NR ,NR!1
e2d

e
~NR2N0!,

~4!

where

mL~NL ,NR![
]«~NL ,NR!

]NL
~5!

and mR(NL ,NR) is defined similarly.mL(NL ,NR) includes
all contributions to the chemical potential for electrons in the
left layer except for the contribution from the electrostatic

potentials and would be the full chemical potential if, as in
conventional electron gas literature, neutralizing positive
charges in each layer were assumed. It follows from Eq.~4!
that

RE5
dLL2dRL

d1dLL1dRR2dRL2dLR
, ~6!

where we have followed Eisenstein, Pfeiffer, and West
introducing7 a set of lengths defined by

dAB~NL ,NR![
e

e2
]mA~NL ,NR!

]NB
. ~7!

In Eq. ~7! A andB are layer labels. When interlayer electron-
electron interactions can be neglecteddLR5dRL50 and

dAA~NA!5
e

e2kANA
2 , ~8!

where kA is the compressibility of the electron system in
layer A with the usual convention of a neutralizing back-
ground. For noninteraction electrons and zero magnetic field
dAA5dE[a0* /4 is independent of the electron density in
layerA; heredE is the length defined by Eisenstein, Pfeiffer,
and West anda0*5\2e/m* e2 is the effective Bohr radius of
the semiconductor. For GaAsa0*'10 nm sodE'2.5 nm.
For noninteracting electrons in a strong magnetic field,
dAA50 when a Landau level is partially filled anddAA5` at
integer Landau level filling factor.

III. UNRESTRICTED HARTREE-FOCK APPROXIMATION
FOR INTERLAYER CORRELATIONS:

SELF-CONSISTENT-FIELD EQUATION APPROACH

For decoupled layers, electron-electron interactions can
reduce or even7 change the sign ofdAA . In the following
sections we discuss the effect of interlayer coupling onRE .
In the absence of a magnetic field interlayer interactions have
little effect10 on RE at experimentally accessible layer sepa-
rations. The situation is different at strong magnetic fields
where the kinetic energy of the electrons is quenched and
interaction effects are very strong. The problem of finding
accurate results for the dependence of the ground-state en-
ergy in this regime on the density in each layer and on the
layer separation is a difficult one which is largely unsolved
because perturbative approaches are unsuitable. Numerical
exact-diagonalization results can provide guidance and some
results8 are already available using this approach. In the fol-
lowing sections we follow an alternate line by developing a
simple Hartree-Fock approximation for biased double-layer
systems. In our Hartree-Fock approximation interlayer corre-
lations can be generated by forming broken-symmetry states
with spontaneous interlayer phase coherence, as we describe
in more detail below. Such a broken symmetry does in fact5

occur in double-layer systems in strong magnetic fields, al-
though not over as wide a range of densities and layer sepa-
rations as in our calculations. The correlations that appear
only in connection with a broken symmetries in the single
Slater determinant states of the Hartree-Fock approximation
are more generically associated with correlated quantum
fluctuations in the electronic configuration. Nevertheless, we
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believe that the approximation for the energy of the double-
layer system that is obtained in the Hartree-Fock approxima-
tion is meaningful and that our results will be helpful in the
interpretation of double-layer capacitance studies.

We will assume that the electronic spins are fully polar-
ized by the magnetic field and adopt a useful pseudospin
language5 to describe the layer degree of freedom. In this
formalism the total Hilbert spaceH is expressed as a direct
product of the orbital Hilbert spaceHo and pseudospin Hil-
bert spaceHs . Choosingf0,m(x,y), symmetric-gauge two-
dimensional free particle eigenstates11 in the lowest Landau
level, as a basis ofHo and assuming zero layer thickness,
the basis vectors ofH can be written as

cA,m5d~z2zA!f0,m~x,y!, ~9!

wherezL50 andzR5d. Then theHs spinors

S 10D ,S 01D ~10!

describe states in which an electron is localized in the left or
right quantum well, respectively. This language suggests a
magnetic analogy for the double-layer system. For example,
with the definition in Eq.~10! the ẑ component of the total
pseudospin operatorSW is proportional to the difference in
density between the layers since^Sz&5(NL2NR)/2. The x̂
andŷ components of the pseudospin operators correspond to
components of the density operator, which are off diagonal in
layer indices; nonzero expectation values are possible only
when there is interlayer phase coherence. In a special limit of
d50 interactions between electrons in the same layer are
identical to those between electrons in different layers and
the Hamiltonian has SU~2! symmetry:@H,Sm#50 and eigen-
states occur in multiplets with pseudospin quantum number
S and degeneracy 2S11. For finite layer separation only
Sz is a good quantum number.

In the limit of larged, the equilibrium charge distribution
is determined solely by electrostatic considerations and the
functions~9! describe eigenstates of the corresponding Har-
tree Hamiltonian. In this limit, it follows from Eq.~4! that
the two layers can be brought into equilibrium only if
NR5N0 , i.e., only if the electric field between the layers is
equal to zero. Any change in the gate voltage will result in a
change in charge density exclusively in the left well. In the
strong magnetic field limit considered here, equilibrium can
be established only if the total filling factorsn[2pl 2N
P(n0,11n0), where the threshold filling factor

n05
2p l 2e

ueu
E0 ~11!

and the magnetic lengthl [(\/ueuB)1/2. Outside this inter-
val the left layer lowest Landau level is either empty or is
completely filled. Therefore,

nR5H n for n,n0

n0 for n0<n<11n0

n21 for n.11n0 .

~12!

For smallerd the charge distribution depends on intralayer
and interlayer correlations. In what follows we use dimen-
sionless units expressing energy in units ofe2/4pel and
lengths in units of the magnetic lengthl . Deriving the
Hartree-Fock self-consistent equation we will, for simplicity,
neglect tunneling between the two layers. We will return to a
discussion of the influence of tunneling later. We will assume
that the translational symmetry within each two-dimensional
layer is not broken so that the orbital degeneracy of the Lan-
dau levels is maintained.

In our Hartree-Fock calculations we do not requireSz to
be a good quantum number. Allowing this symmetry to be
broken gives rise to a much better variational estimate of the
ground-state energy and results in states with spontaneous
phase coherence between the layers. We seek eigenstates
uC& of the Hartree-Fock Hamiltonian with, generally, non-
zero expectation value of thex̂ and ŷ components of the
pseudospin operator. The general form of the two orthogonal
pseudospinors for the lower~‘‘ 2 ’’ ! and higher~‘‘ 1’’ ! energy
Landau levels are:

a2[S ^cLuC2&

^cRuC2&
D 5S cos~u/2!

eiwsin~u/2!
D ~13!

and

a1[S ^cLuC1&

^cRuC1&
D 5S sin~u/2!

2eiwcos~u/2!
D . ~14!

The Hamiltonian in the pseudospin Hilbert space has a 2
32 matrix representation

H5S «L 0

0 «R
D 1S SLL SLR

SRL SRR
D , ~15!

where the Hartree potential appears in«L and«R andS i j are
matrix elements of the exchange self-energy. The orbital in-
dices are omitted in Eqs.~13!–~15! since the exchange self-
energy is independent of the orbital quantum number of the
Landau level, as we will explicitly prove. The self-consistent
pseudospinor orientations, and consequently the charge dis-
tribution, can be determined by solving the Hartree-Fock
equations iteratively using the expression for the self-energy
given below.

A. Total filling factor n<1

In the case when the total filling factorn<1 only the
lower energy pseudospinor~13! is occupied and we obtain
for the filling factor in the right layer

nR5n sin2
u

2
. ~16!

Including the Hartree self-energy and choosing the zero of
energy so that«R50 it follows directly from the Poisson that

«L52dS n02n sin2
u

2D . ~17!
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The evaluation of the exchange self-energy is more cumber-
some; we describe the derivation in detail forSLL . The same
procedure can be directly applied to all other self-energy
matrix elements. Assuming that for the low-energy pseudos-
pinor all orbital states are occupied with probabilityn we
find that

SLL~m,m8!52n(
n
E drWcL,m* ~rW1!C2,n* ~rW2!

3C2,n~rW1!cL,m8~r
W
2!V~rW12rW2!. ~18!

The fractional occupation results from taking the zero-
temperature limit of a finite-temperature Hartree-Fock ex-
pressions and occurs because of the Landau level degeneracy
of the Hartree-Fock eigenvalues. Using~9!, ~13! and per-
forming a Fourier transformation of the Coulomb potential
V(rW12rW2), Eq. ~18! can be rewritten as

SLL~m,m8!52n cos2
u

2 (
n
E d2r'E d2q'

~2p!2

3Veff~qW'!f0,m* ~rW'1!e
iqW'r

W
'1f0,n~rW'1!

3f0,n* ~rW'2!e
2 iqW'r

W
'2f0,m8~r

W
'2!, ~19!

where

Veff~qW'!5
e2

e E dzE dqz
2p

d~z1!d~z2!
eiqz~z12z2!

q'
21qz

2 5
e2

2euq'u
.

~20!

The sum overn in Eq. ~19! can be evaluated analytically as
shown in the Appendix, and is proportional todm8,m . Thus,
the exchange self-energy is diagonal and independent ofm
and every state in the Landau level has the same spinor as
anticipated. Finally we obtain

SLL52n cos2
u

2
I A , ~21!

where for the case of Coulomb interactions the intralayer
exchange integralI A5Ap/2.

A similar calculation shows thatSRR is given by the same
expression with cos2(u/2) replaced by sin2(u/2). For the in-
terlayer exchange self-energies , the potentialVeff is modified
because of the layer separationd. For Coulomb interactions
the interlayer exchange integral is

I E5E
0

`

dq expS 2
q2

2
2dqD . ~22!

Using the explicit expressions for the Hartree and ex-
change self-energies derived above in Eq.~15! we obtain the
Hamiltonian

H5S 2d@n02n sin2~u/2!# 0

0 0
D

2nS cos2~u/2!I A sin~u/2!cos~u/2!eiwI E

sin~u/2!cos~u/2!e2 iwI E sin2~u/2!I A
D .

~23!

The eigenfunctions of this Hamiltonian are easily found by
expanding it in terms of Pauli spin matrices:

H5H01BW sW , ~24!

where

H05
«L
2

2
n

2
I A ~25!

and the effective Zeeman fieldBW has components

Bx52
n

2
sinu coswI E ,

By52
n

2
sinu sinwI E , ~26!

Bz5
«L
2

2
n

2
cosuI A .

The low-energy eigenspinor ofH will be the spinor that is
aligned withBW . Self-consistency is therefore achieved when
BW has the same orientation as the spinor from which the
exchange self-energy was constructed. This condition re-
duces to an algebraic equation for the polar angleu:

tanu5
n sinuI E

n cosuI A2eL
. ~27!

If uÞ0,p, exchange electron-electron interactions lead to
phase coherence between electrons in different layers. The
direction of the ground-state pseudospin is specified by the
anglesu andw. Note that the azimuthal anglew is arbitrary.

B. Total filling factor n>1

At n.1 all states in the low-energy Landau level are full
and the high-energy Landau level is partially occupied. The
contribution of the higher-energy Landau level to both Har-
tree and exchange self-energies has to be included. For ex-
ample, the filling factor in the right layer forn.1 is given
by

nR5sin2
u

2
1~n21!cos2

u

2
. ~28!

We again obtain degenerate Landau levels. In this case we
find that the pseudospinor Hamiltonian is given by
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H5S 2d@n02sin2~u/2!2~n21!cos2~u/2!# 0

0 0
D 2S cos2~u/2!I A sin~u/2!cos~u/2!eiwI E

sin~u/2!cos~u/2!e2 iwI E sin2~u/2!I A
D 2~n21!

3S sin2~u/2!I A 2sin~u/2!cos~u/2!eiwI E

2sin~u/2!cos~u/2!e2 iwI E cos2~u/2!I A
D . ~29!

When this is expanded in terms of Pauli spin matrices it
results in a effective Zeeman field given by

Bx52
22n

2
sinu coswI E ,

By52
22n

2
sinu sinwI E , ~30!

Bz5
«L
2

2
22n

2
cosuI A .

IV. UNRESTRICTED HARTREE-FOCK APPROXIMATION:
TOTAL ENERGY

Equation~27! often has more than one solution. The best
unrestricted Hartree-Fock approximation to the ground state
of the double-layer system is the solution with the lowest
energy. In the Hartree-Fock approximation the total energy
ETOT for two-dimensional electron systems in the strong
magnetic field limit can be separated into electrostatic~Har-
tree! and exchange contributions.~The quantized kinetic en-
ergy is absorbed into the zero of energy and correlation ef-
fects are neglected in the Hartree-Fock approximation.! For a
given n constant the Hartree energy is~up to an arbitrary
constant! proportional to the energy density in the intralayer
electric field:

EH5
edAE1

2

2
. ~31!

The electric fieldE1 can be expressed as a function of pseu-
dospin orientation using Eqs.~2!, ~11!, ~16!, and~28!. Using
the dimensionless variables introduced in Sec. II,

EH

A
5H d@n02n sin~u/2!#2/2p for n<1

d@n02sin2~u/2!2~n21!cos2~u/2!#2/2p

for n.1.

~32!

In evaluating the exchange energy it is necessary to avoid
double-counting electron-electron interactions. Forn<1
only the low-energy pseudospinor is occupied while for
n.1 both spinors are occupied and we find that

EX

NA
5H ~1/2!a2

† HXa2 for n<1

~1/2n!@a2
† HXa21~n21!a1

† HXa1# for n.1,
~33!

whereHX is the exchange contribution to the Hartree-Fock
Hamiltonian.~Explicit expressions forHX were derived for
both n<1 and n.1 in the previous section.! Using Eqs.
~23!, ~29!, ~33!, and the definition of the filling factor we
obtain the following results, in dimensionless units, for the
dependence of the exchange energy on pseudospin orienta-
tion. Forn<1

EX

A
52

n2

4p F I AS sin4 u

2
1cos4

u

2D12I Esin
2
u

2
cos2

u

2G
~34!

and forn.1

EX

A
52

1

4p F I AS sin4 u

2
1cos4

u

2D @11~n21!2#

12 sin2
u

2
cos2

u

2
@ I A~n21!1I E~22n!2#G . ~35!

Note that minimizing the total energy with respect to the
angleu, i.e., solving the equation

dETOT /A

du
5
d~EH1EX!/A

du
50, ~36!

yields an equation identical to that resulting from requiring
the pseudospinor to self-consistently solve Eq.~27!. If more
than one solution occurs we choose the solution with the
lowest energy.

V. NUMERICAL RESULTS

We find that solutions to Eq.~36! can occur atu50, at
u5p, and at most at oneuP(0,p). u50 solutions corre-
spond, forn,1, to all the electrons being in the left well,
while u5p solutions correspond, forn,1, to all electrons
being in the right well. Forn.1 these two solutions corre-
spond to the full Landau levels in the left and right well,
respectively. ForuP(0,p) both layers are partially occupied
and in equilibrium. These solutions occur when

cosu5H d~2n02n!/n~ I A2I E2d! for n<1

d~2n02n!/~22n!~ I A2I E2d! for n.1.
~37!

From Eq.~37! we see that both layers can be partially occu-
pied only in the region of then-d plane where the absolute
value of the right-hand side of Eq.~37! is less than 1.~Recall
that I E has a dependence ond that is implicit in these equa-
tions.! For 0<n<1 the boundary of this region is defined by
the curves
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d5H @n/~n2n0!#~ I A2I E!/2 for n<2n0

~n/n0!~ I A2I E!/2 for n.2n0 ,
~38!

while for 1<n<2 the boundary is defined by the curves

d5H @~22n!/~12n0!#~ I A2I E!/2 for n<2n0

@~22n!/~12n1n0!#~ I A2I E!/2 for n.2n0 .
~39!

The solution with the two layers in equilibrium is always
lowest in energy whenever it is self-consistent, i.e., whenever
a local energy minimum occurs foruP(0,p). When this
solution does not exist, the polar angleu50 for n.2n0 and
u5p for n,2n0 . In the casesn0<0 or n0>1 u50 or
u5p throughout the strong magnetic field regime. In Figs.
2, 3, and 4 we show results obtained atn051/4, n051/2,
andn053/4 when there is no interlayer hopping. The upper
panel of each figure is a phase diagram that shows the state
of the system as a function of layer separation and total fill-
ing factor. Note that there is a mirror symmetry along the
line n51 between the phase diagrams forn05x (x,1/2)
andn0512x. In region I in these phase diagrams the two
layers are not in equilibrium. In the left region I all the elec-
trons are in the right layer and the Hartree-Fock eigenenergy
for the left layer lies above the chemical potential. In the
right region I the left Landau level is completely filled and its
Hartree-Fock eigenenergy lies below the Fermi energy. In
region II, uP(0,p), and each Hartree-Fock eigenfunction is

a coherent linear combination of states localized in the two
wells. We do not believe that this spontaneous phase coher-
ence exists throughout the the entire region II as indicated
schematically by the dashed lines in region II. For example,
for the casen051/2, n51, which has been studied exten-
sively both theoretically5,12,13and experimentally,6,14 sponta-
neous coherence is expected to occur only ford&2. It is very
difficult to predict theoretically where, within region II,
spontaneous phase coherence will occur; the dashed lines in
the figures are intended to suggest only that it is most likely
nearn51 and at small layer separations where the Hartree-
Fock approximation is most reliable. We believe that this
question is best addressed experimentally. Stimulating such
experiments is part of the motivation for this work.

The middle panels in Figs. 2, 3, and 4 shows the optimal
~self-consistent! filling factor in the right well as a function
of the total filling factor ford51, d55, andd→`. These
three-layer separations correspond to strongly coupled lay-
ers, weakly coupled layers, and decoupled layers. For
d→` all the charge goes into the right layer until the electric
field reaches zero between the layers. When this point is
reached all the incremental charge goes to the left layer until
its Landau level is filled. Only then does the filling of the
right layer resume. Exchange tends to favor unequal layer
occupations except at the point where the layers are bal-
anced,n52n0 , so that the left layer is not occupied until
larger total filling factors at smallerd. Once the occupation

FIG. 2. Results for the threshold filling factorn051/4 ~no inter-
layer hopping!: ~a! Hartree-Fock phase diagram.~b! Filling factor
of the right quantum well as a function of the total filling factor for
d51,5,̀ . ~c! Eisenstein ratio as a function of the total filling factor
for the same layer separations as in~b!.

FIG. 3. Results for the threshold filling factorn051/2 ~no inter-
layer hopping!: ~a! Hartree-Fock phase diagram.~b! Filling factor
of the right quantum well as a function of the total filling factor for
d51,5,̀ . ~c! Eisenstein ratio as a function of the total filling factor
for the same layer separations as in~b!.
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of the left layer begins, the right layer occupation gradually
decreasesas the left layer Landau level is filled.

The bottom panels of Figs. 2, 3, and 4 show the depen-
dence of the Eisenstein ratioRE on total filling factor. In
region II both layers are in equilibrium and Eqs.~6!–~8!
apply. From Eqs.~34! and ~35! we obtain the Hartree-Fock
values for the length parameters

dLL5dRR52
I A
2
,

dLR5dRL52
I E
2

~40!

and the Hartree-Fock Eisenstein ratio reads

RE52
I A2I E

2~d2I A1I E!
. ~41!

For large layer separationsd@I A and interlayer coupling can
be neglected so thatRE is proportional to the reciprocal
value to the compressibility of an individual two-
dimensional~2D! layer. For the Coulomb interaction the
Hartree-Fock theory in this limit givesRE52I A/2d
52Ap/8/d, missing the anomalies7 associated with incom-
pressible fractional quantum Hall states seen experimentally.
At smaller d the electrostatic term in the denominator be-
comes less dominant and interlayer interactions become im-
portant. For smalld, I A2I E5d2d2Ap/81••• so that in

this limit the Hartree-Fock theory givesRE52A2/p/d, di-
verging ford→0. The Hartree-Fock Eisenstein ratio within
region II is a negative monotonically increasing function of
d for all dP(0,̀ ), as shown in Fig. 5. Neglecting the inter-
layer interactions yields an unphysical divergence ofRE at
d5I A .

In the discussion of equilibrium properties of the double-
layer electron system presented above, tunneling between the
2D layers was neglected. In a tight-binding model, the tun-
neling contribution to the Hartree-Fock Hamiltonian is

Ht5S 0 t

t 0D , ~42!

wheret is a phenomenological parameter, which is in prac-
tice chosen to match either experimental or calculated values
of the splitting between the two lowest subbands of the
double-layer system. The self-consistent procedure derived
for t50 is readily generalized to include this term in the
Hamiltonian. We find that fortÞ0 both layers are partially
filled and in equilibrium throughout the strong magnetic field
regime. The tunneling term in the Hamiltonian favors equal
layer densities and therefore competes with the exchange
electron-electron interactions. The filling factornR and the
Eisenstein ratioRE as a function ofn are shown in Fig. 6 for
several values oft and for n051/2. Note that the steps in
RE associated with establishing equilibrium between the two
layers are smeared by tunneling.

VI. CONCLUSIONS

In this paper we have shown how electron-electron inter-
actions beyond a simple electrostatic approximation influ-
ence the dependence on a remote gate voltage of the parti-
tioning of electric charge in a double-layer system. Our
calculations are based on an unrestricted Hartree-Fock ap-
proximation that can introduce interlayer correlations by
forming a broken symmetry state with spontaneous interlayer
phase coherence. We have made contact with potential ex-
periments by expressing our results in terms of the Eisenstein
ratio, which is proportional to the rate of charge transfer
between layers when the gate voltage is varied. Our calcula-

FIG. 4. Results for the threshold filling factorn053/4 ~no inter-
layer hopping!: ~a! Hartree-Fock phase diagram.~b! Filling factor
of the right quantum well as a function of the total filling factor for
d51,5,̀ . ~c! Eisenstein ratio as a function of the total filling factor
for the same layer separations as in~b!.

FIG. 5. Eisenstein ratio in region II as a function of the layer
separation with interlayer interaction taken into account~solid line!
and for I E50 ~dotted line!.
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tions demonstrate the essential role of interlayer correlations;
if they were neglected in our calculations the Eisenstein ratio
would have an unphysical divergence atd5Ap/2. The
Hartree-Fock approximation we use has deficiencies that are
known to be important in this system. In particular, it does
not capture the anomalies in the Eisenstein ratio that are
associated with the fractional quantum Hall effect. However,

we believe that our calculation provides a useful qualitative
picture that will be helpful in guiding and interpreting ex-
perimental studies of coupled double-layer electron systems.
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APPENDIX

The sum overn in Eq. ~19! can be calculated using
known identities for symmetric-gauge eigenfunctions. It is
useful to introduce a factorGi , j (k) (G is a function of com-
plex wave vectork5kx1 iky) defined as

Gi , j~k!5S j !i ! D 1/2S 2 ik

A2 D i2 j

L j
i2 j S kk̄2 D , ~A1!

where L j
i2 j ( k̄k̄/2) is the generalized Laguerre polynomial.

The relation betweenG and matrix elements of exp(ikW•rW)
reads

E d2rf0,i* ~r !eik
W
•rWf0,j~r !5e2uku2/2Gi , j~kl !. ~A2!

Then, since

(
n

Gi ,n~k1!Gn, j~k2!5e2 k̄1k2/2Gi , j~k11k2! ~A3!

we obtain

(
n

f0,m* ~rW'1!e
iqW'r

W
'1f0,n~rW'1!f0,n* ~rW'2!e

2 iqW'r
W
'2f0,m8~r

W
'2!

5dm,m8exp~2q'
2 !. ~A4!
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