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A phenomenological approach to the stretching mode vibrational frequencies of defects in semiconductors is
proposed. A quantum scale is defined in terms of the first principles pseudopotential based orbital radiusr s and
the principal quantum number of the element concerned. A universal linear relationship between the Sanderson
electronegativity (SR) and this quantum scale is established. Next, we show that the stretching mode vibra-
tional frequencies of hydrogen (nSi-H) and chlorine (nSi-Cl) in the silicon network scale linearly with this
quantum scale. Predictions and identifications of defect environments around the Si-H and Si-Cl are possible.
The assignments of vibrational modes in porous silicon are critically examined. We discuss our proposed scale
in the context of Mendeleveyan scales in general and suggest justifications for it. We believe that our approach
can be gainfully extended to the vibrational spectra of other semiconductors.

I. INTRODUCTION

The vibrational spectra of defects in silicon lie in the in-
frared and the far infrared region. They constitute an impor-
tant signature, enabling one to identify the particular defect
and its immediate environment. There has been a renewed
interest in their study with the recent discovery of visible
photoluminescence~PL! in porous silicon.1 Explanations for
this noteworthy phenomenon are varied.2 Suggestions invok-
ing molecular complexes such as siloxene,3 Si-H2 ~Ref. 4!,
and nonbridging oxygen-hole centers5 are based, at least in
part, on comparing their vibrational frequencies with those
observed in porous silicon. It has also been suggested that
the Si-H bond plays an important role in visible PL, since
porous silicon becomes nonradiative with decreasing H
content.6

It has been known for some time that the stretching mode
vibrational frequencies of Si-H (nSi-H) in substituted silane
molecules SiHR1R2R3 ,

7 amorphous solids such asa-Si and
a-SiO2 ,

8 and in crystalline silicon (c-Si! ~Ref. 9! correlate
with the electronegativities of$R1R2R3%. The following ex-
planation is usually proffered for this correlation. As the
electronegativity of the substituting species$R1R2R3% in-
creases, thes character of the Si-H bond increases. A calcu-
lation of thes component of the bond-order matrix substan-
tiates this.10 Because of the enhanceds character, the Si-H
distancedSi-H decreases and the effective force-constant in-
creases. ThusnSi-H increases.

The Sanderson~and not the Pauling! electronegativity is
employed in explaining the trends innSi-H .

8 The former is
known to correlate well with the structural properties of mol-
ecules and is also called the stability-ratio electronegativity
SR. The importance of classical and quantum scales in solid-
state phenomenology can hardly be overemphasized.11 We
propose in this work to employ a quantum scale, based on
the orbital radii generated by first principles calculations,12

and the principal quantum number to systematizenSi-H and
the chlorine related frequenciesnSi-Cl . The advantages of
this scale are as follows.~i! It is derived from first principles
calculations on free atoms. In other words, it is nonempirical,
fixed, and not subject to periodic updating unlike the empiri-

cal scales like electronegativity.~ii ! It is defined for all ele-
ments~except H!. For example, it is defined for the group
VIIA elements $F,Cl,Br,I%, unlike the semiempirical
Miedema scales.13 The orbital radii have been gainfully used
to systematize the structure of binary alloys,12 the phenom-
enology of ion-implantation sites,14 and, more recently, to
construct quantum structural diagrams for highTc
superconductors,15 as well as explain trends in binding ener-
gies obtained by local density approximation~LDA !.16

In Sec. II, we introduce a quantum scaleV based on the
principal quantum number and the orbital radiusr s . We call
it the valence shell renormalized electronegativity~REEL!.
We demonstrate that it correlates linearly with the Sanderson
electronegativity and, further, with the stretching mode vi-
brational frequencies of H in Si. We describe the utility of
our scale in assigning vibrational modes to impurities~impu-
rity complexes! in porous silicon. In Sec. III, we discuss our
scale in the context of extant phenomenological scales and
seek to justify it qualitatively.

II. VIBRATIONAL SPECTRA OF DEFECTS IN SILICON

A. Electronegativity and orbital radius

To motivate the application of the orbital-radii scales to
the systematization and prediction of the vibrational frequen-
cies of H and other impurities in semiconductors, we shall
first relate the Sanderson electronegativitySR(Rj ) to the or-
bital radius of the elementRj . The three orbital radii listed
by Zunger12 are r s , r p , and r d which are, respectively, the
crossing points of the first principles pseudopotentials for
l50, 1, and 2. The role of thes character of anSi-H bond in
determining the Si-H vibrational frequencies has been
pointed out by other workers~Refs. 9 and 10 in the present
work!. Further, nSi-H has been related to Sanderson elec-
tronegativitySRof elementRj ~Ref. 8!. This motivated us to
seek a relation between theSR(Rj ) and the Zunger orbital
radii r s(Rj ).

Since thes character of the Si-H bond appears to play a
key role,10 we attempt to relateSR(Rj ) to r s(Rj ). It is
known that the interatomic distance decreases with increas-
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ing electronegativity difference. Further, the orbital radius
r s(Rj ) demarcates the region between the inner repulsive
Pauli potential@,r s(Rj )# and the outer attractive Coulomb
potential@.r s(Rj )#. The smaller ther s(Rj ), the larger is the
spatial extent of the attractive Coulomb and exchange poten-
tials. For these reasons, we seek a relationship of the form

SR~Rj !;
1

r s~Rj !
. ~1!

Such an inverse relationship between the electronegativity
and orbital radii has been posited earlier.17–20We shall dis-
cuss the relationship of our work to previous works in Sec.
III. It was found that a linear relationship of the form given
by Eq. ~1! can be established for each row of the Periodic
Table. This is depicted in Fig. 1. But to establish a universal
linear relationship incorporating several rows of the Periodic
Table, we need to postulate another quantum scale. In this
connection, we recall that the structural separation plots for
the binary alloys at times employ the principal quantum
numbersn(Rj ) of the constituent elements. The Mooser-
Pearson plot uses the two scales: electronegativity and the
principal quantum numbern of the valence shell.21 The
Shaw plot employs electronegativity and the cube of the
principal quantum number.22 According to Zunger12 the or-
bital radii are characteristic of the atomic cores whose defin-
ing quantum numbers are 1,2,. . . ,n21. In this spirit we
attempt to correlate the electronegativitySR(Rj ) with the
functional form f „@n(Rj )21#,r s…. An inspection of Fig. 1
reveals that there is a systematic shift in the slope of the
row-wise plots. This insight, and some trial and error, led us
to the discovery thatSRscales linearly with the quantity

V ~Rj !5
An~Rj !21

r s~Rj !
, ~2!

which we call the valence shell renormalized electronegativ-
ity ~REEL!.

Figure 2 depicts a linear scaling behavior:

SR~Rj !5aV ~Rj !1S0 . ~3!

Here, the slopea and the interceptS0 are 2.07 (60.02!
~a.u.! and21.66 (60.006!, respectively. The uncertainty in
the calculated electronegativity is6 0.01 and is of the same
order as the uncertainty in the original electronegativity
data.23 For larger values there is a tendency to saturation.
Our attempts to correlateSR(Rj ) with the orbital radiusr p or
(r s1r p) were not as successful.

B. Vibrational spectra

We now establish the relationship between the Si-H
stretching frequenciesnSi-H observed in silicon and the quan-
tum scale defined by us. Table I lists some of the well known
Si-H stretching bands observed in crystalline silicon (c-Si!
and amorphous silicon (a-Si!. The frequencies listed in the

FIG. 1. Row-wise plots of the Sanderson electronegativity
SR(Rj ) and 1/r s(Rj ), wherer s(Rj ) is the l50 orbital radius of the
element. The principal quantum number of the valence shell is de-
noted byn.

FIG. 2. Linear relationship between the Sanderson electronega-
tivity SR(Rj ) and the quantum scaleV (Rj )5An(Rj )21/r s(Rj ),
wheren(Rj ) and r s(Rj ) denote the principal quantum number of
the valence shell and thel50 orbital radius of the element, respec-
tively.

TABLE I. Stretching mode Si-H frequencies (nSi-H) for well
established environments in crystalline (c-Si! and amorphous
(a-Si! silicon. Data forc-Si are taken from Shiet al. ~Ref. 9! and
for a-Si from Kniffler et al. ~Ref. 24!. The symbol ‘‘d’’ represents a
dangling bond.

No. System nSi-H ~cm21) Remarks

1 ~SiSiSi!SiH 1980–1990 c-Si
2 ~CSiSi!SiH 2028–2030 c-Si
3 ~SiSi!SiH2 2055–2066 c-Si
4 ~CCSi!SiH 2083 c-Si
5 ~CSi!SiH2 2105–2107 c-Si
6 ~OSi!SiH2 2160–2162 c-Si
7 ~OC!SiH2 2210–2218 c-Si
8 ~O2Si!SiH 2193 a-Si
9 ~O3)SiH 2247 a-Si
10 ~O2)SiH2 2219 a-Si
11 ~OSi2)SiH 2100 a-Si
12 ~Sidd!SiH 1830–1840 c-Si
13 ~CSid!SiH 1925–1931 c-Si
14 ~Sid!SiH2 1957–1965 c-Si
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first seven rows are observed forc-Si and the next four for
a-Si. The last three entries involve dangling bonds and are
observed inc-Si. The values are taken from the data culled
by Shiet al.9 and Kniffleret al.24As demonstrated by Fig. 3,
one obtains a linear relationship betweennSi-H and our quan-
tum scale:

nSi-H5mV ~Rj !1n0 . ~4!

Here, the summation is over all four nearest neighbors of the
central Si atom and includes H. For H we have taken the
relevant REEL valueV to be 2.86. For the dangling bond
neither an(Rj ) nor a r s(Rj ) can be defined. To include it
into our scheme, we takeV to be 0.54. These values have
been obtained from empirical fit to data. In Eq.~4!, the slope
m561.03 cm21 ~a.u.! and the intercept n051456.45
cm21. The uncertainties in the slope and the intercept are
Dm560.07 cm21 ~a.u.! and Dn0567.3 cm21, respec-
tively. The relationship given by Eq.~4! has predictive value
with the attendant uncertaintyDn56(11–16! cm21. We
shall employ it to obtain Si-H stretching frequencies in en-
vironments likely to occur in porous silicon.

So far we have discussed Si-H vibration frequency on a
lattice or an amorphous network. One may also extend this
work to nSi-H in silane molecules substituted by organic radi-
cals such as CH3, C2H5 , C6H5 , etc. TheSR values for
these radicals can be calculated using Lucovsky’s
prescription8 @his Eq. ~2!#. The linear fit in Fig. 2 enables
us to define an effectiveV (Rj ) using theseSRvalues. One
may then look for a correlation betweennSi-H and these
values ofV (Rj ). We have carried out such an exercise for
SiH(RCl n)(n50,1,2), whereR stands for the radicals and
found an approximate linear relationship akin to Fig. 3.

Chlorine is known to be a good dangling bond passivator
in silicon. We have also discovered a linear relationship be-
tween the Si-Cl stretching mode frequency and our quantum
scale. We use the data fornSi-Cl in a-Si cited by Wuet al.25

Figure 4 depicts this correlation. Except for the highly elec-
tronegative environment~Cl 3)SiCl, the data are linear to a
good approximation.

C. Porous silicon

Infrared frequencies observed in porous silicon in the
range 2050–2150 cm21 have been attributed to the stretch-

ing mode of the Si-H bond. Specifically, three broad peaks
~half width '20 cm21) are observed in this range which
have been attributed in the past to the nearest neighbor en-
vironments~Si3)SiH, ~Si2)SiH2 , and ~Si!SiH3 .

26–30 How-
ever, some ambiguities still remain about the detailed assign-
ments of the stretching mode vibrations. Gupta and
co-workers28 have shown that during thermal annealing, both
the 2087-cm21 and the 910-cm21 peak disappear simulta-
neously. The 910-cm21 peak has been traditionally assigned
to the Si-H2 scissors mode. Therefore, they have assigned
the 2087-cm21 line to the Si-H2 stretching mode and the
2110-cm21 line to the Si-H stretching mode. Other
workers29 have assigned the 2090-, 2110-, and 2140-cm21

line to Si-H, Si-H2 , and Si-H3 stretching frequencies, re-
spectively.

The present study shows that the vibrational frequency
increases with increasing hydrogen content@Eq. ~4!#. This is
also supported by theoretical calculations based onab initio
molecular orbital approaches.31 The Si-H stretching fre-
quency is reported9 to be;2000 cm21. The frequency for
Si-H3 stretching mode calculated from Eq.~4! is ;2100
cm21 ~see Table II!. This suggests the assignment of 2087
cm21 to Si-H2 and 2110 cm21 to Si-H3 stretching modes,
which is seen to be consistent with the experimental results
of Gupta, Colvin, and George and the theoretical results of
the present work as well as Ogata and co-workers.31 The

FIG. 3. Linear relationship between the Si-H band stretching
frequencynSi-H and the quantum scale( j51

4
V (Rj ) where the sum-

mation runs over the four bonds of the central silicon atom.

FIG. 4. Linear relationship between the Si-Cl bond stretching
frequencynSi-Cl and the quantum scale( j51

4
V (Rj ).

TABLE II. Stretching mode Si-H frequencies (nSi-H) for pos-
sible environments in porous silicon. ThenSi-H have been calculated
on the basis of Eq.~4!. The symbol ‘‘d’’ represents a dangling bond.

No. System nSi-H ~cm21)

1 ~Si!SiH3 2106
2 ~OSi!SiH2 2146
3 ~OC!SiH2 2175
4 ~SiO2)SiH 2186
5 ~F!SiH3 2223
6 ~O3)SiH 2273
7 ~F2)SiH2 2293
8 ~Od!SiH2 2052
9 ~Fd!SiH2 2082
10 ~O2d!SiH 2092
11 ~F2d!SiH 2152
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2140-cm21 line can be assigned to an oxygen complex
~OSi!Si-H2 as calculated from Eq.~4!. A similar suggestion
has also been made elsewhere in literature.28

An interesting relationship between the Si-H bond dis-
tancedSi-H and nSi-H exists, namely,dSi-H

3 nSi-H57074 Å3

cm21. The range ofnSi-H observed in porous silicon sug-
gests thatdSi-H is confined to 1.49–1.51 Å. This should be a
useful guide in electronic structure calculations where the
dangling bonds are passivated by hydrogen. Values such as
dSi-H51.637 Å or dSi-H51.17 Å employed in these
calculations32,33 are clearly out of range.

III. DISCUSSION

Phenomenological scales have been employed to system-
atize large databases in condensed matter physics for quite
some time. The phenomena studied include crystal structure
of binary and ternary alloys, solid solubilities, heats of for-
mation of alloys, locations of ion implantation sites, and
structural diagrams of highTc superconductors, among oth-
ers. The oldest pair of scales, the principal quantum number
n(A) and the valence electron numberZv(A) of the element
A, form the basis of the Periodic Table and, in this spirit,
phenomenological scales discussed herein are referred to as
Mendeleveyan scales. The Darken-Gurry plots34,35are based
on the pair of scales$r (A),x(A)%, wherer (A) is the atomic
radius ~usually, the Goldschmidt radius! and x(A) is the
Pauling electronegativity of the elementA. The principal
quantum numbern(A) and the Pauling electronegativity
x(A) constitute the Mooser-Pearson scales.21 The Shaw
plot,22 as mentioned in Sec. II, employsx(A) and the cube
of the principal quantum numbern(A). The Hume-Rothery
rules for alloy structures cite the atomic size mismatch and
the electron concentration per atom as the relevant variables.
To systematize the data on heats of formation of alloys,
Miedema and co-workers13 employed purely quantum scales,
namely, the work functionf(A) @which can be related to the
electronegativityx(A)# and the electron density at the
Wigner-Seitz boundary nWS(A). Refinements of the
Miedema scales have been suggested by several workers.18,36

On the other hand, Bloch and co-workers17,37 suggested the
use of orbital radii$r s(A),r p(A),r d(A)% derived from free
ion quantum defects to separate crystal structure of alloys.
Zunger12 defined nonempirical orbital radii in terms of the
first principles hard-core pseudopotentials and employed
them to systematize the crystal structures of around 500 bi-
nary alloys. Recently, Villars and Hulliger38 carried out a
systematization of the ternary alloys using three-dimensional
plots based on the orbital radii@r s(A)1r p(A)#, the
Martynov-Bastanov electronegativity, and the valence elec-
tron number.

We may classify the phenomenological scales as follows.
~i! integer scales: examples are the original Mendeleveyan

scales, namely, the principal quantum numbern and the va-
lence electron numberZv .

~ii ! length scales: for example, the Goldschmidt radius
employed in Darken-Gurry or Mooser-Pearson plots, the
Ashcroft empty core radius, and the Pauling tetrahedral and
octahedral radii. In a sense, these denote the ‘‘size’’ of an
atom. Anisotropicl -dependent length scales are the orbital
radii $r s ,r p ,r d% of Zunger and of Bloch and co-workers, the

former being nonempirical in character.
~iii ! electronegativity: the Pauling electronegativity is

commonly employed. Alternatively, the work functionf, the
chemical potential, the ionization potentials, or the Sander-
son electronegativity may be used.

~iv! miscellaneous quantum scales: among the important
and useful ones are the electron density at the Wigner-Seitz
boundarynWS ~a Miedema scale!, the average covalent and
ionic energy gaps~Phillips and Van Vechten39!, and the elec-
tron concentration per atom~Hume-Rothery!.

An issue of relevance to the present study is whether the
scales are independent, in particular, the relationship, if any,
between the electronegativity scale and the Zunger orbital
radii, which is a length scale. The Darken-Gurry plot34,35

treats the electronegativity and the atomic size as indepen-
dent variables. More recently, Villars and Hulliger38 have
considered the electronegativity and the sum of the orbital
radii (r s1r p) as independent variables. However, there ex-
ists a substantial body of studies which posits an inverse
relationship between the Pauling electronegativity and the
orbital radii. St. John and Bloch17 as well as Chelikowsky
and Phillips,18 in a detailed study, have suggested that an
electronegativity scale may be defined in terms of a linear
combination of$r s

21 ,r p
21 ,r d

21%. In other words,

x̃5x̃01(
l50

l52
al
r l
, ~5!

wherex̃ is the arithmetic mean of the Pauling and the Phil-
lips electronegativities. Zunger20 suggests that the Pauling
electronegativity may scale with the inverse orbital radius.
Burdett19 has also noted that the Pauling electronegativity is
related to the Zunger orbital radii

x5AF 1r s1
1

r p
G1x0B , ~6!

whereA andx0B are constants.
It is of interest to note a study by Watson and Bennett36 in

which the Pauling electronegativity is related to thes and
p ionization potentialsEs andEp , respectively. They work
with the hybridized expression

x51.075~Es13Ep!10.35. ~7!

However, they also note that a linear scaling relationship
exists betweenx andEs and separately betweenx andEp .

Our search for a universal relationship between electrone-
gativity and the Zunger orbital radius had its genesis in the
above-mentioned observations. To motivate our work further,
we note that the Pauling electronegativityx(A) and the va-
lence electron numberZv(A) can be related:18

2x~A!5Zv~A!1C,

whereC is a constant. The quantum defect radii are related to
Zv as follows:

Zv5
l̂ ~ l̂11!

r l
,

where l̂ is an l -dependent parameter. It follows that
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x~A!}
1

r l
. ~8!

A similar viewpoint is obtained by extending the work of
Watson and Bennett.36 Following them,

x}Es . ~9!

The ionization potentialEn,l is given in quantum defect
theory by

En,l5
2Zv

2

2~n1 l̂2 l !2
.

Taylor-expanding the above expression,

En,l.
2Zv

2

2l̂ 2
1

2Zv
2

l̂ 2
S n2 l

l̂
D 1OS 1

l̂ 4
D .

As noted earlier,

1

r l
5

Zv

l̂ ~ l̂11!
.
Zv

l̂ 2
.

This suggests thatEn,l is a polynomial in 1/r l with constants
which depend on the principal quantum numbern. Recalling
Eq. ~9!, namely,x;Es , it is reasonable to hypothesize a
relationship of the form

x5 (
m50

am~n!

r s
m , ~10!

wherem is an integer and the coefficientsam(n) depend on
the principal quantum number. Equation~10! is a polynomial
in 1/r s . In this spirit we have attempted a correlation be-
tween the Pauling electronegativity and our REEL co-
ordinateV ([An21/r s), namely,

x~Rj !5x01c1V ~Rj !1c2V
2~Rj !. ~11!

This quadratic relationship is depicted in Fig. 5. The con-
stants employed werex0 5 0.018,c1 5 0.568 ~a.u.!, and
c2 5 0.117~a.u.!2. A simple linear fit was also attempted and
it is depicted by dashed lines in Fig. 5. For the linear fit the
slope and intercept are 1.101~a.u.! and20.538, respectively.
The quadratic fit correctly reproduces the observed parabo-
licity and has a smaller standard deviation. It should be pre-
ferred over the linear one.

Given the above arguments, the relationship between the
Sanderson electronegativity and our REEL co-ordinate@Fig.
2 and Eq.~3!# follows in a natural fashion. The Pauling and
Sanderson electronegativities are related as follows:8

Ax50.21SR10.77.

We find a similar linear relationship, but with the slope 0.19
~instead of 0.21! and intercept 0.79~instead of 0.77!. In any
case, sincex is quadratic inV and inSR, it follows that

SR}
An21

r s
.

The above considerations are by no means a rigorous
derivation of Eqs.~2! and ~3!. They have simply motivated
and guided our search for an appropriate relationship be-
tween the electronegativity and the orbital radii. Based on
our findings, we claim that, instead of three variables
$x,r s ,n%, one can perhaps work with the reduced set
$r s ,n% for most purposes. The latter has the advantage in the
sense that its elements arenonempirical. In other words, bor-
rowing a terminology from the theory of critical phenomena
in statistical mechanics, we have found that the electronega-
tivity is a generalized homogeneous functionof the principal
quantum numbern and the orbital radiusr s .

Environments involving$Si,O,H% have been suggested as
explanation for visible PL in porous silicon.3,4,40 Oxygen,
fluorine, and organic radicals can get introduced into the sili-
con system during the anodization of silicon in HF. Substi-
tuted oxygen and fluorine may give rise tonSi-H in the range
2050–2150 cm21. Table II enumerates some of the possible
environments with frequencies calculated using Eq.~4!. The
first four entries of nSi-H fall in the range 2050–2150
cm21 or are close to it. The next three entries pertain to
environments with highernSi-H . The larger linewidths ob-
served in porous silicon~20 cm21) as opposed to the ex-
tremely sharp lines~linewidth' 1 cm21) in crystalline sili-
con suggest disorder. It is well known that a large number of
dangling bonds are present in porous silicon. Hence, we have
also considered dangling bond environments. The last four
entries in Table II suggest four such environments which
may contribute to the observednSi-H line ~2050–2150
cm21) in porous silicon. Note that the substitution of an
oxygen atom in~O3)SiH by a dangling bond reducesnSi-H
from 2273 to 2092 cm21. Broad lines are also observed at
'850 and 1100 cm21. These lines have been assigned to
Si-H2 scissors mode and Si-O-Si stretching modes, respec-
tively, in the past. However, Si-F-related frequencies41 also
lie in the range 870 to 1030 cm21. In view of the possible
presence of fluorine in porous silicon, caution must be exer-
cised in assigning frequencies to the observed infrared lines.

FIG. 5. Plot of the Pauling electronegativityx vs the quantum
scaleV . The solid ~dashed! line is a quadratic~linear! fit to the
data.
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In a recent work, Schuppler and co-workers42 claim that
the visible PL in porous silicon is due to quantum confine-
ment effects arising from silicon particles~not wires! typi-
cally of size,1.5 nm. Their claim, which is based partially
on IR data, is that such a cluster is fully passivated with
hydrogen. Being small, the cluster would have a fair number
of dihydrides and trihydrides, as well as some monohydrides
which are predominantly seen in larger clusters. They sug-
gest that calculations on passivated Si clusters with;102

atoms would elucidate the luminescence behavior of PS. As
we have noted in the previous paragraph,nSi-H with dangling
bond environments also lie in the observed range. This sug-
gests that electronic structure calculations should be carried
out for clusters which are fully passivated as well as for
dangling bonds.

The past assignments of the vibrational spectra of PS to
specific transitions exhibit some inconsistencies. Our model
has limited value in making exact identifications but suggests
systematic variations in the vibrational spectrum with the
addition~removal! of other elements to the environment. For
example, Shanks and co-workers43 state that the shift of the
2000-cm21 line on annealing to 2100 cm21 is due to the
introduction of two dangling bonds. However, our work
seems to indicate that the introduction of dangling bonds can
only lower the vibrational frequency as mentioned earlier.
Thus the trends suggested by the present work can be used to
improve upon existing results. Again, our model contradicts
some of the assignments due to Gupta, Colvin, and George,28

who posit a decrease in the vibrational frequency as the num-
ber of neighboring hydrogen atoms are increased. The main
utility of this model thus lies in correlating changes in the
vibrational spectrum with specific changes in the surface en-
vironment, which is known to play a major role in porous

silicon photoluminescence. The PL spectra of siloxene, a
complex considered responsible for the luminescence in po-
rous silicon, can also be varied by the introduction of halides
or organic radicals.3 In porous silicon, post anodization sur-
face treatment modifies the PL spectra.44 This is perhaps due
to the formation of molecular complexes on the surface of
porous silicon. Some insight into this phenomena can be ob-
tained by studying the vibrational spectra. Our approach pro-
vides a valuable tool to correlate the PL spectra of various
samples with their vibrational spectra. This can serve to char-
acterize the porous silicon surface.

A universal relationship between the Sanderson electrone-
gativity and our quantum scaleV defined by Eq.~2! has
been established which is seen to be valid for almost the
entire Periodic Table. Since the Sanderson and Pauling (x)
electronegativities are related,~i.e.,Ax}SR), a similar rela-
tionship can be established between the Pauling electronega-
tivity and V . This is depicted in Fig. 5. The infrared stretch-
ing frequencies of Si-H and Si-Cl bonds have been related to
V . The relationship does not work well when the system is
highly electronegative, e.g., SiCl4 . This is also evident from
the saturation effect seen in Fig. 2. We are investigating ex-
tensions of our work to other defects in silicon and other
semiconductors as well as wagging and bending modes. We
suggest that assignments of vibrational spectra to particular
defects in porous silicon must be done with caution.

ACKNOWLEDGMENTS

We would like to acknowledge support from the Council
of Scientific and Industrial Research, Government of India,
and the Department of Science and Technology, Government
of India. Useful correspondence with Dr. A. Zunger is grate-
fully acknowledged.

*On leave from Science College, Patna-800005, India.
1L.T. Canham, Appl. Phys. Lett.57, 1046~1990!.
2G.C. John and V.A. Singh, Phys. Rep.263, 93 ~1995!.
3M.S. Brandtet al., Solid State Commun.81, 307 ~1992!.
4C. Tsaiet al., Appl. Phys. Lett.60, 1700~1992!.
5S.M. Prokes and O.J. Glembocki, Phys. Rev. B49, 2238~1994!.
6T. Ohno, K. Shiraishi, and T. Ogawa, Phys. Rev. Lett.69, 2400

~1992!.
7A.L. Smith and N.C. Angellotti, Spectrochem. Acta15, 412

~1959!.
8G. Lucovsky, Solid State Commun.29, 571 ~1979!.
9T.S. Shiet al., Phys. Status Solidi A74, 329 ~1982!.
10S.N. Sahuet al., J. Chem. Phys.77, 4330~1982!.
11J.C. Phillips, Comments Solid State Phys.9, 11 ~1978!.
12A. Zunger, Phys. Rev. B22, 5839~1980!.
13A.R. Miedema, J. Less-Common Met.32, 117 ~1973!.
14V.A. Singh and A. Zunger, Phys. Rev. B25, 907 ~1982!.
15P. Villars and J.C. Phillips, Phys. Rev. B37, 2345~1988!.
16C.-Y. Yeh, Z.W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B45,

12 130~1992!.
17J. St. John and A.N. Bloch, Phys. Rev. Lett.33, 1095~1974!.
18J.R. Chelikowsky and J.C. Phillips, Phys. Rev. B17, 2453~1978!.
19J. Burdett, Acc. Chem. Res.15, 34 ~1982!.
20A. Zunger, inStructure and Bonding in Crystals, edited by M.O.

Keefe and A. Navrotsky~Academic, New York, 1978!.
21W.B. Pearson, inDevelopments in the Structural Chemistry of

Alloy Phases, edited by B.C. Giessen~Plenum, New York,
1969!.

22R.W. Shaw, Phys. Rev.174, 769 ~1968!.
23R.T. Sanderson,Chemical Periodicity ~Reinhold, New York,

1960!, pp. 16–56.
24N. Kniffler, B. Schroeder, and J. Geiger, J. Non-Cryst. Solids58,

153 ~1983!.
25Wu Shi-Qianget al., J. Non-Cryst. Solids59-60, 217 ~1982!.
26T. Unagami, J. Electrochem. Soc.127, 476 ~1980!.
27T. Unagami, Jpn. J. Appl. Phys.19, 231 ~1980!.
28P. Gupta, V. Colvin, and S.M. George, Phys. Rev. B37, 8234

~1988!.
29Y. Kato, T. Ito, and A. Hiraki, Jpn. J. Appl. Phys.27, L1406

~1988!.
30F. Koch, V. Petrova-Koch, and T. Muschik, J. Lumin.57, 271

~1993!.
31Y. Ogata, H. Niki, T. Sakka, and M. Iwasaki, J. Electrochem. Soc.

142, 195 ~1995!.
32A.J. Readet al., Phys. Rev. Lett.69, 1232~1992!.
33G.D. Sanders and Y-C. Chang, Appl. Phys. Lett.60, 2525~1992!.
34L.S. Darken and R.W. Gurry,Physical Chemistry of Metals

~McGraw-Hill, New York, 1953!.
35J.T. Waberet al., Trans. Mettall. Soc. AMIE227, 717 ~1963!.
36R.E. Watson and L.H. Bennet, J. Phys. Chem. Solids39, 1235

~1978!.
37G. Simons and A.N. Bloch, Phys. Rev. B7, 2754~1973!.

9836 53H. C. VERMA, GEORGE C. JOHN, AND VIJAY A. SINGH



38P. Villars and F. Hulliger, J. Less-Common Met.132, 289~1987!.
39J.C. Phillips, Rev. Mod. Phys.42, 317 ~1970!; J.A. Van Vechten,

Phys. Rev.182, 891 ~1969!; 187, 1007~1969!; Phys. Rev. B7,
1479 ~1973!.

40S.M. Prokeset al., Phys. Rev. B45, 13 788~1992!.

41K. Yamamoto, T. Nakanishi, H. Kasahara, and K. Abe, J. Non-
Cryst. Solids59-60, 213 ~1983!.

42S. Schuppleret al., Phys. Rev. B52, 4910~1995!.
43H. Shankset al., Phys. Status Solidi B100, 43 ~1980!.
44X.Y. Hou et al., Appl. Phys. Lett.62, 1097~1993!.

53 9837VIBRATIONAL SPECTRA OF DEFECTS IN SILICON: AN . . .


