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Calculated Schwoebel barriers on Si111) steps using an empirical potential
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Motivated by the recent investigations on instabilities caused by Schwoebel barriers during growth and their
effects on growth or sublimation by step flows, we have investigated, using the Stillinger-Weber potential, how
this step edge barrier arises for the two high symmetry steps>oh reconstructed $i11). Relative to a
barrier of 0.97+ 0.07 eV on the surface, we find additiorf&chwoebeél barriers of 0.61+ 0.07 eV and 0.16
+ 0.07 eV for adatom migration over th211] and the[ 1 12] steps, respectively. The adatom potential energy
is found to be strongly correlated with that derived from the local geometry of atoms on the adatom-free
surface or step edges. This correlation preserves a strict correspondence between the barrier determining
features in the spatial variation of the adatom potential energy and the same derived from the local geometry
for the S{111) surface and th§211] step. It is therefore argued that the Schwoebel barrier of2h#] step
is robust, i.e., a feature that would survive in more satisfacabrjnitio or tight binding calculations. Using a
diffusion equation for the adatom concentration, the relevance of the barrier to electromigration of steps has
been explored. Data from such experiments ofl™d) has been used to place an upper bound on the
Schwoebel barrier and a lower bound on the electromigration force.

[. INTRODUCTION pirical Stillinger-Weber potentidf® The importance of the
Schwoebel barrier in the context of the electromigration ex-
The Schwoebel barrier was originally introduced in theperiments has also been explored by modeling the barrier as
context of step motichas the additional barrier for adatom affecting the boundary conditions to the diffusion equation
diffusion over a step edge from the upper to lower terraces. lfor adatom concentration used to interpret these
was argued that such a barrier results in an anisotropy igxperiments?
adatom diffusion into the step edge — the diffusion from the

lower terrace being greater. This anisotropy was found to II. EMPIRICAL POTENTIAL CALCULATIONS
drive an arbitrary distribution of step spacings towards a uni- . o
form distribution during growth of a vicinal surfadeLater, The use of the Stillinger-Weber potential in this study has

it was pointed out by Villaif that this growth by step flow is been motivated by its successful application in previous
stable only on a sufficiently vicinal surface with possible Studies of bulk and liquid silicoft; the S{100 surface and
instabilities setting in during the growth of a figingulay  Steps on this surfacé Barriers on the $100) surface and on
surface. The dynamical morphology of a singular surfacesingle and double height steps on this surface have also been
growing under the influence of a schwoebel barrier is a subc@lculated using this potentidi=*® Although this potential
ject of great current activity;” While the eventual fate of fails to reproduce the correct energetics of thel5l) sur-
growth on a flat surface in the presence of such extra steface configurations with adatom3,it has been used here
edge barriers is still being discuss&d,it is now well ac- ~ Since features that follow purely from the changes in the
cepted that Schwoebel barriers lead to coarsening in thadatom coordination number are expected to be robust, i.e.,
evolving surface morphology under nonequilibrium growththese features survive even if the details of the empirical
conditions, producing mounds, pyramids, and facetlike angupotential used change. Such features are expected to survive
lar structures on the growing surface. Recent experimentd more satisfactoryab initio or tight binding calculations.
studies of nonequilibrium growth on the(811) surface have The calculation here is followed by an attempt to identify
produced somewhat contradict®ry° results, and the spe- Such robust features. . _
cific role of Schwoebel barriers for nonequilibrium(Bi1) To determine the diffusion barriers the adatom potential
growth is unclear at the present time. energy has been mapped as a function of thg)(position

The current study is primarily motivated by observationsof the adatonin the (111) plang for the S{111 surface
of another instability: As was pointed out by Schwoebel andFig. 1(a)], the [211] step[Fig. 1(d)] and the[1 12] step
Shipsey* an anisotropy favoring diffusion into the step edge[Fig. 1(g)]. The threefold and reflection symmetry of the
from the upper terrac¢possibly due to larger barriers for Si(111) as shown in Fig. 2 implies that steps running along
diffusion from the lower terrageresults, in a step pairing directions with equab are identical. It has been shown in a
instability, during the growth of a vicinal surface. In recent previous stud$f using the Stillinger-Weber potential that an
experiments similar direct-current induced reversible stepalternative configuration of step-edge atoms with some of the
bunching instabilities have been observed during sublimationpper terrace atoms rebonding to_atoms in the lower terrace
of the high temperaturexX1 phase of Sil11).11?Here, we  gives a lower step energy for tHd 12] and[101] steps.
report on a calculation of the Schwoebel barrier for the twoHowever, such a configuration has not been considered here
high symmetry vicinal steps onXl1 Si(111), using the em- since it has also been shown that it gives rise to step-step
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Si(1l1ll) Surface
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__FIG. 1. The S(111) surface(a) (the upper monolayer is shown in gray and the lower monolayer in hléok[ 211] step(d), and the

[1 12] step(g) (for the step configurations the upper bilayer is shown with larger atoms as compared to the lowey. Bigy@), and(h)
show the corresponding adatom binding enew{x,y). (c), (f), and (i) show the corresponding binding energy derived from the local
geometryVi,(x,y). Minima, saddle points and maxima are markibeled by +(m), *(s), and X (M), respectively, with the figure in
parentheses being their corresponding value in e\bjrand(c) the contours are 0.1 eV apart. (@), (f), (h), and(i), they are 0.2 eV apart.

In (e) and(h), contours ofv=—2.2 eV and in(f) and (i), those ofV,;=—1.9 eV are marked with dashed lines. The contour plots suggest
a strong correlation betweevi and V. The diffusion barrier on the surface is determinednily andsl in (b) and (c). The Schwoebel
barrier is determined bg3 in (e) and(f), whereas it is determined I3p in (h) ands6 in (i). There is a one-to-one correspondence between
the barrier determining features ¥(x,y) andV,y(x,y) for the S{111) surface and thg211] step, suggesting that the Schwoebel barrier on
the[211] step is a robust feature.

interactions an order of magnitude larger than experimentashown to have a higher step enefgyn other words, diffu-
estimate$® Neglecting such rebonded configurations, all thesion barriers have been calculated for those steps, the inter-
intermediate low symmetry steps (€¥<60°) have been actions of which are not larger than experimental estimates
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FIG. 1 (Continued.

and whose step energy is a local minimum as a function theiture) and the steepest descent equations have been used to
orientationd. The adatom potential energy has been com- determine the minimum potential energy of the systém.
puted as the difference in the minimum potential energy ofThese routines determined the adatom potential energy to an

the system with the adatom at infinifponinteracting and
the same with the interacting adatom.

accuracy of 10* eV. The (,y) coordinates of the adatom
are fixed during the integration process. The system con-

Standard molecular dynamid¢®1D) procedures of inte- sisted of a certain number of bi-layers of &il) in an MD
grating Newton’s law(with dissipation to reduce tempera- cell, with the surface lattice constardg anda, along itsx
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e e e e e e tive to the surface ill defined, further simulations on the sur-
:y m1i2 29@?) N @z face as well as the step cqnflgurathns were cgrrled out with
C [ . \S\ 1 atoms at theX,y) boundaries also fixed at positions corre-

sponding to the adatom free but relaxed configurations. The
regions in the(111) plane explored in all cases were “cen-
trally” located, i.e., maximally away from the boundaries, so
that finite size effects are minimized. System size depen-
dence inV(x,y) was initially explored for the $111) sur-
face to determine the optimal system size. It was found that
changing the system size from four lattice constants in the
x andy directions(including the boundary of fixed atoms
with three movable bilayers to six lattice constants in xhe
and y directions with six movable bilayers changéik-
duced the adatom potential energgt the minima, maxima,
and saddle poinjsby <1072 eV. As an error bar of
+10 2 eV was estimated to be smaller than the accuracy
needed for this study, all the simulations were carried out
with the smaller system size — the size in thalirection
being extended to Zand 4; lattice constants for thg211]
and[ 1 12] step configurations, respectively, so that periodic
boundary conditions could be applied to create vicinal steps.

Since the bulk terminated @il1) surface and 211] step

<O mproe Ttk -
- -~ K : X .
:N )/ X ‘ (mo 3’1("1-'992QWG' configurations do not relax under the Stillinger-Weber poten-
e b b by 4 tial, with the system sizes chosen here, their corresponding
0 5 6 7 8 surface and step energies are reproduced exactly. However,
the[1 12] step configuration is different from the bulk ter-
FIG. 1. (Continued. minated structure, due to thex2 reconstruction at the step
edge. With the system size chosen, here it's step energy is
reproduced to within 410" * eV/a, .%°
The MD procedures began with initial configurations for
bach &,y) position of the adatom, corresponding to the re-
laxed adatom-free structures. Theoordinate of the adatom
was chosen to be equal to that obtained in the final configu-
ration, during simulation with the adatom in the immediate
neighborhood of the pointx(y). For the step configurations,
V(x,y) was determined from behind to the front of the step
edge. These procedures for determinifx,y) were found
necessary for the211] step configuration, since other meth-
ods such as an arbitrary initialcoordinate for the adatom or
determiningV(x,y) from the front to behind the step edge
lead to the adatom relaxing into configurations in which it
displaces an atom near the step edge and/or moves into the
bulk. Symmetries in th€l11) plane were exploited to reduce
the size of the regions in which the adatom potential energy
needs to be computed. Therefore, for thélsl) surface,
only a sixth of the surface unit cell was explored. For this
caseV(x,y) was computed on a triangular grid — the sides
of the triangle coinciding with the high symmetry directions
with the distance between neighboring grid points being
a,/9. An interpolation scheme respecting the symmetries on
the surface was used to determine the feature¥(afy).
For the[211] and[ 1 12] step configurations, reflection sym-
metry about they axis (L to the step edgereduced the
width of the region(along the step edgexplored to a length
of a;/2 and a;, respectively. For these configurations,
FIG. 2. One bilayer of the §111) surface consisting of the V(x,y) was determ-ined ona reptangylar 9”9' with the dis-
upper monolayekgray) and lower monolayetblack. The figure ~tance between neighboring grid points beiag/16 and
shows the threefold and reflection symmetry of this surface: Step82/30 along thex andy axis, respectively. With the step edge
running along directions with equalare identical(Borrowed from  in the middle, the length of the region explored waéai
Ref. 20) and 1ia, for the [211] and[112] steps, respectively. This
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andy directions, respectivelysee Fig. 2 Three of the bot-
tom bilayers are fixed at bulk lattice coordinates throughou
the calculation. In simulations on the($l1) surface, with
six additional(movable bilayers, it was found that changing
the adatom’s X,y) position from a deep minimum lead to
the shearing of the entire surface in the plane towards the
adatom. As this made the,y) position of the adatom rela-
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was to enable an interpolation schenfeespecting the observation that the reconstruction energy of tH&@®) sur-
symemetries of the step configuratiprapplying periodic  face calculated using the Stillinger-Weber poterti40.85
boundary conditions along the axis to do the same along eV) agrees withab initio calculationd’ (0.84 e\j. The Ter-
they axis of the region explored. On comparing the potentialsoff and Dodson empirical potentials also give this energy as
energy of the adatom on the($11) surface to that far away the same order of magnitud® The Stillinger-Weber also
from the[211] step-edge errors due to the finite grid sizes,reproduces the correct order of energies of [fB&1] and

the interpolation schemes and possibly effects due to beingl 12] steps(per step-edge atom, these values are 0.72 eV
close to the boundary of fixed atoms were recognized. Thesend 0.62 eV, respectivel)), as well as the presence of reb-
errors are conservatively estimated to 1®.05 eV. Since  onding at thd 1 12] step edge, as compared to tight binding
this is much larger than the errors, due to finite size effects, italculationgper step edge atom these values are 0.70 eV and
is assumed to be the error bar in the potential energy. Barriey.38 eV, respectivefy). During reconstruction, the coordina-
values, which are differences in these potential energies, afgn number of atomgon the(100) surface and1 12] step

therefore estimated to have an error bartdd.07 eV. edge changes from two to three. It is, therefore, expected
that features following from such a change in coordination
lll. RESULTS AND DISCUSSION number are not artifacts of the empirical potential used.

Here, the adatom energy recomputedhout additional
relaxation of other atoms, due to the presence of the adatom,
is assumed to be a good measure of the coordination number.
Although this measure is very similar to the actual adatom
energyV(x,Y), it helps to identify features that follow from
the geometry of atomglocally around to adatojnon the
relaxed adatom-free surface or step edges. Features that do
not change significantly, due to additional relaxations in the
presence of the adatom, are expected to be robust. The ada-
same potentialon surface energies of configurations with to'nr]] po;}ennal enerfgy,%(x,y) ha}g therefore beergj.recomphuted
adatom<?® as well as a study of diffusion on the (S11) :NI'[ other atoms fixed at positions corresponding to t e re-
axed adatom-free structures. These results are shown in Fig.

surface’! The barriers to diffusion between the minima , !
along the step edges are slightly smaller than the barrier oﬁ(c) for the S{111) surface, Fig. ) for the[211] step, and

the surface — apparently inconsistent with previous v#rk, N Fig. 1(i) for the [1 12] step. Similaritie; in the contour
showing that step-edge fluctuations @peedominantly due ~ Plots ofV andV,q suggest a strong correlation between them.
to attachment/detachment of adatoms from the terrace anthiS correlation is evident from the linear relationship be-
not due to diffusion of atoms along the step edge. In thi§WeenVig andV (Fig. 3 The lines in Fig. 3 are best fits to
study, the Schwoebel barrier has been defined to be the dilig(X.¥) vs V(x,y), which were explicitly computed at the
ference between the maximum adatom potential energid points. There is no repetition of points that are equiva-
(along the path on which this is a minimiinas it moves into ~ ent, due to the symmetries of the relevant configurations.
the step edge from the global minimum on the upper terrace,

far away from the step edge and the same forkhe->H4 T e e .

The results are shown in Fig. 1. The global minimum of
the adatom potential enerdy occurs on théH 5 site(m,) on
the S{111) surface[Fig. 1(b)], where the adatom potential
energy is—3.31 eV. This is a significant fraction of the bulk
energy per atom=—4.34 eV. The relevant saddle point for
Hs«Hj transitions iss; (close to theT, cite, which is a
local minimun), where the potential energy is2.34 eV.
Thus, the barrier to diffusion on the surface is Gt4¥.07 eV.
These results are consistent with previous stuglisgg the

T
transitions on the $111) surface. In other words, it is the H(a) V1g=(0-5920.06)V—(0.67+0.15)
d|ﬁer_epce in the ada.tom potential energies at the barrier de- 0:(b) V) ~(0.60£0.02)V(0.60+0.06)
termining saddle point on the step configurations and the g g
same on the free surfacés;). With this definition the v

Schwoebel barrier cannot be negative. From Fig) IFig.
1(h)], for the[211] ([1 12]) step 1, the barrier is determined
by s;5 (s5), where the adatom potential energy-is.73 eV
(—2.18 eV}—implying a Schwoebel barrier of 0.610.07

eV (0.16-0.07 eV). Growth on S{111) is, therefore, ex-
pected to produce moundlike structures with facets consist-
ing (predominantly of [211] steps. However, the experi-
ments of Yanget al. (temperature= 275+5 °C) instead
show facets withi 1 12] steps’ This discrepancy may be due

to the presence of theX77 reconstruction. —4r 7

It must be noted that the Stillinger-Weber potential has L e L e ]
been tuned only to the properties of the bulk diamond and 4 _3 o q 0
liquid structures of silicon and not to any surface or step V (eV)

properties. As mentioned previously, it does not produce the

correct energetics for the @LL1 surface configurations with FIG. 3. Plots of the adatom potential energy derived from the
adatom$’ as compared tab initio calculations>**There-  |ocal geometry of fixed atom¥y vs the actual adatom potential
fore, an attempt has been made to identify the robust featuregergyV. The straight line fits show the strong correlation between
of this study: Features following from changes in the coor-v ; andV. The rough configuration independence of the relation-
dination number of the adatom. This idea is supported by thehip suggests that it is a characteristic of (h&1) surface.
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Further, for the step configurations, the length of the region S0=K_8y 1+ (Ky—K_)8,+Ki 811, 2
along they axis corresponding to these plots is d42on
either side of the step edge. The rough configuration inde- _ _
pendence of the relationship betweép andV suggests that Wherg_ﬁn—wn—w "?‘?';dl':r _lgee/T”))\[agi /.‘?V\I/]WZIW' The

it is a characteristic of thg111] surface. A similar behavior nstability occurs i k. —k_>0 or equivalently (since
may be true for the $100) surface and single height steps on k+_+ k-<0, for w>0), when the anisotropy ratio
it. In this case, borrowing the values Wf corresponding to P~ (K:-/k-)<1. This analysis is similar to the work of Ghez
the featuregminima and saddle pointsrom previous work et al,”* which includes an external flux with the electromi-

by Roland and Gilmet®~*®and computing/ , for the same gration force being absent. .
features here, it is found tha= (1.3 0.2)V + (1.2+ 0.5) The recent experiment of Williamest al. on reversible

for the S(100) surface andVig=(1.1+0.1)V+(0.6+0.3) step bunching on &li11), which measures an “effective”

for the combined data from the three single height steps. 2NISOTOPY ratig ¢ (near bunched stepi the temperature
range 1155-1215 °Cthis range includes the corrections,

due to the emissivity of the optical pyrometer, used in the
experiment?), can now be used to determine an upper bound
Recent experiments on the electromigration of steps oon E, (EY) and a lower bound o (F,), by solving the
Si(111) (Refs. 11 and 1Pcan be reinterpreted in the presenceequationr*=k, — pk_=0. The solution to this equation is
of a Schwoebel barrier, by modifying the boundary condi-gptained by estimating the parametevst, and\ (in the
tions to the diffusion equation for adatom concentration usegemperature range of interest: 1155—1215 °C and then deter-
previously by Stoyanowt al to describe step bunching mining f as a function of. The estimates of the upper and
(see Appendix A This particular modification is to suppress |ower bounds ort and\ are madeconsepatively — the
the strength of the step as a source of adatoms onto the uppgihge is made wide enough so as to include the “true value.”
terrace relative to the same onto the lower terrace by a factqtyperimental observations of Latyshet al'* show that
e, wheree=2E;/k,T, with Es being the Schwoebel barrier. around a temperature of 1200 °C, the step velocity varies
With this modification, the equations for adatom concentrajinearly with the terrace width upto a width of2m. A lower
tion on a particular terrace has four length scales — thgygund on the diffusion length of 0.5 um is obtained by
diffusion |ength)\ and the scale introduced by the electromi- reproducing this result using E@‘) This estimate is robust
gration forcef (=F/k,T), both of which are parameters en- against large changes in the parameteasdf. To make this
tering the diffusion equation and two other scalg®ndt;  estimate,e is conservatively chosen to be zero. Further, to
entering the boundary condition to this equation at the uppefirst order inwA %, g, +g_=—-w\ "' — independent of
and lower terrace step edges, respectively ¢ andf. Therefore, the magnitude of the slopes of the
(tos=Bo./a°Dne, a2 is the density of atoms in a terrace, ahove curves correspond to the evaporation rates
D iS the diﬁusion ConStantne iS the equilibrium ada.tom r= 06/T|f . An estimate of the upper bound mnis Obtained
density, andg is the step kinetic coefficient — here the by estimating the diffusion constdht D [using
Schwoebel barrier is modeled as making this parameter agy—p2,e Ea’k! p=3.84 A, v=1013 s 1, E,=0.97 eV
sume different values at the upper and lower terrace SteRalculated herd and an estimate of the upper bound on
edge$. These are, in addition to the scale, introduced by ther,f=nea2/r. [The temperature dependenceroin the data
terrace widthw. Since the modification is further designed frgm Latyshevet al! is consistent with the theory of Burton
to keep the total strength of the step as a source of adatomsg 51 32 (BCP), with an activation energy equal to the cohe-
constant independent &, to+t; =t — a constant indepen- gjye energy of silicon £,=4.34 e\}.] The upper bound on
dent of e for fixed k,T (the variation oft with E; is included 6, is assumedio be 0.167 — the primary motivation for
in the estimated range df, with to/t;=e. The (linea)  thjs s that it is measured to be 0.1 around 900 °C aridlits
diffusion equatip_n is then solved, with, appee_lring in the. activation energyE,,, which is equal toE,—E. (E, is the
boundary conditions as a “source,” to obtain the spatialactivation energy for; %) from the BCF theory, is estimated
variation of the adatom concentration. . to be negative, since total energy calculatnpredict
Using the above solution, the equations for the velocitiegmgier surface energies for silicon surfaces with adatoms as
of an array of steps with positions, are developed — the compared to the X 1 surface thereby making.>E, . The
step indexi increases in the step down direction, which is gpecific value of 0.167 is chosen as it corresponds to the
also t.he p'osmvex. axis. The time scale that enters .thesedensity in any\/§>< 3 configuration of adatoms, wherein all
equations Is the lifetime of an adatc_)m ’ These equations the floating bonds on theX1 substrate are saturated by
have the following form(see Appendix A bonding with the adatoms — at higher densities adatom in-
_ P teractions areexpectedto be significant. This bound is,
Xn=—A[g_(&t\, N, WA D +g.(e,t\, N, W, ;A "1)],  therefore, required here as a measure of internal consistency
Tit in the analysis, since the diffusion equations used correspond
@) to free adatoms. The upper bound gnis calculated using
where 6,=n.a? and the terrace widthW,=X,,;—X,. this value off,. As the variation im, has been argued to be
From the above, equations for the rate of change of the tesmall® E,~0 andE ~E,>E,. The estimate of the upper
race widths can be obtained. Linear stability analysis of thesbound on\ (=(D¢)?) is, therefore, made at the lowest
equations around an average terrace wigthvould predict temperature of interest and is equal~070 wm. The upper
when the step-bunching instability occurs. The linearizedoound used in this study is7 times this value, making 0.5
equations may be written as follows: um < X < 0.5x10% um.

A. Relevance to electromigration experiments
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The estimate of the range bfis obtained from the range
of N, the measured(T,) (Ref. 1) and 6,(T;) (Ref. 33,
and the relation betweeB,= B,+ 8, and the measured step
mobility I'(T,) (Ref. 22 (T, corresponds to 900 °C and
T, corresponds to temperatures of interegtt the same
temperature3.=I"/a? (see Appendix B From a model of
attachment-detachment at the step edges Appendix B
the temperature and, dependences @8, is determined:

(e 2EalkT 1 g~ 2(EatEg)liyT) g2

1- 6,

Bs*

The upper bound o8, is derived using the above depen-
dence from the lower bound I'(T,)/a? (E,=0.97 eV,Eq is
set equal to a value that gives the largest increddee pa-
rametert is then evaluated using= 8s/a?Dn,. This gives
upper and lower bounds dn

Ty
u,l a2)\2r(T;)

F(TH[1— 0(Ty)] [e Ea/oT2 TS 6,(T) ]
T(TH)[1—604(T5)] e F/NT, 64Ty |

whereT, (T, ) corresponds to the highedbwes) tempera-
ture in the range of interest. The values fT,) and
r(T,) are obtained from the data of Latyshewal* using
Ep=4.34 eV,I'(T,) from a previous measurement of Bartelt
etal,?> E, = 0.97 eV, 6,(T;) =0.1 (measured by Yang
et al®®), and §(T,)=0.167 (as assumed previouslyThis
results in 7.X 10° um/\2<t<7.7x10° um/\2x 10*%. The
range oft, therefore, depends on the valueXof

The value of the parametev used here is equal to the
average terrace width in the experiment of Williagtsal 12
(=0.15m), who determing ¢ to be 0.2@:0.03. It must be
noted that the extraction gf from the experiment had used
a theory® which makespes=p(WA "1=0) (w was much

smaller than the average terrace width since, in the theory
used, it corresponded to the distance between bunched

steps. In this study, it is assumed thatg= p(W\ ~1#0) —
this may be areasonable approximation since, here,
Amin= 0.5 um and theW,,, in the experimental data used to
determinep.+ was as large as 0,6m. This approximation is
motivated by the need to study the solutionoft=0, in-
cluding the full nonlinearity inv\ ~ 1.

The procedure for determinirigl andF, assumes that an
electromigration forcé& causes the step-bunching instability
(p=0.2) with —F restoring the stability g=1). This as-
sumption is motivated by the observatféthat a current in
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FIG. 4. Inset (8) shows schematically the variation of

77 1=k, —pk_ with F. The solution tor *=0 (of interes} is
F,, which exists even in the limivA ~1=0, whereas the other two
do not. Insetb) shows schematically the variation IBf with E for
p=1.0 andp=0.2. The upper bound okg (E) is determined
from the conditionF(Es>Eg,p=1.0)<—-F(Es=Eg,p=0.2). It
can be seen thaE(Eg,p=0.2) is the lower bound ofF (F)).
Fo=F(Es=0,=0.2). For the curves showw=0.15 um, 0.5
um <\A=<0.5x10° um (seven values equally spaced on the loga-
rithmic scalg, with the range of t depending on A:
7.7X10° umIN2<t<7.7x10° um/A\?X10*! (A>7 um). The
upper(lower) limits of t are marked by+ (X). ForA<7 um, the
upper limit oft is forced to be smaller than that estimated, since the
solutionF, ceases to exist. For<1 um, F, does not exist for even
the smallestt. This shows that\y,=1 wm. For wx~1-0,
E{=0.3%,T=0.05 eV (for the experiment in Ref. 12-
significantly less than that calculated here for [&1] step(0.61
0.07 eV). This suggests thdtl 1 2] steps were observed.

force —F (with F resulting inp=0.2) cannot restore stabil-
ity. This value is, therefore, the upper bounlgf on Es.
Below E¢, the magnitude of needed forp=0.2 is larger.
The value ofF at E¢ is, therefore, the lower bound() on
F. Fo=F(Es=0,=0.2).

Figure 4 shows the variation &, Ey, andF, with the
parameters and\ (w=0.15 um). As noted previously, the
range of thet depends on the value of, with additional
restrictions on the upper bound tf These restrictions are

the step up direction causes the step bunching, whereas dne to the absence of the solutitof interesj to 7~ =0 for
equal magnitude in the step down direction results in unismall\ and larget. This seems to correspond the behavior

formly spaced step€. andF, are determined by studying
the solutions tor =0 (fixing t, A, andw) for p=0.2 and
p=1.0 . The variation ofr— ! with F (with typical values of
t, N, w, E5, andp) is shown schematically in inséa) of

observed at higher temperatufésyherein a current in the
stepdowndirection causes the step bunching instability. For
tw<1, the curves in Fig. 4 correspond to the limit
w\ 10 and can be obtained by solving1=0 to zeroth

Fig. 4. Of interest is the solution that exists even in the limitorder inw\ ~*. This gives

w\ ~1=0 (the other two solutions do not exist in this limit
The variation of this solution witlk (fixedt, A, andw) for
p=0.2 andp=1.0 is shown schematically in ins@t) of Fig.
4. The two curves show that beyond a certain valuegfa

ka (l+e*ZES/ka)_p(l_i_eZES/ka)

N2t

= ®
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Using the above expressiof, , F|, andF are found to be S.V. Khare for useful discussions. This work has been sup-
ported by the NSF-MRG and the U.S. ONR.

Eu—ka 3+p0 4
s 2 n 3potl)’ @ APPENDIX A: ANALYSIS OF THE DIFFUSION EQUATION
5 FOR STEP MOTION
k,T 4(1— T . . :
F,=L2 (1~ o) , (5 The diffusion equation for noninteracting adatoms sub-
A1 (3+p0)(3po+1) liming in the presence of an electromigration fofe@erpen-
dicular to the step edge and the absence of an external flux
O:ﬁ; 2(1=po) (6) may be written in the “adiabatic approximatiofvhich ne-
At 14py )7 glects the time derivative of the densiigs follows43°
with pp=0.2 (here. Equation(4) givesE{=0.05 eV for the d2n  dn n
experiment of Williamset al1? This is much smaller than the ——f———=0, (A1)

barrier calculated here for tHe11] step (0.61+0.07 eV,
suggesting thaf1 1 2] steps were seen in the experiment. Wheren is the density of adatoms$=F/k,T, A is the diffu-
From Eq.(6) and the electric field in the experiméht700  sion length, and the positive axis coincides with the step
V/m), the (maximum) charge needed on the adatofiis ~ down direction. This equation can be solved using the
units of the(negative electronic charggis estimated to be boundary conditions on the currept(=D[ —dn/dx+ fn],
reasonably small—in the rangex30~2 to 3x 10~ %L From  WhereD is the diffusion constait These conditions deter-
Fig. 4, it can be seen that with a Schwoebel barrier thenine the step velocity [=a*(—j;+j,), wherea® is the
charge needed is always smaller than with a zero barrier. Fdhverse terrace density,, is the current towards the step
tw>1, the deviation of the curves from the above expresedge from the upper terrace, ajds the current away from
sions is significant — this is due to the dependencedfon  the step edge on the lower terrded define the step kinetic
w\ "1, which requires that terms of ordam ~* and higher ~ coefficient. In the presence of a Schwoebel barrigg),

be considered. In this range, the minimum charge needed dhis parameter is modeled as assuming the vaggsnd
the adatomsgusingF,) continues to have a reasonable lower 81 at the upperx=0) and lower k= W) terrace step edges,

limit as it is in the range X 10 to 7x 10 . respectively, with Bo/B,=e€¢, where e=2E./k,T. The
boundary conditions can now be written as follows:
IV. CONCLUSIONS dn f - o€
In summary, the adatom potential energy contours have Tax T 1+e€[n(0)—ne],

been calculated for theX1 reconstructed §i11) surface B
and the two high symmetry single height steps on it using the dn
empirical Stillinger-Weber potential. From these plots, diffu- ———+fn =——[n(W)—n¢], (A2)

. . - . ; dx . 1+e
sion barriers along the path of minimum barrier height can =W

be calculated for transitions between any two minima. Theyhere n, is the equilibrium density andt=(3,

results show that barriers for diffusion in the trench along they ,)/a2Dn,. The solution to the diffusion equation under

step edge are smaller than that between that global minimge above boundary conditions is shown below:
on the free surface. There is also a strong correlation be-

tween that adatom potential energy and the potential energy n(x)= ne(AeW”_l’HJr BeWk‘lm), (A3)
derived from the local geometry of atoms on the adatom-free
surface or surface or @il1) surface(0.97+0.07 e\j and the with

Schwoebel barrier on tHe211] s_tep(O.Glt 0.07 e_\)) are ro- . =fN2+ 1+ (TA2)7],
bust features, due to changes in adatom coordination number.

Interpreting recent electromigration experiments in the pres- WAy

ence of a Schwoebel barrier shows that smaller values of A= ‘ﬂ_l i —,
electronic charge on the adatoms can account for the obser- pypeVt T — pyeWh Ty
vations. It also suggests, in the limit where the diffusion

length (\) is much larger than the terrace widtlv), that ¢—Xe""*—1”+
[112] steps were observed in the experiménHowever, B= ¢¢/xe""fl”——<pxew>‘fl”+

this conclusion relies on assumptions regarding the nature of

the atomic processes at the step efipat these processes where
may involve two atomgat a kink site which see the barriers

as computed heteand thatw\~'—0. Future studies ad- , _,_ (7+—fA)(1+€9) _q (p-—fA)(1+e€9)
dressing these assumptions may interpret electromigratioﬁ tae€ ¢ tae€ '
experiments differently.

L emtoasey (- fdre
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Vn=a2{—j|[=j(x=O,W= Xnt1—Xn)] where g is the lattice constant along the step ang, are
) ) “effective” attachment attempt frequencies. The vanishing of
=] (X=W,W=X,=X,-1)]} these currents in equilibriuniwhen 6= 6,) determine the

constantsc, ,. Further assuming,=v»,=v and neglecting

From the functional form of the density and using P
terms of the order4— 6,)“, gives

D=\?7; (74 is the lifetime of an adatojnit may be seen

that 2166 2EalkeT
== (06— 0),
i a2 i aH(l_Be) ( e)
Vo= —Mg-+0.), (A%) =20
! Ju ay(1—6e) e

whereg.. are dimensionless functions of dimensionless ar- . . .
guments given by from which 8, and 8, can be identified. Hence,

2va? Bg B B
g_(e,t)\,f)\,W)\’l)zth[eE(A+B—l)/(1+ef)], ﬁo—{-IBl:—a” —1_06 (e 2Ea/kpT 4 @ Z(Ea"'Es)/ka),
(B2)
g4 (et FN, WA ™)
—tA[(Ae™ 74 BeM 1)1+ €€, %zeZEs“‘bT. (B3)

with the symmetryg, (—a,b,—c,d)=g_(a,b,c,d).
Relationship between the step kinetic coefficient
APPENDIX B: AN ATOMIC MODEL FOR THE STEP and the step mobility

KINETIC COEFFICIENT To relate the step mobility’ and the step kinetic coeffi-

The step kinetic coefficient3 was introduced by cient Bs=py+B1, the expression for the step velocity
Cherno¥® through the supposition that the currentsffom  [dX/dt=a%(j,—};)] must be obtained in terms q8.*
the lower terrace angl, from the upper terragetowards a  From Chernov’s defining equatiortB1),
step edgdat x=X) are proportional to the deviation of the X 1
adatom density in the neighborhood of the step from the —7 =2 [B1O(XT)+ Bob(X_) — Bsbel. (B4)
equilibrium densityn,. From the model adopted here, it will dt 6

be shown that, in the presence of a Schwoebel barrier, thigyis equation needs to be extended to account for the two

parameter assumes different values, 8g.and3; determin-  gimensional character of the step: The currents towards the

ing j, andj, respectively: step edge are proportional to the deviation of the chemical
potentialu from the equilibrium chemical potential near the

Bol 0(XT)— 6, o B 6(XT)— 6, step edgeu;. These relationships may be assumed to be the
h==%2 0, v JuT 2 0, , (BD) defining equations for the step mobiliti€s andT :
wherea®=1/(terrace density #=na?, and 6,=n.a?, with R , s . 11 N s
the positivex axis in the step down direction. These equa- Ju=ga (X)) =l 1= = galm(XT) — pel.
tions serve as the boundary conditions used in this \Mack (B5)
(A2)].

Assuming the existence of a coarse-grained free energy func-
t%i/lonal 7 of the step configuratiofx(y)}, u< is given by
ullins® to be

The temperature dependence & (3,) can be derived
assuming an activated model for adatom attachmen
detachment at the step edge from the lovigrpe) terrace

with the single atom activation barrier beirty, (E,+E,), a2 87 (x(y))
where E, is the barrier on the free surface akq is the o= et ﬁT (B6)
Schwoebel barriet’ However, since silicon has two atoms in b

its unit cell, successfuattachment-detachment processes aiwhere, is the equilibrium chemical potential on the terrace
the kink sites of steps must involve two atoms. Single atonfar away from the step edge. Further adopting his model of a
processes from energetically favorable step-edge configuratissolving substance for the adatoms, and in an approxima-
tions lead to unfavorable ones and are expected to have vetipn in which the deviation of the density from the equi-
large barriers. Further, the probability of simultaneous atiibrium density 6, (the density far away from the step edge
tachment(detachmentof two atoms is proportional t83 [ is much smaller thad,, the chemical potential and the den-

(1— 6)%]. The currents are, therefore, given by sity can be related 6‘§
_ ye 2EalkeT g2 ¢ (1— §)2 0— 0,
jl=— , u(0) = pe=kpT : (B7)
g Oe

_ Using Eqgs.(B6) and(B7), it can be seen that the equilibrium
2(Ea+tEg/kpT g2 _n\2 - . . .
ju= Yu€ P 6°—c,(1-0) , density beside the step edge is different from*°=*? Fur-

! q ther, using Eq(15), the step velocity can be given by
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Within the small slope approximation gx/dy<<<1),
87 (X(y)) 8xx3*x/dy?. The spatial averagéover y, de-
noted by()) of this term vanishes, due to periodic boundary
conditions. Identifying x) with X, assuming that the density
is independent of/, and approximating 8(x))= 6(X), Eq.
(B8) (on spatial averaginggives

wherel'=T"¢+T';. In the absence of an external force on the

adatoms and when attachment-detachment of atoms from the
terrace onto the step edge is rate limiting in relation to ter-

race diffusion, it is expected th&(x )= 6(x")= 6. Then,
Eq. (B8) reduces to the Langevin equatiomithout the noise
term ¢):4322

X
at

r

ko, T

87 (X(y))
o

+(y,t).

dX_ 1y . To . Tb 5
P ATY ( )+¥ (X7) 2 (B9)
Equations(B4) and (B9) agree if
Boi=—= L (B10)
0,1 a2 BS_aZ'
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