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Band structure of holes inp-type é-doping quantum wells and superlattices
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p-type 5-doping quantum wells and superlattices are semiconductor systems of considerable interest for
basic research and device applications. In this paper, a method for calculating potentials and band structures of
such systems is developed. The method relies on a plane-wave expansion of the multiband effective-mass
equation, uses kinetic energy matrices of any size, and takes exchange correlation into account in a more
rigorous way than this was done before. The method is used to calculate potential profiles, subband and
miniband structures, as well as Fermi level positions for a serieg-type 5-doping quantum wells and
superlattices. Exchange-correlation effects turn out to be rather large. Only if they are properly taken into
account reasonable agreement with experimental photoluminescence data can be achieved. For comparison,
potentials and energy levels are also calculated for electronstyiie 5-doping systems. The potential wells
for electrons are considerably deeper and wider, and exchange-correlation effects are less pronounced than for
holes. The physical reasons for these differences and their implications on luminescence speatraaftdm
p-type §-doping structures are discussed.

[. INTRODUCTION Luttinger-Kohn Hamiltonian were made in Refs. 33 and 34,
while axial symmetry perpendicular to th&doping plane

Semiconductors withb-like layers of dopant atoms are was assumed in Ref. 29. From the above mentioned calcula-
challenging systems for basic research and devicgons, potential wells, subband energies, and Fermi level po-
applications: As compared with §-doping structures of  sitions were obtained for sind®33and multiplé* well struc-
n-typel™?? those of p-type represent relatively new tures. The calculated subband and Fermi level positions were
achievement&® 3! Although p-type doping by means of Be- compared with those derived from luminescence spectra.
ryllium, during the molecular beam epitaxy growth of GaAs, Rough agreement was stated in Ref. 29, and notable differ-
has been widely used already, since the original work in Refences in Ref. 33. In Ref. 33, the importance of exchange-
32, Beryllium 6 doping in GaAs has been reported only correlation effects was stressed in order to account for the
recently?®>=%"2%3%t was clearly demonstrated in the work by relatively large light-to-heavy hole splittings observed
Schubert et al?* Secondary-ion-mass spectroscopy andexperimentally?®~2°In Ref. 34 it was pointed out that, for a
capacitance-voltage measurements allowed these authorsrire rigorous comparison between theory and experiment,
conclude that the spread of the doping layer was less thanthe calculation of subband energies does not suffice, since
nm. Relatively high sheet doping concentrations in the rangéhe positions of luminescence peaks are also determined by
of 10" cm™~2 were achieved so that hole confinement effectsthe energy dependence of the radiative electron-hole recom-
were likely to occur. Such effects have, in fact, been ob-bination probability. The latter is governed by the overlap
served in photoluminescencdPL) spectra from Be integral of electron and hole wave functions. This integral
— 5-doped layerg®2"2%3%n order to enhance spectral fea- varies strongly with energy, since tunneling of electrons into
tures due to the confined holes, in Refs. 26,29,4oped  hole wells(i.e., electron barrieysand/or of holes into hole
layers were placed betwegil,Ga)As barriers, providing barriers must take place to make the overlap nonzero.
better wave function overlap for the recombining electron- Despite the already existing work, the hole problem in
hole pairs in this way. PL signals from Be p-type 5-doping QW's and SL's needs further theoretical in-
o-doped layers in GaAs have been observed, however, alsgstigations. The opportunities and challenges of this prob-
without (Al,Ga)As barriers?”?°*°The same observation has lem have only partially been realized so far. We will mention
been reported for € 5-doped layers in GaA€ This is in  only few of them. First, unlike QW’s and SL's based on
remarkable contrast to-type 5-doping QW's, which never heterostructures, ip-type 5-doping QW's and SL's, only the
gave rise to detectable luminescence signals without confirpotential operator of the multiband effective mass equation is
ing the minority carriergholes in this cagebetween barriers.  spatially inhomogeneous, while the kinetic energy operator is

p-type 5-doping QW's and SL's have also been subjectedconstant in space, because of the homogeneous material
to theoretical studies. Self-consistent band structure calculaomposition. This means that the effective-mass equation ap-
tion for holes in such systems have been performed by variplies at all points of the QW or SL, as opposed to hetero-
ous authoré®3334 ysing the Luttinger-Kohn multiband structure QW's or SL’s, where it holds only within the ho-
effective-mass equation of tHeg valence band comple®. mogeneous material layers, while the interfaces between
This equation was solved self-consistently witf8uand  them have to be bridged by boundary conditions. The latter
with®*334exchange-correlation effects taken into account. Thare controversial among different authors and may introduce
effective-mass equation was transformed into a matrix equaincontrollable errord® The effective mass theory of
tion either with respect to a certain set of auxiliary functions,s-doping QW's and SL’s is free of such uncertainties. More-
which had to be calculated numerically fifS or with re-  over, the eigenvalue problem may be solved by means of the
spect to plane wave$.No further approximations on the matrix method, without any restrictions on the set of basis
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functions. In the case of heterostructure QW'’s and SL's, suckuminescence and other optical spectra frérdoping QW's
restrictions result from the representation of the kinetic enand SL's, one needs, therefore, both electron and hole wave
ergy operator, which calls for material dependent basis funcfunctions in numerical form. Calculating them from indepen-
tions. For s-doping QW’s and SL’s, any reasonable set ofdent models for electrons and holes as it was done in Ref. 38
basis functions may be used. Plane waves are particularkgpresents a possible but not an ideal solution. More appro-
suited for two reasons: the kinetic energy operator is origiPriate would be their calculation by means of a model that
nally given with respect to them, and the Poisson equatio@Pplies to electrons and holes. This means the use of the
transforms into a simple algebraic equation if written in theKane model for both types of carrietas has been done in
plane-wave representation. Ref. 39 for heterostructure Sl'snstead of the Luttinger-

Second, the hole potential pttype 5-doping QW's and  Kohn model for holes and a one-band effective-mass equa-
SLs is essentially codetermined by the hole gas itself, unlikdion for electrons. Thus, if luminescence spectra from
to heterostructure QW's and SL's, where the gas introduces-doping QW's and SL's are to be calculated, the Kane
only small corrections to the potential, the main part ofmodel should be used even in the case of GaAs being a
which arises from band discontinuities. The hole-hole intermaterial which is otherwise well described by the Luttinger-
action thus plays a key role ip-type 8-doping QW's and Kohn model. This calls for a simple solution procedure of
SL's. Although an analogous situation existsnistype QW's the effective-mass equation in order to keep the numerical
and SL's, the two types of systems behave differently. Since&ffort in reasonable limits. The matrix method with plane
typical experimental sheet concentrations are almost one owaves as a basis set, which has been used in Ref. 34, fulfills
der of magnitude higher ip-type s-doping structures than this demand. _ _ _
in n-type structures, one could argue that exchange- The purpose of the present paper is to describe this
correlation effects should be less importantpitype struc- Method in greater detail and, by applying it, to calculate
tures, as compared totype ones. This is true as long as one Potential profiles and band structures for a seriep-0ype
compares the exchange-correlation potential with the repeté-doping QW's and SL's in the experimentally interesting
ling Hartree potential only. The latter is, however, only part'anges of doping concentrations and periods. The paper is
of the total one-particle potential without exchange correla-0rganized as follows. In Sec. Il, we present the method. The
tion, the attracting potential due to the fixed sheet dopanProblem of the proper treatment of exchange-correlation ef-
charges has yet to be added. Owing to the strong localizatiof¢cts for the two-component hole gas is approximately
of heavy holes, the two potential parts should compensat&olved by deriving an exchange-correlation potential matrix
each other more completely jprtype than inn-type struc- with off-d|agonal'e.lements. In Sec. lll, the potential profiles,
tures. Thus, ip-type structures, exchange-correlation effectsSubband and miniband dispersions knspace, as well as
are expected to play a particularly large role. This calls for -€rmi level positions, are calculated. The results are dis-
more sophisticated treatment of these effects, as compared §/Ssed in Secs. lll and IV. In Sec. IV, a comparison with
a procedure in which one takes the exchange-correlation p&ther theoretical findings and experimental luminescence
tential of the Luttinger-Kohn hole gas as a diagonal matrixSPectra is made. Electron potentials and band structures of
with the exchange-correlation potentials of heavy and lighii-type é-doping SL's with identical parameters are calcu-
holes as diagonal elemerits. lated and compared with the results for holes. Pronounced

Third, 5-doping QW's and SL's have metallic character. differences are found between the two types of carriers and
In calculating their self-consistent Hartree potentials, theeXplained in physical terms. Since we are not dealing with
sum upon the occupied hole states has to be taken in eaéptical spectra of GaAp-type 5-doping QW's and SL's in
k point below the Fermi surface rather than in special point$h€ present paper, and thus do not need hole and electron
only as can be done in the case of the completely filegvave functions obtained from the same calculations, the
valence bands of semiconductdfsEor the electrons of a Luttinger-Kohn model is used throughout. The method may
n-type S-doping well, isotropic and parabolic band disper- be ea5|ly applied to other models including that by Kane.
sion may be assumed parallel to the layers which allows th&alculations  for luminescence spectra from-type
k sum to be performed analytically. The isotropic approxi- 5-doping QW's, using the Kane model, are in progress.
mation does, however, not apply to holes, in this case, the
k sum has to be calculated numerically. As known from band Il. METHOD
structure calculations of bulk metals, this represents a rather
time consuming but unavoidable procedure.

Fourth and last, unlike GaA&a,AlAs heterostructure We consider gp-type §-doped zinc blende type SL with
QW's and SL’s, ins-doping QW'’s and SL's, only carriers of the growth direction parallel t§001]. Assuming an even
one type feel wells and are confined, while those of the othenumberN of Ga-As double layers per SL period, the Bravais
type feel barriers and are extended over the whole structudattice of the structure becomes tetragonal, and the primitive
with the exception of the barrier regions from which particleslattice vectorsA;,A,,A; of the SL may be chosen as
having energies below the barrier are expelled. As already
has been mentioned, the probabilities for optical transitions a a
between such extended and confined electron and hole states A1 (& &), As=5(8+8), Ag=de, (1)
are continuous and strongly varying functions of the energies
of extended particles, unlike transitions between electron andheree, ,g, ,e, denote unit vectors parallel to the cubic axes,
hole states in GaA&Ba,Al)As heterostructure QW’s and a means the lattice constant of the zinc blende type crystal,
SL's, where no such energy dependence exists. In calculatirgnd d= 1/2Na the lattice constant of the SL in growth di-

A. Direct and reciprocal lattices
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should not be mixed with the spread of the doping profile,
which rather is given by the full widthz of the Gaussian at

half maximum. For the latter, one hasAz
=242 In20=2.35%. From computational reasons, rectan-

z gular doping profiles are sometimes used instead of Gaussian
ones. In order to compare with Gaussian profiles, the width
of the rectangle has to be put 2.3b%ather thano. In this

work, Gaussian profiles are chosen, because these are the
distributions which are expected to result fromdasource
under the effect of diffusion.

In order to align the Fermi level of thé-doping region
with the Fermi level in the bulk, a certain background con-
centration of hole traps is necessary. The amount of holes to

FIG. 1. First BZ of as-doping SL, as considered in this paper. b€ trapped depends on the widthof the space charge re-

gion where this alignment takes place. It decays inversely
rection. Infinite extension of the SL is assumed in all threeproportional tow. If w is allowed to become infinitely large,
directions of space, and periodic boundary conditions aréhe background charge density necessary for Fermi level
used in order to switch over to a finite periodicity region. Thealignment goes to zero, and its effect in theloping region
vectors spanning this region a@®A;, GjA,, andG,As, becomes negligible. We will use this approximation in what
with G| and G, being large integers. One periodicity region follows. The total charge density(x) is then given by the
containsGfG, SL unit cells andGfG,x N zinc blende unit ~ expression
cells of volumeQ,=a3%4. The periodicity volume thus

[~

amounts toGfG,x NQ=GfG,x dx a%2. p(x)=€[p(x) =Na(X)]. ®)
~ The primitive vectorsB,,B,,B; of the reciprocal SL are It gives rise to an additional electrostatic potent&i(x),
given by and an exchange-correlation potentiglc(x). The former is
determined by Poisson’s equation,
_277 _277 _ 47
Bi=—-(&+8), Bo=—-(&~8), Bs=| /& @ Ame?
AVe(x)=— p(X), (6)

€
The corresponding first BZ of the SL is shown in Fig. 1.

Due to the periodic boundary conditions, Ok|y/a|ues of the with e being the dielectric constant. The one-electron Hamil-

form tonianH of the SL becomes
Ky ks Ks H=Hg+Vc(X)+Vxc(X). (7)
G Gy G, The spinor-eigenstates of this Hamiltonian may be taken in

Bloch form (xs|vk), with k being a wave vector of the first
are allowed withk, ,k;, k3 being integers. SL-BZ, s the spin coordinate, and the band number. The
corresponding Schdinger equation reads
B. Schradinger equation

In one-electron approximation, the Hamiltonikig of an H(xs|vk) =B, (k) (xs| k), ®
electron of the undoped zinc blende type crystal is given byith E,(k) being the Bloch band energies. The hole distri-
the sum of the kinetic energy and the lattice periodic onebutionp(x) may be expressed in terms of the spinor compo-
electron potential, which here includes the spin orbit interachents &s|vk) as follows:
tion. The p-type §-doping of the SL gives rise to an addi-
tional space charge densityp(x) determined by the _ 2
distribution N, (x) of ionized acceptors and(x) of holes. P() z VkeEempty|(XS| ol ©
t‘l;:; Zﬁi‘;toerqfggnfhZrzoi)sii;n;?gﬁltglf(i)?oﬁgelgéﬁgIze%here the second sum is takgn over unoccupied Bloch states

. : . vk, i.e., states which lost their electrons to the acceptor at-
taken to be homogeneous perpendicular ¢for a discussion
. Y : ms.
of this approximation see Ref. land a sum of Gaussians
centered at the nominal doping layers nd parallel toz. ) _
Thus, one has C. Effective mass equation

In order to solve the Schdinger equatior(8), we adopt
the multiband effective-mass theory in the formulation by
Luttinger and Kohr?> Accordingly, we chose an orthonor-
malized set of Bloch functions of the fourfold degenerate
whereNg means the sheet doping concentration of acceptovalence band of the unperturbed zinc blende type crystal at
layers, ands? the variance of the Gaussian distribution. Thel', and denote them byxg|m), m=3%,3,—3,—3. With k
square root of the variance, i.er, represents the mean dis- being a vector of the first BZ of the zinc blende type crystal,
tance of a doping atom from the nominal doping plane. Itthe corresponding Luttinger-Kohn functionss{mk) read

1

NA(X)=Nq 2 e—(z—nd)2/202, (4)

n=—o \ 270
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ferent Bloch statesn may be neglected, while its diagonal

1 .
(xs|mk)= —e'kX(xs|m). (100  elements may be replaced by the matrix elements between
VO normalized plane waves,
They form an orthonormalized set of functions, which may 1
be used in order to represent the eigenfunctiors$uk) of (Z]K) = —=eiKz, (19)
the SL. Due to the periodicity of the SL, onky vectors of VG, d
the formk+ Ke, will contribute, wherek means a vector of One has
the first SL-BZ, andK=(2#/d)| a vector of the reciprocal
SL (I denotes an integer The Luttinggr-Kohn functions (MKK|Ve|m'kK") = 8y (K| Vc|K). (20)
(xs|mk+Ke,) for suchk vectors of the zinc blende bulk BZ . . )
will be abbreviated asx§|mkK). One has For the K|V¢|K') matrix, the Fourier transformed Poisson’s
equation(6) yields
1 . 2
(xs|mkK)= —g' (KT Ke&)X(xg|m). (1) . 4me 1 N ,
JQ (KIVelK) = == e[ (KINAIK") = (KpIK) .
The expansion of the SL eigenfunctionss|vk), with re- (22)
spect to this set, reads Due to the charge neutrality of the periodicity region, the
diagonal elements of the total charge density vanish, i.e., one
(xs|vk) =, (mKK|vk)(xs|mkK), 1y Mas
K
" (K[NA[K) = (K| p|K)=0. (22

and the Schidinger equation(8) takes the form The matrix (|N,|K’) with Na(z) from (4) may be readily

calculated. One gets
> (MKK|Hg+ Vet Vye|m kK’ ) (m'kK'| vk) \
" (KINAIK')=(5)A<K—K'>, (23
=E,(k)(mkK|vk). (13

— 721202

The matrix MkK|Hg/m'kK’) of the unperturbed Hamil- %

tonianH, is diagonal with respect t&,K’, and its diagonal A(K)= fﬁxdz cogKz) 2mo ! (24)
elements are given by the Luttinger-Kohn matrix of thg T

valence band of diamond or zinc blende type crystaBy  The coefficientA(K) may be expressed in terms of the error

arranging rows and columns in the sequed¢é,— 3,— 2  function of complex arguments. Here we will not use this

from left to right and, respectively, up to down, this matrix function, but take the integral it4) numerically.

becomes The matrix K|p|K’) is obtained as follows. First, we
rewrite the probability distributioh(xs| vk)|? of an electron
Q S R 0 by means of the expansid?2) for (xs|vk). We get
s T 0 R
(MmkK|HM'kK)=8kkr| s o 1 _g] |(xs|vk)[2= Q> %‘, > (MKK”|vk) (vk|m'kK™)
m/ KNKIN

*
0 R* -5 Q X (2]K"— K"™)(mO|xs)(xs|m’0). (25)
From this expression, we remove the spatial fluctuations on
the atomic length scale by averaging it with respect to a bulk
Q=—(y1+ 72) (K2+K2) + (27, v1)(k,+K)?, (15) unit cell and summing upon the spin coordinateThe av-
o erage valueS 4| (xs|vk)|?> becomes diagonal with respect to
T=—(y,— 72)(k§+ ki) — (29,4 y1)(k,+K)2,  (16) m,m’, and its diagonal elements are approximately given by

with

R=— 3[ ya(k;— k) — 2i y3kk,], 17) 2 (xs[rk)P= 0> X (mkK”|vk)(vk|mkK")
S m K

=,
S=i2\3ya(k—iky) (k,+K). (18) X (Z]K"—K"™). (26)

The part(14) of the total Hamiltonian matrix means the ef- By using this expression, the average hole dens{z) be-
fective kinetic energy operator of the envelope functioning a function ofz only becomes

equation. The matrices of the two potentidls(x) and

Vxc(X) have to be treated separately. p=va S >3 (MKK"| vk)(vk|mkK")

vkeempty m K"K

. . . . X (z|K"=K"™). 2
Since the Coulomb potentid(z) is a smooth function (@ ) @
on the atomic length scale, its matrix elements between difThis results in the plane-wave representation matrix,

Coulomb potential
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1 finally required. The numerical effort of the described proce-
(K|p|K")= o P(K=K"), (28)  dure is, however, quite high. We, thus, use an isotropic ap-
proximation, arguing as follows. First, we replace the aniso-
tropic hole masses by the isotropic experimental values,
P(K)= > > > (mkK"|vk)(vk|mkK"—K). which average over ak directions. In the case of GaAs,
vkeempy m K" these values are 0.4Tf and 0.0878y,? and their mean

, , i i (29 square deviations are 0.1#§ and 0.0298h, for heavy and
Inserting the two expressiori&3) and(27) in (21) yields light holes, respectively. The experimental values mentioned
4me? 1 above are not far from the values 0.8%yand 0.09@n, cal-
(K|V¢|K") = —— W[fA(K—K’) culated without warping, i.e., using,= y; (for GaAs, one
€ | | has y,=2.1,y3=2.9 (Ref. 42). We use these numbers as
1 justification for the neglect of warping in the exchange-
- EP(K—K')}- (300 correlation potential of holes. This approximation does not
mean, of course, that warping is neglected throughout in our
Exchange-correlation potential calculations. It is still present in the effective kinetic energy

Parametrized expressions for the exchange-correlation pgn atrix (14), where it has a much larger effect

. Sl ) ; .
tential of spatially inhomogeneous electron gases have been W|tht9ut| We;]rplng, thg ?ﬁﬁtcﬁv? masse%‘,z anbd Tﬁ’z of,
proposed by various authors in terms of local densifiesa respectively, heavy and lig oles are given Dy the expres-
review see Ref. 40 These expressions cannot, however, be>'0NS
applied to the hole gas of tHé; valence band edge of zinc

blende type crystals without modifications, as has been real- mg/zz;mm (32)
ized in Refs. 33 and 41. We follow the spirit of Ref. 41 in Y1— 272

order to derive an explicit expression for the Luttinger-Kohn

representation matrix nfk|Vyc|m’k) of the exchange- . 1 33
correlation potentiaV/yc of the hole gas under consideration. May2= 2y,+ v, Mo (33

The derivation will be performed in three steps. .
In a first step, the exchange-correlation potential matrix! '€ densitiéspg;, and py;, of the two hole gases follow,

will be written down with respect to the eigenstatej;;;k) of  respectively, from the equations

the Luttinger-Kohn Hamiltonian for heavyu(=*=35) and 1 [2m*, )32 3
light (x==*13) holes, although it is finally required with plmlz_z( \Zm\ E¥2 |m=2,2, (34)
respect to the Luttinger-Kohn bagisk). This step is nec- 3w\ # 2°2

essary, because we want to transfer the parametrized expregnere E. means the Fermi level of holes measured with

sions for the exchange-correlation potential of electrons t‘?espect to the valence band edge. From these equaBans

the exchange-correlation potential of holes. In deriving themay be eliminated by means of the total hole density
matrix (e, k|Vxc|e, k), we apply two approximations. The

first one concerns the off-diagonal elements. These are small, P=P3pt Pis- (35
because the hole densitg(z) and, therefore, also the
exchange-correlation potential, are smooth functions ofi Using the above approximations and definitions, we write

the atomic length scale. In effective mass theory, off-down explicit expressions for the exchange-correlation po-
diagonal elements of smooth potentials are neglected. Thigntials Vycp) and Ve of the heavy and light hole
second approximation concerns the diagonal elementgases. The parametrized exchange-correlation potengial
(e.k|Vxcle, k). These represent the exchange-correlatiorfor electrons will be taken in the form of Hedin and
potentials of holes. Unlike the electrons, the effective massesundqvist®® For a homogeneous electron gas of effective
of holes depend on the direction kf if warping of the's  massm* and densityn embedded in a material of static
valence band energy surfaces is taken into account, as whelectric constang, their expression reads

will do. Replacing the isotropic free electron masgin the

exchange-correlation potential expression for electrons by,, _ e? 2\ e? i 0.0368 | 1+2_1
the anisotropic masses of heavy and light holes, one obtains” ¢~ 2eag \mars) 2eag\ma) re)’
exchange-correlation potentiayc(s/) and Ve for (36
holes that depend on the directionkof The thus determined

with aj=e(mg/m*)ag being the effective Bohr
radius, «=(4/97)Y® a numerical constant, and
(e,k|Vxcle, k) rot=[(4m/3)a%°n]¥? the screening radius. According to
Vv 0 0 o Ref. 43, the first term in expressid@6), which scales with
XC(32) ro*, arises from exchange, and the second term scaling with
0 Vxcaz 0 0 In(1+21k) from Coulomb correlation. In adapting the

matrix,

- 0 0 Ve 0 ' (31) exchange-correlation potenti@B6) to the two-component
0 0 0 Vv hole gas under consideration, this interpretation becomes es-
XC(3/2) sential. While statistical correlation giving rise to the ex-

has to be transformed back to the Luttinger-Kohn basishange term in equatio(86) occurs either between heavy
|mk), in which the hole exchange-correlation potential isholes or between light holes, but not between heawylight
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_holes, Coulomb correlation_giving ri_se to the correlat_ion term Qxc Sxc¢  Ryc 0
in (36) acts also between different kinds of holes. This means x T 0 R
that in writing down expressiof86) for a particular kind of (k| V| m'k) = Sxe Txe Xc
holes, in the first term of expressi@86), the electron den- xc ¢ O Tyce —Sxcl’
sity has to be replaced by the partial density of that kind of 0 s _st. 0
holes, while in the second term, the total hole density has to XC Ske xC (42)
be inserted. In this way, one obtains
with
, 1 PTG k2
v ___® ( 2 ) Qxc=7[Vxc@na+3Vxcanl| =z |+ Vxc@n| iz )
XC(372) 2€a§(3/2) 71-ars(3/2) (43)
2
e 2 ) r( ) 2.2 2
———5—|—0.0368In 1+ . (37 1 KK k
263&3/3(“ @ Rsan) Txc=7[3Vxcian T Vxcaa] % +Vxcar k_g :
(44)
2 i 2
e 2 ) \/§ kx II(y
\Y; =— Rxc=——7[Vxciao—Vxcapl| —/—| » (49
XC(1/2) 2 ea’é(l,z) ( Tar g 4 k
2
e 2 J3 (k—ik,)k
- | —|0. + VY . X y/ Rz
26a§(1,2)<77a)0 0368 Ir(l s(llz))' 38 Sxc=1 5 [Vxean = Vxean ( k? - (49
If the exchange-correlation potentials of heavy and light
wh holes were identical, then the matr#2) would take diago-
ere . ; ;
nal form with all diagonal elements being equal to the as-
sumed common valug-z O xc(3r2) gnd ch<142)- In reality,
Vxcarz) @and V(1) differ appreciably, mainly due to the
Mo different densities of the heavy and light hole gases. From
a§|m| e( < |ag, (39 this point of view, no justification exists to replace the
[m| exchange-correlation matrigd2) by its diagonal elements
only.
The exchange-correlation potential matt#2) applies to
w12 13 a spatially homogeneouBg valence band hole gas. As is
m A i iti i i
pol_ Im| ST %3 (40) commonly done, inhomogeneities will be taken into account
Sl (A 32 mE )18 3 BmP| by means of the local density approximation, i.e., by using
expression$37) and (38) for an inhomogeneous hole gas as
well. This will be done in the third step. Owing to tie
dependence of the external potential, the exchange-
. AT, 13 correlation potential matrix42) becomes alsa dependent.
Rym=| 3 a8mP| - (41)  Its [mkK) representation becomes nondiagonal with respect
to K. This means thatnik|Vyc|/m’k) has to be replaced by
(MKK|Vyc|m'kK"), as well asQxc, Txc, Rxc, Sxc by,
T respectively, K|QxclK'), (K[TxclK"), (K|Ryc|K),
with [m[= 3,3 (K|Sxc|K"). The latter matrices have to be calculated nu-

With the derivation of expression&37) and (38), the

. \ : . merically from the z-dependent
exchange-correlation potential matri8l) in the basis of

expressions @xc(2),

Txc(2), Rxc(2), Sxc(z), which follow from equation$43)

hole eigenstates is_ completely_ known. Ina second step, it has (46) if there thez-dependent expressioVsc(sz(2) and
to be transformed into the basis of Luttinger-Kohn functions.y¢1,)(z) are inserted. The latter are obtained from expres-
How this transformation can be performed is shown in Ap-sions(37), (38) by using thez-dependent hole concentration

pendix A. It results in

according to equation@7), (34), and(35). One gets

(K|QxclK")  (K|Sxc|K")  (K|Rxcl|K") 0
(K|Sxc|K)* (K| Tyxc|K") 0 (K|Ryc|K")
kK|V "kK")= , 4
(MKKIVeMKKOD =1 Ryl 0 (KITxelK) = (K[SyclK) “n
0 (KIRxc|K")* = (K|Sxc|K)*  (K[Qxc|K).
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with ~200
1 3A0x10A12 cm? E 180 _ 3.0x1(l;::1 cm?
500 ] 500
(K|QXC|K,):Z[(K|VXC(3/2)|K,)+3(K|VXC(1/2)|KI)]
2,12 2
+k Kk <
X Yy ’ z
XN + (K|Vxean|K )(F) (48) E
>
1 5
(K|Txc|K/):2[3(K|Vx0(3/2)|K’)+(K|Vx0(1/2>|K’)] &
K2+ K2 (K2
K2 + (K[VxcamK") 2 (49 >
A 20 0 0 10 20 . 20 w0 5 10 250
! ! ! A A
(KIRxelK") == - [(K[Vxo(@m K") = (K| Vg | K)] 20 2@
k. —ik.\2 FIG. 2. Hole potentials fop-type §-doping SL's of period
( X y) , (50) d=500 A; acceptor sheet concentrations B0*?> cm™2 (left), and
k 3x 10" cm™?; ¢=10 A. Dashed curves show the Coulomb poten-

tial, full curves give the total potential, including exchange correla-

b \/§ , , tion. The energy zero has been fixed at the Coulomb barrier poten-
(K|SxclK") =i 7[(K|VXC(3/2)|K )= (K|Vxc(r)|K")] tial for holes.

((kx_ iky)kz)

from the calculations for heterostructure quantum Wlls
e )

shows clearly up in the hole band structures calculated with
41 plane waves or more.

With the determination of the exchange-correlation poten-

Fial matrix (47) of the_ inhomogeneous.hole gas, the Igst step IIl. POTENTIALS AND BAND STRUCTURES

in setting up the Luttmger—Kphn effective mass equg’(m) OF p-TYPE &-DOPING QW'S AND SL'S

in plane-wave representation has been accomplished. The

matrices of the three operators in this equation being the We calculate hole potentials and band structures for
kinetic energy operatdf,, the Coulomb potentia¥, and  p-type 6-doping QW’s and SL's with different acceptor sheet
the exchange-correlation potentid}, have different struc-  concentrations and periods, covering the ranges of experi-
tures. That oH, is nondiagonal with respect to the angular mental interest. Accordingly, we adopt three different doping
momentum quantum numbers, but diagonal with respect concentrations, being 3810 cm?, 8x 10" cm™?, and

to the SL wave vector&. For the matrix ofVc it holds ~ 3x10*cm™2. For each concentration, the SL period is
exactly the opposite, it is diagonal with respectnip but  taken to be 500 A in order to cover quasi-isolated QW’s, and
nondiagonal with respect te, and for the matrix oVyc, 200 A in order to consider typical SLs. Altering the doping
one has nondiagonal elements with respechtandK. The  spreadAz will cause changes of the results. These will be
eigenvalues and eigenvectors of the total matrix have to b#vestigated separately at the end of this section. Hezes
calculated in a self-consistent way by using the eigenvectoset 23.55 A in all cases correspondingate- 10 A.
dependence of the Coulomb and exchange-correlation poten-

(51)

tials specified before. The energy zero point is fixed at the A. Potentials
barrier energy of the Coulomb potential throughout the cal- ) .
culations. In Fig. 2, potentials are shown for the lowest and the

highest of the three doping concentrations mentioned above.
Only potentials for the 500 A SL's are depicted, because
D. Convergency test those for the 200 A SLs differ only slightly. The dashed lines
In order to check the convergency of the plane-wave exin Fig. 2 mean the Coulomb potential without exchange-
pansion, we treat an isolated undoped square well. Due to thmrrelation interaction, and the solid lines the total potential
abrupt changes of the potential in this case, convergency iscluding this interaction. Two curves, at least, are necessary,
more critical than in theS-doping case with its continuously in order to display the total potential because the exchange-
varying potential. Thus, the square well test suffices. For theorrelation part of it is represented by a matrix
Luttinger parameters of GaAs, we take the following (mk|Vxc|m’k). For holes with quasi-wave-vectoksparal-
values*? y,=6.85, y,=2.1, y3=2.9. The hole subband lel to the z axis, the off-diagonal elements of this matrix
structure of the square well is calculated with different num-disappear, and the diagonal elements become the exchange-
bers of plane waves. While pronounced changes are olworrelation potentials of heavy and light holes. These are the
served between 21 and 41 plane waves, the results for 4dxchange-correlation parts entering the total potential curves
plane waves do not alter considerably if one proceeds to 6ih Fig. 2. Curves marked with hh are the total potentials seen
and 101. The anticrossing behavior of the subbands knowhy heavy holes moving iz direction, and curves marked
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6004 --~ - Unscreened | i E o
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T Y T T r T T T FIG. 4. Band structureésolid lineg and Fermi levelddashed
-200 -100 0 100 200 lines) for p-type 8-doping SL's of periodsl=500 A (left part and
z(A) d=200 A (right par). Acceptor sheet concentration equal to

3% 10% cm 2, ¢=10 A. Horizontal scale adjusted to tfieZ dis-

tancew/d. Energy zero as in Fig. 2.
FIG. 3. Partial and total potentials for holes in mtype

5-doping SL of period 500 A and acceptor sheet concentration(()«_doping SUs at the same sheet doping concentradidn
8% 10" cm 2. The unscreened potential is due to the negatively '

- X . 1V, we will di this difference in greater detalil.
charged acceptor sheet, embedded in a spatially homogeneous ho gc » We discuss this difference in greater deta

gas in order to neutralize the total charge. The Hartree potential
arises from the self-consistently calculated hole distribution embed- B. Band structures
ded in a spatially homogeneous negative charge distribution, again In Figs. 4—6, the band structures of the SL's are depicted.

for neutralizing the total charge. The screened potential means thlgach figure corresponds to a certain sheet doping concentra-

total Coulomb potential seen by a hole. It represents the sum of th . .
two former potentials. Shown are also the total potentials for heav;ff %n. In Zat(;]h le%lgeAtgﬁ SO?hA SthtShSh?jwr.] don Sﬂ;e left har;g
and light holes including exchange correlation. Slde, an e on the rig and side. shown are the

miniband dispersions perpendicular to the SL layers between
the center of the first SL-BZ df and its boundary af, as

with |Ih are the potentials seen by |Ight holes moving in thiSWe” as the subband dispersion a|ong theand A’ lines
direction. The heavy hole potentials are always deeper thaparallel to the SL layergsee Fig. 1L The scales for wave
the light hole potentials, first, because the exchangevectors perpendicular and parallel are the same in each fig-
correlation potential is attracting and monotonously increasure. They are determined by thE-Z distance, which

ing with density and, second, because the densities of heaymounts tor/d. For the 500 A SL of doping concentration
holes are always larger than those of light holes. Altogether,

exchange-correlation effects are relatively large in the

p-type §-doping SL's under consideration. Similar conclu- T 80 1
500

8x10'2cm?

200A

sions have been drawn in Refs. 33,45. In our case, the rela-
tive contribution of exchange correlation to the total heavy
hole potential ranges between 30% for higher doping con-
centrations and about 40% for lower. Such large relative con-
tributions will not arise, of course, if the exchange-
correlation potential is compared with the Hartree potential
of holes only, without the unscreened Coulomb potential of
the negatively charged acceptor shesgte Fig. 3 The latter
forms a deep well, which is almost completely screened out
by the Hartree potential of holes. With respect to the Hartree
potential, exchange correlation contributes only about 5% for
heavy holes and 3% for light holes. The total well depths . ]
increase with rising doping concentrations. The depths of the , L 40 :
heavy hole wells of the 500 A SL's are, respectively, A Zr A A
48 meV, 85 meV, and 148 meV for the three doping con-

centrations mentioned above. For the 200 A SLs, they take FiG, 5. Band structuretsolid lines and Fermi levelgdashed
somewhat smaller values, due to the lower hole concentrames) for a p-type 5-doping SL of periodsi="500 A (left parh and
tions and consequently, smaller exchange-correlation pote=200 A (right par). Acceptor sheet concentration equal to
tials at the well centers. Generally, the hole wells consideredx 10> cm 2, =10 A. Horizontal scale adjusted to tiieZ dis-
here are less deep than the electron wells nitype tancew/d. Energy zero as in Fig. 2.
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FIG. 6. Band structuregsolid lines and Fermi levelddashed
lines) for a p-type 5-doping SL of periodd=500 A (left pary and

d=200 A (right par). Acceptor sheet concentration equal to

53
dispersionless, and occurs at the same energy as the hhl
miniband of the 500 A SL. Again the hh1 subband is hosting
almost all holes.

Increasing the sheet doping concentration deepens the
wells and shifts the minibands up with respect to the well
bottom. First, we consider the moderate doping case of
8% 10" cm 2 (Fig. 5). For both the 500 A and the 200 A
SL, two hh minibands and two lh minibands occur below the
barrier. The dispersionless hh1l minibands are 55 meV above
the barrier for both SL's. Again, the dispersion of the corre-
sponding subbands with respect kp exhibits strong anti-
crossing behavior. The Fermi level lies in the second, i.e., the
Ih1 subband.

At the highest doping concentration x30% cm™
shown in Fig. 6, the minibands follow in the sequence hhl,
Ih1, hh2, hh3, Ih2 for both the 500 and 200 A SL’s. The first
three are almost dispersionless and occur at approximately
the same energy in the two SL's being, respectively, 110
meV, 60 meV, and 40 meV. Deviations start from the hh2

2

3% 10 cm 2, =10 A. Horizontal scale adjusted to tffeZ dis-

miniband, which is dispersionless in the wider SL and shows
tancew/d. Energy zero as in Fig. 2.

dispersion in the narrower one. The nonparabolicity of the
subband dispersion is clearly dominated by an anticrossing
3x10%cm 2 (Fig. 4), a dispersionless hh1 miniband at 33 behavior. The Fermi level has moved up to the third subband
meV below the common heavy and light hole barrier is fol-in both SL’s.
lowed by a dispersionless Ih1 miniband at 14 meV. The hh2 The doping spreadz=2.355r has been fixed so far at
and hh3 minibands are still below the barrier, while all23.55 A. In experimentAz may considerably differ from
higher minibands are above. The latter show considerablthis value. Thus, we have calculated energy levels and Fermi
miniband dispersion. The subbands arising from hh and Ienergies as a function afz for the three 500 A SLs con-
minibands for nonzero wave vector componekitgarallel  sidered above. The results are shown in Fig. 7. For a given
to the layers show strong anticrossing behavior, similar taloping concentration, the two hole wells become shallower
heterostructure QW'¢see, e.g., Ref. 44 Almost all holes and the Fermi level moves up A&z increases, as is expected.
are hosted by the hh1 subband, with only little occupation ofThe shifts of the hole levels with increasidg are the net
the Ih1l subband. result of two competing effects being the lowering of the
For the 200 A SL of the same doping concentrationwell bottom, which moves the levels down, and the decrease
3x 10 cm 2 (see Fig. 4, strong miniband dispersion oc- of the confinement, which shifts the levels up. As can be seen
curs already from the lhl band on. The hhl miniband isfrom Fig. 7, the first effect dominates for the lowest heavy

60

220

1- 3x10%cem? | ] 8x10'2cm? 3x10" cm?
564 100 200 -
4 . Well Bottoms ] Well Bottoms J.  Well Bottoms
so0d ] 180 3 /
160 3 “hh
3 h, FIG. 7. Well bottoms(dotted
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lines), hole levels (solid lines,
and Fermi energie&lashed lines
for p-type s-doping 500 A SL’s,
plotted against the doping spread
Az. Energy zero, as in Fig. 2. The
three different doping concentra-
tions 3x10%2 cm 2, 8x10'?
cm™2, and 3x108cm™2 are
shown in different parts of the fig-
ure.
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and light hole levels hhl and |hl, and the second effect for TABLE |. Experimental PL peak position®,; and P ;.
the excited heavy hole level hh2. Due to this, the ordering oSamples with no data for the doping spread are indicated by
the hh2 level above the Ih1 level at smAl is reversed at “n.d.”

large Az. The Fermi level for the two SL's with lower dop-

ing concentrations which, at smallz, lies above the hh1 Na Az Phny Piny Ref.
and Ih1 subband edges but below the hh2 edge, enters th&0"~ cm ) A) (eV) (eV)
hh2 subband at largaz. Altogether, the above results indi- g nd. 1.460 1496 26
cate that the electronic structures ptype 5-doping QW's 4 4 nd. 1485 1493 27
are very sensitive to variations of the doping profile. Similar, ¢ nd 1.460 1.480 27
results have been found in previous calculatfdri (for a 36 a 1430 1460 o7
i ithn-type 5-doping QW's see Sec. IV ' n.d. ' )
comparison wit 0.3 65 1.480 1.494 29
0.8 72 1.460 1.480 29
IV. DISCUSSION 3.0 125 1.450 1.466 29

A. Comparison with previous calculations

|SO(|)611';ed QZW’S (;Nith Ir|n<(3jderate doping cog\cer?tration Experimental values for the positiof§,,; andP ,; of PL
(8x10™ cm ) and small doping spread~20 A) have  heaks arising from transitions to hh1 and Ih1 states are sum-

also been treated in Refs. 29,33, using methods and approxfiarized in Table | for various-doping samples. In all cases,
mations(see Sec.)ldiffering from t_he pres_ent ones. The well j5q|ated s-doping layers have been measured. For a given
depth of 135 meV from Ref. 33 is considerably larger tha”doping concentration, the spacifg,,-Pj,, between the two

our value of 85 meV, while the depth of 90 meV obtained in|gyest pL. peaks may be compared with the calculated sub-
Ref. 29 is close to our result. However, comparing the valugy;q |evel spacing&,,-Eyn; at the subband bottorky=0.
obtained here with that from Ref. 29, one has to keep ingych 5 comparison is shown in Table II. The experimental
mind that exchange correlation has not been taken into aGpacings from Ref. 29 compare well with the theoretical
count in Ref. 29. If this would have been done, the wellg,,cings calculated for the experimental doping spreads. For
depth in Ref. 29 would also have been larger than ours. Gefpe samples measured in Refs. 26,27 no doping spreads are
erally, the approximations in Refs. 29,33 seem to result in agown, so that no definite statements on agreement or dis-
underestimation of the subband densities of states at |0‘é{greement between theory and experiment can be made. One
energies. As a consequence of this, hole states with highel, however, fit theoretical and experimental spacings to

energies are filled. These are less effective in screening oWtimate the doping spredtz. The results are given in pa-
the negative acceptor sheet charge distribution, thus the paniheses in Table Il

tential well becomes deeper. In fact, the Fermi level lies in | the experimental spectf&?® the PL peaks shift to
the second subband in Ref. 29, as in our calculations but by, o, energies if the sheet dop;ing concentrathep is in-

10 meV higher, while in Ref. 33 it has even moved up intO¢eased. This behavior is reproduced by the calculations: Al-
the third subband. though hole levels move down with respect to the well bot-
tom if N, increases, the bottom itself moves up resulting in a

B. Comparison with experimental PL spectra net up shift of the hole levels, and a down shift of the tran-

Experimental data on hole states ardoping wells may sition energy. The experimental down shitkd,,, of the

be obtained from PL spectra. Such spectra have been mea-
sured on isolated-doping QW's in Refs. 26—30. The spec-  TABLEIl. Cqmparison of calculated energy Ievgl spacings and
tra exhibit peaks, which may be attributed to radiative tran-doping shifts with experimental PL data. For doping spreads
sitions between extended electron states and hole Statégown in parentheses, no experimental values were available; the
confined to thes-doping wells. Two peaks are resolved in 91Vé" values were obtained by fitting level spacifigg-Eyn, and
most of the spectra, corresponding to transitions into th L peak spacingByr-Pyy (Which then are identical by definition
lowest heavy hole state hhl and the lowest light hole statef no exp erlmer_ltal spread vaIL_Jes existed, the level sifig,, with
. Ihcreasing doping concentration have been calculated by means of

Ihl. In comparing calculated transition energies with EXPeIlihe fitted valuesz. APy, denotes the experimental shift of the

mental peak positions, one has to be aware that no One't?-" peak with doping. All doping shifts are referred to the lowest

one correspond_ence can be expected, because these pOSitieﬁéentraﬂon shown for the corresponding reference.
are also determined by the energy dependence of the overlap

integral between electron and hole envelope functfns. N AZ  EwrEm PoncPri AEm APy Ref.
Nevertheless, a rough comparison between theoretical |€‘V?iol3 cm?) (A (mev) (meV) (meV) (meV)
separations or level doping shifts and experimental peak

separations or peak doping shifts should be possible. In ordéx3 5 36 36 0 0 26

to be able to derive doping shifts of transition energies fron0.4 (110 8 8 0 0 27

hole level shifts, the hole levels have to be referred to thel.8 (110 20 20 -22 25 27
bottom of the conduction band. This is automatically done in3.6 (90) 30 30 -50 -55 27
our calculations: as the energy zero point has been fixed &3 65 15 14 0 0 29
the barrier of the Coulomb potential, the conduction band.g 72 20 20 -16 20 29
bottom occurs always at the gap enei§ly on our energy 3.0 125 24 20 25 30 29

scale.
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FIG. 8. Left hand part: Potential profiles and miniband levels
(solid lineg of holes for ap-type §-doping SL of periodd=500 A.

The Coulomb potentialdashed lingand Fermi leve(dotted ling The Coulomb potentialdashed lingand Fermi leveldotted ling

are azlso _séhown. Acceptor sheet concentration equal Qe ais9 shown. Acceptor sheet concentration equal to
3x102 cm?, o=10 A. Right hand part: The same quantities asgy 112 o2, =10 A. Right hand part: The same quantities as
on the left hand side, but for electrons of mitype 5-doping SL of ) 46 eft hand side, but for electrons of mstype 5-doping SL of

the same doping concentration and period. the same doping concentration and period.

FIG. 9. Left hand part: Potential profiles and miniband levels
(solid lineg of holes for ap-type §-doping SL of periodd=500 A.

P,n1 peak are shown in Table II, together with the theoreticaltively than the weaker localized light holes and electrGhs
shifts AE,,,; calculated withAz values from the same table. the localization at the sheet was perfect, the screening would
All shifts are referred to the lowest doping concentrationP® completg .

reported in the respective reference. The comparison be- Another difference betweem andp-type 5-doping struc-
tween AE,; and AP, in Table Il shows that reasonable tures, concerning the dependence of their electronic struc-
agreement between theory and experiment can be stated alg’ée.s on the doping spredtz, may be understood by means
with respect to the doping shifts of PL peaks. The somewh S|m|Ia_r argu.ments. As has beer_1 .demonstrated in _Sec. i,
larger experimental shifts could be due to the doping induce e ’barrler heights .e.md Ievellpqsmons pﬂype é—doplng
band gap shrinkage, which has not been taken into account | W'’s are very sensitive to variations of their doping profiles.
our calculations.

400 4 r 50
p-type s-well n-type s-well
C. Comparison betweenp- and n-type &-doping wells 350'; b o
Deeper insight into the hole structure ob-type %007 %
o-doping wells can be obtained by a comparison with __ 2507 100
n-type 6-doping wells of the same or slightly lower sheet E 2004 E 150

doping concentrations and periods. We will concentrate onS ] :
the 500 A SL. In the right hand parts of Figs. 8—10, the & '%°7 200
electron potentials as well as the miniband and Fermi levels 2 100

f—-25o
are shown for the three sheet doping concentrations'” .

3x10% cm 2, 8x10% cm 2, 1.5x10" cm 2, and ac 50 -300
value of 10 A. As before, solid curves are used for the total 0] =2 % 350
potentials including exchange correlation, and dashed curves ] 1.5x 10" em 1.5x 10" om

for the potentials without exchange correlation. One notices " g 70 & 1o 20 20 400 6 10 20
that the wells for electrons are considerably wider and deeper z(A) z(A)

than those for holes shown in the left hand parts of Figs.

8-10. This may be easily understood in terms of localization £ 10, Left hand part: Potential profiles and miniband levels
and screening. Due to th§|r larger eﬁectlve-mass, heavy hO'(%olid lines of holes for ap-type 6-doping SL of perioci=500 A.
states are stronger localized at thesheet than light holes The Coulomb potentialdashed lingand Fermi leveldotted ling

and electrons. From the same reason, heavy holes form thge also shown. Acceptor sheet concentration equal to
ground state of the-type 5-doping well, which implies that  1.5x10¥cm™2, ¢=10 A. Right hand part: The same quantities as
most of the holes are heavy. Because of their stronger locabn the left hand side, but for electrons of mtype 5-doping SL of
ization, they screen the sheet charge distribution more effethe same doping concentration and period.
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This contrasts witin-type §-doping QW’s, where this sensi- than for n-type QW’s at the same sheet doping concentra-
tivity has been found to be much le&ee, e.g., Ref. 20The  tion. This could explain why experimentally-type wells
above discussion provides a simple explanation also for thiead to be placed between barriers in order to see lumines-
difference: As the heavy holes dominatepistype 5-doping  cence, whilep-type wells needed ndf

QW'’s, and the heavy holes are stronger localized in the vi-

cinity of the doping sheet than the electrons mftype ACKNOWLEDGMENTS
6-doping QW's, variations of the doping profile are felt )
much Stronger by the ho'es than by the electrons_ The authorS WOUId ||ke to thank CNPq, CAPES, FINEP,

Differences between electron and hafedoping struc- and FAPESRBrazilian founding agenciggor partial finan-
tures exist also with respect to the role of exchange€ial support.
correlation effects. From Figs. 8-10 one can see that
exchange-correlation effects are stronger in the case of heavy APPENDIX A
holes than in that of electrorfand light holes Two reasons
are responsible for this. First, the higher density of the heav
hole gas, gives rise to a larger absolute value of th%(j
exchange-correlation potential. For heavy holes it amounts;
respectively, to 23 meV, 32 meV, and 40 meV for the three
concentrations, as opposed to 5 meV, 9 meV, and 12 meV for
electrons. The second reason is more striking. It concerns the le k)= > U, (K)|mk). (A1)
relative importance of the exchange-correlation potential, m
with respect to the Coulomb potential of fixed and mobile| order to obtain the matrix of the exchange-correlation op-

charges. The latter potentigshown by dashed curves in graiory, . in the Luttinger-Kohn basifmk) from that in the

Figs. 8—-10 is considerably smaller for holes thf':m for elec- pasis of eigenvectors, the unitary transformatida) has to
trons, because of the more complete screening by heawys inverted. This results in

holes. In this way, the relative contributions of exchange cor-

relation to the total potentials in Figs. 8—10 amount to 44%,

30%, and 30% in the case of heavy holes, and only 6%, 4%,

and 3% in the case of electrons. (MK|Vyxclm'k)=2> Unu(K) U7, (K) (€K Vxcle, k).
Finally, the different depths of potential wells fpr- and K (A2)

n-type &-doping structures should result in different intensi-

ties of luminescence light arising from tidedoping regions. By using the explicit expression faf,, ,(k), the transforma-

Since the larger depths and widthsretype wells, as com- tion (A2) may be readily carried out. This involves quite

pared top-type wells, make tunneling through electron wells lengthy calculations. One may avoid them by exploiting the

more difficult than tunneling through hole wells, the overlapfact that, owing to the neglect of warping, the eigenvalues of

of electron and hole wave functions, and thus the luminesthe Luttinger-Kohn Hamiltonian are independent of the di-

cence intensities, should be much strongergddaype QW’'s  rection ofk. One has

The hole eigenstatefe, k) follow from the Luttinger-
ohn basis|mk) by means of an unitary transformation
(k). One has

(2y2—v1) 0 0 0
0 —(2y2+y1) 0 0
k|Hole, k)= k2, A
(ep. | O|ep, ) 0 0 _(272+7’1) 0 ( 3)
0 0 0 (2¥,— 1)

According to the definition of the unitary transformation 1
U(k), the matrix (A3) turns over into the matrix Yz*m[qua/z)—chu/z)] (A5)
(mk|Ho|m’k) if the inverse transformatiod * (k) is applied
to it. This observation allows one to write down the matrix
into which the exchange-correlation potential matt81)  are made. Since the identity of the two matrices will hold
transforms by means dﬂf(k)- One solely has to realize |50 after their transformation witt) * (k), the exchange-
that _the Hamiltonian matrixA3) turns over into the matrix correlation energy matrixntk|Vyc|m'k) follows from the
(31) if the replacements Hamiltonian matrix (k|Ho/m’k) by replacingy,,y, ac-
cording to equation§A4) and(A5). In this way, one obtains

1 expression(42) in the main text for (k|Vyc|/m’'k) with

Y17 T o2 [Vxce2) T Ve ] (Ad)  Qxc,Txc:Txc:Sxc, from (43) to (46).
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