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Using numerical diagonalization techniques we analyze the finite temperature/frequency conductance of a
one-dimensional model of interacting spinless fermions. Depending on the interaction, the observedfinite
temperaturecharge stiffness and low-frequency conductance indicate a fundamental difference between inte-
grable and nonintegrable cases. The integrable systems behave as ideal conductors in the metallic regime and
as ideal insulators in the insulating one. The nonintegrable systems are, as expected, generic conductors in the
metallic regime and activated ones in the insulating regime.

In classical integrable systems there is experimental1 and
theoretical evidence2 that the existence of a macroscopic
number of conservation laws has a profound consequence:
dissipationless transport. The analogous effect in nontrivial
quantumintegrable systems has been studied only recently in
a prototype model of dissipation.3 In this model, describing a
particle interacting with a fermionic bath in one dimension,
we found that the tagged particle shows ideal mobility even
at finite temperaturesT.0 when the system is integrable. It
is desirable to test these ideas to homogeneous many-body
models, which are at present of particular interest in connec-
tion with strongly correlated electrons. In this field, most
analytical findings are on integrable one-dimensional~1D!
models as the Hubbard4 or the spinless fermions with
nearest-neighbor interaction model.5

Progress in the study of dynamical response atT.0 is
hindered by the lack of reliable methods. The only attempts,
which however might obscure the role of integrability, start
from a Luttinger liquid effective Hamiltonian description.6 In
this work, based on a recent reformulation of the finite tem-
perature charge stiffness3 and numerical methods,7 we study
the T.0 dynamical conductivitys(v) on finite-size sys-
tems. The results and arguments that will be presented below
do not constitute aproof that integrable many-body systems
are ideal conductors or insulators. However, motivated by~i!
the coincidence of ideal conducting behavior with integrabil-
ity in our model,~ii ! analogous behavior in classical systems,
and ~iii ! recent studies relating transport properties of quan-
tum systems to level statistics8 and level statistics to
integrability,9 we are led to conjecture that the observed ideal
conducting behavior is related to the integrability of our
model.

From linear-response theory, the real part of the conduc-
tances(v) at frequencyv is given by

s~v!52pDd~v!1s reg~v!, ~1!
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where un&,en denote the eigenstates and eigenvalues of the
Hamiltonian,pn are the corresponding Boltzmann weights,
ĵ is the current operator, andb51/kBT. We will consider 1D
tight-binding models ofL sites (kB5\5e51).

s(v) satisfies the optical sum rule:10
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where^T̂& denotes the thermal expectation value of the ki-
netic energy. The sum rule~3! together with Eqs.~1,2! can be
used for the evaluation of the stiffnessD(T).11,3 It will be,
however, more convenient to discuss the behavior ofD at
finite temperatures, with a generalization of the original
Kohn’s approach11 for zero temperature, by relatingD(T) to
the thermal average of curvatures of energy levels subject to
a fictitious fluxf:3
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At zero temperatureD(T50)5D0 has been introduced
11

to distinguish an ideal conductor withD0.0 from an insu-
lator with D050. Our aim here is to analyze the transport
behavior at finite temperatures. For orientation, atT.0, a
conductor can develop either to anormal conductor~resis-
tor! with D(T)50 buts05s(v→0).0, or remain anideal
conductorcharacterized byD(T).0. An insulator might de-
velop to a normal conductor~conducting by thermally acti-
vated transport! with D(T)50,s0(T).0, remain anideal
insulatorwith D(T)50,s0(T)50, or even become an ideal
conductor withD(T).0.

Below we present results fors(v) for the prototype 1D
tight-binding model of interacting spinless fermions with
nearest-neighbor and next-nearest-neighbor interaction. For
systems with Hilbert space dimension less than, typically,
1000 states~after implementation of translational symmetry!,
we calculates(v) directly from Eq.~2! by finding all eigen-
states and evaluating current matrix elements; for systems
with larger basis dimensions we use aT.0 Lanczos-based
numerical technique.7
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As we are interested mostly in differences in thequalita-
tive behaviorof integrable vs nonintegrable systems we can
restrict our study to high temperatures, thus minimizing spu-
rious effects due to the sparse low-energy-level spectrum in
finite-size systems. It corresponds, in normal conductors, to
studying systems with mean free paths shorter than the lat-
tice size.

Further, we present the integrated and normalized inten-
sity

I ~v!5D*1
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as it contains the relevant information in the conductance and
avoids the smoothing procedure of the discretes(v) spectra
of finite-size systems.

The Hamiltonian we study is given by
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whereci (ci
†) are annihilation~creation! operators of a spin-

less fermion at sitei , ni5ci
†ci . This Hamiltonian is inte-

grable using the Bethe ansatz method forW50 ~Ref. 5! and
nonintegrable forWÞ0. ForW50 andV,2t the ground
state is metallic, while forV.2t a charge gap opens and the
system is an insulator.

We study numerically various size systems with periodic
boundary conditions andM5L/2 fermions~half-filling!. The
results forL58,12,16 are obtained by the complete diago-
nalization of the Hamiltonian, while forL520,24 the Lanc-
zos method is employed. It should be mentioned that in the
latter cases results, e.g., forD* , are subject to small statis-
tical error due to finite random sampling.7

Metallic state

In Fig. 1 we show the finite-temperature conductance for
an integrable case. To study the finite-size dependence of the
charge stiffness, we plot in the insetD* as a function of
1/L; the dashed lines indicate a third-order polynomial ex-
trapolation based on theL58,12,16 site systems, suggested
by the very good agreement obtained with theT50 analyti-
cal result~square at 1/L50).12 We find that forL→` the
extrapolatedD*Þ0. At the same times05s(v→0)→0 as
I (v) seems to approachv50 with zero slope@s(v) is the
derivative of I (v)#. This behavior is reminiscent of a
pseudogap. These two results indicate that the integrable sys-
tem behaves as anideal conductorat T.0. Moreover, we
find that the normalizedD* approaches a nontrivial finite
valueD *̀ in the limit T→`, depending onV/t and filling, as
bothD and ^2T̂& are proportional tob in this limit.

In Fig. 2 we showI (v) andD* for a nonintegrable case.
Here, as expected for a generic metallic conductor~resistor!,
we find thatD* scales to zero, probably exponentially with
system size, ands0.0 as I (v) approachesv50 with a
finite slope. These two results imply that the nonintegrable
system behaves as a normal conductor atT.0.

To further point out the particularity of integrable sys-
tems, we investigate the behavior of the conductance on ap-
proaching the integrable pointW50. In Fig. 3 we present
I (v) scanning the parameterW. We clearly recognize a con-
tinuous transfer of thed-function weight I (v50)5D* at
W50 to low frequencies, both forW.0 andW,0. From a
calculation of the second frequency moment of the conduc-
tance at infinite temperature, we estimate the frequency
range ofs(v).0 proportional to@(V2W)21W2#/2t2. Due
to remaining finite-size effects we are not attempting yet to
make more quantitative statements about the critical behav-
ior of the low-frequency conductance.

FIG. 1. Integrated conductanceI (v) for V51.5t,W50,T52t, for
L512216 ~exact diagonalization, full fines! and L520,24 ~Lanczos
method, dotted lines!. Inset shows normalized charge stiffnessD* vs 1/L:
exact diagonalization~closed circles!, T.0 Lanczos method~open circles!,
analytical result~square!, and third-order polynomial extrapolation from
L58,12,16~dotted line!.

FIG. 2. Integrated conductanceI (v) for V51.5t,W5t,T52t, for
L512220. In the inset lnD* vs L is plotted. Notation is as in Fig. 1.

984 53BRIEF REPORTS



These numerical results on the finite temperature charge
stiffness, although not conclusive, strongly suggest a quali-
tative difference between integrable and nonintegrable sys-
tems. We can argue about this difference by considering the
expression forD as a thermal average of the curvatures of
levels subject to a fictitious flux. The integrable systems, as
they are characterized by absence of repulsion between lev-
els, allow larger fluctuations in the level response to a flux
and thus plausibly a finite charge stiffness.

On the other hand, in the nonintegrable systems, because
of level repulsion, the motion of levels with flux is con-
strained within a characteristic level spacing that is propor-
tional toe2aL, inversely proportional to the density of states,
and thus to a vanishing charge stiffness with increasing sys-
tem size.

We have also verified that in our integrable system the
absence of level repulsion leads to Poisson statistics of the
level spacings while in the integrable one the level repulsion
leads to Gaussian orthogonal ensemble~GOE! statistics.9

As for s0 , it is more difficult to ascertain its behavior in
the infinite-size limit from numerical results in finite-size
systems. For the nonintegrable systems we find, as expected,
a finite value fors0 . For the finite-size integrable systems
that we can study, althoughI (v) seems to approachv50
with a zero slope, we cannot really exclude a finite slope for
L→`. However, from the physical point of view, even in
this case one can expect ideal conductance provided the
charge stiffness remains finite. It is indicative of a free ac-
celerating system similar in the spirit of a two-fluid model.

Insulating state

In Fig. 4 we show I (v) for the integrable case
V54t,W50. At this value ofV.2t the ground state is in-
sulating characterized byD050 and a charge gapD0.t.13

We find that, at finite temperatures,D* (T.0)5I (v50)
seems also todecreaseexponentially with the system size
scaling to zero forL→`. This precludes a possibility for
ideal conductance atT.0. Furthermore,I (v) seems to ap-

proachv50 with zero slope, showing a depletion of weight
within a low-frequency region of orderv,t. These are char-
acteristics of anideal insulator, not conducting even at high
temperaturesT@D0 .

In contrast, as shown in the inset of Fig. 4~for L516),
nonintegrable systems of roughly the same charge gap ex-
hibit a qualitatively different behavior.I (v) approaches
v50 with finite ~although small! slope, consistent with a
small static conductances0.0. As expected, conductance
here is of a thermally activated character, since appreciable
s0.0 appears only at elevatedT@t.

To discuss the behavior of the conductance in the insulat-
ing regime, it is a good starting point to think about the large
V/t limit. In this limit the energy spectrum splits in ‘‘Hub-
bard’’ bands with a fixed numberNs of soliton-antisoliton
(ss̄) pairs, solitons corresponding to nearest-neighbor occu-
pied sites, and antisolitons to nearest-neighbor empty sites.
In theV5` limit solitons and antisolitons are impenetrable.
Crossing can only occur by annihilation and creation of a
pair, which corresponds to mixing with other Hubbard bands,
and it has an amplitude of ordert2/V. The states are there-
fore grouped in characteristic sequences of solitons and an-
tisolitons.

To analyze the fluxf dependence of the energy we note
that the phase associated with the hopping of a soliton in a
given direction is opposite to the phase picked by an anti-
soliton; so solitons and antisolitons carry opposite charge. It
follows that, in thisV5` limit, the fluxf dependence of the
hopping matrix elements can be removed by a redefinition of
the phase of the states. A nontrivialf dependence would
have appeared if by successively applying the Hamiltonian
on a givenss̄state we could bring it to an equivalent one, but
with an accumulation of a nonzero phase factor. This pro-
cess, which corresponds to a uniform translation of fermions,
is not possible provided we do not allow for soliton-
antisoliton crossing.

Therefore, as we have also numerically verified, the width
of the Hubbard band is of the order ofNst, but the energy
levels are independent of the fluxf andD is strictly zero. At

FIG. 3. I (v) for L516,V51.5t,T52t, and W/t520.5,20.3,
0.0,0.3,0.5.

FIG. 4. I (v) for V54t,W50,T54t, for L512,16 ~full lines with in-
creasing line thickness, exact diagonalization! andL520 ~Lanczos method,
dotted line!. Inset:I (v) for L516, T54t.
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the same time, it is reasonable to argue that a static electric
field acting on impenetrable particles of opposite charge can-
not produce a uniform current and the static conductance
s0 should also be zero. Thus, in thisV5` limit, we find an
ideal insulator at any temperature independently of the inte-
grability of the system.

Now, allowing crossing of solitons and antisolitons leads
to a DÞ0 in a finite-size system. However, our numerical
results above suggest thatD scales again to zero exponen-
tially with the system size. Further, taking the point of view
that the largeV/t limit is the fixed point of the insulating
behavior, we can argue against the scenario of an insulator at
zero temperature developing to an ideal conductor at finite
temperatures.

The next point to discuss is the possibility of an integrable
insulating system developing into a normal conductor~resis-
tor! at finite temperatures. Unfortunately, this point can only
be settled after clarifying the exact connection between the
static conductances0 and integrability. However, consis-
tently with our conjecture, we have found from independent
spectral analysis that whenever the insulating system is inte-
grable, the level spacing distribution is Poisson ands0 seems
to vanish, while when the system is nonintegrable, the statis-
tics is GOE ands0Þ0.

Finally, in order to visualize the above picture of the in-
sulating state, we present in Fig. 5 calculations in the large
V/t limit. For V58t the system is characterized by a much
larger charge gapD0;6t. Indeed, we see a region of finite
conductance in the frequency region 0,v,4t correspond-
ing to excitations within the first, one-soliton–antisoliton
pair, Hubbard band. The weight in this region is increasing
exponentially with temperature, a sign of activated transport.
It is followed by a vanishing conductance up tov;6t, when
transitions from the ground state to the first Hubbard band
start.

Comments

Our conclusions should hold for other integrable systems
as well. Since the anisotropic~and isotropic! spin-1/2
Heisenberg model is equivalent to the integrable (W50)
model ~6!, analogous conclusions should apply for the spin
stiffness and spin diffusion atT.0. Furthermore, we have
numerical evidence~to be presented elsewhere! that the in-
tegrable 1D Hubbard model also exhibits the same features
found for the prototype model~6!. Namely, out of half-filling

the system seems to be an ideal conductor, while at half-
filling results are consistent with an ideal insulator with
s0(T.0)50, for any strength of the repulsive interaction.

We should stress that the above results are only indicative
of a relation between integrability and finite temperature
conductance and our arguments are far from rigorous. Fur-
ther analytical and numerical studies are necessary to prove
the validity of our conclusions. However, taking into account
present limitations on the size of the systems that can be
numerically studied and the absence of analytical work, we
think that the results presented here arequalitatively clear
enough to warrant further work on this idea. Furthermore, an
experimental effort is necessary to observe this unusual con-
ductance enhancement. Finally, the stability of this effect to
deviations from integrability should be studied, a problem
similar to the stability of classical soliton systems.
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FIG. 5. I (v) for V58t,W50,T54t, for L512,16, with the notation as
in Fig. 4.
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