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Motivated by the recent investigations on instabilities caused by Schwoebel barriers during growth and their
effects on growth or sublimation by step flows, we have investigated, using the Stillinger-Weber potential, how
this step edge barrier arises for the two high symmetry steps on 131 reconstructed Si~111!. Relative to a
barrier of 0.976 0.07 eV on the surface, we find additional~Schwoebel! barriers of 0.616 0.07 eV and 0.16
6 0.07 eV for adatom migration over the@ 2̄11# and the@ 1̄ 1̄2# steps, respectively. The adatom potential energy
is found to be strongly correlated with that derived from the local geometry of atoms on the adatom-free
surface or step edges. This correlation preserves a strict correspondence between the barrier determining
features in the spatial variation of the adatom potential energy and the same derived from the local geometry
for the Si~111! surface and the@ 2̄11# step. It is therefore argued that the Schwoebel barrier on the@ 2̄11# step
is robust, i.e., a feature that would survive in more satisfactoryab initio or tight binding calculations. Using a
diffusion equation for the adatom concentration, the relevance of the barrier to electromigration of steps has
been explored. Data from such experiments on Si~111! has been used to place an upper bound on the
Schwoebel barrier and a lower bound on the electromigration force.

I. INTRODUCTION

The Schwoebel barrier was originally introduced in the
context of step motion1 as the additional barrier for adatom
diffusion over a step edge from the upper to lower terraces. It
was argued that such a barrier results in an anisotropy in
adatom diffusion into the step edge — the diffusion from the
lower terrace being greater. This anisotropy was found to
drive an arbitrary distribution of step spacings towards a uni-
form distribution during growth of a vicinal surface.1 Later,
it was pointed out by Villain2 that this growth by step flow is
stable only on a sufficiently vicinal surface with possible
instabilities setting in during the growth of a flat~singular!
surface. The dynamical morphology of a singular surface
growing under the influence of a schwoebel barrier is a sub-
ject of great current activity.3–7 While the eventual fate of
growth on a flat surface in the presence of such extra step-
edge barriers is still being discussed,3–7 it is now well ac-
cepted that Schwoebel barriers lead to coarsening in the
evolving surface morphology under nonequilibrium growth
conditions, producing mounds, pyramids, and facetlike angu-
lar structures on the growing surface. Recent experimental
studies of nonequilibrium growth on the Si~111! surface have
produced somewhat contradictory8–10 results, and the spe-
cific role of Schwoebel barriers for nonequilibrium Si~111!
growth is unclear at the present time.

The current study is primarily motivated by observations
of another instability: As was pointed out by Schwoebel and
Shipsey,1 an anisotropy favoring diffusion into the step edge
from the upper terrace~possibly due to larger barriers for
diffusion from the lower terrace! results, in a step pairing
instability, during the growth of a vicinal surface. In recent
experiments similar direct-current induced reversible step-
bunching instabilities have been observed during sublimation
of the high temperature 131 phase of Si~111!.11,12Here, we
report on a calculation of the Schwoebel barrier for the two
high symmetry vicinal steps on 131 Si~111!, using the em-

pirical Stillinger-Weber potential.13 The importance of the
Schwoebel barrier in the context of the electromigration ex-
periments has also been explored by modeling the barrier as
affecting the boundary conditions to the diffusion equation
for adatom concentration used to interpret these
experiments.14

II. EMPIRICAL POTENTIAL CALCULATIONS

The use of the Stillinger-Weber potential in this study has
been motivated by its successful application in previous
studies of bulk and liquid silicon,13 the Si~100! surface and
steps on this surface.15 Barriers on the Si~100! surface and on
single and double height steps on this surface have also been
calculated using this potential.16–18 Although this potential
fails to reproduce the correct energetics of the Si~111! sur-
face configurations with adatoms,19 it has been used here
since features that follow purely from the changes in the
adatom coordination number are expected to be robust, i.e.,
these features survive even if the details of the empirical
potential used change. Such features are expected to survive
in more satisfactoryab initio or tight binding calculations.
The calculation here is followed by an attempt to identify
such robust features.

To determine the diffusion barriers the adatom potential
energy has been mapped as a function of the (x,y) position
of the adatom@in the ~111! plane# for the Si~111! surface
@Fig. 1~a!#, the @ 2̄11# step @Fig. 1~d!# and the@ 1̄ 1̄2# step
@Fig. 1~g!#. The threefold and reflection symmetry of the
Si~111! as shown in Fig. 2 implies that steps running along
directions with equalu are identical. It has been shown in a
previous study20 using the Stillinger-Weber potential that an
alternative configuration of step-edge atoms with some of the
upper terrace atoms rebonding to atoms in the lower terrace
gives a lower step energy for the@ 1̄ 1̄2# and @ 1̄01# steps.
However, such a configuration has not been considered here
since it has also been shown that it gives rise to step-step
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interactions an order of magnitude larger than experimental
estimates.20 Neglecting such rebonded configurations, all the
intermediate low symmetry steps (0°,u,60°) have been

shown to have a higher step energy.20 In other words, diffu-
sion barriers have been calculated for those steps, the inter-
actions of which are not larger than experimental estimates

FIG. 1. The Si~111! surface~a! ~the upper monolayer is shown in gray and the lower monolayer in black!, the @ 2̄11# step~d!, and the
@ 1̄ 1̄2# step~g! ~for the step configurations the upper bilayer is shown with larger atoms as compared to the lower bilayer!. ~b!, ~e!, and~h!
show the corresponding adatom binding energyV(x,y). ~c!, ~f!, and ~i! show the corresponding binding energy derived from the local
geometryVlg(x,y). Minima, saddle points and maxima are marked~labeled! by 1(m), *( s), and3(M ), respectively, with the figure in
parentheses being their corresponding value in eV. In~b! and~c! the contours are 0.1 eV apart. In~e!, ~f!, ~h!, and~i!, they are 0.2 eV apart.
In ~e! and~h!, contours ofV>22.2 eV and in~f! and~i!, those ofVlg>21.9 eV are marked with dashed lines. The contour plots suggest
a strong correlation betweenV andVlg . The diffusion barrier on the surface is determined bym1 ands1 in ~b! and ~c!. The Schwoebel
barrier is determined bys3 in ~e! and~f!, whereas it is determined bys5 in ~h! ands6 in ~i!. There is a one-to-one correspondence between
the barrier determining features inV(x,y) andVlg(x,y) for the Si~111! surface and the@ 2̄11# step, suggesting that the Schwoebel barrier on
the @ 2̄11# step is a robust feature.
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and whose step energy is a local minimum as a function their
orientationu. The adatom potential energyV has been com-
puted as the difference in the minimum potential energy of
the system with the adatom at infinity~noninteracting! and
the same with the interacting adatom.

Standard molecular dynamics~MD! procedures of inte-
grating Newton’s law~with dissipation to reduce tempera-

ture! and the steepest descent equations have been used to
determine the minimum potential energy of the system.20

These routines determined the adatom potential energy to an
accuracy of 1024 eV. The (x,y) coordinates of the adatom
are fixed during the integration process. The system con-
sisted of a certain number of bi-layers of Si~111! in an MD
cell, with the surface lattice constantsa1 anda2 along itsx

FIG. 1 ~Continued!.
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andy directions, respectively~see Fig. 2!. Three of the bot-
tom bilayers are fixed at bulk lattice coordinates throughout
the calculation. In simulations on the Si~111! surface, with
six additional~movable! bilayers, it was found that changing
the adatom’s (x,y) position from a deep minimum lead to
the shearing of the entire surface in thexy plane towards the
adatom. As this made the (x,y) position of the adatom rela-

tive to the surface ill defined, further simulations on the sur-
face as well as the step configurations were carried out with
atoms at the (x,y) boundaries also fixed at positions corre-
sponding to the adatom free but relaxed configurations. The
regions in the~111! plane explored in all cases were ‘‘cen-
trally’’ located, i.e., maximally away from the boundaries, so
that finite size effects are minimized. System size depen-
dence inV(x,y) was initially explored for the Si~111! sur-
face to determine the optimal system size. It was found that
changing the system size from four lattice constants in the
x and y directions~including the boundary of fixed atoms!
with three movable bilayers to six lattice constants in thex
and y directions with six movable bilayers changed~re-
duced! the adatom potential energy~at the minima, maxima,
and saddle points! by ,1022 eV. As an error bar of
61022 eV was estimated to be smaller than the accuracy
needed for this study, all the simulations were carried out
with the smaller system size — the size in they direction
being extended to 423 and 413 lattice constants for the@ 2̄11#
and@ 1̄ 1̄2# step configurations, respectively, so that periodic
boundary conditions could be applied to create vicinal steps.
Since the bulk terminated Si~111! surface and@ 2̄11# step
configurations do not relax under the Stillinger-Weber poten-
tial, with the system sizes chosen here, their corresponding
surface and step energies are reproduced exactly. However,
the @ 1̄ 1̄2# step configuration is different from the bulk ter-
minated structure, due to the 231 reconstruction at the step
edge. With the system size chosen, here it’s step energy is
reproduced to within 431024 eV/a1 .

20

The MD procedures began with initial configurations for
each (x,y) position of the adatom, corresponding to the re-
laxed adatom-free structures. Thez coordinate of the adatom
was chosen to be equal to that obtained in the final configu-
ration, during simulation with the adatom in the immediate
neighborhood of the point (x,y). For the step configurations,
V(x,y) was determined from behind to the front of the step
edge. These procedures for determiningV(x,y) were found
necessary for the@ 2̄11# step configuration, since other meth-
ods such as an arbitrary initialz coordinate for the adatom or
determiningV(x,y) from the front to behind the step edge
lead to the adatom relaxing into configurations in which it
displaces an atom near the step edge and/or moves into the
bulk. Symmetries in the~111! plane were exploited to reduce
the size of the regions in which the adatom potential energy
needs to be computed. Therefore, for the Si~111! surface,
only a sixth of the surface unit cell was explored. For this
case,V(x,y) was computed on a triangular grid — the sides
of the triangle coinciding with the high symmetry directions
with the distance between neighboring grid points being
a2/9. An interpolation scheme respecting the symmetries on
the surface was used to determine the features ofV(x,y).
For the@ 2̄11# and@ 1̄ 1̄2# step configurations, reflection sym-
metry about they axis (' to the step edge! reduced the
width of the region~along the step edge! explored to a length
of a1/2 and a1 , respectively. For these configurations,
V(x,y) was determined on a rectangular grid with the dis-
tance between neighboring grid points beinga1/16 and
a2/30 along thex andy axis, respectively. With the step edge
in the middle, the length of the region explored was 12

3a2
and 113a2 for the @ 2̄11# and @ 1̄1̄2# steps, respectively. This

FIG. 1. ~Continued!.

FIG. 2. One bilayer of the Si~111! surface consisting of the
upper monolayer~gray! and lower monolayer~black!. The figure
shows the threefold and reflection symmetry of this surface: Steps
running along directions with equalu are identical.~Borrowed from
Ref. 20.!
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was to enable an interpolation scheme~respecting the
symemetries of the step configurations! applying periodic
boundary conditions along thex axis to do the same along
they axis of the region explored. On comparing the potential
energy of the adatom on the Si~111! surface to that far away
from the @ 2̄11# step-edge errors due to the finite grid sizes,
the interpolation schemes and possibly effects due to being
close to the boundary of fixed atoms were recognized. These
errors are conservatively estimated to be60.05 eV. Since
this is much larger than the errors, due to finite size effects, it
is assumed to be the error bar in the potential energy. Barrier
values, which are differences in these potential energies, are
therefore estimated to have an error bar of60.07 eV.

III. RESULTS AND DISCUSSION

The results are shown in Fig. 1. The global minimum of
the adatom potential energyV occurs on theH3 site ~m1) on
the Si~111! surface@Fig. 1~b!#, where the adatom potential
energy is23.31 eV. This is a significant fraction of the bulk
energy per atom:24.34 eV. The relevant saddle point for
H3↔H3 transitions iss1 ~close to theT4 cite, which is a
local minimum!, where the potential energy is22.34 eV.
Thus, the barrier to diffusion on the surface is 0.9760.07 eV.
These results are consistent with previous studies~using the
same potential! on surface energies of configurations with
adatoms,19 as well as a study of diffusion on the Si~111!
surface.21 The barriers to diffusion between the minima
along the step edges are slightly smaller than the barrier on
the surface — apparently inconsistent with previous work,22

showing that step-edge fluctuations are~predominantly! due
to attachment/detachment of adatoms from the terrace and
not due to diffusion of atoms along the step edge. In this
study, the Schwoebel barrier has been defined to be the dif-
ference between the maximum adatom potential energy
~along the path on which this is a minimum!, as it moves into
the step edge from the global minimum on the upper terrace,
far away from the step edge and the same for theH3↔H3
transitions on the Si~111! surface. In other words, it is the
difference in the adatom potential energies at the barrier de-
termining saddle point on the step configurations and the
same on the free surface~s1). With this definition the
Schwoebel barrier cannot be negative. From Fig. 1~e! @Fig.
1~h!#, for the@ 2̄11# ~@ 1̄ 1̄2#! step 1, the barrier is determined
by s3 (s5), where the adatom potential energy is21.73 eV
(22.18 eV!—implying a Schwoebel barrier of 0.6160.07
eV ~0.1660.07 eV!. Growth on Si~111! is, therefore, ex-
pected to produce moundlike structures with facets consist-
ing ~predominantly! of @ 2̄11# steps. However, the experi-
ments of Yanget al. ~temperature5 27565 °C! instead
show facets with@ 1̄ 1̄2# steps.9 This discrepancy may be due
to the presence of the 737 reconstruction.

It must be noted that the Stillinger-Weber potential has
been tuned only to the properties of the bulk diamond and
liquid structures of silicon and not to any surface or step
properties. As mentioned previously, it does not produce the
correct energetics for the Si~111! surface configurations with
adatoms19 as compared toab initio calculations.23–25There-
fore, an attempt has been made to identify the robust features
of this study: Features following from changes in the coor-
dination number of the adatom. This idea is supported by the

observation that the reconstruction energy of the Si~100! sur-
face calculated using the Stillinger-Weber potential26 ~0.85
eV! agrees withab initio calculations27 ~0.84 eV!. The Ter-
soff and Dodson empirical potentials also give this energy as
the same order of magnitude.26 The Stillinger-Weber also
reproduces the correct order of energies of the@ 2̄11# and
@ 1̄ 1̄2# steps~per step-edge atom, these values are 0.72 eV
and 0.62 eV, respectively20!, as well as the presence of reb-
onding at the@ 1̄ 1̄2# step edge, as compared to tight binding
calculations~per step edge atom these values are 0.70 eV and
0.38 eV, respectively28!. During reconstruction, the coordina-
tion number of atoms„on the~100! surface and@ 1̄ 1̄2# step
edge… changes from two to three. It is, therefore, expected
that features following from such a change in coordination
number are not artifacts of the empirical potential used.
Here, the adatom energy recomputedwithout additional
relaxation of other atoms, due to the presence of the adatom,
is assumed to be a good measure of the coordination number.
Although this measure is very similar to the actual adatom
energyV(x,y), it helps to identify features that follow from
the geometry of atoms~locally around to adatom! on the
relaxed adatom-free surface or step edges. Features that do
not change significantly, due to additional relaxations in the
presence of the adatom, are expected to be robust. The ada-
tom potential energyVlg(x,y) has therefore been recomputed
with other atoms fixed at positions corresponding to the re-
laxed adatom-free structures. These results are shown in Fig.
1~c! for the Si~111! surface, Fig. 1~f! for the @ 2̄11# step, and
in Fig. 1~i! for the @ 1̄ 1̄2# step. Similarities in the contour
plots ofV andVlg suggest a strong correlation between them.
This correlation is evident from the linear relationship be-
tweenVlg andV ~Fig. 3! The lines in Fig. 3 are best fits to
Vlg(x,y) vs V(x,y), which were explicitly computed at the
grid points. There is no repetition of points that are equiva-
lent, due to the symmetries of the relevant configurations.

FIG. 3. Plots of the adatom potential energy derived from the
local geometry of fixed atomsVlg vs the actual adatom potential
energyV. The straight line fits show the strong correlation between
V lg andV. The rough configuration independence of the relation-
ship suggests that it is a characteristic of the~111! surface.
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Further, for the step configurations, the length of the region
along they axis corresponding to these plots is 1/2a2 on
either side of the step edge. The rough configuration inde-
pendence of the relationship betweenV lg andV suggests that
it is a characteristic of the@111# surface. A similar behavior
may be true for the Si~100! surface and single height steps on
it. In this case, borrowing the values ofV corresponding to
the features~minima and saddle points! from previous work
by Roland and Gilmer,16–18and computingV lg for the same
features here, it is found thatVlg5(1.360.2)V1(1.260.5)
for the Si~100! surface andVlg5(1.160.1)V1(0.660.3)
for the combined data from the three single height steps.

A. Relevance to electromigration experiments

Recent experiments on the electromigration of steps on
Si~111! ~Refs. 11 and 12! can be reinterpreted in the presence
of a Schwoebel barrier, by modifying the boundary condi-
tions to the diffusion equation for adatom concentration used
previously by Stoyanovet al.14 to describe step bunching
~see Appendix A!. This particular modification is to suppress
the strength of the step as a source of adatoms onto the upper
terrace relative to the same onto the lower terrace by a factor
ee, wheree52Es /kbT, with Es being the Schwoebel barrier.
With this modification, the equations for adatom concentra-
tion on a particular terrace has four length scales — the
diffusion lengthl and the scale introduced by the electromi-
gration forcef ~5F/kbT), both of which are parameters en-
tering the diffusion equation and two other scalest0 and t1
entering the boundary condition to this equation at the upper
and lower terrace step edges, respectively
(t0,15b0,1/a

2Dne , a
22 is the density of atoms in a terrace,

D is the diffusion constant,ne is the equilibrium adatom
density, andb is the step kinetic coefficient — here the
Schwoebel barrier is modeled as making this parameter as-
sume different values at the upper and lower terrace step
edges!. These are, in addition to the scale, introduced by the
terrace widthW. Since the modification is further designed
to keep the total strength of the step as a source of adatoms a
constant independent ofEs , t01t15t — a constant indepen-
dent ofe for fixed kbT ~the variation oft with Es is included
in the estimated range oft), with t0 /t15ee. The ~linear!
diffusion equation is then solved, withne appearing in the
boundary conditions as a ‘‘source,’’ to obtain the spatial
variation of the adatom concentration.

Using the above solution, the equations for the velocities
of an array of steps with positionsXi are developed — the
step indexi increases in the step down direction, which is
also the positivex axis. The time scale that enters these
equations is the lifetime of an adatomt lf . These equations
have the following form~see Appendix A!:

Ẋn5
ue
t l f

l@g2~e,tl, fl,Wnl
21!1g1~e,tl, fl,Wn21l

21!#,

~1!

where ue5nea
2 and the terrace widthWn5Xn112Xn .

From the above, equations for the rate of change of the ter-
race widths can be obtained. Linear stability analysis of these
equations around an average terrace widthw would predict
when the step-bunching instability occurs. The linearized
equations may be written as follows:

ḋn5k2ḋn111~k12k2!ḋn1k1ḋn21 , ~2!

wheredn5Wn2w and k65(ue /t lf )l@]g6 /]W#W5w . The
instability occurs if29 k12k2.0 or equivalently ~since
k11k2,0, for w.0), when the anisotropy ratio
r5(k1 /k2),1. This analysis is similar to the work of Ghez
et al.,30 which includes an external flux with the electromi-
gration force being absent.

The recent experiment of Williamset al. on reversible
step bunching on Si~111!, which measures an ‘‘effective’’
anisotropy ratior eff ~near bunched steps! in the temperature
range 1155–1215 °C~this range includes the corrections,
due to the emissivity of the optical pyrometer, used in the
experiment12!, can now be used to determine an upper bound
on Es (Es

u) and a lower bound onF (Fl), by solving the
equationt215k12rk250. The solution to this equation is
obtained by estimating the parametersw, t, and l ~in the
temperature range of interest: 1155–1215 °C and then deter-
mining f as a function ofe. The estimates of the upper and
lower bounds ont andl are madeconservatively — the
range is made wide enough so as to include the ‘‘true value.’’
Experimental observations of Latyshevet al.11 show that
around a temperature of 1200 °C, the step velocity varies
linearly with the terrace width upto a width of 2mm. A lower
bound on the diffusion length31 of 0.5 mm is obtained by
reproducing this result using Eq.~1!. This estimate is robust
against large changes in the parameterst and f . To make this
estimate,e is conservatively chosen to be zero. Further, to
first order inwl21, g11g252wl21 — independent of
t, e, and f . Therefore, the magnitude of the slopes of the
above curves correspond to the evaporation rates
r5ue /t l f . An estimate of the upper bound onl is obtained
by estimating the diffusion constant31 D @using
D5b2ne2Ea /kbT, b53.84 Å, n51013 s21, Ea50.97 eV
~calculated here!# and an estimate of the upper bound on
t l f5nea

2/r . @The temperature dependence ofr in the data
from Latyshevet al.11 is consistent with the theory of Burton
et al.32 ~BCF!, with an activation energy equal to the cohe-
sive energy of silicon (Eb54.34 eV!.# The upper bound on
ue is assumedto be 0.167 — the primary motivation for
this is that it is measured to be' 0.1 around 900 °C and33 its
activation energyEn , which is equal toEb2Et (Et is the
activation energy fort l f

21) from the BCF theory, is estimated
to be negative, since total energy calculations34 predict
smaller surface energies for silicon surfaces with adatoms as
compared to the 131 surface thereby makingEt.Eb . The
specific value of 0.167 is chosen as it corresponds to the
density in anyA33A3 configuration of adatoms, wherein all
the floating bonds on the 131 substrate are saturated by
bonding with the adatoms — at higher densities adatom in-
teractions areexpectedto be significant. This bound is,
therefore, required here as a measure of internal consistency
in the analysis, since the diffusion equations used correspond
to free adatoms. The upper bound ont lf is calculated using
this value ofue . As the variation inne has been argued to be
small,31 En'0 andEt'Eb.Ea . The estimate of the upper
bound onl „5(Dt lf )

1/2
… is, therefore, made at the lowest

temperature of interest and is equal to' 70 mm. The upper
bound used in this study is'7 times this value, making 0.5
mm < l < 0.53103 mm.
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The estimate of the range oft is obtained from the range
of l, the measuredr (T2) ~Ref. 11! and ue(T1) ~Ref. 33!,
and the relation betweenbs5b01b1 and the measured step
mobility G(T1) ~Ref. 22! (T1 corresponds to 900 °C and
T2 corresponds to temperatures of interest!. At the same
temperature,bs5G/a2 ~see Appendix B!. From a model of
attachment-detachment at the step edges~see Appendix B!,
the temperature andue dependences ofbs is determined:

bs}
~e22Ea /kbT1e22~Ea1Es!/kbT!ue

2

12ue
.

The upper bound onbs is derived using the above depen-
dence from the lower bound5G(T1)/a

2 (Ea50.97 eV,Es is
set equal to a value that gives the largest increase!. The pa-
rametert is then evaluated usingt5bs /a

2Dne . This gives
upper and lower bounds ont:

tu,l5
G~T1!

a2l2r ~T2
1!

3S 1,r ~T21!@12ue~T1!#

r ~T2
2!@12ue~T2

1!#

@e2Ea /kbT2
1

T2
1ue~T2

1!

e2Ea /kbT1T1ue~T1!
G 2,

whereT2
1 (T2

2) corresponds to the highest~lowest! tempera-
ture in the range of interest. The values ofr (T2

1) and
r (T2

2) are obtained from the data of Latyshevet al.11 using
Eb54.34 eV,G(T1) from a previous measurement of Bartelt
et al.,22 Ea 5 0.97 eV, ue(T1) 50.1 ~measured by Yang
et al.33!, and u(T2

1)50.167 ~as assumed previously!. This
results in 7.73103 mm/l2<t<7.73103 mm/l23103.1. The
range oft, therefore, depends on the value ofl.

The value of the parameterw used here is equal to the
average terrace width in the experiment of Williamset al.12

~50.15mm!, who determinereff to be 0.2060.03. It must be
noted that the extraction ofr from the experiment had used
a theory35 which makesreff5r(wl2150) (w was much
smaller than the average terrace width since, in the theory
used, it corresponded to the distance between bunched
steps!. In this study, it is assumed thatr eff5r(wl21Þ0) —
this may be a reasonable approximation since, here,
lmin5 0.5mm and theWmax in the experimental data used to
determinereff was as large as 0.6mm. This approximation is
motivated by the need to study the solution oft2150, in-
cluding the full nonlinearity inwl21.

The procedure for determiningEs
u andFl assumes that an

electromigration forceF causes the step-bunching instability
(r50.2! with 2F restoring the stability (r>1). This as-
sumption is motivated by the observation12 that a current in
the step up direction causes the step bunching, whereas an
equal magnitude in the step down direction results in uni-
formly spaced steps.Es

u andFl are determined by studying
the solutions tot2150 ~fixing t, l, andw) for r50.2 and
r51.0 . The variation oft21 with F ~with typical values of
t, l, w, Es , andr) is shown schematically in inset~a! of
Fig. 4. Of interest is the solution that exists even in the limit
wl2150 ~the other two solutions do not exist in this limit!.
The variation of this solution withEs ~fixed t, l, andw) for
r50.2 andr51.0 is shown schematically in inset~b! of Fig.
4. The two curves show that beyond a certain value ofEs , a

force2F ~with F resulting inr50.2! cannot restore stabil-
ity. This value is, therefore, the upper bound (Es

u) on Es .
Below Es

u , the magnitude ofF needed forr50.2 is larger.
The value ofF at Es

u is, therefore, the lower bound (Fl) on
F. F05F(Es50,r50.2).

Figure 4 shows the variation ofFl , Es
u , andF0 with the

parameterst andl ~w50.15mm!. As noted previously, the
range of thet depends on the value ofl, with additional
restrictions on the upper bound oft. These restrictions are
due to the absence of the solution~of interest! to t2150 for
small l and larget. This seems to correspond the behavior
observed at higher temperatures,12 wherein a current in the
stepdowndirection causes the step bunching instability. For
tw<1, the curves in Fig. 4 correspond to the limit
wl21→0 and can be obtained by solvingt2150 to zeroth
order inwl21. This gives

F5
kbT

l2t S ~11e22Es /kbT!2r~11e2Es /kbT!

r21 D . ~3!

FIG. 4. Inset ~a! shows schematically the variation of
t215k12rk2 with F. The solution tot2150 ~of interest! is
Fr , which exists even in the limitwl2150, whereas the other two
do not. Inset~b! shows schematically the variation ofFr with Es for
r51.0 andr50.2. The upper bound onEs (Es

u) is determined
from the conditionF(Es.Es

u ,r51.0),2F(Es>Es
u ,r50.2). It

can be seen thatF(Es
u ,r50.2) is the lower bound onF (Fl).

F05F(Es50,r50.2). For the curves shown,w50.15 mm, 0.5
mm <l<0.53103 mm ~seven values equally spaced on the loga-
rithmic scale!, with the range of t depending on l:
7.73103 mm/l2<t<7.73103 mm/l23103.1 (l.7 mm!. The
upper~lower! limits of t are marked by1 (3). For l,7 mm, the
upper limit of t is forced to be smaller than that estimated, since the
solutionFr ceases to exist. Forl,1 mm,Fr does not exist for even
the smallestt. This shows thatlmin51 mm. For wl21→0,
Es
u50.35kbT50.05 eV ~for the experiment in Ref. 12!—

significantly less than that calculated here for the@ 2̄11# step~0.61
60.07 eV!. This suggests that@ 1̄ 1̄ 2# steps were observed.
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Using the above expression,Es
u , Fl , andF0 are found to be

Es
u5

kbT

2
lnS 31r0

3r011D , ~4!

Fl5
kbT

l2t S 4~12r0
2!

~31r0!~3r011!
D , ~5!

F05
kbT

l2t S 2~12r0!

11r0
D , ~6!

with r050.2 ~here!. Equation~4! givesES
u50.05 eV for the

experiment of Williamset al.12 This is much smaller than the
barrier calculated here for the@ 2̄11# step ~0.6160.07 eV!,
suggesting that@ 1̄ 1̄ 2# steps were seen in the experiment.
From Eq.~6! and the electric field in the experiment12 ~700
V/m!, the ~maximum! charge needed on the adatoms@in
units of the~negative! electronic charge# is estimated to be
reasonably small—in the range 331022 to 331025.1. From
Fig. 4, it can be seen that with a Schwoebel barrier the
charge needed is always smaller than with a zero barrier. For
tw.1, the deviation of the curves from the above expres-
sions is significant — this is due to the dependence oft21 on
wl21, which requires that terms of orderwl21 and higher
be considered. In this range, the minimum charge needed on
the adatoms~usingFl) continues to have a reasonable lower
limit as it is in the range 23101 to 731025.

IV. CONCLUSIONS

In summary, the adatom potential energy contours have
been calculated for the 131 reconstructed Si~111! surface
and the two high symmetry single height steps on it using the
empirical Stillinger-Weber potential. From these plots, diffu-
sion barriers along the path of minimum barrier height can
be calculated for transitions between any two minima. The
results show that barriers for diffusion in the trench along the
step edge are smaller than that between that global minima
on the free surface. There is also a strong correlation be-
tween that adatom potential energy and the potential energy
derived from the local geometry of atoms on the adatom-free
surface or surface or Si~111! surface~0.9760.07 eV! and the
Schwoebel barrier on the@ 2̄11# step~0.6160.07 eV! are ro-
bust features, due to changes in adatom coordination number.
Interpreting recent electromigration experiments in the pres-
ence of a Schwoebel barrier shows that smaller values of
electronic charge on the adatoms can account for the obser-
vations. It also suggests, in the limit where the diffusion
length (l) is much larger than the terrace width (w), that
@ 1̄ 1̄ 2# steps were observed in the experiment.12 However,
this conclusion relies on assumptions regarding the nature of
the atomic processes at the step edge@that these processes
may involve two atoms~at a kink site! which see the barriers
as computed here# and thatwl21→0. Future studies ad-
dressing these assumptions may interpret electromigration
experiments differently.
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APPENDIX A: ANALYSIS OF THE DIFFUSION EQUATION
FOR STEP MOTION

The diffusion equation for noninteracting adatoms sub-
liming in the presence of an electromigration forceF perpen-
dicular to the step edge and the absence of an external flux
may be written in the ‘‘adiabatic approximation’’~which ne-
glects the time derivative of the density! as follows:14,30

d2n

dx2
2 f

dn

dx
2

n

l2 50, ~A1!

wheren is the density of adatoms,f5F/kbT, l is the diffu-
sion length, and the positivex axis coincides with the step
down direction. This equation can be solved using the
boundary conditions on the currentj „5D@2dn/dx1 f n#,
whereD is the diffusion constant…. These conditions deter-
mine the step velocityV @5a2(2 j l1 j u), wherea

2 is the
inverse terrace density,j u is the current towards the step
edge from the upper terrace, andj l is the current away from
the step edge on the lower terrace# and define the step kinetic
coefficientb. In the presence of a Schwoebel barrier (Es),
this parameter is modeled as assuming the valuesb0 and
b1 at the upper (x50) and lower (x5W) terrace step edges,
respectively, with b0 /b15ee, where e52Es /kbT. The
boundary conditions can now be written as follows:

F2
dn

dx
1 f nG

x50

52
tee

11ee @n~0!2ne#,

F2
dn

dx
1 f nG

x5W

5
t

11ee @n~W!2ne#, ~A2!

where ne is the equilibrium density and t5(b0
1b1)/a

2Dne . The solution to the diffusion equation under
the above boundary conditions is shown below:

n~x!5ne~Ae
Wl21h11BeWl21h2!, ~A3!

with

h65 fl/26A@11~ fl/2!2#,

A5
ceWl21h22w

fceWl21h22wxeWl21h1
,

B5
f2xeWl21h1

fceWl21h22wxeWl21h1
,

where

f512
~h12 fl!~11ee!

tlee , w512
~h22 fl!~11ee!

tlee ,

x511
~h12 fl!~11ee!

tl
, and c511

~h22 fl!~11ee!

tl
.

The velocity (Vn) of a particular step edge (Xn) can now be
calculated:
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Vn5a2$2 j l@5 j ~x50,W5Xn112Xn!#

1 j u@5 j ~x5W,W5Xn2Xn21!#%.

From the functional form of the density and using
D5l2/t l f (t lf is the lifetime of an adatom!, it may be seen
that

Vn5
nea

2

t l f
l~g21g1!, ~A4!

whereg6 are dimensionless functions of dimensionless ar-
guments given by

g2~e,tl, fl,Wl21!5tl@ee~A1B21!/~11ee!#,

g1~e,tl, fl,Wl21!

5tl@~AeWl21h11BeWl21h221!/11ee#,

with the symmetryg1(2a,b,2c,d)5g2(a,b,c,d).

APPENDIX B: AN ATOMIC MODEL FOR THE STEP
KINETIC COEFFICIENT

The step kinetic coefficientb was introduced by
Chernov36 through the supposition that the currents (j l from
the lower terrace andj u from the upper terrace! towards a
step edge~at x5X) are proportional to the deviation of the
adatom densityn in the neighborhood of the step from the
equilibrium densityne . From the model adopted here, it will
be shown that, in the presence of a Schwoebel barrier, this
parameter assumes different values, i.e.,b0 andb1 determin-
ing j l and j u , respectively:

j l52
b0

a2 Fu~X1!2ue
ue

G , j u5
b1

a2 Fu~X2!2ue
ue

G , ~B1!

wherea251/~terrace density!, u5na2, andue5nea
2, with

the positivex axis in the step down direction. These equa-
tions serve as the boundary conditions used in this work@Eq.
~A2!#.

The temperature dependence ofb0 (b1) can be derived
assuming an activated model for adatom attachment-
detachment at the step edge from the lower~upper! terrace
with the single atom activation barrier beingEa (Ea1Es),
whereEa is the barrier on the free surface andEs is the
Schwoebel barrier.37 However, since silicon has two atoms in
its unit cell,success fulattachment-detachment processes at
the kink sites of steps must involve two atoms. Single atom
processes from energetically favorable step-edge configura-
tions lead to unfavorable ones and are expected to have very
large barriers. Further, the probability of simultaneous at-
tachment~detachment! of two atoms is proportional toue

2 @
(12ue)

2#. The currents are, therefore, given by

j l52
n le

22Ea /kbTu22cl~12u!2

ai
,

j u5
nue

22~Ea1Es!/kbTu22cu~12u!2

ai
,

whereai is the lattice constant along the step andn l ,u are
‘‘effective’’ attachment attempt frequencies. The vanishing of
these currents in equilibrium~when u5ue) determine the
constantscl ,u . Further assumingn l5nu5n and neglecting
terms of the order (u2ue)

2, gives

j l52
2nuee

22Ea /kbT

ai~12ue!
~u2ue!,

j u5
2nuee

22~Ea1Es!/kbT

ai~12ue!
~u2ue!,

from whichb0 andb1 can be identified. Hence,

b01b15
2na2

ai
F ue

2

12ue
G~e22Ea /kbT1e22~Ea1Es!/kbT!,

~B2!

b0

b1
5e2Es /kbT. ~B3!

Relationship between the step kinetic coefficient
and the step mobility

To relate the step mobilityG and the step kinetic coeffi-
cient bs5b01b1 , the expression for the step velocity
@dX/dt5a2( j u2 j l)# must be obtained in terms ofbs .

38

From Chernov’s defining equations~B1!,

dX

dt
5

1

ue
@b1u~X1!1b0u~X2!2bsue#. ~B4!

This equation needs to be extended to account for the two
dimensional character of the step: The currents towards the
step edge are proportional to the deviation of the chemical
potentialm from the equilibrium chemical potential near the
step edgeme

s . These relationships may be assumed to be the
defining equations for the step mobilitiesG1 andG0:

j u5
G0

a4
@m~X2!2me

s#, j l52
G1

a4
@m~X1!2me

s#.

~B5!

Assuming the existence of a coarse-grained free energy func-
tional F of the step configuration$x(y)%, ms

e is given by
Mullins39 to be

me
s5me1

a2

kbT

dF „x~y!…

dx
, ~B6!

whereme is the equilibrium chemical potential on the terrace
far away from the step edge. Further adopting his model of a
dissolving substance for the adatoms, and in an approxima-
tion in which the deviation of the densityu from the equi-
librium densityue ~the density far away from the step edge!
is much smaller thanue , the chemical potential and the den-
sity can be related by39

m~u!2me5kbT
u2ue

ue
. ~B7!

Using Eqs.~B6! and~B7!, it can be seen that the equilibrium
density beside the step edge is different fromue .

40–42 Fur-
ther, using Eq.~15!, the step velocity can be given by
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]x

]t
5

1

ue
FG1

a2
u~x1!1

G0

a2
u~x2!

2
Gue
a2 S 11

a2

kbT

dF „x~y!…

dx D G , ~B8!

whereG5G01G1 . In the absence of an external force on the
adatoms and when attachment-detachment of atoms from the
terrace onto the step edge is rate limiting in relation to ter-
race diffusion, it is expected thatu(x1)5u(x2)5ue . Then,
Eq. ~B8! reduces to the Langevin equation~without the noise
term z):43,22

]x

]t
52

G

kbT

dF „x~y!…

dx
1z~y,t !.

Within the small slope approximation (]x/]y,,1),
dF „x(y)…/dx}]2x/]y2. The spatial average~over y, de-
noted by^&) of this term vanishes, due to periodic boundary
conditions. Identifyinĝ x& with X, assuming that the density
is independent ofy, and approximatinĝu(x)&5u(X), Eq.
~B8! ~on spatial averaging! gives

dX

dt
5

1

ue
S G1

a2
u~X1!1

G0

a2
u~X2!2

Gue
a2 D . ~B9!

Equations~B4! and ~B9! agree if

b0,15
G0,1

a2
⇒bs5

G

a2
. ~B10!
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