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Evidence for ideal insulating or conducting state in a one-dimensional integrable system
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Using numerical diagonalization techniques we analyze the finite temperature/frequency conductance of a
one-dimensional model of interacting spinless fermions. Depending on the interaction, the olisetwed
temperaturecharge stiffness and low-frequency conductance indicate a fundamental difference between inte-
grable and nonintegrable cases. The integrable systems behave as ideal conductors in the metallic regime and
as ideal insulators in the insulating one. The nonintegrable systems are, as expected, generic conductors in the
metallic regime and activated ones in the insulating regime.

In classical integrable systems there is experimémtati ~ where|n), e, denote the eigenstates and eigenvalues of the
theoretical evidencethat the existence of a macroscopic Hamiltonian, p, are the corresponding Boltzmann weights,
number of conservation laws has a profound consequencgis the current operator, ang= 1/kgT. We will consider 1D
dissipationless transport. The analogous effect in nontriviadight-binding models of. sites kg=A=e=1).
quantumintegrable systems has been studied only recently in () satisfies the optical sum ruf8:

a prototype model of dissipatiotin this model, describing a

particle interacting with a fermionic bath in one dimension, 0 T oA

we found that the tagged particle shows ideal mobility even fﬁw(’(“’)d“’: [<_T>1 )

at finite temperature$>0 when the system is integrable. It R

is desirable to test these ideas to homogeneous many-bodshere(T) denotes the thermal expectation value of the ki-
models, which are at present of particular interest in connecnetic energy. The sum rul8) together with Eqs(1,2) can be
tion with strongly correlated electrons. In this field, mostused for the evaluation of the stiffneBgT). It will be,
analytical findings are on integrable one-dimensiofidD) however, more convenient to discuss the behaviob ot
models as the Hubbdtdor the spinless fermions with finite temperatures, with a generalization of the original
nearest-neighbor interaction model. Kohn's approacH for zero temperature, by relatirig(T) to

Progress in the study of dynamical respons@ a0 is  the thermal average of curvatures of energy levels subject to
hindered by the lack of reliable methods. The only attemptsa fictitious flux ¢:*
which however might obscure the role of integrability, start
from a Luttinger liquid effective Hamiltonian descriptiSin
this work, based on a recent reformulation of the finite tem-
perature charge stiffnesand numerical methodswe study
the T>0 dynamical conductivityo(w) on finite-size sys- At zero temperatur®(T=0)= D, has been introducét
tems. The results and arguments that will be presented belows distinguish an ideal conductor wifby>0 from an insu-
do not constitute @roof that integrable many-body systems lator with Dy=0. Our aim here is to analyze the transport
are ideal conductors or insulators. However, motivateiby behavior at finite temperatures. For orientationTat0, a
the coincidence of ideal conducting behavior with integrabil-conductor can develop either tormrmal conductor(resis-
ity in our model (i) analogous behavior in classical systems,tor) with D(T)=0 butoy= o(w—0)>0, or remain andeal
and (iii) recent studies relating transport properties of quanconductorcharacterized b (T)>0. An insulator might de-
tum systems to level statistftsand level statistics to velop to a normal conductdgconducting by thermally acti-
integrability we are led to conjecture that the observed idealated transpojtwith D(T)=0,00(T)>0, remain anideal
conducting behavior is related to the integrability of ourinsulatorwith D(T)=0,04(T)=0, or even become an ideal

1 1 1 #%en(P)
D=[; ann:E; anT’Sz (4)

(,/;ﬁO.

model. conductor withD(T)>0.
From linear-response theory, the real part of the conduc- Below we present results far(w) for the prototype 1D
tanceo(w) at frequencyw is given by tight-binding model of interacting spinless fermions with
nearest-neighbor and next-nearest-neighbor interaction. For
0(0)=2TD &)+ 0ref ), (1)  systems with Hilbert space dimension less than, typically,

1000 stategafter implementation of translational symmeiry
we calculater(w) directly from Eq.(2) by finding all eigen-
m ) |2 states and evaluating current matrix elements; for systems
— njiM“o(w—ent€,), . L : ’
Ln,%n Pokinli M) a(e = ent €n) with larger basis dimensions we uséT&0 Lanczos-based
(2)  numerical techniqué.
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As we are interested mostly in differences in thealita-

tive behaviorof integrable vs nonintegrable systems we can
restrict our study to high temperatures, thus minimizing spu-
rious effects due to the sparse low-energy-level spectrum in
finite-size systems. It corresponds, in normal conductors, to
studying systems with mean free paths shorter than the lat-

tice size.
Further, we present the integrated and normalized inten-
sity
l(w)=D*+ —— wd ! "y, D*=——=—, 6
(©) i Y WL CP 5 ®

as it contains the relevant information in the conductance and

avoids the smoothing procedure of the disciefe) spectra
of finite-size systems.
The Hamiltonian we study is given by

L L
FIZ _tE (ei¢cr+lci+ HC)‘I‘VE nin; 1
=1 =1

L
+W§1 niNi2, (6)
wherec; (ciT) are annihilationcreatior) operators of a spin-
less fermion at sité, n;j=c/c;. This Hamiltonian is inte-
grable using the Bethe ansatz method\ié+=0 (Ref. 5 and
nonintegrable folWW=0. For W=0 and V<2t the ground
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FIG. 1. Integrated conductanddw) for V=1.5%,W=0T=2t, for
L=12-16 (exact diagonalization, full fingsand L=20,24 (Lanczos
method, dotted lings Inset shows normalized charge stiffnd3% vs 1L:
exact diagonalizatioficlosed circles T>0 Lanczos methodopen circleg
analytical result(square, and third-order polynomial extrapolation from
L=8,12,16(dotted ling.

2.0

To further point out the particularity of integrable sys-
tems, we investigate the behavior of the conductance on ap-

state is metallic, while fo>2t a charge gap opens and the Proaching the integrable poiw=0. In Fig. 3 we present

system is an insulator.

I (w) scanning the paramet&. We clearly recognize a con-

We study numerically various size systems with periodictinuous transfer of thes-function weightl(w=0)=D* at

boundary conditions anbll = L/2 fermions(half-filling). The

W=0 to low frequencies, both fo>0 andW<0. From a

results forL=28,12,16 are obtained by the complete diago-calculation of the second frequency moment of the conduc-

nalization of the Hamiltonian, while fot =20,24 the Lanc-

tance at infinite temperature, we estimate the frequency

zos method is employed. It should be mentioned that in théange ofa(w)>0 proportional tq (V—W)?2+W?3]/2t2. Due
latter cases results, e.g., fBr*, are subject to small statis- to remaining finite-size effects we are not attempting yet to

tical error due to finite random samplifg.

Metallic state

In Fig. 1 we show the finite-temperature conductance for
an integrable case. To study the finite-size dependence of the

charge stiffness, we plot in the insBt* as a function of

1/L; the dashed lines indicate a third-order polynomial ex-
trapolation based on the=8,12,16 site systems, suggested

by the very good agreement obtained with e 0 analyti-
cal result(square at 1/=0).*?> We find that forL— o the
extrapolatedD* #0. At the same timery=o(w0—0)—0 as
I (w) seems to approach=0 with zero slopd o(w) is the

derivative of |(w)]. This behavior is reminiscent of a
pseudogap. These two results indicate that the integrable sys

tem behaves as adeal conductorat T>0. Moreover, we
find that the normalized* approaches a nontrivial finite
valueD% in theAIimitT—mO, depending o/t and filling, as
bothD and({—T) are proportional tg3 in this limit.

In Fig. 2 we showl (w) andD* for a nonintegrable case.
Here, as expected for a generic metallic condug@tesistoy,

we find thatD* scales to zero, probably exponentially with

system size, andry>0 asl(w) approacheso=0 with a

make more quantitative statements about the critical behav-
ior of the low-frequency conductance.
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finite slope. These two results imply that the nonintegrable rig. 2. Integrated conductancdw) for V=1.8,W=t,T=2t, for

system behaves as a normal conductofat).

L=12-20. In the inset ID* vs L is plotted. Notation is as in Fig. 1.
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FIG. 3. I(w) for L=16)V=1.5,T=2t, and W/t=-0.5,-0.3, FIG. 4. | (w) for V=4t,W=0,T=4t, for L=12,16 (full lines with in-
0.0,0.3,0.5. creasing line thickness, exact diagonalizatiandL = 20 (Lanczos method,

dotted ling. Inset:| (w) for L=16, T=4t.

These numerical results on the finite temperature charggroachw=0 with zero slope, showing a depletion of weight
stiffness, although not conclusive, strongly suggest a qualiyithin a low-frequency region of ordes<t. These are char-
tative difference between integrable and nonintegrable sysacteristics of arideal insulator not conducting even at high
tems. We can argue about this difference by considering theemperatured>A,.
expression foD as a thermal average of the curvatures of In contrast, as shown in the inset of Fig(fér L=16),
levels subject to a fictitious flux. The integrable systems, asonintegrable systems of roughly the same charge gap ex-
they are characterized by absence of repulsion between leWibit a qualitatively different behaviorl (w) approaches
els, allow larger fluctuations in the level response to a fluxw=0 with finite (although smajl slope, consistent with a
and thus plausibly a finite charge stiffness. small static conductance,>0. As expected, conductance

On the other hand, in the nonintegrable systems, becausgre is of a thermally activated character, since appreciable
of level repulsion, the motion of levels with flux is con- ¢,>0 appears only at elevatdc>t.
strained within a characteristic level spacing that is propor- To discuss the behavior of the conductance in the insulat-
tional toe™ L, inversely proportional to the density of states, ing regime, it is a good starting point to think about the large
and thus to a vanishing charge stiffness with increasing sysy/t limit. In this limit the energy spectrum splits in “Hub-
tem size. bard” bands with a fixed numbeN, of soliton-antisoliton

We have also verified that in our integrable system thess) pairs, solitons corresponding to nearest-neighbor occu-
absence of level repulsion leads to Poisson statistics of thgied sites, and antisolitons to nearest-neighbor empty sites.
level spacings while in the integrable one the level repulsionn the V= limit solitons and antisolitons are impenetrable.
leads to Gaussian orthogonal ensenBOE) statistics’ Crossing can only occur by annihilation and creation of a

As for oy, it is more difficult to ascertain its behavior in pair, which corresponds to mixing with other Hubbard bands,
the infinite-size limit from numerical results in finite-size and it has an amplitude of ordét/V. The states are there-
systems. For the nonintegrable systems we find, as expectéidre grouped in characteristic sequences of solitons and an-
a finite value foroy. For the finite-size integrable systems tisolitons.
that we can study, although{w) seems to approach=0 To analyze the fluxp dependence of the energy we note
with a zero slope, we cannot really exclude a finite slope fothat the phase associated with the hopping of a soliton in a
L—o. However, from the physical point of view, even in given direction is opposite to the phase picked by an anti-
this case one can expect ideal conductance provided thsliton; so solitons and antisolitons carry opposite charge. It
charge stiffness remains finite. It is indicative of a free ac-follows that, in thisvV= limit, the flux ¢ dependence of the
celerating system similar in the spirit of a two-fluid model. hopping matrix elements can be removed by a redefinition of
the phase of the states. A nontrivigl dependence would
have appeared if by successively applying the Hamiltonian
on a giverssstate we could bring it to an equivalent one, but

In Fig. 4 we show I(w) for the integrable case with an accumulation of a nonzero phase factor. This pro-
V=4t,W=0. At this value ofvV>2t the ground state is in- cess, which corresponds to a uniform translation of fermions,
sulating characterized bp,=0 and a charge gafpo=t.2* is not possible provided we do not allow for soliton-
We find that, at finite temperature®* (T>0)=1(w=0) antisoliton crossing.
seems also talecreaseexponentially with the system size  Therefore, as we have also numerically verified, the width
scaling to zero forL—oe. This precludes a possibility for of the Hubbard band is of the order bit, but the energy
ideal conductance at>0. Furthermore] (w) seems to ap- levels are independent of the flgxandD is strictly zero. At

Insulating state
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the same time, it is reasonable to argue that a static electric
field acting on impenetrable particles of opposite charge can- V=8I.0t, W'=0’ T='4t
not produce a uniform current and the static conductance
o should also be zero. Thus, in this=co limit, we find an
ideal insulator at any temperature independently of the inte-
grability of the system.

Now, allowing crossing of solitons and antisolitons leads
to aD#0 in a finite-size system. However, our numerical
results above suggest thBt scales again to zero exponen- 05 L
tially with the system size. Further, taking the point of view
that the largeV/t limit is the fixed point of the insulating ™
behavior, we can argue against the scenario of an insulator at
zero temperature developing to an ideal conductor at finite
temperatures.

The next point to discuss is the possibility of an integrable
insulating system developing into a normal conductesis-
tor) at finite temperatures. Unfortunately, this point can only 0.0 : ' ; ' : ' . '
be settled after clarifying the exact connection between the 0.0 2.0 4.0 6.0 8.0 10.0
static conductancer, and integrability. However, consis- o/t
tently with our conjecture, we have found from independent _ . |(w) for V=8t W=0T—4t, for L=12,16, with the notation as
spectral analysis that whenever the insulating system is intgs gig 4. o o
grable, the level spacing distribution is Poisson agdeems

to vanish, while when the system is nonintegrable, the statis,[he system seems to be an ideal conductor, while at half-

t'CSF.'S ﬁOE ancéaoqtto. isualize the ab ict fthe i filing results are consistent with an ideal insulator with
inally, In order to visualize neé above picture of the in- oo(T>0)=0, for any strength of the repulsive interaction.
sulating state, we present in Fig. 5 calculations in the large We should stress that the above results are only indicative
V/t limit. For V=28t the system is characterized by a much . . . -
larger charge gap,~6t. Indeed, we see a region of finite of a relation between integrability and finite t_emperature
conductance and our arguments are far from rigorous. Fur-

conductance in the frequency regiorc@ <4t correspond- h tical and ical studi i
ing to excitations within the first, one-soliton—antisoliton ' analytical and numerical studies are necessary 1o prove

pair, Hubbard band. The weight in this region is increasingn€ validity of our conclusions. However, taking into account
exponentially with temperature, a sign of activated transportPrésent limitations on the size of the systems that can be
It is followed by a vanishing conductance updge- 6t, when numerically studied and the absence of analytical work, we

transitions from the ground state to the first Hubbard bandhink that the results presented here gralitatively clear
start. enough to warrant further work on this idea. Furthermore, an

Comments experimental effort is necessary to observe this unusual con-
ductance enhancement. Finally, the stability of this effect to
Yeviations from integrability should be studied, a problem
similar to the stability of classical soliton systems.

Our conclusions should hold for other integrable system
as well. Since the anisotropiéand isotropi¢ spin-1/2
Heisenberg model is equivalent to the integrabig=0)
model (6), analogous conclusions should apply for the spin  We would like to thank M. Long and H. Castella for use-
stiffness and spin diffusion a>0. Furthermore, we have ful discussions and J. Jaklfor the help with the Lanczos
numerical evidencéto be presented elsewhgrhat the in-  method. This work was supported by the Swiss National
tegrable 1D Hubbard model also exhibits the same featureSond Grant No. 20-39528.93, the University of Fribourg, and
found for the prototype modé6). Namely, out of half-filling  the Ministry of Science and Technology of Slovenia.
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