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Resonance pattern in electronic transmittance for two identical coupled random-dimer chains
under different lead configurations
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Electronic transmittance vs energy for two identical coupled random-dimer chains is investigated within the
Anderson tight-binding model. The electronic transmittance is calculated by using the Block recursion algo-
rithm proposed by Godin and Haydock. The single-chain random-dimer result such as occurrence of band of
nonscattered states is recovered for very small interchain hopping parameter. The transmittance vs energy
curve shows a resonance pattern, which is highly sensitive to both interchain hopping and lead positions. Even
for the moderate interchain hopping the band of nonscattered states gets modified by appearance of strong
fluctuations or irregular dips leading to a new pattern for the transmittance vs energy curve.

[. INTRODUCTION describe the physical situation one observes in polyaniline or
in other relevant systems. However, the idea of modeling a
Electronic states in random potentials are localized botfieal system by coupled chains with small interchain coupling

in one and two dimensions even for infinitesimally smallor by an effective single chain may break down in some
disorder}(a) However' in the past Azbgp) and Other’gc)vla situations. Wu and Ph|”|6§h|nk that the dynamiCS will be

have reported the existence of extended states appearingifierently two dimensional if the transverse hopping dis-
the form of exponentially narrow resonances in electronid@nce is comparable to the single-chain length. The effect of

transmission through random potentials at energy points rarg/€ctron tunneling in the transverse direction may b_egome
domly positioned in the spectrum. In recent years much efimPortant in general in many realistic quasi-1D systefns:

fort has been devoted to the study of electronic transport in ¢ ;I\-/\rl](ljscngsg}/:(;erc;z(?c:?nsgg{nil?/\(/:ittrr?gﬁ;:i?:r?g: ::r(])?reslﬁitg?
disordered systems which have some kind of short-range Cofg e consider the short-range correlation within the RDM. As

relation in the po.tentlaﬂ.. In these work; the emstepce Of. we will see, our investigation will throw some light on trans-
e>_<tended states in a dlsprdered pqtent_|al in-one dlr_nensmlgort characteristics influenced by the interchain hopping con-
with a short-ranged spatial correlation is predicted, in CON%iputions. The idea is to check, for small or moderate values
trast to the all-states-localized situation for a random potengs interchain hopping, whether the resonant features within a
tial without any spatial correlatiof® In this context many proad band are really preserved. Another possibility is that
models have been proposed to describe some realistic situgifferent localization-delocalization behavior may set in due
tion, as one can have, for example, in the transport mechag the same interchain tunneling but with different lead con-
nism for conducting polyme?é5 or quasi-one-dimensional figurations.

(quasi-1D superlattice§;*>~° etc. The simplest of these
models is the random-dimer mod@DM) of Dunlap, Wu,
and Phillips? It has been shown by Wu and Phillipthat a
single protonated strand of conducting polymer polyaniline
can be described by the RDM. Recently, attempts have been Here we describe the electron motion in a two-coupled-
made to describe the electronic transport mechanism in som@hain geometry by an Anderson tight-binding Hamiltonian.
superlattice structures by Kronig-Penney-type models foThe Hamiltonian can be written as

random-dimer potentiafslt has been realized that RDM’s

support a band of nonscattered states which can account for .= *=

the enhanced conductivity in these materfafsit has been H= > (PlenPatPIVins1PosttPhaVis 1nPn),

shown that a source of delocalization even in the dense de- n=-s

fect limit arises from the single-impurity resonance effect, (1)
and eventually forms a broad resonance of finite Widtr\Nheresn, V, 1+1, andP, are the following matrices with
(where transmittance is unjtyaround the dimer defect reso- gjie and chain indices:

nance energy. However, the detailed numerical calculation
by Datta, Giri, and KundUfor finite concentrations of dimer
defects have shown that the width is sensitive to the choice

Il. MODEL OF TWO COUPLED RANDOM-DIMER
CHAINS

of site energies and concentration. In all these physically en te €n

relevant systems, in which randomness as well as some

short-ranged correlation is present, one hopes to have trans- trl1 - 0

port dominant only in one direction. Thus the result of the Viane1=| 5 =Vii1n,
one-dimensional Hamiltonian is thought to be sufficient to ’ 0 thn+1 '
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nonzero. The lead Hamiltonian is kept unchanged. The first

o
P,= ﬂn . element] ¢, ) of this basis is chosen to be
n
aﬁ andﬂﬁ are creation operators in two chains, respectively. i u'l i
The two chains have been considered to be identical. Thus u!
here an arrangement of sites in a single chain is all that is 2
necessary. We generate the random-dimer model by assign- :
ing the site energy to a pair, called a dimer, distributed ran- U:v|
domly along the chain. The site energ is selected from lo)=| o, 4
the value generated from a random number sequence Uz
(0<R<1) in the following way: IfR<c, ug
5%: €A E
o)
€ni1=€a) L Un
while for, R>c, whereu’s refer to those orbitals of the samples where leads
are attached. Herk and O refer to incoming and outgoing
eﬁzeB channels. Subsequent elements of the basis are generated
1 _ ; from the following relations:
€h+17 €B
¢ being some fraction. ' B | o) =(H—Ap)|b1), (5)
This is a quasi-1D system, where short-ranged correlation
is due to the block of four impurity sites, and the interchain B+ — (A=A -B
hoppingt, is considered to be finite in contrast to the single nral dnia=( Wl $0) = Balén-1)
random-dimer chain where a pair of sites is occupied by the where n=2. (6)

same species. The model of two identical coupled random-

dimer chains simulates a quasi-1D wire, where the impurityf the original basis of the sample containihgorbitals was

atoms appear within a block in the host. represented b\ row vectors of sizeN, then the basis is
We focus our main interest in the regimgs<t, which  represented by matrices of sizéXN. A,’'s andB,’s are

constitutes a different physically distinct regime as compare@M X2M matrices,

to the decoupled chain limit, i.et,<t.

A= ¢;H¢n
I1l. BLOCK RECURSION ALGORITHM Bn:¢;+1H .
We employ the block recursion algorithm of Godin and By =dpqViL
Pq

Haydock to calculate quantum electronic transmittance. This

method has proven to be numerically stable in 1D, 2D, andrhe solution of the stationary-state problem in Efj) is
3D systems® **The Hamiltonian of the sample is taken to giyen by

be a tight-binding model with only nearest-neighbor overlaps

nonzero. We attacM number of 1D incoming leads on one

side of the sample, andl number of 1D outgoing leads on I‘If):E Unl Pn)- (7
the opposite side of the sample. The leads are perfectly con- n

ducting, having a Hamiltonian of the form The projectionsy,’s of the stationary-state solutigh) into

the basig|¢,)} is calculated from the relation

Ho=viX 2 [iXil. 2
b Un=XnthotYnths, )
V| can be adjusted to make the lead bandwidth comparable _ _
to or larger than that of the sample. These leads support u‘f
incoming and outgoing waves into and away from the 40
sample. 2
The aim of the method is to calculate transmittance and d
reflectancgwhich are related to the square modulus of non- | 4% = o, 9)
diagonal and diagonal elements of tfg,,] matrix, where 0 '
p andq are lead indicesfor the stationary state problem Um+1
H|W)=E|¥). 3 0
- UZM -

In this method, a basis is calculated recursively in which the
sample Hamiltonian becomes block tridiagonal, i.e., if wewhereu®s refer to the orbitals a¥l lead ends coupled to the
partition the sample Hamiltonian into matrix blocks of size sample via matrix elemer¥, - ¢%'s is the projection of¥

2M X 2M then only diagonal and subdiagonal blocks areinto |¢°). X,'s andY,’s are 2V X 2M matrices calculated
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by the same recursion relation that was used to calculate thiEhe solution of Eq(3) in the leads are Bloch waves of the

basis, withEl replacing the HamiltoniartH and with the form

initial choices,Xo=1, Yp=0, X;=0, andY,=I. X's and

Y’s and Oandl are 2\ X 2M matrices. ¢L=2 A exp(=im@)|m), (12

As the sample basis space is of raNk our basis is m

spanned byN/2M =p independent elements. This leads towhere @ is the relative phase between the projectiong/pf

the boundary condition into the mth and (+ 1)th site orbitals of the leads, and
cos¥=E/2V| . The second boundary condition comes from

#p+1=0. (100  the known solution in the leads,

expime)+rq exp(—imé)+rexp—imé)+ - .- +ryyexp—imo)
expime)+r,exp—imé)+ryexp—imé)+- - - +ryyexp—imé)

Y= tp+1,18XP(iMO) +ty 4 exXpimé) + - - - +ty g yexpima) , 12
tm+218Xp(IMEG) + 1ty o 2XPIMO) + - - - +ty 4o mEXPiME)

tom 1€XP(im @) +toy XEime) + - - -+t yexpime)
m being 0 or 1.
tim+1E8XP(—iMO) +1g i eXp(—imé) + - - - +1; gyexp—imé)
tom+1EXP—imO) +1ipy8Xp(—imé)+ - - -+, yexp(—iméo)

, tpm M+ 18X —im@) +ty 28X —IimO)+ - - - +ty oyexp(—imé)
Im= , (13

expimeé) +rysim+18XP—IiMO) +ry g m428XP(—iME)+ - - - + 1y g meXP(—im6)
expime) +rysom+18XP(—IMO) + 1y om+28XP(—IMEO)+ - - - + 1y 1o meXP(—imE)

expime) +rop M+ 18X —im@) +1 oy M+ 28X —IiMO)+ - - - + 1oy oyeXP(—im8)

m being 0 or 1. more, as there is no applied magnetic field, the time-reversal
symmetry holds good, and s, =S;; .
a1 =Xns 106+ Yne1y=0. (14) The relation between conductance and transmittance has

been obtained in many contexts regarding both single-
Herer stands for the reflection coefficient, ahdstands channel and multichannel situations, either from the Kubo
for the transmission coefficient in Eqe?) and (13). If we  formula or from the Landauer formula.
now interchange the incoming and outgoing leads we obtain

another set of boundary com:iitions. _ ' IV. RESULTS AND DISCUSSION
From the boundary conditions written in expressian) _ _
and(11)—(15), we obtain the expression for ti8matrix: In our calculations we have chosen a site energy corre-

sponding to the lead Hamiltonian to be zero, while the intra-

rot chain hopping in the leads is unity and chosen to be the same
s:( , ,) =—[Xns1+ Yns1€Xp(—i0)] 1 as the intrachain hopping of the sample. The interchain hop-
tor ) . .
ping of the sample is considered to be smalltfegt values,
X[ Xns1t+ Yns1expli6)]. (15) and large when_. becomes of the order afvalues.
We have studied the total transmittanci) (for the two
The total transmittance is given by coupled random-dimer chains with the same hopping param-
etert along the chains and different choices of the param-
TzE 2 tﬂ 2 (16) eterse, i.e., (€5, €g), and concentration of dimer impuri-
= & 192M ties in the chains. We first choose a set of parameters

ea=0.5, eg=0.25, ¢c=0.10, andt.,=0.001 for the calcula-
and the total reflectance is given W®=3,2/|r,./2M|2. tion of transmittance for a wide range of energies, namely
Here we havéeR+ T=1 due to current conservation. Further- from — 1.0 to 1.5 in units of hopping parameters in the lead
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FIG. 1. (a) Transmittance T) vs energy E) for e,=0.50, FIG. 2. Logarithm of the transmittance {hvs energy E) for

eg=0.25, ¢=0.10, t;=0.001, andN=3256 sites.t=1.0. (b)  €,=0.5, eg=0.25, ¢=0.10, t,=0.35, t=1.0, N=2256 (dashed
Transmittance T) vs energy E) for €,=0.42, ¢5=0.30, andN= 3256 (solid).
¢=0.20,t.,=0.001, andN=3256 sitest=1.0.
shows the growth of [h from the left or right of the whole

Hamiltonian. First we attach two decoupled 1D leads on eienergy region concerned. It has a different delocalization na-
ther side along the direction of the sample length; that is, theure for the states having Ta-0 than the nonscattered states
calculation is done in the four-lead geometry. In Fig&)1 one observes in Figs.(d) and Ab). The regime of energies
and 1b) T vs energy E) is plotted for the first set of param- where IIiT~0 corresponds to states with large localization
eters for a system siz=3256 sites. One can clearly see lengths.
that for a finite range of energy values aroufe- 0.50 the Now we go to a regime of transverse hopping, where the
transmittance becomes almost flat, i.e[~1), a wide re- parameter t.=0.125, 0.25, and 0.50 fore,=0.42,
gion over which transmittance resonance is maintained. Wez=0.30,c=0.20, and\ =2256 sites. Transmittance versus
can consider this value d@f to be small enough to produce energy graphs have been shown, respectively, in Figs, 3
the single random-dimer chain result. This also suggests tha&(b), and 3c) for these parameters, and in the four-lead ge-
the choice of our system size seems to be appropriate fametry as before. Here the input and output leads are at-
studying delocalization or resonance aspects in suckached to the ends along the chain direction. Note that we
quasi-1D systems. It is also indicative of the fact that theséiave also considered theTlivs energyE plot here for finite
are extended states of nonzero measure, which is at least trgrain coupling. . In this situation the motion of electrons in
for such finite sample sizes. the transverse direction also becomes significant, and the to-

We do the calculations for another set of parameters, i.etal transmittance gives a clear signature of the combined in-
€p=0.42,€5=0.30,t,=0.001,c=0.20, and\N=3256 sites. terference effects due to the motion of electrons along the
The transmittanc@ vs energy plot for this case is shown in chain direction as well as in the transverse direction. Thus,
Fig. 1(b), clearly showing again the single-chain dimer re-with the increase of interchain hopping parameters between
sult, i.e., the existence of nonscattered states for a range 0f1 to 0.5, the overall resonance features in the transmittance
energy values around=0.42. drastically changes to a fluctuating pattern over all energy

Next we choose the interchain hopping paramgtéo be  scales. In the resonant regimhere InT~0) it shows almost
comparatively large, to make the electron motion in theuniform fluctuations. Thus here for a wide range of energies
transverse direction significant so that transport characterighe delocalization of states is manifested as before, with an
tics dramatically change from the strictly 1D situation. We underlying fluctuation pattern in contrast to the extended
calculate the transmittance fep=0.5, eg=0.25,¢c=0.10, states (transmittance is flat andi—1.0) in the single
andt,=0.35, for two different system sizd$§=2256 and random-dimer chain. Now we will analyze situations where
3256 sites. In Fig. 2 the Thvs E plot is shown for the two  electronic transmittance has been calculated in different mea-
different sizes, respectively. One can hardly distinguish thesurement geometries, and where first, the input and output
two curves since the resonant features do not change mudbads are considered to be at the corners of the sample, and
with the increase of system size. Here th& s E plot  second, a situation where the leads are on the two sides
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FIG. 3. (8 Logarithm of the transmittance (T vs energy
(E) for ex=0.42, eg=0.30, t,;=0.125, c=0.20, andN=2256
sites. (b) Same plot, but fort,=0.250. (c) Same plot, but for
t.=0.50.
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FIG. 4. (a) Logarithm of the transmittance () vs energy for
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FIG. 5. (a) Logarithm of the transmittance (Th vs energy
(E) for ea=0.50, eg=0.25,t.=1, andc=0.10 in a four-lead ge-
ometry. (b) Same plot as in(@ but for e,=0.42, e5=0.30,
t.=1.0, andc=0.20.

of a single chain. We see how resonance features may be-
come different in such different input-output lead configura-
tions. In Fig. 4a) a transmittance vs energy plot has been
shown when input and output leads are at the corners and the
interchain couplingt; is finite; here we choosé.=0.045.
However, the other chain parameters are the same as in Figs.
3(a)—3(c), and for the system sizd=3256 sites. Similarly,

Fig. 4(b) shows the same plot but with input-output leads
attached to the left and right sides of the lower chain, respec-
tively, for the same set of parameters as in Fi@).4If we
compare Figs. @ and 4b) the distinct nature of the
localization-delocalization aspects have been reflected
through the IfT vs E curve for the same sample, but with
different lead configurations. In both figures th& s E plot
gives a clear signature for regions of many delocalized states
as well as sharp dips which occur in an irregular fashion. As
one increasek., more and more dips appear in an irregular
fashion in the vicinity of states havingTr-0. This is attrib-
utable to the underlying quantum interference effects under
different lead configurations.

Next we go over to a situation where the interchain cou-
pling t. becomes the same as the intrachain couplinge-
sults for INT vs energyE have been shown in Figs(& and
5(b) for two different set of parameters. A strongly fluctuat-
ing pattern emerges in this situation as the interchain cou-
pling t. becomes the same as the intrachain couglir§jnce
more dips appear in this situation, electronic states seem to

corner leads attached to the sample for chain parameters as in Figecome more localized at many energy points, as compared

3(a) but fort.=0.045 andN = 3256 sites(b) Same plot as iifa) but

to previous cases whetg is less thart.

for the situation where leads are attached on the left and right ends Thus, as we increase the couplingshown in the Figs.

of the lower chain.

3(@)—3(c), 4(a), 4(b), 5(a), and §b), one can clearly observe
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a significant amount of fluctuations appearing in the regimeeffects which may originate from the arrangement of input
of delocalized states in the previous case. As the fluctuationsnd output leads attached in a particular fashion to the
grow with increasing coupling,., one can see that localiza- sample. We think that essential features of our results also
tion and delocalization become of competing natures atemain valid where the two chains have different configura-
many of the energy values and in their vicinity. Thus local-tions with same chain parameters.

ization and delocalization of electronic states in the coupled- This calculation highlights the different signatures of typi-
chain case have different resonant features altogether tharal resonance features in the electronic states in the two

those in a single chain of same length. coupled-chain cases with wide ranges of couplings for dif-
ferent lead configurations. The analysis draws serious atten-
V. SUMMARY AND CONCLUSION tion to issues such as whether interchain tunneling effects are

. ] ) really important when dealing with electronic transport prop-

In this electronic transport calculation an attempt has beegrties in such realistic systems with both finite and infinite
made to explore the possibility of the existence of delocalchain lengths. We do hope that the model of coupled
ized or resonance states in two coupled chains with randomzngom-dimer chains may provide some insight into model-

Calculation of the transmittance for the system has been cagresent in the same or different forms in a quasi-1D disor-

ried out numerically using the block recursion algorithm of gered wire or other polymeric system.
Godin and Haydock for the nearest-neighbor Anderson tight-
binding model. Calculation is done for different interchain

couplings, while the hopping along the chain is kept con-
stant. The calculation shows a fluctuating pattern for the We acknowledge Professor A. Mookerjee, |. Dasgupta,
transmittance, in contrast to the single-chain case, when orend T. Saha for providing us with the block recursion pack-
observes the signature of extended states without any flu@ge. We would also like to thank Professor C. K. Majumdar,
tuation. The pattern for the four-lead situations has resonandeirector, S. N. Bose National Centre for Basic Sciences, Cal-
features (IT~0) over a wide range of energies, while for cutta for providing us the computational facilities at the Cen-
other lead configurations it has a different signature altotre. The authors also thank the Council of Scientific and In-
gether. This is reminiscent of typical quantum interferencedustrial ResearckC.S.I.R), India for financial support.
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