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p-type d-doping quantum wells and superlattices are semiconductor systems of considerable interest for
basic research and device applications. In this paper, a method for calculating potentials and band structures of
such systems is developed. The method relies on a plane-wave expansion of the multiband effective-mass
equation, uses kinetic energy matrices of any size, and takes exchange correlation into account in a more
rigorous way than this was done before. The method is used to calculate potential profiles, subband and
miniband structures, as well as Fermi level positions for a series ofp-type d-doping quantum wells and
superlattices. Exchange-correlation effects turn out to be rather large. Only if they are properly taken into
account reasonable agreement with experimental photoluminescence data can be achieved. For comparison,
potentials and energy levels are also calculated for electrons ofn-type d-doping systems. The potential wells
for electrons are considerably deeper and wider, and exchange-correlation effects are less pronounced than for
holes. The physical reasons for these differences and their implications on luminescence spectra fromn- and
p-type d-doping structures are discussed.

I. INTRODUCTION

Semiconductors withd-like layers of dopant atoms are
challenging systems for basic research and device
applications.1 As compared withd-doping structures of
n-type,1–22 those of p-type represent relatively new
achievements.23–31Althoughp-type doping by means of Be-
ryllium, during the molecular beam epitaxy growth of GaAs,
has been widely used already, since the original work in Ref.
32, Beryllium d doping in GaAs has been reported only
recently.23–27,29,30It was clearly demonstrated in the work by
Schubert et al.24 Secondary-ion-mass spectroscopy and
capacitance-voltage measurements allowed these authors to
conclude that the spread of the doping layer was less than 2
nm. Relatively high sheet doping concentrations in the range
of 1013 cm22 were achieved so that hole confinement effects
were likely to occur. Such effects have, in fact, been ob-
served in photoluminescence~PL! spectra from Be
2d-doped layers.26,27,29,30In order to enhance spectral fea-
tures due to the confined holes, in Refs. 26,29, thed-doped
layers were placed between~Al,Ga!As barriers, providing
better wave function overlap for the recombining electron-
hole pairs in this way. PL signals from Be2
d-doped layers in GaAs have been observed, however, also
without ~Al,Ga!As barriers.27,29,30The same observation has
been reported for C2d-doped layers in GaAs.28 This is in
remarkable contrast ton-type d-doping QW’s, which never
gave rise to detectable luminescence signals without confin-
ing the minority carriers~holes in this case! between barriers.

p-typed-doping QW’s and SL’s have also been subjected
to theoretical studies. Self-consistent band structure calcula-
tion for holes in such systems have been performed by vari-
ous authors,29,33,34 using the Luttinger-Kohn multiband
effective-mass equation of theG8 valence band complex.35

This equation was solved self-consistently without29 and
with33,34exchange-correlation effects taken into account. The
effective-mass equation was transformed into a matrix equa-
tion either with respect to a certain set of auxiliary functions,
which had to be calculated numerically first,29,33 or with re-
spect to plane waves.34 No further approximations on the

Luttinger-Kohn Hamiltonian were made in Refs. 33 and 34,
while axial symmetry perpendicular to thed-doping plane
was assumed in Ref. 29. From the above mentioned calcula-
tions, potential wells, subband energies, and Fermi level po-
sitions were obtained for single29,33and multiple34 well struc-
tures. The calculated subband and Fermi level positions were
compared with those derived from luminescence spectra.
Rough agreement was stated in Ref. 29, and notable differ-
ences in Ref. 33. In Ref. 33, the importance of exchange-
correlation effects was stressed in order to account for the
relatively large light-to-heavy hole splittings observed
experimentally.26–29 In Ref. 34 it was pointed out that, for a
more rigorous comparison between theory and experiment,
the calculation of subband energies does not suffice, since
the positions of luminescence peaks are also determined by
the energy dependence of the radiative electron-hole recom-
bination probability. The latter is governed by the overlap
integral of electron and hole wave functions. This integral
varies strongly with energy, since tunneling of electrons into
hole wells ~i.e., electron barriers! and/or of holes into hole
barriers must take place to make the overlap nonzero.

Despite the already existing work, the hole problem in
p-typed-doping QW’s and SL’s needs further theoretical in-
vestigations. The opportunities and challenges of this prob-
lem have only partially been realized so far. We will mention
only few of them. First, unlike QW’s and SL’s based on
heterostructures, inp-typed-doping QW’s and SL’s, only the
potential operator of the multiband effective mass equation is
spatially inhomogeneous, while the kinetic energy operator is
constant in space, because of the homogeneous material
composition. This means that the effective-mass equation ap-
plies at all points of the QW or SL, as opposed to hetero-
structure QW’s or SL’s, where it holds only within the ho-
mogeneous material layers, while the interfaces between
them have to be bridged by boundary conditions. The latter
are controversial among different authors and may introduce
uncontrollable errors.36 The effective mass theory of
d-doping QW’s and SL’s is free of such uncertainties. More-
over, the eigenvalue problem may be solved by means of the
matrix method, without any restrictions on the set of basis
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functions. In the case of heterostructure QW’s and SL’s, such
restrictions result from the representation of the kinetic en-
ergy operator, which calls for material dependent basis func-
tions. Ford-doping QW’s and SL’s, any reasonable set of
basis functions may be used. Plane waves are particularly
suited for two reasons: the kinetic energy operator is origi-
nally given with respect to them, and the Poisson equation
transforms into a simple algebraic equation if written in the
plane-wave representation.

Second, the hole potential ofp-type d-doping QW’s and
SL’s is essentially codetermined by the hole gas itself, unlike
to heterostructure QW’s and SL’s, where the gas introduces
only small corrections to the potential, the main part of
which arises from band discontinuities. The hole-hole inter-
action thus plays a key role inp-type d-doping QW’s and
SL’s. Although an analogous situation exists inn-type QW’s
and SL’s, the two types of systems behave differently. Since
typical experimental sheet concentrations are almost one or-
der of magnitude higher inp-type d-doping structures than
in n-type structures, one could argue that exchange-
correlation effects should be less important inp-type struc-
tures, as compared ton-type ones. This is true as long as one
compares the exchange-correlation potential with the repel-
ling Hartree potential only. The latter is, however, only part
of the total one-particle potential without exchange correla-
tion, the attracting potential due to the fixed sheet dopant
charges has yet to be added. Owing to the strong localization
of heavy holes, the two potential parts should compensate
each other more completely inp-type than inn-type struc-
tures. Thus, inp-type structures, exchange-correlation effects
are expected to play a particularly large role. This calls for a
more sophisticated treatment of these effects, as compared to
a procedure in which one takes the exchange-correlation po-
tential of the Luttinger-Kohn hole gas as a diagonal matrix
with the exchange-correlation potentials of heavy and light
holes as diagonal elements.33

Third, d-doping QW’s and SL’s have metallic character.
In calculating their self-consistent Hartree potentials, the
sum upon the occupied hole states has to be taken in each
k point below the Fermi surface rather than in special points
only as can be done in the case of the completely filled
valence bands of semiconductors.37 For the electrons of a
n-type d-doping well, isotropic and parabolic band disper-
sion may be assumed parallel to the layers which allows the
k sum to be performed analytically. The isotropic approxi-
mation does, however, not apply to holes, in this case, the
k sum has to be calculated numerically. As known from band
structure calculations of bulk metals, this represents a rather
time consuming but unavoidable procedure.

Fourth and last, unlike GaAs/~Ga,Al!As heterostructure
QW’s and SL’s, ind-doping QW’s and SL’s, only carriers of
one type feel wells and are confined, while those of the other
type feel barriers and are extended over the whole structure
with the exception of the barrier regions from which particles
having energies below the barrier are expelled. As already
has been mentioned, the probabilities for optical transitions
between such extended and confined electron and hole states
are continuous and strongly varying functions of the energies
of extended particles, unlike transitions between electron and
hole states in GaAs/~Ga,Al!As heterostructure QW’s and
SL’s, where no such energy dependence exists. In calculating

luminescence and other optical spectra fromd-doping QW’s
and SL’s, one needs, therefore, both electron and hole wave
functions in numerical form. Calculating them from indepen-
dent models for electrons and holes as it was done in Ref. 38
represents a possible but not an ideal solution. More appro-
priate would be their calculation by means of a model that
applies to electrons and holes. This means the use of the
Kane model for both types of carriers~as has been done in
Ref. 39 for heterostructure SL’s! instead of the Luttinger-
Kohn model for holes and a one-band effective-mass equa-
tion for electrons. Thus, if luminescence spectra from
d-doping QW’s and SL’s are to be calculated, the Kane
model should be used even in the case of GaAs being a
material which is otherwise well described by the Luttinger-
Kohn model. This calls for a simple solution procedure of
the effective-mass equation in order to keep the numerical
effort in reasonable limits. The matrix method with plane
waves as a basis set, which has been used in Ref. 34, fulfills
this demand.

The purpose of the present paper is to describe this
method in greater detail and, by applying it, to calculate
potential profiles and band structures for a series ofp-type
d-doping QW’s and SL’s in the experimentally interesting
ranges of doping concentrations and periods. The paper is
organized as follows. In Sec. II, we present the method. The
problem of the proper treatment of exchange-correlation ef-
fects for the two-component hole gas is approximately
solved by deriving an exchange-correlation potential matrix
with off-diagonal elements. In Sec. III, the potential profiles,
subband and miniband dispersions ink space, as well as
Fermi level positions, are calculated. The results are dis-
cussed in Secs. III and IV. In Sec. IV, a comparison with
other theoretical findings and experimental luminescence
spectra is made. Electron potentials and band structures of
n-type d-doping SL’s with identical parameters are calcu-
lated and compared with the results for holes. Pronounced
differences are found between the two types of carriers and
explained in physical terms. Since we are not dealing with
optical spectra of GaAsp-type d-doping QW’s and SL’s in
the present paper, and thus do not need hole and electron
wave functions obtained from the same calculations, the
Luttinger-Kohn model is used throughout. The method may
be easily applied to other models including that by Kane.
Calculations for luminescence spectra fromp-type
d-doping QW’s, using the Kane model, are in progress.

II. METHOD

A. Direct and reciprocal lattices

We consider ap-type d-doped zinc blende type SL with
the growth direction parallel to@001#. Assuming an even
numberN of Ga-As double layers per SL period, the Bravais
lattice of the structure becomes tetragonal, and the primitive
lattice vectorsA1 ,A2 ,A3 of the SL may be chosen as

A15
a

2
~ex2ey!, A25

a

2
~ex1ey!, A35dez , ~1!

whereex ,ey ,ez denote unit vectors parallel to the cubic axes,
a means the lattice constant of the zinc blende type crystal,
andd5 1/2Na the lattice constant of the SL in growth di-
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rection. Infinite extension of the SL is assumed in all three
directions of space, and periodic boundary conditions are
used in order to switch over to a finite periodicity region. The
vectors spanning this region areGiA1 , GiA2 , andGzA3 ,
with Gi andGz being large integers. One periodicity region
containsGi

2Gz SL unit cells andGi
2Gz3N zinc blende unit

cells of volumeV05a3/4. The periodicity volumeV thus
amounts toGi

2Gz3NV05Gi
2Gz3d3a2/2.

The primitive vectorsB1 ,B2 ,B3 of the reciprocal SL are
given by

B15
2p

a
~ex1ey!, B25

2p

a
~ex2ey!, B35S 4p

NaDez . ~2!

The corresponding first BZ of the SL is shown in Fig. 1.
Due to the periodic boundary conditions, onlyk values of the
form

k5
k1
Gi

B11
k2
Gi

B21
k3
Gz

B3 ~3!

are allowed withk1 ,k2 ,k3 being integers.

B. Schrödinger equation

In one-electron approximation, the HamiltonianH0 of an
electron of the undoped zinc blende type crystal is given by
the sum of the kinetic energy and the lattice periodic one-
electron potential, which here includes the spin orbit interac-
tion. Thep-type d-doping of the SL gives rise to an addi-
tional space charge densityr(x) determined by the
distributionNA

2(x) of ionized acceptors andp(x) of holes.
The acceptor atoms are assumed to be completely ionized,
thusNA

2(x) equals the doping profileNA(x). The latter is
taken to be homogeneous perpendicular toz ~for a discussion
of this approximation see Ref. 21!, and a sum of Gaussians
centered at the nominal doping layersz5nd parallel toz.
Thus, one has

NA~x!5Ns (
n52`

`
1

A2ps
e2~z2nd!2/2s2, ~4!

whereNs means the sheet doping concentration of acceptor
layers, ands2 the variance of the Gaussian distribution. The
square root of the variance, i.e.,s, represents the mean dis-
tance of a doping atom from the nominal doping plane. It

should not be mixed with the spread of the doping profile,
which rather is given by the full widthDz of the Gaussian at
half maximum. For the latter, one hasDz
52A2 ln2s52.355s. From computational reasons, rectan-
gular doping profiles are sometimes used instead of Gaussian
ones. In order to compare with Gaussian profiles, the width
of the rectangle has to be put 2.355s rather thans. In this
work, Gaussian profiles are chosen, because these are the
distributions which are expected to result from ad source
under the effect of diffusion.1

In order to align the Fermi level of thed-doping region
with the Fermi level in the bulk, a certain background con-
centration of hole traps is necessary. The amount of holes to
be trapped depends on the widthw of the space charge re-
gion where this alignment takes place. It decays inversely
proportional tow. If w is allowed to become infinitely large,
the background charge density necessary for Fermi level
alignment goes to zero, and its effect in thed-doping region
becomes negligible. We will use this approximation in what
follows. The total charge densityr(x) is then given by the
expression

r~x!5e@p~x!2NA~x!#. ~5!

It gives rise to an additional electrostatic potentialVC(x),
and an exchange-correlation potentialV XC(x). The former is
determined by Poisson’s equation,

DVC~x!52
4pe2

e
r~x!, ~6!

with e being the dielectric constant. The one-electron Hamil-
tonianH of the SL becomes

H5H01VC~x!1VXC~x!. ~7!

The spinor-eigenstates of this Hamiltonian may be taken in
Bloch form (xsunk), with k being a wave vector of the first
SL-BZ, s the spin coordinate, andn the band number. The
corresponding Schro¨dinger equation reads

H~xsunk!5En~k!~xsunk!, ~8!

with En(k) being the Bloch band energies. The hole distri-
butionp(x) may be expressed in terms of the spinor compo-
nents (xsunk) as follows:

p~x!5(
s

(
nkPempty

u~xsunk!u2, ~9!

where the second sum is taken over unoccupied Bloch states
nk, i.e., states which lost their electrons to the acceptor at-
oms.

C. Effective mass equation

In order to solve the Schro¨dinger equation~8!, we adopt
the multiband effective-mass theory in the formulation by
Luttinger and Kohn.35 Accordingly, we chose an orthonor-
malized set of Bloch functions of the fourfold degenerate
valence band of the unperturbed zinc blende type crystal at
G, and denote them by (xsum), m5 3

2 ,
1
2 ,2

1
2 ,2

3
2 . With k

being a vector of the first BZ of the zinc blende type crystal,
the corresponding Luttinger-Kohn functions (xsumk) read

FIG. 1. First BZ of ad-doping SL, as considered in this paper.
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~xsumk!5
1

AV
eik•x~xsum!. ~10!

They form an orthonormalized set of functions, which may
be used in order to represent the eigenfunctions (xsunk) of
the SL. Due to the periodicity of the SL, onlyk vectors of
the formk1Kez will contribute, wherek means a vector of
the first SL-BZ, andK5(2p/d) l a vector of the reciprocal
SL (l denotes an integer!. The Luttinger-Kohn functions
(xsumk1Kez) for suchk vectors of the zinc blende bulk BZ
will be abbreviated as (xsumkK). One has

~xsumkK !5
1

AV
ei ~k1Kez!•x~xsum!. ~11!

The expansion of the SL eigenfunctions (xsunk), with re-
spect to this set, reads

~xsunk!5(
mK

~mkKunk!~xsumkK !, ~12!

and the Schro¨dinger equation~8! takes the form

(
m8K8

~mkKuH01VC1VXCum8kK8!~m8kK8unk!

5En~k!~mkKunk!. ~13!

The matrix (mkKuH0um8kK8) of the unperturbed Hamil-
tonianH0 is diagonal with respect toK,K8, and its diagonal
elements are given by the Luttinger-Kohn matrix of theG8
valence band of diamond or zinc blende type crystals.35 By

arranging rows and columns in the sequence3
2 ,

1
2 ,2

1
2 ,2

3
2

from left to right and, respectively, up to down, this matrix
becomes

~mkKuH0um8kK8!5dKK8S Q S R 0

S* T 0 R

R* 0 T 2S

0 R* 2S* Q

D ,
~14!

with

Q52~g11g2!~kx
21ky

2!1~2g22g1!~kz1K !2, ~15!

T52~g12g2!~kx
21ky

2!2~2g21g1!~kz1K !2, ~16!

R52A3@g2~kx
22ky

2!22ig3kxky#, ~17!

S5 i2A3g3~kx2 iky!~kz1K !. ~18!

The part~14! of the total Hamiltonian matrix means the ef-
fective kinetic energy operator of the envelope function
equation. The matrices of the two potentialsVC(x) and
VXC(x) have to be treated separately.

Coulomb potential

Since the Coulomb potentialVC(z) is a smooth function
on the atomic length scale, its matrix elements between dif-

ferent Bloch statesm may be neglected, while its diagonal
elements may be replaced by the matrix elements between
normalized plane waves,

~zuK !5
1

AGzd
eiKz. ~19!

One has

~mkKuVCum8kK8!5dmm8~KuVCuK8!. ~20!

For the (KuVCuK8) matrix, the Fourier transformed Poisson’s
equation~6! yields

~KuVCuK8!5
4pe2

e

1

uK2K8u2
@~KuNAuK8!2~KupuK8!#.

~21!

Due to the charge neutrality of the periodicity region, the
diagonal elements of the total charge density vanish, i.e., one
has

~KuNAuK !2~KupuK !50. ~22!

The matrix (KuNAuK8) with NA(z) from ~4! may be readily
calculated. One gets

~KuNAuK8!5SNs

d DA~K2K8!, ~23!

A~K !5E
2`

`

dz cos~Kz!
e2z2/2s2

A2ps
, ~24!

The coefficientA(K) may be expressed in terms of the error
function of complex arguments. Here we will not use this
function, but take the integral in~24! numerically.

The matrix (KupuK8) is obtained as follows. First, we
rewrite the probability distributionu(xsunk)u2 of an electron
by means of the expansion~12! for (xsunk). We get

u~xsunk!u25AV(
m8

(
m

(
K9K-

~mkK9unk!~nkum8kK-!

3~zuK92K-!~m0uxs!~xsum80!. ~25!

From this expression, we remove the spatial fluctuations on
the atomic length scale by averaging it with respect to a bulk
unit cell and summing upon the spin coordinates. The av-
erage value(su(xsunk)u2 becomes diagonal with respect to
m,m8, and its diagonal elements are approximately given by

(
s

u~xsunk!u25AV(
m

(
K9K-

~mkK9unk!~nkumkK-!

3~zuK92K-!. ~26!

By using this expression, the average hole densityp(z) be-
ing a function ofz only becomes

p~z!5AV (
nkPempty

(
m

(
K9K-

~mkK9unk!~nkumkK-!

3~zuK92K-!. ~27!

This results in the plane-wave representation matrix,
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~KupuK8!5
1

V
P~K2K8!, ~28!

P~K !5 (
nkPempty

(
m

(
K9

~mkK9unk!~nkumkK92K !.

~29!

Inserting the two expressions~23! and ~27! in ~21! yields

~KuVCuK8!5
4pe2

e

1

uK2K8u2 FNs

d
A~K2K8!

2
1

V
P~K2K8!G . ~30!

Exchange-correlation potential

Parametrized expressions for the exchange-correlation po-
tential of spatially inhomogeneous electron gases have been
proposed by various authors in terms of local densities~for a
review see Ref. 40!. These expressions cannot, however, be
applied to the hole gas of theG8 valence band edge of zinc
blende type crystals without modifications, as has been real-
ized in Refs. 33 and 41. We follow the spirit of Ref. 41 in
order to derive an explicit expression for the Luttinger-Kohn
representation matrix (mkuVXCum8k) of the exchange-
correlation potentialVXC of the hole gas under consideration.
The derivation will be performed in three steps.

In a first step, the exchange-correlation potential matrix
will be written down with respect to the eigenstatesuemk) of
the Luttinger-Kohn Hamiltonian for heavy (m56 3

2 ) and
light (m56 1

2 ) holes, although it is finally required with
respect to the Luttinger-Kohn basisumk). This step is nec-
essary, because we want to transfer the parametrized expres-
sions for the exchange-correlation potential of electrons to
the exchange-correlation potential of holes. In deriving the
matrix (emkuVXCuem8k), we apply two approximations. The
first one concerns the off-diagonal elements. These are small,
because the hole densityp(z) and, therefore, also the
exchange-correlation potential, are smooth functions ofz on
the atomic length scale. In effective mass theory, off-
diagonal elements of smooth potentials are neglected. The
second approximation concerns the diagonal elements
(emkuVXCuemk). These represent the exchange-correlation
potentials of holes. Unlike the electrons, the effective masses
of holes depend on the direction ofk, if warping of theG8
valence band energy surfaces is taken into account, as we
will do. Replacing the isotropic free electron massm0 in the
exchange-correlation potential expression for electrons by
the anisotropic masses of heavy and light holes, one obtains
exchange-correlation potentialsVXC(3/2) and VXC(1/2) for
holes that depend on the direction ofk. The thus determined
matrix,

~emkuVXCuem8k!

5S VXC~3/2! 0 0 O

0 VXC~1/2! 0 0

0 0 VXC~1/2! 0

0 0 0 VXC~3/2!

D , ~31!

has to be transformed back to the Luttinger-Kohn basis
umk), in which the hole exchange-correlation potential is

finally required. The numerical effort of the described proce-
dure is, however, quite high. We, thus, use an isotropic ap-
proximation, arguing as follows. First, we replace the aniso-
tropic hole masses by the isotropic experimental values,
which average over allk directions. In the case of GaAs,
these values are 0.475m0 and 0.0875m0 ,

42 and their mean
square deviations are 0.148m0 and 0.0292m0 for heavy and
light holes, respectively. The experimental values mentioned
above are not far from the values 0.377m0 and 0.090m0 cal-
culated without warping, i.e., usingg25g3 ~for GaAs, one
has g252.1,g352.9 ~Ref. 42!!. We use these numbers as
justification for the neglect of warping in the exchange-
correlation potential of holes. This approximation does not
mean, of course, that warping is neglected throughout in our
calculations. It is still present in the effective kinetic energy
matrix ~14!, where it has a much larger effect.

Without warping, the effective massesm3/2* andm1/2* of,
respectively, heavy and light holes are given by the expres-
sions

m3/2* 5
1

g122g2
m0 , ~32!

m1/2* 5
1

2g21g1
m0 . ~33!

The densitiesp3/2 and p1/2 of the two hole gases follow,
respectively, from the equations

pumu5
1

3p2 S 2mumu*

\2 D 3/2EF
3/2 , umu5

3

2
,
1

2
, ~34!

whereEF means the Fermi level of holes measured with
respect to the valence band edge. From these equations,EF
may be eliminated by means of the total hole density

p5p3/21p1/2. ~35!

Using the above approximations and definitions, we write
down explicit expressions for the exchange-correlation po-
tentials VXC(3/2) and VXC(1/2) of the heavy and light hole
gases. The parametrized exchange-correlation potentialVXC
for electrons will be taken in the form of Hedin and
Lundqvist.43 For a homogeneous electron gas of effective
massm* and densityn embedded in a material of static
dielectric constante, their expression reads

VXC52
e2

2eaB*
S 2

par s
D2

e2

2eaB*
S 2

pa D0.0368 lnS 11
21

r s
D ,
~36!

with aB*5e(m0 /m* )aB being the effective Bohr
radius, a5(4/9p)1/3 a numerical constant, and
r s

215@(4p/3)aB*
3n#1/3 the screening radius. According to

Ref. 43, the first term in expression~36!, which scales with
r s

21 , arises from exchange, and the second term scaling with
ln(1121/r s) from Coulomb correlation. In adapting the
exchange-correlation potential~36! to the two-component
hole gas under consideration, this interpretation becomes es-
sential. While statistical correlation giving rise to the ex-
change term in equation~36! occurs either between heavy
holes or between light holes, but not between heavyand light
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holes, Coulomb correlation giving rise to the correlation term
in ~36! acts also between different kinds of holes. This means
that in writing down expression~36! for a particular kind of
holes, in the first term of expression~36!, the electron den-
sity has to be replaced by the partial density of that kind of
holes, while in the second term, the total hole density has to
be inserted. In this way, one obtains

VXC~3/2!52
e2

2eaB~3/2!
* S 2

par s~3/2!
D

2
e2

2eaB~3/2!* S 2

pa D0.0368 lnS 11
21

Rs~3/2!
D , ~37!

VXC~1/2!52
e2

2eaB~1/2!
* S 2

par s~1/2!
D

2
e2

2eaB~1/2!* S 2

pa D0.0368 lnS 11
21

Rs~1/2!
D , ~38!

where

aBumu* 5eS m0

mumu*
DaB , ~39!

r sumu
21 5

mumu*
1/2

~m3/2*
3/21m1/2*

3/2!1/3
S 4p

3
aBumu* 3 pD 1/3, ~40!

Rsumu
21 5S 4p

3
aBumu* 3 pD 1/3, ~41!

with umu5 3
2 ,

1
2 .

With the derivation of expressions~37! and ~38!, the
exchange-correlation potential matrix~31! in the basis of
hole eigenstates is completely known. In a second step, it has
to be transformed into the basis of Luttinger-Kohn functions.
How this transformation can be performed is shown in Ap-
pendix A. It results in

~mkuVXCum8k!5S QXC SXC RXC 0

SXC* TXC 0 RXC

RXC* 0 TXC 2SXC

0 RXC* 2SXC* Q XC

D ,
~42!

with

QXC5
1

4
@VXC~3/2!13VXC~1/2!#S kx21ky

2

k2 D 1VXC~3/2!S kz2k2D ,
~43!

TXC5
1

4
@3VXC~3/2!1VXC~1/2!#S kx21ky

2

k2 D 1VXC~1/2!S kz2k2D ,
~44!

RXC52
A3
4

@VXC~3/2!2VXC~1/2!#S kx2 iky
k D 2, ~45!

SXC5 i
A3
2

@VXC~3/2!2VXC~1/2!#S ~kx2 iky!kz
k2 D . ~46!

If the exchange-correlation potentials of heavy and light
holes were identical, then the matrix~42! would take diago-
nal form with all diagonal elements being equal to the as-
sumed common value ofVXC(3/2) and VXC(1/2) . In reality,
VXC(3/2) and VXC(1/2) differ appreciably, mainly due to the
different densities of the heavy and light hole gases. From
this point of view, no justification exists to replace the
exchange-correlation matrix~42! by its diagonal elements
only.

The exchange-correlation potential matrix~42! applies to
a spatially homogeneousG8 valence band hole gas. As is
commonly done, inhomogeneities will be taken into account
by means of the local density approximation, i.e., by using
expressions~37! and~38! for an inhomogeneous hole gas as
well. This will be done in the third step. Owing to thez
dependence of the external potential, the exchange-
correlation potential matrix~42! becomes alsoz dependent.
Its umkK) representation becomes nondiagonal with respect
to K. This means that (mkuVXCum8k) has to be replaced by
(mkKuVXCum8kK8), as well asQXC , TXC , RXC , SXC by,
respectively, (KuQXCuK8), (KuTXCuK8), (KuRXCuK8),
(KuSXCuK8). The latter matrices have to be calculated nu-
merically from the z-dependent expressions ofQXC(z),
TXC(z), RXC(z), SXC(z), which follow from equations~43!
to ~46! if there thez-dependent expressionsVXC(3/2)(z) and
VXC(1/2)(z) are inserted. The latter are obtained from expres-
sions~37!, ~38! by using thez-dependent hole concentration
according to equations~27!, ~34!, and~35!. One gets

~mkKuVXCum8kK8!5S ~KuQXCuK8! ~KuSXCuK8! ~KuRXCuK8! 0

~KuSXCuK8!* ~KuTXCuK8! 0 ~KuRXCuK8!

~KuRXCuK8!* 0 ~KuTXCuK8! 2~KuSXCuK8!

0 ~KuRXCuK8!* 2~KuSXCuK !* ~KuQXCuK !.

D , ~47!
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with

~KuQXCuK8!5
1

4
@~KuVXC~3/2!uK8!13~KuVXC~1/2!uK8!#

3S kx21ky
2

k2 D 1~KuVXC~3/2!uK8!S kz2k2D , ~48!

~KuTXCuK8!5
1

4
@3~KuVXC~3/2!uK8!1~KuVXC~1/2!uK8!#

3S kx21ky
2

k2 D 1~KuVXC~1/2!uK8!S kz2k2D , ~49!

~KuRXCuK8!52
A3
4

@~KuVXC~3/2!uK8!2~KuVXC~1/2!uK8!#

3S kx2 iky
k D 2, ~50!

~KuSXCuK8!5 i
A3
2

@~KuVXC~3/2!uK8!2~KuVXC~1/2!uK8!#

3S ~kx2 iky!kz
k2 D . ~51!

With the determination of the exchange-correlation poten-
tial matrix ~47! of the inhomogeneous hole gas, the last step
in setting up the Luttinger-Kohn effective mass equation~13!
in plane-wave representation has been accomplished. The
matrices of the three operators in this equation being the
kinetic energy operatorH0 , the Coulomb potentialVC , and
the exchange-correlation potentialVXC , have different struc-
tures. That ofH0 is nondiagonal with respect to the angular
momentum quantum numbersm, but diagonal with respect
to the SL wave vectorsK. For the matrix ofVC it holds
exactly the opposite, it is diagonal with respect tom, but
nondiagonal with respect toK, and for the matrix ofVXC ,
one has nondiagonal elements with respect tom andK. The
eigenvalues and eigenvectors of the total matrix have to be
calculated in a self-consistent way by using the eigenvector
dependence of the Coulomb and exchange-correlation poten-
tials specified before. The energy zero point is fixed at the
barrier energy of the Coulomb potential throughout the cal-
culations.

D. Convergency test

In order to check the convergency of the plane-wave ex-
pansion, we treat an isolated undoped square well. Due to the
abrupt changes of the potential in this case, convergency is
more critical than in thed-doping case with its continuously
varying potential. Thus, the square well test suffices. For the
Luttinger parameters of GaAs, we take the following
values:42 g156.85, g252.1, g352.9. The hole subband
structure of the square well is calculated with different num-
bers of plane waves. While pronounced changes are ob-
served between 21 and 41 plane waves, the results for 41
plane waves do not alter considerably if one proceeds to 61
and 101. The anticrossing behavior of the subbands known

from the calculations for heterostructure quantum wells44

shows clearly up in the hole band structures calculated with
41 plane waves or more.

III. POTENTIALS AND BAND STRUCTURES
OF p-TYPE d-DOPING QW’S AND SL’S

We calculate hole potentials and band structures for
p-typed-doping QW’s and SL’s with different acceptor sheet
concentrations and periods, covering the ranges of experi-
mental interest. Accordingly, we adopt three different doping
concentrations, being 331012 cm22, 831012 cm22, and
331013 cm22. For each concentration, the SL period is
taken to be 500 Å in order to cover quasi-isolated QW’s, and
200 Å in order to consider typical SL’s. Altering the doping
spreadDz will cause changes of the results. These will be
investigated separately at the end of this section. Here,Dz is
set 23.55 Å in all cases corresponding tos510 Å.

A. Potentials

In Fig. 2, potentials are shown for the lowest and the
highest of the three doping concentrations mentioned above.
Only potentials for the 500 Å SL’s are depicted, because
those for the 200 Å SL’s differ only slightly. The dashed lines
in Fig. 2 mean the Coulomb potential without exchange-
correlation interaction, and the solid lines the total potential
including this interaction. Two curves, at least, are necessary,
in order to display the total potential because the exchange-
correlation part of it is represented by a matrix
(mkuVXCum8k). For holes with quasi-wave-vectorsk paral-
lel to the z axis, the off-diagonal elements of this matrix
disappear, and the diagonal elements become the exchange-
correlation potentials of heavy and light holes. These are the
exchange-correlation parts entering the total potential curves
in Fig. 2. Curves marked with hh are the total potentials seen
by heavy holes moving inz direction, and curves marked

FIG. 2. Hole potentials forp-type d-doping SL’s of period
d5500 Å; acceptor sheet concentrations 331012 cm22 ~left!, and
331013 cm22; s510 Å. Dashed curves show the Coulomb poten-
tial, full curves give the total potential, including exchange correla-
tion. The energy zero has been fixed at the Coulomb barrier poten-
tial for holes.
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with lh are the potentials seen by light holes moving in this
direction. The heavy hole potentials are always deeper than
the light hole potentials, first, because the exchange-
correlation potential is attracting and monotonously increas-
ing with density and, second, because the densities of heavy
holes are always larger than those of light holes. Altogether,
exchange-correlation effects are relatively large in the
p-type d-doping SL’s under consideration. Similar conclu-
sions have been drawn in Refs. 33,45. In our case, the rela-
tive contribution of exchange correlation to the total heavy
hole potential ranges between 30% for higher doping con-
centrations and about 40% for lower. Such large relative con-
tributions will not arise, of course, if the exchange-
correlation potential is compared with the Hartree potential
of holes only, without the unscreened Coulomb potential of
the negatively charged acceptor sheet~see Fig. 3!. The latter
forms a deep well, which is almost completely screened out
by the Hartree potential of holes. With respect to the Hartree
potential, exchange correlation contributes only about 5% for
heavy holes and 3% for light holes. The total well depths
increase with rising doping concentrations. The depths of the
heavy hole wells of the 500 Å SL’s are, respectively,
48 meV, 85 meV, and 148 meV for the three doping con-
centrations mentioned above. For the 200 Å SL’s, they take
somewhat smaller values, due to the lower hole concentra-
tions and consequently, smaller exchange-correlation poten-
tials at the well centers. Generally, the hole wells considered
here are less deep than the electron wells inn-type

d-doping SL’s at the same sheet doping concentration.21 In
Sec. IV, we will discuss this difference in greater detail.

B. Band structures

In Figs. 4–6, the band structures of the SL’s are depicted.
Each figure corresponds to a certain sheet doping concentra-
tion. In each figure the 500 Å SL is shown on the left hand
side, and the 200 Å SL on the right hand side. Shown are the
miniband dispersions perpendicular to the SL layers between
the center of the first SL-BZ atG and its boundary atZ, as
well as the subband dispersion along theD and D8 lines
parallel to the SL layers~see Fig. 1!. The scales for wave
vectors perpendicular and parallel are the same in each fig-
ure. They are determined by theG-Z distance, which
amounts top/d. For the 500 Å SL of doping concentration

FIG. 3. Partial and total potentials for holes in ap-type
d-doping SL of period 500 Å and acceptor sheet concentration
831012 cm22. The unscreened potential is due to the negatively
charged acceptor sheet, embedded in a spatially homogeneous hole
gas in order to neutralize the total charge. The Hartree potential
arises from the self-consistently calculated hole distribution embed-
ded in a spatially homogeneous negative charge distribution, again
for neutralizing the total charge. The screened potential means the
total Coulomb potential seen by a hole. It represents the sum of the
two former potentials. Shown are also the total potentials for heavy
and light holes including exchange correlation.

FIG. 4. Band structures~solid lines! and Fermi levels~dashed
lines! for p-typed-doping SL’s of periodsd5500 Å ~left part! and
d5200 Å ~right part!. Acceptor sheet concentration equal to
331012 cm22, s510 Å. Horizontal scale adjusted to theG-Z dis-
tancep/d. Energy zero as in Fig. 2.

FIG. 5. Band structures~solid lines! and Fermi levels~dashed
lines! for a p-typed-doping SL of periodsd5500 Å ~left part! and
d5200 Å ~right part!. Acceptor sheet concentration equal to
831012 cm22, s510 Å. Horizontal scale adjusted to theG-Z dis-
tancep/d. Energy zero as in Fig. 2.
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331012 cm22 ~Fig. 4!, a dispersionless hh1 miniband at 33
meV below the common heavy and light hole barrier is fol-
lowed by a dispersionless lh1 miniband at 14 meV. The hh2
and hh3 minibands are still below the barrier, while all
higher minibands are above. The latter show considerable
miniband dispersion. The subbands arising from hh and lh
minibands for nonzero wave vector componentski parallel
to the layers show strong anticrossing behavior, similar to
heterostructure QW’s~see, e.g., Ref. 44!. Almost all holes
are hosted by the hh1 subband, with only little occupation of
the lh1 subband.

For the 200 Å SL of the same doping concentration
331012 cm22 ~see Fig. 4!, strong miniband dispersion oc-
curs already from the lh1 band on. The hh1 miniband is

dispersionless, and occurs at the same energy as the hh1
miniband of the 500 Å SL. Again the hh1 subband is hosting
almost all holes.

Increasing the sheet doping concentration deepens the
wells and shifts the minibands up with respect to the well
bottom. First, we consider the moderate doping case of
831012 cm22 ~Fig. 5!. For both the 500 Å and the 200 Å
SL, two hh minibands and two lh minibands occur below the
barrier. The dispersionless hh1 minibands are 55 meV above
the barrier for both SL’s. Again, the dispersion of the corre-
sponding subbands with respect toki exhibits strong anti-
crossing behavior. The Fermi level lies in the second, i.e., the
lh1 subband.

At the highest doping concentration 331013 cm22

shown in Fig. 6, the minibands follow in the sequence hh1,
lh1, hh2, hh3, lh2 for both the 500 and 200 Å SL’s. The first
three are almost dispersionless and occur at approximately
the same energy in the two SL’s being, respectively, 110
meV, 60 meV, and 40 meV. Deviations start from the hh2
miniband, which is dispersionless in the wider SL and shows
dispersion in the narrower one. The nonparabolicity of the
subband dispersion is clearly dominated by an anticrossing
behavior. The Fermi level has moved up to the third subband
in both SL’s.

The doping spreadDz52.355s has been fixed so far at
23.55 Å. In experiment,Dz may considerably differ from
this value. Thus, we have calculated energy levels and Fermi
energies as a function ofDz for the three 500 Å SL’s con-
sidered above. The results are shown in Fig. 7. For a given
doping concentration, the two hole wells become shallower
and the Fermi level moves up ifDz increases, as is expected.
The shifts of the hole levels with increasingDz are the net
result of two competing effects being the lowering of the
well bottom, which moves the levels down, and the decrease
of the confinement, which shifts the levels up. As can be seen
from Fig. 7, the first effect dominates for the lowest heavy

FIG. 6. Band structures~solid lines! and Fermi levels~dashed
lines! for a p-type d-doping SL of periodd5500 Å ~left part! and
d5200 Å ~right part!. Acceptor sheet concentration equal to
331013 cm22, s510 Å. Horizontal scale adjusted to theG-Z dis-
tancep/d. Energy zero as in Fig. 2.

FIG. 7. Well bottoms~dotted
lines!, hole levels ~solid lines!,
and Fermi energies~dashed lines!,
for p-type d-doping 500 Å SL’s,
plotted against the doping spread
Dz. Energy zero, as in Fig. 2. The
three different doping concentra-
tions 331012 cm22, 831012

cm22, and 331013 cm22 are
shown in different parts of the fig-
ure.
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and light hole levels hh1 and lh1, and the second effect for
the excited heavy hole level hh2. Due to this, the ordering of
the hh2 level above the lh1 level at smallDz is reversed at
largeDz. The Fermi level for the two SL’s with lower dop-
ing concentrations which, at smallDz, lies above the hh1
and lh1 subband edges but below the hh2 edge, enters the
hh2 subband at largeDz. Altogether, the above results indi-
cate that the electronic structures ofp-type d-doping QW’s
are very sensitive to variations of the doping profile. Similar
results have been found in previous calculations29,33 ~for a
comparison withn-type d-doping QW’s see Sec. IV!.

IV. DISCUSSION

A. Comparison with previous calculations

Isolated QW’s with moderate doping concentration
(831012 cm22) and small doping spread ('20 Å! have
also been treated in Refs. 29,33, using methods and approxi-
mations~see Sec. I! differing from the present ones. The well
depth of 135 meV from Ref. 33 is considerably larger than
our value of 85 meV, while the depth of 90 meV obtained in
Ref. 29 is close to our result. However, comparing the value
obtained here with that from Ref. 29, one has to keep in
mind that exchange correlation has not been taken into ac-
count in Ref. 29. If this would have been done, the well
depth in Ref. 29 would also have been larger than ours. Gen-
erally, the approximations in Refs. 29,33 seem to result in an
underestimation of the subband densities of states at low
energies. As a consequence of this, hole states with higher
energies are filled. These are less effective in screening out
the negative acceptor sheet charge distribution, thus the po-
tential well becomes deeper. In fact, the Fermi level lies in
the second subband in Ref. 29, as in our calculations but by
10 meV higher, while in Ref. 33 it has even moved up into
the third subband.

B. Comparison with experimental PL spectra

Experimental data on hole states ind-doping wells may
be obtained from PL spectra. Such spectra have been mea-
sured on isolatedd-doping QW’s in Refs. 26–30. The spec-
tra exhibit peaks, which may be attributed to radiative tran-
sitions between extended electron states and hole states
confined to thed-doping wells. Two peaks are resolved in
most of the spectra, corresponding to transitions into the
lowest heavy hole state hh1 and the lowest light hole state
lh1. In comparing calculated transition energies with experi-
mental peak positions, one has to be aware that no one-to-
one correspondence can be expected, because these positions
are also determined by the energy dependence of the overlap
integral between electron and hole envelope functions.38

Nevertheless, a rough comparison between theoretical level
separations or level doping shifts and experimental peak
separations or peak doping shifts should be possible. In order
to be able to derive doping shifts of transition energies from
hole level shifts, the hole levels have to be referred to the
bottom of the conduction band. This is automatically done in
our calculations: as the energy zero point has been fixed at
the barrier of the Coulomb potential, the conduction band
bottom occurs always at the gap energyEg on our energy
scale.

Experimental values for the positionsPhh1 andP lh1 of PL
peaks arising from transitions to hh1 and lh1 states are sum-
marized in Table I for variousd-doping samples. In all cases,
isolated d-doping layers have been measured. For a given
doping concentration, the spacingPhh1-Plh1 between the two
lowest PL peaks may be compared with the calculated sub-
band level spacingsEhh1-Elh1 at the subband bottomki50.
Such a comparison is shown in Table II. The experimental
spacings from Ref. 29 compare well with the theoretical
spacings calculated for the experimental doping spreads. For
the samples measured in Refs. 26,27 no doping spreads are
known, so that no definite statements on agreement or dis-
agreement between theory and experiment can be made. One
can, however, fit theoretical and experimental spacings to
estimate the doping spreadDz. The results are given in pa-
rentheses in Table II.

In the experimental spectra,27,29 the PL peaks shift to
lower energies if the sheet doping concentrationNA is in-
creased. This behavior is reproduced by the calculations: Al-
though hole levels move down with respect to the well bot-
tom if NA increases, the bottom itself moves up resulting in a
net up shift of the hole levels, and a down shift of the tran-
sition energy. The experimental down shiftsDPhh1 of the

TABLE I. Experimental PL peak positionsPhh1 and P lh1 .
Samples with no data for the doping spreadDz are indicated by
‘‘n.d.’’

NA Dz Phh1 Plh1 Ref.
(1013 cm22) ~Å! ~eV! ~eV!

0.8 n.d. 1.460 1.496 26
0.4 n.d. 1.485 1.493 27
1.8 n.d. 1.460 1.480 27
3.6 n.d. 1.430 1.460 27
0.3 65 1.480 1.494 29
0.8 72 1.460 1.480 29
3.0 125 1.450 1.466 29

TABLE II. Comparison of calculated energy level spacings and
doping shifts with experimental PL data. For doping spreadsDz
shown in parentheses, no experimental values were available; the
given values were obtained by fitting level spacingsEhh1-Elh1 and
PL peak spacingsPhh1-Plh1 ~which then are identical by definition!.
If no experimental spread values existed, the level shiftsDEhh1with
increasing doping concentration have been calculated by means of
the fitted valuesDz. DPhh1 denotes the experimental shift of the
P hh1 peak with doping. All doping shifts are referred to the lowest
concentration shown for the corresponding reference.

NA Dz Ehh1-Elh1 Phh1-Plh1 DEhh1 DPhh1 Ref.
(1013 cm22) ~Å! ~meV! ~meV! ~meV! ~meV!

0.3 ~5! 36 36 0 0 26
0.4 ~110! 8 8 0 0 27
1.8 ~110! 20 20 -22 -25 27
3.6 ~90! 30 30 -50 -55 27
0.3 65 15 14 0 0 29
0.8 72 20 20 -16 -20 29
3.0 125 24 20 -25 -30 29
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Phh1 peak are shown in Table II, together with the theoretical
shiftsDEhh1 calculated withDz values from the same table.
All shifts are referred to the lowest doping concentration
reported in the respective reference. The comparison be-
tweenDEhh1 and DPhh1 in Table II shows that reasonable
agreement between theory and experiment can be stated also
with respect to the doping shifts of PL peaks. The somewhat
larger experimental shifts could be due to the doping induced
band gap shrinkage, which has not been taken into account in
our calculations.

C. Comparison betweenp- and n-type d-doping wells

Deeper insight into the hole structure ofp-type
d-doping wells can be obtained by a comparison with
n-type d-doping wells of the same or slightly lower sheet
doping concentrations and periods. We will concentrate on
the 500 Å SL. In the right hand parts of Figs. 8–10, the
electron potentials as well as the miniband and Fermi levels
are shown for the three sheet doping concentrations
331012 cm22, 831012 cm22, 1.531013 cm22, and as
value of 10 Å. As before, solid curves are used for the total
potentials including exchange correlation, and dashed curves
for the potentials without exchange correlation. One notices
that the wells for electrons are considerably wider and deeper
than those for holes shown in the left hand parts of Figs.
8–10. This may be easily understood in terms of localization
and screening. Due to their larger effective-mass, heavy hole
states are stronger localized at thed sheet than light holes
and electrons. From the same reason, heavy holes form the
ground state of thep-typed-doping well, which implies that
most of the holes are heavy. Because of their stronger local-
ization, they screen the sheet charge distribution more effec-

tively than the weaker localized light holes and electrons~if
the localization at the sheet was perfect, the screening would
be complete!.

Another difference betweenn- andp-typed-doping struc-
tures, concerning the dependence of their electronic struc-
tures on the doping spreadDz, may be understood by means
of similar arguments. As has been demonstrated in Sec. III,
the barrier heights and level positions ofp-type d-doping
QW’s are very sensitive to variations of their doping profiles.

FIG. 8. Left hand part: Potential profiles and miniband levels
~solid lines! of holes for ap-typed-doping SL of periodd5500 Å.
The Coulomb potential~dashed line! and Fermi level~dotted line!
are also shown. Acceptor sheet concentration equal to
331012 cm22, s510 Å. Right hand part: The same quantities as
on the left hand side, but for electrons of ann-typed-doping SL of
the same doping concentration and period.

FIG. 9. Left hand part: Potential profiles and miniband levels
~solid lines! of holes for ap-typed-doping SL of periodd5500 Å.
The Coulomb potential~dashed line! and Fermi level~dotted line!
are also shown. Acceptor sheet concentration equal to
831012 cm22, s510 Å. Right hand part: The same quantities as
on the left hand side, but for electrons of ann-typed-doping SL of
the same doping concentration and period.

FIG. 10. Left hand part: Potential profiles and miniband levels
~solid lines! of holes for ap-typed-doping SL of periodd5500 Å.
The Coulomb potential~dashed line! and Fermi level~dotted line!
are also shown. Acceptor sheet concentration equal to
1.531013 cm22, s510 Å. Right hand part: The same quantities as
on the left hand side, but for electrons of ann-typed-doping SL of
the same doping concentration and period.
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This contrasts withn-typed-doping QW’s, where this sensi-
tivity has been found to be much less~see, e.g., Ref. 20!. The
above discussion provides a simple explanation also for this
difference: As the heavy holes dominate inp-type d-doping
QW’s, and the heavy holes are stronger localized in the vi-
cinity of the doping sheet than the electrons ofn-type
d-doping QW’s, variations of the doping profile are felt
much stronger by the holes than by the electrons.

Differences between electron and holed-doping struc-
tures exist also with respect to the role of exchange-
correlation effects. From Figs. 8–10 one can see that
exchange-correlation effects are stronger in the case of heavy
holes than in that of electrons~and light holes!. Two reasons
are responsible for this. First, the higher density of the heavy
hole gas, gives rise to a larger absolute value of the
exchange-correlation potential. For heavy holes it amounts,
respectively, to 23 meV, 32 meV, and 40 meV for the three
concentrations, as opposed to 5 meV, 9 meV, and 12 meV for
electrons. The second reason is more striking. It concerns the
relative importance of the exchange-correlation potential,
with respect to the Coulomb potential of fixed and mobile
charges. The latter potential~shown by dashed curves in
Figs. 8–10! is considerably smaller for holes than for elec-
trons, because of the more complete screening by heavy
holes. In this way, the relative contributions of exchange cor-
relation to the total potentials in Figs. 8–10 amount to 44%,
30%, and 30% in the case of heavy holes, and only 6%, 4%,
and 3% in the case of electrons.

Finally, the different depths of potential wells forp2 and
n-type d-doping structures should result in different intensi-
ties of luminescence light arising from thed-doping regions.
Since the larger depths and widths ofn-type wells, as com-
pared top-type wells, make tunneling through electron wells
more difficult than tunneling through hole wells, the overlap
of electron and hole wave functions, and thus the lumines-
cence intensities, should be much stronger forp-type QW’s

than for n-type QW’s at the same sheet doping concentra-
tion. This could explain why experimentallyn-type wells
had to be placed between barriers in order to see lumines-
cence, whilep-type wells needed not.38
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APPENDIX A

The hole eigenstatesuemk) follow from the Luttinger-
Kohn basis umk) by means of an unitary transformation
U(k). One has

uemk)5(
m

Umm~k!umk). ~A1!

In order to obtain the matrix of the exchange-correlation op-
eratorVXC in the Luttinger-Kohn basisumk) from that in the
basis of eigenvectors, the unitary transformation~A1! has to
be inverted. This results in

~mkuVXCum8k!5(
m

Umm~k!Um8m
* ~k!~emkuVXCuemk!.

~A2!

By using the explicit expression forUmm(k), the transforma-
tion ~A2! may be readily carried out. This involves quite
lengthy calculations. One may avoid them by exploiting the
fact that, owing to the neglect of warping, the eigenvalues of
the Luttinger-Kohn Hamiltonian are independent of the di-
rection ofk. One has

~emkuH0uem8k!5S ~2g22g1! 0 0 0

0 2~2g21g1! 0 0

0 0 2~2g21g1! 0

0 0 0 ~2g22g1!

D k2. ~A3!

According to the definition of the unitary transformation
U(k), the matrix ~A3! turns over into the matrix
(mkuH0um8k) if the inverse transformationU1(k) is applied
to it. This observation allows one to write down the matrix
into which the exchange-correlation potential matrix~31!
transforms by means ofU1(k). One solely has to realize
that the Hamiltonian matrix~A3! turns over into the matrix
~31! if the replacements

g1→2
1

2k2
@VXC~3/2!1VXC~1/2!#, ~A4!

g2→
1

4k2
@VXC~3/2!2VXC~1/2!# ~A5!

are made. Since the identity of the two matrices will hold
also after their transformation withU1(k), the exchange-
correlation energy matrix (mkuVXCum8k) follows from the
Hamiltonian matrix (mkuH0um8k) by replacingg1 ,g2 ac-
cording to equations~A4! and~A5!. In this way, one obtains
expression~42! in the main text for (mkuVXCum8k) with
QXC ,TXC ,TXC ,SXC , from ~43! to ~46!.
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