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Electronic transmittance vs energy for two identical coupled random-dimer chains is investigated within the
Anderson tight-binding model. The electronic transmittance is calculated by using the Block recursion algo-
rithm proposed by Godin and Haydock. The single-chain random-dimer result such as occurrence of band of
nonscattered states is recovered for very small interchain hopping parameter. The transmittance vs energy
curve shows a resonance pattern, which is highly sensitive to both interchain hopping and lead positions. Even
for the moderate interchain hopping the band of nonscattered states gets modified by appearance of strong
fluctuations or irregular dips leading to a new pattern for the transmittance vs energy curve.

I. INTRODUCTION

Electronic states in random potentials are localized both
in one and two dimensions even for infinitesimally small
disorder.1(a) However, in the past Azbel1(b) and others1(c),18

have reported the existence of extended states appearing in
the form of exponentially narrow resonances in electronic
transmission through random potentials at energy points ran-
domly positioned in the spectrum. In recent years much ef-
fort has been devoted to the study of electronic transport in
disordered systems which have some kind of short-range cor-
relation in the potential.2–11 In these works the existence of
extended states in a disordered potential in one dimension
with a short-ranged spatial correlation is predicted, in con-
trast to the all-states-localized situation for a random poten-
tial without any spatial correlation.1(a) In this context many
models have been proposed to describe some realistic situa-
tion, as one can have, for example, in the transport mecha-
nism for conducting polymers2–5 or quasi-one-dimensional
~quasi-1D! superlattices,8,12–15 etc. The simplest of these
models is the random-dimer model~RDM! of Dunlap, Wu,
and Phillips.2 It has been shown by Wu and Phillips3 that a
single protonated strand of conducting polymer polyaniline
can be described by the RDM. Recently, attempts have been
made to describe the electronic transport mechanism in some
superlattice structures by Kronig-Penney-type models for
random-dimer potentials.8 It has been realized that RDM’s
support a band of nonscattered states which can account for
the enhanced conductivity in these materials.3–5 It has been
shown that a source of delocalization even in the dense de-
fect limit arises from the single-impurity resonance effect,
and eventually forms a broad resonance of finite width
~where transmittance is unity! around the dimer defect reso-
nance energy. However, the detailed numerical calculation
by Datta, Giri, and Kundu7 for finite concentrations of dimer
defects have shown that the width is sensitive to the choice
of site energies and concentration. In all these physically
relevant systems, in which randomness as well as some
short-ranged correlation is present, one hopes to have trans-
port dominant only in one direction. Thus the result of the
one-dimensional Hamiltonian is thought to be sufficient to

describe the physical situation one observes in polyaniline or
in other relevant systems. However, the idea of modeling a
real system by coupled chains with small interchain coupling
or by an effective single chain may break down in some
situations. Wu and Phillips3 think that the dynamics will be
inherently two dimensional if the transverse hopping dis-
tance is comparable to the single-chain length. The effect of
electron tunneling in the transverse direction may become
important in general in many realistic quasi-1D systems.12–15

This motivated us to study electronic transport in a system
of two coupled random chains with short-range correlation.
We consider the short-range correlation within the RDM. As
we will see, our investigation will throw some light on trans-
port characteristics influenced by the interchain hopping con-
tributions. The idea is to check, for small or moderate values
of interchain hopping, whether the resonant features within a
broad band are really preserved. Another possibility is that
different localization-delocalization behavior may set in due
to the same interchain tunneling but with different lead con-
figurations.

II. MODEL OF TWO COUPLED RANDOM-DIMER
CHAINS

Here we describe the electron motion in a two-coupled-
chain geometry by an Anderson tight-binding Hamiltonian.
The Hamiltonian can be written as

Ĥ5 (
n52`

1`

~Pn
†«nPn1Pn

†Vn,n11Pn111Pn11
† Vn11,nPn!,

~1!

where«n , Vn,n11 , andPn are the following matrices with
site and chain indices:
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† andbn

† are creation operators in two chains, respectively.
The two chains have been considered to be identical. Thus

here an arrangement of sites in a single chain is all that is
necessary. We generate the random-dimer model by assign-
ing the site energy to a pair, called a dimer, distributed ran-
domly along the chain. The site energyen

1 is selected from
the value generated from a random number sequence
(0,R,1) in the following way: IfR,c,

H en
15eA

en11
1 5eA

J ,
while for, R.c,

H en
15eB

en11
1 5eB

J ,
c being some fraction.

This is a quasi-1D system, where short-ranged correlation
is due to the block of four impurity sites, and the interchain
hoppingtc is considered to be finite in contrast to the single
random-dimer chain where a pair of sites is occupied by the
same species. The model of two identical coupled random-
dimer chains simulates a quasi-1D wire, where the impurity
atoms appear within a block in the host.

We focus our main interest in the regimetc<t, which
constitutes a different physically distinct regime as compared
to the decoupled chain limit, i.e.,tc!t.

III. BLOCK RECURSION ALGORITHM

We employ the block recursion algorithm of Godin and
Haydock to calculate quantum electronic transmittance. This
method has proven to be numerically stable in 1D, 2D, and
3D systems.16–18The Hamiltonian of the sample is taken to
be a tight-binding model with only nearest-neighbor overlaps
nonzero. We attachM number of 1D incoming leads on one
side of the sample, andM number of 1D outgoing leads on
the opposite side of the sample. The leads are perfectly con-
ducting, having a Hamiltonian of the form

HL5VL(
i

(
j

u i &^ j u. ~2!

VL can be adjusted to make the lead bandwidth comparable
to or larger than that of the sample. These leads support
incoming and outgoing waves into and away from the
sample.

The aim of the method is to calculate transmittance and
reflectance~which are related to the square modulus of non-
diagonal and diagonal elements of the@Spq# matrix, where
p andq are lead indices! for the stationary state problem

ĤuC&5EuC&. ~3!

In this method, a basis is calculated recursively in which the
sample Hamiltonian becomes block tridiagonal, i.e., if we
partition the sample Hamiltonian into matrix blocks of size
2M32M then only diagonal and subdiagonal blocks are

nonzero. The lead Hamiltonian is kept unchanged. The first
elementuf1& of this basis is chosen to be

uf1&53
u1
I

u2
I

A

uM
I

u1
O

u2
O

A

uM
O

4 , ~4!

whereu’s refer to those orbitals of the samples where leads
are attached. HereI andO refer to incoming and outgoing
channels. Subsequent elements of the basis are generated
from the following relations:

B2
1uf2&5~Ĥ2A1!uf1&, ~5!

Bn11
1 ufn115~Ĥ2An!ufn&2Bnufn21&

where n>2. ~6!

If the original basis of the sample containingN orbitals was
represented byN row vectors of sizeN, then the basis is
represented by matrices of size 2M3N. An’s andBn’s are
2M32M matrices,

F An5fn
1Ĥfn

Bn5fn11
1 Ĥfn

B1pq
5dpqVL

G .
The solution of the stationary-state problem in Eq.~1! is
given by

uC&5(
n

cnufn&. ~7!

The projectionscn’s of the stationary-state solutionuC& into
the basis$ufn&% is calculated from the relation

cn5Xnc01Ync1 , ~8!

uf0&53
u1
0

u2
0

A

uM
0

uM11
0

A

u2M
0

4 , ~9!

whereu0’s refer to the orbitals atM lead ends coupled to the
sample via matrix elementVL•c

0’s is the projection ofC
into uf0&. Xn’s andYn’s are 2M32M matrices calculated
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by the same recursion relation that was used to calculate the
basis, withEI replacing the HamiltonianĤ and with the
initial choices,X05 Î , Y050̂, X150̂, andY05 Î . X’s and
Y’s and 0̂and Î are 2M32M matrices.

As the sample basis space is of rankN, our basis is
spanned byN/2M5p independent elements. This leads to
the boundary condition

cp1150. ~10!

The solution of Eq.~3! in the leads are Bloch waves of the
form

cL5(
m

A exp~6 imu!um&, ~11!

whereu is the relative phase between the projections ofcL
into themth and (m11)th site orbitals of the leads, and
cosu5E/2VL . The second boundary condition comes from
the known solution in the leads,

cm5S exp~ imu!1r 1,1exp~2 imu!1r 1,2exp~2 imu!1•••1r 1,Mexp~2 imu!

exp~ imu!1r 2,1exp~2 imu!1r 2,2exp~2 imu!1•••1r 2,Mexp~2 imu!

A

tM11,1exp~ imu!1tM11,2exp~ imu!1•••1tM11,Mexp~ imu!

tM12,1exp~ imu!1tM12,2exp~ imu!1•••1tM12,Mexp~ imu!

A

t2M ,1exp~ imu!1t2M ,2exp~ imu!1•••1t2M ,Mexp~ imu!

D , ~12!

m being 0 or 1.

cm8 53
t1,M11exp~2 imu!1t1,M12exp~2 imu!1•••1t1,2Mexp~2 imu!

t2,M11exp~2 imu!1t2,M12exp~2 imu!1•••1t2,2Mexp~2 imu!

A

tM ,M11exp~2 imu!1tM ,M12exp~2 imu!1•••1tM ,2Mexp~2 imu!

exp~ imu!1r M11,M11exp~2 imu!1r M11,M12exp~2 imu!1•••1r M11,2Mexp~2 imu!

exp~ imu!1r M12,M11exp~2 imu!1r M12,M12exp~2 imu!1•••1r M12,2Mexp~2 imu!

A

exp~ imu!1r 2M ,M11exp~2 imu!1r 2M ,M12exp~2 imu!1•••1r 2M ,2Mexp~2 imu!

4 , ~13!

m being 0 or 1.

cN118 5XN11c081YN11c1850. ~14!

Here r stands for the reflection coefficient, andt stands
for the transmission coefficient in Eqs.~12! and ~13!. If we
now interchange the incoming and outgoing leads we obtain
another set of boundary conditions.

From the boundary conditions written in expression~10!
and ~11!–~15!, we obtain the expression for theSmatrix:

S5S r t

t8 r 8
D 52@XN111YN11exp~2 iu!#21

3@XN111YN11exp~ iu!#. ~15!

The total transmittance is given by

T5(
i

(
o

U tOI2MU2 ~16!

and the total reflectance is given byR5( I( I 8ur II 8/2M u2.
Here we haveR1T51 due to current conservation. Further-

more, as there is no applied magnetic field, the time-reversal
symmetry holds good, and soSi j5Sji .

The relation between conductance and transmittance has
been obtained in many contexts regarding both single-
channel and multichannel situations, either from the Kubo
formula or from the Landauer formula.19

IV. RESULTS AND DISCUSSION

In our calculations we have chosen a site energy corre-
sponding to the lead Hamiltonian to be zero, while the intra-
chain hopping in the leads is unity and chosen to be the same
as the intrachain hopping of the sample. The interchain hop-
ping of the sample is considered to be small fortc!t values,
and large whentc becomes of the order oft values.

We have studied the total transmittance (T) for the two
coupled random-dimer chains with the same hopping param-
eter t along the chains and different choices of the param-
eterse, i.e., (eA , eB), and concentrationc of dimer impuri-
ties in the chains. We first choose a set of parameters
eA50.5, eB50.25, c50.10, andtc50.001 for the calcula-
tion of transmittance for a wide range of energies, namely
from 21.0 to 1.5 in units of hopping parameters in the lead
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Hamiltonian. First we attach two decoupled 1D leads on ei-
ther side along the direction of the sample length; that is, the
calculation is done in the four-lead geometry. In Figs. 1~a!
and 1~b! T vs energy (E) is plotted for the first set of param-
eters for a system sizeN53256 sites. One can clearly see
that for a finite range of energy values aroundE50.50 the
transmittance becomes almost flat, i.e., (T;1), a wide re-
gion over which transmittance resonance is maintained. We
can consider this value oftc to be small enough to produce
the single random-dimer chain result. This also suggests that
the choice of our system size seems to be appropriate for
studying delocalization or resonance aspects in such
quasi-1D systems. It is also indicative of the fact that these
are extended states of nonzero measure, which is at least true
for such finite sample sizes.

We do the calculations for another set of parameters, i.e.,
eA50.42, eB50.30, tc50.001,c50.20, andN53256 sites.
The transmittanceT vs energy plot for this case is shown in
Fig. 1~b!, clearly showing again the single-chain dimer re-
sult, i.e., the existence of nonscattered states for a range of
energy values aroundE50.42.

Next we choose the interchain hopping parametertc to be
comparatively large, to make the electron motion in the
transverse direction significant so that transport characteris-
tics dramatically change from the strictly 1D situation. We
calculate the transmittance foreA50.5, eB50.25, c50.10,
and tc50.35, for two different system sizesN52256 and
3256 sites. In Fig. 2 the lnT vs E plot is shown for the two
different sizes, respectively. One can hardly distinguish the
two curves since the resonant features do not change much
with the increase of system size. Here the lnT vs E plot

shows the growth of lnT from the left or right of the whole
energy region concerned. It has a different delocalization na-
ture for the states having lnT;0 than the nonscattered states
one observes in Figs. 1~a! and 1~b!. The regime of energies
where lnT;0 corresponds to states with large localization
lengths.

Now we go to a regime of transverse hopping, where the
parameter tc50.125, 0.25, and 0.50 foreA50.42,
eB50.30,c50.20, andN52256 sites. Transmittance versus
energy graphs have been shown, respectively, in Figs. 3~a!,
3~b!, and 3~c! for these parameters, and in the four-lead ge-
ometry as before. Here the input and output leads are at-
tached to the ends along the chain direction. Note that we
have also considered the lnT vs energyE plot here for finite
chain couplingtc . In this situation the motion of electrons in
the transverse direction also becomes significant, and the to-
tal transmittance gives a clear signature of the combined in-
terference effects due to the motion of electrons along the
chain direction as well as in the transverse direction. Thus,
with the increase of interchain hopping parameters between
0.1 to 0.5, the overall resonance features in the transmittance
drastically changes to a fluctuating pattern over all energy
scales. In the resonant region~where lnT;0) it shows almost
uniform fluctuations. Thus here for a wide range of energies
the delocalization of states is manifested as before, with an
underlying fluctuation pattern in contrast to the extended
states ~transmittance is flat andT→1.0) in the single
random-dimer chain. Now we will analyze situations where
electronic transmittance has been calculated in different mea-
surement geometries, and where first, the input and output
leads are considered to be at the corners of the sample, and
second, a situation where the leads are on the two sides

FIG. 1. ~a! Transmittance (T) vs energy (E) for eA50.50,
eB50.25, c50.10, tc50.001, andN53256 sites. t51.0. ~b!
Transmittance (T) vs energy (E) for eA50.42, eB50.30,
c50.20, tc50.001, andN53256 sites.t51.0.

FIG. 2. Logarithm of the transmittance (lnT) vs energy (E) for
eA50.5, eB50.25, c50.10, tc50.35, t51.0, N52256 ~dashed!,
andN53256 ~solid!.
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of a single chain. We see how resonance features may be-
come different in such different input-output lead configura-
tions. In Fig. 4~a! a transmittance vs energy plot has been
shown when input and output leads are at the corners and the
interchain couplingtc is finite; here we choosetc50.045.
However, the other chain parameters are the same as in Figs.
3~a!–3~c!, and for the system sizeN53256 sites. Similarly,
Fig. 4~b! shows the same plot but with input-output leads
attached to the left and right sides of the lower chain, respec-
tively, for the same set of parameters as in Fig. 4~a!. If we
compare Figs. 4~a! and 4~b! the distinct nature of the
localization-delocalization aspects have been reflected
through the lnT vs E curve for the same sample, but with
different lead configurations. In both figures the lnT vsE plot
gives a clear signature for regions of many delocalized states
as well as sharp dips which occur in an irregular fashion. As
one increasestc , more and more dips appear in an irregular
fashion in the vicinity of states having lnT;0. This is attrib-
utable to the underlying quantum interference effects under
different lead configurations.

Next we go over to a situation where the interchain cou-
pling tc becomes the same as the intrachain couplingt. Re-
sults for lnT vs energyE have been shown in Figs. 5~a! and
5~b! for two different set of parameters. A strongly fluctuat-
ing pattern emerges in this situation as the interchain cou-
pling tc becomes the same as the intrachain couplingt. Since
more dips appear in this situation, electronic states seem to
become more localized at many energy points, as compared
to previous cases wheretc is less thant.

Thus, as we increase the couplingtc shown in the Figs.
3~a!–3~c!, 4~a!, 4~b!, 5~a!, and 5~b!, one can clearly observe

FIG. 3. ~a! Logarithm of the transmittance (lnT) vs energy
(E) for eA50.42, eB50.30, tc50.125, c50.20, andN52256
sites. ~b! Same plot, but fortc50.250. ~c! Same plot, but for
tc50.50.

FIG. 4. ~a! Logarithm of the transmittance (lnT) vs energy for
corner leads attached to the sample for chain parameters as in Fig.
3~a! but for tc50.045 andN53256 sites.~b! Same plot as in~a! but
for the situation where leads are attached on the left and right ends
of the lower chain.

FIG. 5. ~a! Logarithm of the transmittance (lnT) vs energy
(E) for eA50.50, eB50.25, tc51, andc50.10 in a four-lead ge-
ometry. ~b! Same plot as in~a! but for eA50.42, eB50.30,
tc51.0, andc50.20.
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a significant amount of fluctuations appearing in the regime
of delocalized states in the previous case. As the fluctuations
grow with increasing couplingtc , one can see that localiza-
tion and delocalization become of competing natures at
many of the energy values and in their vicinity. Thus local-
ization and delocalization of electronic states in the coupled-
chain case have different resonant features altogether than
those in a single chain of same length.

V. SUMMARY AND CONCLUSION

In this electronic transport calculation an attempt has been
made to explore the possibility of the existence of delocal-
ized or resonance states in two coupled chains with random-
dimer-type short-range correlation in the on-site potential.
Calculation of the transmittance for the system has been car-
ried out numerically using the block recursion algorithm of
Godin and Haydock for the nearest-neighbor Anderson tight-
binding model. Calculation is done for different interchain
couplings, while the hopping along the chain is kept con-
stant. The calculation shows a fluctuating pattern for the
transmittance, in contrast to the single-chain case, when one
observes the signature of extended states without any fluc-
tuation. The pattern for the four-lead situations has resonance
features (lnT;0) over a wide range of energies, while for
other lead configurations it has a different signature alto-
gether. This is reminiscent of typical quantum interference

effects which may originate from the arrangement of input
and output leads attached in a particular fashion to the
sample. We think that essential features of our results also
remain valid where the two chains have different configura-
tions with same chain parameters.

This calculation highlights the different signatures of typi-
cal resonance features in the electronic states in the two
coupled-chain cases with wide ranges of couplings for dif-
ferent lead configurations. The analysis draws serious atten-
tion to issues such as whether interchain tunneling effects are
really important when dealing with electronic transport prop-
erties in such realistic systems with both finite and infinite
chain lengths. We do hope that the model of coupled
random-dimer chains may provide some insight into model-
ing more realistic systems where short-ranged order may be
present in the same or different forms in a quasi-1D disor-
dered wire or other polymeric system.
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