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We report numerical calculations of the frequency-dependent dielectric function for different gauges of the
electromagnetic field in the optical transition operator. Comparing the results, we draw conclusions about the
importance of different nonlocality effects entering the calculations. Apart from the spatial inhomogeneity
related to the atomic structure of matter, they are due to nonlocal pseudopotentials, quasiparticle self-energies,
and the incompleteness of the basis functions. Besides their influence on optical spectra, their effect on the
validity of the f -sum rule and the magnitude of the resulting dielectric constants is also discussed. We present
results for optical spectra where the many-body quasiparticle effect is included beyond the scissors-operator
approximation. The group-IV materials Si, SiC, and C are considered as model substances.

I. INTRODUCTION

In the past few years, a number of highly accurate calcu-
lations of optical and dielectric properties of semiconductors
have appeared.1–10 In general, they are based on the
independent-particle approximation11–13 @often called the
random-phase approximation~RPA!# and a first-principles
description of the electronic and atomic structure in the
framework of the density-functional theory~DFT! ~Ref. 14!
in the local-density approximation~LDA !.15 These papers
supplement earlier work in the field16–20 ~and references
therein!, in which in addition local-field effects and excitonic
effects have been partially included.

The most serious error of band-structure calculations
within the DFT-LDA for semiconductors and insulators con-
cerns the discrepancies between the Kohn-Sham eigen-
values15 and experimental band energies.20,21The problem of
the underestimation of the gaps between filled and empty
states has been solved by taking into account quasiparticle
~QP! corrections22,23 within the GW approximation24,25 for
the many-body exchange-correlation~XC! self-energy for
electrons and holes, which is, in general, nonlocal in space
and time. The inclusion of QP corrections allows agreement
of theory with one-electron energies obtained from direct and
inverse photoemission experiments at a level of about 0.1 eV,
when the bands of the underlying DFT-LDA band structure
already possess the correct energetical ordering, but certain
underestimated gaps. In these cases, the QP wave functions
are in excellent agreement~wave-function overlaps exceed-
ing 0.999! with the DFT-LDA ones, at least for near gap
excitations.22 The simplest description of such QP correc-
tions is the application of a scissors operator,26 which dis-
places the empty and occupied band against each other by a
rigid shift. In a series of papers, Levine and Allan5,10 have
shown how to calculate optical and dielectric properties
within the QP scissors-operator approximation. However,
this approach introduces two other difficulties: The
oscillator-strength sum rule and the gauge invariance of the
electromagnetic-field description are violated~the latter dif-

ficulty actually arises when the formulas defining the dielec-
tric function are used naively!.5,27

The most recent DFT-LDA calculations of the electronic
structures are performed in the framework of the plane-wave
pseudopotential method, where the Bloch functions of the
valence and conduction electrons are expanded in terms of
plane waves up to a certain energy cutoff and the electron-
ion interaction is described by semilocal pseudopotentials of
Bachelet-Hamann-Schlu¨ter ~BHS! type28 or full nonlocal
pseudopotentials of Kleinman-Bylander~KB! type29 or
pseudopotentials generated by similar schemes. In any case,
the effective potential in the single-particle Kohn-Sham
equations15 contains a spatially nonlocal contribution that re-
quires a careful treatment of the optical transition operators
in the different gauges.27,30,31A third type of nonlocality is
due to numerical uncertainties related to the restriction of the
wave-function basis in all explicit calculations. On the one
hand, the number of plane waves is limited by the cutoff. On
the other hand, only a finite number of conduction bands and
wave vectors in the Brillouin zone are taken into account,
which violates the closure relation of the Bloch functions. A
fourth type of nonlocalities is due to the atomic structure of
matter. These so-called local-field effects17,18 are, therefore,
always present in the calculation independent of the actual
description of the electronic structure.

In the present paper, the introduced nonlocality and many-
body effects~with the exception of local-field effects! are
studied in more detail for the optical properties of semicon-
ductors. As model substances the group-IV materials dia-
mond~C!, silicon ~Si!, and silicon carbide~SiC! crystallizing
in diamond or zinc-blende structure are considered. We cal-
culate joint density of states, the imaginary as well as real
part of the frequency-dependent dielectric function, and the
optical reflectivity. These studies are performed in the frame-
work of two different gauges of the external electromagnetic
field. Simultaneously, also the validity of the equivalence of
longitudinal and transverse dielectric function, as well as the
f -sum rule, is investigated analytically and numerically. All
calculations are done starting from the independent-particle
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approximation or independent-quasiparticle approximation,
but varying the approximations and numerical details of the
electronic-structure description.

Section II is devoted to the introduction of the longitudi-
nal and transverse dielectric functions. The gauge invariance,
as well as the oscillator-strength sum rule, are examined.
Explicit formulas are derived. In Sec. III, we illustrate our
analytical findings by computing the optical properties for C,
Si, and SiC in different approximations and using different
numerical limitations. In this section, we also present the first
QP calculation of optical spectra beyond the scissors-
operator aproximation, by taking into account the full wave-
vector and band-index dependence of the QP corrections.
The most converged results are compared with experimental
spectra. A brief summary and final remarks are given in Sec.
IV.

II. BASIS THEORY

A. Dielectric function

In the independent-particle approximation and applying
the RPA decoupling of the two-particle Green function, one
obtains for the dielectric matrix,11–13,32

«~q1G,q1G8,v!5dGG82v~q1G!P~q1G,q1G8,v!,
~1!

with v(q1G)54pe2/uq1Gu2 and the polarization function
of independent particlesP[P0 (h→10),

P0~q1G,q1G8,v!5
2

V (
k,k8
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^nkuei ~q1G8!x8un8k8&
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3
f „«n8~k8!…2 f „«n~k!…

«n8~k8!2«n~k!1\~v1 ih!
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Here, Bloch integrals of exponential functions with the
Bloch eigenfunctionsunk& belonging to the band indexn,
the wave vectork in the first Brillouin zone~BZ!, and the
energy«n(k) are introduced. The Fermi functionsf («) de-
fine the occupation of the bands. In the following, the Bloch
states will be taken to have occupancies of 0~conduction
bandsn5c) or 1 ~valence bandsn5v). The wave vectorq
is also restricted to the first BZ, whereas the vectorsG,G8
are elements of the reciprocal Bravais lattice of the crystal
with the volumeV. Equations~1! and~2! represent the linear
response~the charge density at wave vectorq1G and at
frequencyv) of a system of independent particles to a lon-
gitudinal microscopic perturbation~a scalar potential of
wave vectorq1G8 and frequencyv). The restriction to a
longitudinal perturbation that may be described by a scalar
potential of the electromagnetic field alone is sufficient for
the derivation of the density response.33,34

The RPA decoupling leading to Eq.~2! for the polariza-
tion function omits XC effects. On the other hand, we will
describe the Bloch states by the solutions of the single-
particle Kohn-Sham equations of the DFT-LDA; the bare
Kohn-Sham eigenvalues are used within the independent-
particle approximation, while QP corrections are added to

them within the independent-QP approximation. In both
cases, we take into account some kind of XC effects. The
corresponding formal generalization of the polarization func-
tion is P5P0@12P0KXC#21,2,6,34where the kernelKXC de-
scribes the XC effects taken into the two-particle Green
function. Within the DFT, it may be represented by
KXC5d2EXC /dndn8 with the electron densityn and the to-
tal XC energyEXC . The same result follows within the so-
called time-dependent local-density approximation.5,35

Within the DFT-LDA or the theory improved by QP correc-
tions, it would be consistent to takeKXC into account. How-
ever, its LDA description gives rise to an incorrect behavior,
at least for the most important diagonal Fourier components
G5G8.2 On the other hand, forms of the diagonalKXC ,
which exhibit the correct asymptotic behavior and are almost
derived in electron-gas theories,32,34,36 bring the product
P0KXC to vanish for small wave vectors. This limit is, how-
ever, relevant for the description of optical properties. We,
therefore, neglect corrections related toKXC and restrict our-
selves to expression~2! for the polarization function.

Since the local-field effects, however, do not change the
peak position in the spectra very much, at least in the absorp-
tion spectra, but mostly the intensity distribution,17,32we ne-
glect them in the following. From Eqs.~1! and ~2!, one ob-
tains for the corresponding longitudinal dielectric function
with G5G850 andq→0,

« l~q,v!5 limq→0H 11v~q!
4

V

3(
k,k8

(
c,v

@«c~k!2«v~k8!#u^ckueiqxuvk8&u2

@«c~k!2«v~k8!#22\2~v1 ih!2 J .
~3!

B. Gauge invariance

The dielectric function may be also derived within the
transverse-response formalism, where the light-matter inter-
action is described by the coupling of the vector potential
with the current density of the electrons, i.e., the so-called
Coulomb33 or velocity27,30gauge. In this gauge, the polariza-
tion function is related to the current-current correlation
function.34 To derive only the longitudinal part of the dielec-
tric function, we go another way and transform expression
~3!. The limit of vanishing photon wave vectors can be easily
performed in Eq.~3!. However, this has to be done with care.
Otherwise, ill-defined quantities as matrix elements of the
dipole operator appear. A better way is to use the relation

^cku@eiqx,H#2uvk8&5@«v~k8!2«c~k!#^ckueiqxuvk8&,
~4!

whereH denotes the single-particle Hamiltonian fulfilling
the Kohn-Sham equationsHunk&5«n(k)unk& for both local
and nonlocal potentials.37 Using Eq.~4! and the fact that
the two involved bands are different, the result of the limit
q→0 can be related to matrix elements of the velocity op-
eratorva in a certain Cartesian directiona,

va5
i

\
@H,xa#2 . ~5!
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From Eq.~3!, one obtains

« l~q,v!5 (
ab5x,y,z

qaqb

q2
«ab~v!, ~6!

with

«ab~v!5dab1
16pe2\2
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k
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c,v

1

@«c~k!2«v~k!#

3
^ckuvauvk&^vkuvbuck&

@«c~k!2«v~k!#22\2~v1 ih!2
. ~7!

When the Cartesian coordinate system is defined by the prin-
cipal axes of the crystal, the dielectric tensor is diagonal. The
diagonal elements«aa(v) of the dielectric tensor can be
calculated in two different ways. It can be directly evaluated
from Eq. ~3! in the q→0 limit for suitable choices of the
wave-vector direction parallel to the principal axes of the
tensor. The second possibility starts from expression~7!. One
advantage is that only electronic-structure calculations for
one k point and not for pairsk and k1q have to be per-
formed. On the other hand, matrix elements of the compli-
cated velocity operator instead of an exponential function
have to be considered.

The relation of the dielectric function in expression~6! to
the second-rank tensor«̂(v) indicates that we have indeed
introduced the longitudinal dielectric function« l(q,v)
5q̂• «̂(v)•q̂, with q̂5q/uqu. The transverse dielectric func-
tion, « t(q,v)5e• «̂(v)•e, with a unit vectore5e(q)'q̂, is
also simply related to the dielectric tensor«̂(v). For cubic
crystals this tensor is diagonal,«ab(v)5dab«(v), with
equal components independent of the choice of the Cartesian
coordinate system. Consequently, longitudinal and transverse
dielectric function are equal in the limit of vanishing photon
wave vectors.38

The appearance of the matrix elements of the velocity
operator in Eq.~7! can be also interpreted as a result of
another derivation of the dielectric function starting from the
vector-potential description of the electromagnetic field. In
this sense, the equality of expressions~3! and ~6! with ~7!
may be interpreted to follow as a consequence of the gauge
invariance of the description of optical properties. This in-
variance is generally valid, even beyond the independent-
particle ~or independent-QP! approximation, as shown by
Ambegoakar and Kohn39 for cubic crystals and by Del Sole
and Fiorino40 for less symmetric materials.

In general, nonlocal potentials are included in the
independent-particle HamiltonianH. This happens already at
the DFT-LDA level, because of the use of nonlocal pseudo-
potentials. This fact makes the calculation of the matrix ele-
ments of the velocity operator more difficult. Since the
Hamiltonian has the formal structureH5p2/2m1Vl1V nl ,
where the total potential,V5Vl1Vnl , is divided into a local
( l ) and a nonlocal~nl! part and the momentum operatorp is
introduced, the velocity operator~5! can be transformed into
the representation,2

va5pa /m1
i

\
@Vnl ,xa#2 , ~8!

whereVnl denotes the spatially nonlocal contribution to the
effective total potential in the single-particle equations and
pa is a Cartesian component of the momentum operator.
Equation ~8! indicates that a naive approximation of the
electron-photon interation, which ends up with expression
~7!, but with the replacement ofva by pa /m, in general,
violates the gauge invariance and can be only applied in the
limit of local pseudopotentials and neglecting QP effects.

When QP effects are included, the spatial nonlocality of
the self-energy may be treated in the same manner as the
potentialVnl . However, in addition, a problem arises from
the energy shiftDn(k) of the DFT-LDA eigenvalues«n

0(k) to
«n(k), the position of the main peak in the spectral function
of the single-QP Green function. Within the assumption of
nearly equal DFT-LDA and QP wave functions and neglect-
ing nonlocality effects in the optical transition operator, this
problem has been originally attacked by Levine and Allan5

and Del Sole and Girlanda.27 They applied Eq.~4! only in the
form where the single-particle energies are replaced by those
of the DFT-LDA, «n

0(k), whereas the energies in expression
~3! are taken as the QP ones,«n(k). As the result formula~7!
is obtained, however with an additional renormalization fac-
tor @«c(k)2«v(k)#

2/@«c
0(k)2«v

0(k)#2, which increases the
oscillator strengths according to the increase of the averaged
gap and, consequently, the high-frequency dielectric con-
stant. Meanwhile, first attempts41 exist to include also the
consequences of dynamical screening effects in the QP self-
energy. However, the resulting strong reduction of the ab-
sorption spectra indicates that these effects have to be taken
into account more consistently.

C. f -sum rule

In the limit h→10, the oscillator-strength (f -! sum rule
may be easily obtained, because of the appearance of the
Dirac’s d function as a consequence of the energy conserva-
tion. We restrict ourselves to the case, where the microscopic
spatial inhomogeneity of the matter, i.e., the local-field ef-
fects, can be neglected. We start from the longitudinal dielec-
tric function in expression~3!, but sum up over all bands
instead only the unoccupied ones. A proof of that extension
can be easily given by an exchange of the occupied band
states in the additional terms that have to be subtracted. One
obtains

E
2`

` dv

p
v Im« l~ q̂,v!

5 limq→0v~q!
4

V\2(
k,k8

(
n5c,v

(
v

@«n~k!2«v~k8!#

3u^nkueiqxuvk8&u2. ~9!

By means of relation~4!, one of the matrix elements on the
right-hand side~rhs! can be rewritten as a matrix element of
the operator@eiqx,H#2 and the sum over all Bloch states
unk& can be performed. On the rhs, diagonal matrix elements
of the operatore2 iqx@eiqx,H#2 with valence states occur.
The limit q→0 can be calculated in a similar way as by the
introduction of the velocity operator in Eq.~5! and its ex-
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plicit representation in Eq.~8!. Replacing the diagonal ma-
trix element of the velocity operator by¹k«v(k)/\ and tak-
ing into account that(k¹k«v(k)50, one derives

E
2`

1`dv

p
v Im« l~ q̂,v!

5vp
2H 12 limq→0 (

a,b5x,y,z

qaqb

q2
2m

\2n̄V

3(
k

(
v

^vku@@Vnl ,xa#2 ,xb#2uvk&J ,
~10!

where the definitions of the averaged electron density
n̄5(2/V)(k(v and the plasma frequency of the valence
electronsvp

254pe2n̄/m are used.
Considering expression~10!, a word of caution is neces-

sary. Taking into account nonlocal contributions to the poten-
tial in the single-particle Hamiltonian, the Thomas-Reiche-
Kuhn f -sum rule is violated. This is somewhat surprising
since, usually, the RPA, i.e., the approximation of the two-
particle Green function as a product of two single-particle
Green functions, should not give rise to a violation of the
sum rule. It seems that in the presence of nonlocal potentials
the representation of the two-particle excitation energies as
differences of band energies is not more possible, even with-
out taking into account electron-hole Coulomb interaction. In
other words, even when excitonic effects are neglected, the
total many-body Hamiltonian cannot be simply replaced by a
sum of effective single-particle Hamiltonians in the presence
of nonlocal pseudopotentials or QP self-energies.27 Previ-
ously, other authors5,7,22,30 has noted this problem. Mean-
while, it is also discussed7 in the case of the Johnson
f -sum rule,42,43 i.e., when local fieldsGÞG8, as in expres-
sions~1! and ~2!, have been included.

The second term on the rhs of Eq.~10! represents an
additional oscillator strength induced by nonlocal potentials
when the total Hamiltonian is represented by a sum of effec-
tive single-particle ones. Considering this reason, thef -sum
rule may be reformulated according to Levine and Allan,5 by
introducing the square of an ‘‘effective plasma frequency’’
(vp

eff)2 related to the rhs of Eq.~10!. Consequently, an effec-
tive ~pseudo-! valence electron density occurs that is modi-
fied with respect to the averaged densityn̄ by the nonlocality.
A physical discussion of this effect is given in Ref. 5~cf. also
references therein!. It is based on the fact that in the pseudo-
potential construction the core electrons are removed.

C. Numerical details

The electronic-structure calculations underlying the com-
putations of the optical properties are based on the
DFT-LDA.44 The many-body electron-electron interaction is
described within LDA, more precisely within the Ceperley-
Alder scheme,45 as parametrized by Perdew and Zunger.46

The electron-ion interaction is treated by norm-conserving,
ab initio, fully separable pseudopotentials in the KB form.29

They are based on relativistic all-electron calculations for the
free atoms by solving the Dirac equation self-consistently. In

the beginning of our studies, the pseudopotentials were gen-
erated for Si and C according to the data of Ref. 47, giving
rise to potentials similar to those of BHS.28 Unfortunately for
this choice of the carbon pseudopotentials, too many plane
waves have to be taken into account to reach convergence.
Therefore, the C potentials are softened by careful choosing
of the core radii.48,49 The electronic wave functions are ex-
panded in terms of plane waves. The energy cutoffs for the
plane-wave expansion are chosen to 15, 34, and 42 Ry for
silicon ~Si!, silicon carbide~SiC!, and diamond~C!. They are
sufficient for converged energy and lattice calculations. The
total-energy optimization gives rise to theoretical cubic lat-
tice constants ofa510.227 a.u. for Si,a58.109 a.u. for SiC,
and a56.681 a.u. for C. They are used, although they
slightly underestimate the experimental ones50 and, hence,
enlarge somewhat the DFT-LDA transition energies. The QP
corrections to the DFT-LDA eigenvalues are computed
within the GW approximation for the XC self-energy,20–25

according to a simplified scheme developed by Cappellini
and co-workers.51–53 Using the numerical input described
above, corresponding shift values have been published for
zinc-blende SiC in Ref. 54. In the self-energy calculations,
the number of conduction bandsNCB is typically restricted to
a value ofNCB560. In the case of the dielectric function, the
sufficient numberNCB is tested.

The longitudinal dielectric function is calculated within
both the length gauge, according to expression~3! and the
velocity gauge according to Eqs.~6! and~7!. First, the imagi-
nary part Im«(v) is computed. Thek-space integration is
performed numerically by means of the linear analytic tetra-

FIG. 1. Real and imaginary part of dielectric function, joint
density of states, and reflectivity of SiC for different numbersNk of
k points within the irreducible part of the BZ. The velocity gauge
Eq. ~7! is used, but nonlocality contributions to the optical transition
operator are omitted. Solid line:Nk589; dashed line:Nk5240;
dotted line:Nk5505.NCB54.
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hedron method,55,56 usually based on 89k points in the 1
48th

irreducible wedge of the Brillouin zone~BZ! of the fcc struc-
ture. However, larger numbersNk have also been checked, as
demonstrated in Fig. 1. Generally, the inclusion of morek
points does not produce any significant changes in the spec-
tra. Only the peak maxima are slightly reduced and, in the
high-energy case, also somewhat shifted. We use the fact that
the dielectric tensor should be a scalar and compute its trace,
«(v)5@«xx(v)1«yy(v)1«zz(v)#/3, for which the restric-
tion to the irreducible part of the BZ is valid. This corre-
sponds to the method of invariants. The real part of the di-
electric function, Re«(v), is obtained by a Kramers-Kronig
transformation of Im«(v), in which a tail of the form
(bv)/@(\v)21g#2, as used by other authors,3,19,57 is at-
tached for energies\v greater than\v0517.8 ~Si!, 25
~SiC!, or 35 ~C! eV, whereg is fixed to be equal to 4.5 eV.
The parameterb is determined by the continuity of
Im«(v) at \v0 . To reduce the influence of numerical fluc-
tuations onb, the function Im«(v) is fit in the interesting
frequency region aroundv0 . Because of the large values
\v0 used, we find the tail of minor importance. In the worst
case~diamond, many conduction bands!, the variation of the
dielectric constant«`, as well as of the plasma frequency
vp
eff , is smaller than 1%.
Another important input parameter is the number of con-

duction bandsNCB taken into account. The influence of
NCB is indicated in Fig. 2, in the case of cubic SiC. No
noticeable differences were found for Im«(v) in the energy
range of interest. The same holds for Re«(v) around the
frequency of the most pronounced oscillator. However, its
increase in the high-energy region produces a remarkable
reduction of the reflectivity for these frequencies. Surpris-

ingly, in a wide energy range until the main structure in the
reflectivity spectrum, four conduction bands are sufficient for
optical properties. The reason are the matrix element effects
that significantly reduce the influence of the joint density of
states, because the transition probabilities become small for
high energies.

The transition matrix elements are calculated by different
methods. For zero reciprocal lattice vectors and applying the
Coulomb gauge matrix elements of the type^ckueiqxuvk8& in
Eq. ~3! are computed using the results of two different
electronic-structure calculations at the Bloch wave vectors
k and k1q, with a certain small but finite wave vectorq.
Usually, we have considered wave vectors with a nonvanish-
ing Cartesian componentq52p/a/80. From Fig. 3, it fol-
lows that this value is reasonable. Smaller values do not
change the dielectric function. On the other hand, values
large compared to the photon wave vector give rise to re-
markably broadened line shapes.

In the case of the Coulomb gauge Bloch matrix elements
of the velocity operator in Eq.~8! have to be considered.
They are related to those taken between plane wavesuK & and
uK 8& at wave vectorsK5k1G andK 85k1G8. It follows2

^K uvuK 8&5
\

m
KdKK 81

1

\
~¹K1¹K8!^K uVnluK 8&. ~11!

The fully separable pseudopotentials in the KB form29 allows
a factorization according to

FIG. 2. The same quantities as in Fig. 1, but for different num-
bersNCB of conduction bands. Solid line:NCB54; dashed line:
NCB530; dotted line:NCB560.Nk589.

FIG. 3. Longitudinal dielectric function, Eq.~3!, without local-
field corrections for SiC in dependence on the wave vector with a
finite componentq5k2p/a parallel to a Cartesian axis. Solid line:
k51/160; long-dashed line:k51/80; dotted line:k51/16, dashed
line: k51/8. Nk589,NCB54.
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^K uVnluK 8&5(
s
exp@ i ~K2K 8!ts#

3(
l50

1

(
m52 l

l

ClFlm
s ~K !Flm

s* ~K 8!,

Flm
s ~K !5E d3r e2 iKrVl

s~r !F lm
ps~r !, ~12!

with the nonlocal contributionVl
s(r ) of the ionic pseudopo-

tential localized at the pointts in the unit cell, the pseudo-
wave functionF lm

ps(r ) of the corresponding atom, and a nor-
malization constantCl .

58

III. APPLICATION TO SILICON, SILICON CARBIDE,
AND DIAMOND

A. Gauge dependence in explicit calculations

In order to study the gauge influence, the dielectric func-
tion is represented for SiC, in the framework of certain nu-
merical approximations in Fig. 4. Silicon carbide is selected
as a model substance. First, we consider the velocity gauge
in Eq. ~7!. Generally, we find that the nonlocal pseudopoten-
tials are of remarkable influence on the optical transition op-
erator in Eq.~8!, as well as the resulting dielectric function.
In the case of the stronger bonded group-IV materials, e.g.,
SiC, we observe a reduction of the amplitude of the dielectric
function by about 10225 % in the average, due to the non-
locality effects. The physical reason of the reduction is not
very clear. We expect a small increase of the amplitudes,
since the nonlocal contributions to the pseudopotential give
rise to a small gap opening. In the case of GaAs, not shown
here, indeed we find such an enlargement. There seems to be
an opposite tendency changing from free-electron-like mate-
rials to crystals containing first-row elements, where the
wave functions are stronger localized. The polarizability is
effectively reduced by the nonlocality contributions. In a lo-
cal picture, this would be consistent with a spatial redistribu-
tion of the oscillator strength. In the case of materials, such
as GaAs, there is an additional influence from the energeti-
cally highlying d electrons. They have a remarkable influ-
ence in constructing the nonlocal part of the atomic pseudo-

potentials. In any case, we conclude that within the
transversal gauge, the replacement of the velocity operator
by the momentum operator gives rise to a certain error, de-
pending on the bonding properties of the material consid-
ered.

The small discrepancies between the dielectric functions
in length and velocity gauge in Fig. 4 are somewhat surpris-
ing, although practically they only concern the frequency
regions below and above the main peaks. In general, the
module of the dielectric function is overestimated by chang-
ing from the longitudinal perturbation to the transversal
gauge. As a consequence, the equality of the dielectric func-
tions in the two gauges is slightly violated for the considered
cubic crystals Si, SiC, and C.

Two reasons for the discrepancies may be mentioned.
First, one assumption used in the derivation of expressions
~6! and ~7! from Eq. ~3! must be invalid, due to the applied
numerical approximations. Relation~4! is only based on the
validity of the Kohn-Sham equations independent of the de-
tails of the wave-function description and the diagonalization
procedure. On the other hand, the explicit representation~8!
of the velocity operator~5! starts from the assumption that
the local part of the single-particle Hamiltonian,Hl
5p2/2m1Vl , gives rise to the momentum operator when it
commutates with the space operator. However, the commu-
tator relationim@Hl ,xa#25\pa involves the orthogonality
and the completeness of the eigenfunctionsunk&. More
strictly speaking,xa andpb cannot exactly obey the under-
lying commutator relation@x,p#25 i\1 in any finite basis
set. This relation cannot hold in a representation with only a
finite number of basis states, as has recently been pointed out
in the case of a restricted tight-binding basis.59 In our case of
a plane-wave expansion, one uses a finite basis of plane
waves limited by the energy cutoff. Moreover, we restrict the
numberNCB of conduction bands, as well as the number of
k pointsNk , with the consequence that the closure relation
(n,kunk&^nku511D(NCB,Nk) is only fulfilled with a devia-
tion D(NCB,Nk). A nonlocal functionD(NCB,Nk) appears
on the rhs, which vanishes in the limitsNCB→` and
Nk→`. In our explicit numerical calculations, this unphysi-
cal nonlocality appears and enlarges the dielectric function
somewhat for the transverse gauge. Second, in principle, the
calculations of the dielectric function starting from a longi-
tudinal perturbation are converged with respect to the small
wave vector. However, a small increase of the spectra chang-
ing the wave vector fromk51/80 to a smaller value cannot
be excluded~cf. Fig. 3!.

B. Quasiparticle effects

The calculation of optical spectra with the inclusion of QP
effects is complicated by the nonlocality and energy depen-
dence of the self-energy. As a consequence of the latter, the
spectral behavior of the single particles is different from a
shifted Dirac’s d function with the full spectral weight.60

This leads to a strong~by about one third! reduction of the
optical oscillator strength.41 However, there are indications
that dynamical vertex corrections may~at least partially! can-
cel such a reduction. Therefore, at present, we neglect dy-
namical effects, as in all calculations up to now, and briefly
recall how the self-energy nonlocality can be handled.27

FIG. 4. Dielectric function for SiC. Solid line: velocity gauge
@Eq. ~7!#, but neglecting the nonlocal pseudopotential contribution
in the transition operator@Eq. ~8!#; dashed line: full velocity gauge,
including nonlocal contributions; dotted line: length gauge Eq.~3!.
Nk589,NCB54.
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The presence of a nonlocal self-energy, as well as of a
nonlocal pseudopotential, does not affect the linear-response
formulation in the case of a longitudinal perturbation. Hence,
equation~3! remains valid, with QP corrections embodied in
the band energies. Also, the transformation to the transverse
gauge described in Sec. II B remains valid, together with
equation~7!. The problem is that the matrix elements of the
velocity operator~5! must be used herein, which include
complicated terms arising from the nonlocality of the self-
energy contained inH. In order to avoid their calculation, we
exploit the aforementioned similarity of DFT-LDA and QP
wave functions. We use Eq.~4!, with the DFT-LDA Hamil-
tonianH0: hence, the energy eigenvalues in Eq.~4! are the
DFT-LDA ones. Coming to equation~7!, the recipe for deal-
ing with nonlocal self-energy effects is clear: only the single-
particle energies, which arise from the spectral behavior of
the single-electron as well as single-hole Green function, are
replaced by the QP values,60 but not those occurring due to
the rewriting of optical matrix elements as argued in Sec.
II B. In a naive approach, all single-particle energies appear-
ing in expression~7! are shifted by the QP corrections. This
leads, however, to the breaking down of the gauge invari-
ance, as discussed above, and to a strong reduction of oscil-
lator strengths. Therefore, the naive approach is incorrect,
and calculations carried out according to it will be shown, in
this paper, only for the sake of comparison. In order to better
evidentiate the nonlocality of the self-energy, that of the
pseudopotential will be neglected, namely, only the first term
on the right-hand side of Eq.~11! is retained for the velocity
operator.

Consequently, in the computations, only the DFT-LDA
single-particle energies, which arise from the spectral behav-
ior of Green’s functions, are corrected by wave-vector- and
band-index-dependent QP shiftsDn(k) . For SiC, such val-
ues have been published in Ref. 54. For Si and C, they are
calculated according to the same scheme.

The results of changing the single-particle energies in two
ways from the DFT-LDA to the QP values is presented in
Fig. 5 for silicon, silicon carbide, and diamond. At first sight,
the main effect of the QP corrections looks like the applica-
tion of a scissors operator,23,26,61with a rigid shiftD of the
conduction bands against the valence bands averaged over
combinations of QP shifts of the Bloch states. In the naive
approximation, it simply holds Im«(v)5@\v/(\v1
D)] 2Im«DFT(v2D/\), like in the results of Levine and
Allan.5 A similar rough description is possible for the real
part in a wide frequency range for not too small frequencies.
However, in the static case, the frequency in the prefactor
has to be replaced by the average gap of the system. If only
the spectral properties are changed, one finds
Im«(v)5Im«DFT(v2D/\), which is correct within an
independent-QP approximation.27 Similarly, the real parts
may be related to each other. Whereas, in the first~naive!
approach, the peak intensity is remarkably changed, in the
second case, the spectra are only nearly rigidly shifted, even
if this shift seems to be larger for higher photon energies.
The calculations shown in Fig. 5, with wave-vector and
band-index-dependent QP shifts, are very similar to the sec-
ond approach. The only difference not accounted for by a
rigid shift is a very slight reduction of the main peak.

The apparent validity of the scissors-operator approxima-
tion is somewhat surprising considering the wave-vector and
band-index dependences of the QP shiftsDn(k). For in-
stance, in the case of zinc-blende SiC, we have found54 a
remarkable variation of the shifts. The variation ofDn(k) for
the upper valence bands is as large as 0.6 eV going from the
center of the BZ to its boundaries. Similar values are ob-
served for thep-like conduction bands. The above results
may be explained by two different effects acting on the di-
electric function. First, the evidence of the energy shifts is
modified by the curvature of the bands, i.e., the joint-density-
of-states effect, and the magnitude of the corresponding ma-
trix elements. Second,n- andk-dependent QP shifts can act
like rigid shifts. This is shown by Janaket al.62 and Wang
and Klein.19 They started from an idea of Sham and Kohn63

being valid in the case of slowly varying electron densities.
According to this idea, electron-hole-pair excitation energies
in DFT-LDA may be corrected by QP shifts in the form
Dc(k)2Dv(k)5l@«c(k)2«v(k)#. It results in Im«(v)
51/(11l)Im«DFT@v/(11l)#.19 With respect to the imagi-
nary part, this result is intermediate between the two former
ones. However, it takes into account that in the average, the
QP effect on the excitation energies is larger for more distant
bands.

In order to study the quality of a scissors-operator ap-
proximation, we have studied the influence of the wave-
vector- and band-index-dependent QP shifts in Fig. 6 for the
imaginary part of the dielectric function. The problem is de-

FIG. 5. Dielectric function in velocity gauge andva5pa /m, for
Si, SiC, and C. Solid line: DFT-LDA; dashed line: QP~all energies
replaced!; dotted line: QP~energies replaced only in single-particle
Green functions!. NCB58 ~Si, C!, 4 ~SiC!, Nk589. Wave-vector-
and band-index-dependent QP shifts are used.
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fining a reasonable scissors operatorD. We have used the
shift of the first zero in the real part of«(v) from its DFT-
LDA value to that within the QP approximation. The result-
ing valuesD50.95 ~Si!, 1.65 ~SiC!, and 2.65 eV~C! are
somewhat larger than the openings of the indirect energy
gaps 0.78~Si!, 1.31 ~SiC!, and 1.86 eV~C!, but remain be-
low the values obtained by averaging all QP shifts. Figure 6
makes the influence of the dependence of the QP shifts on
the Bloch quantum numbersn andk obvious. In comparison
to the simply shifted DFT-LDA spectra, one observes a ten-
dency for broadening of the absorption spectra. The intensity
of the principal peak decreases, whereas the spectral weights
of the low- and high-energy tails increase. In addition, the
peaks in the imaginary part are somewhat differently shifted.
This holds especially for those at the high-energy side, for
which the scissors operator is too small. The broadening ef-
fect is mainly due to changes in the joint density of states.
The parallelism of the conduction and valence bands contrib-
uting to the principal peak is reduced by the shiftsDn(k),
whereas other pairs of empty and occupied bands become
more parallel.

C. Sum rules

The spatial nonlocalities due to pseudopotentials and nu-
merical uncertainties as well as the QP effects also influence
the various sum rules via the spectral behavior of the under-
lying dielectric functions. We consider the generalized
oscillator-strength sum rule@cf. Eq. ~10!#,

~vp
eff!25

2

pE0
`

dv v Im«~v!, ~13!

and the screening sum rule,

«`511
2

pE0
`

dv
1

v
Im«~v!, ~14!

with «`5Re«(0), which may be interpreted as a direct con-
sequence of the Kramers-Kronig transform at zero frequency.
The appearing quantities, the square of the ‘‘effective plasma
frequency’’vp

eff and the~high-frequency! electronic dielec-
tric constant «` represent suitable measures for the
frequency-averaged effects.

The effect of the gauge of the electromagnetic field to-
gether with the incompleteness of the Bloch functions used
in the numerical calculations onvp

eff and«` is represented in
Table I. The electronic dielectric constant«` reflects the
same dependence on the particular gauge of the electromag-
netic field as already discussed for the frequency-dependent
dielectric function. In general, the largest values are observed
in the transversal~velocity! gauge, neglecting the nonlocal
contributions to the transition operator. The smallest ones
appear in the longitudinal~length! gauge. All calculated val-
ues are larger than the experimental ones«`511.7 ~Si!, 6.7
~SiC!, and 5.7~C!,50 expressing the underestimation of the
transition energies within the DFT-LDA. This is in agree-
ment with the findings of other authors. With the improve-
ment of the completeness of the eigenfunctions, i.e., increas-
ing number of conduction bands and mesh points ink space,
the values of«` decrease. The SiC results for increasing
Nk strongly indicate the tendency for convergence of the two
different gauges when the nonlocal-pseudopotential effects
are not neglected and the wave functions are complete.

The total oscillator strength, represented in Table I by the
square of the effective plasma frequencyvp

eff in units of the
plasma frequencyvp , is almost smaller than 1, reflecting the
reduction of the oscillator strength, due to the influence of
the nonlocal potentials, as can be seen from Eq.~10!. Only

FIG. 6. Imaginary part of the dielectric function of Si, SiC, and
C in QP approximation. Scissors operator: solid line; inclusion of
wave-vector- and band-index-dependent QP shifts: dashed line; dif-
ference: dotted line.

TABLE I. Dielectric constant and effective plasma frequency for
three different approximations of the optical transition operator and
varying number of conduction bandsNCB and k points Nk . L:
longitudinal~length! gauge;T~nl!: transverse~velocity! gauge with
full velocity operator ~including nonlocal contributions!; T( l ):
transverse gauge, where nonlocal-potential contributions are omit-
ted.

Material NCB /Nk «` (vp
eff/vp)

2

L T~nl! T( l ) L T~nl! T( l )

Si 8 / 89 13.6 14.5 15.8 0.90 1.14 1.05
16 / 89 15.9 1.07

SiC 4 / 89 7.0 7.5 8.5 0.76 0.75 0.87
30 / 89 7.2 7.7 8.7 0.93 0.86 1.06
100 / 89 7.2 8.3 8.7 0.99 0.91 1.00
4 / 240 7.1 7.6 8.6 0.72 0.76 0.87
4 / 505 7.4 7.6 8.6 0.75 0.75 0.87

C 8 / 89 5.9 6.9 6.8 0.85 0.94 0.96
30 / 89 6.8 0.85
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silicon exhibits larger values within the transversal gauge,
indicating the more delocalized character of the wave func-
tions as for the C-based materials~cf. above discussion!. In
contrast to the case of the spectral behavior, the number of
BZ integration points plays no important role. After the fre-
quency integration according to Eq.~11!, the integrand rep-
resents a smooth function ink. More important is the in-
crease of the numberNCB of the conduction bands. In the
longitudinal case, one clearly sees that (vp

eff/vp)
2 ap-

proaches the value 1. We speculate that the nonlocalities, due
to the incompleteness, partially compensate those related to
the pseudopotentials.

The dielectric constant, as well as the oscillator strength,
reacts sensitively to the QP effects~cf. Table II!. The in-
crease of the energy gaps only in the spectral behavior gives
rise to smaller dielectric constants and an enlargement of the
total oscillator strength roughly by a factor (11D/\vp)

2.
When all DFT-LDA energies are replaced by the QP values,

a remarkable reduction of«` and (vp
eff/vp)

2 happens, since
the renormalization;(\v)2/(\v1D)2 of the oscillator
strengths disappears. The resulting extreme reduction of both
quantities confirms that the underlying approximation is
rather unrealistic.

D. Comparison with experiment

In Fig. 7, the dielectric functions of Si, SiC, and C are
calculated within the reduced velocity gaugeva5pa /m and
DFT-LDA and are compared with experimental data.64–66

The theoretical spectra are shifted towards higher energies by
D50.47 eV~Si!, D50.84 eV~SiC!, andD50.40 eV~C!, to
bring the zeros of the experimental and theoretical real part
together. These shifts are much smaller than the state-
independent opening of the energy gaps used generally68 or
derived from our QP calculations, especially for diamond.
One reason for this finding should be excitonic effects that
are not included in our calculations. The Coulomb attraction
between electrons and holes gives rise to smaller transition
energies. Another reason concerns the details of the underly-
ing DFT-LDA calculations. Although the calculations are
rather converged and only small reductions of transition en-
ergies with a further increase of the plane-wave cutoffs are
expected, there remains an influence. We use the theoretical
lattice constants in the electronic-structure calculations. They
are smaller by about 1% than the experimental ones. An
increase of the lattice constant, however, enlarges the transi-
tion energies. Nevertheless, the resulting theoretical spectral
behavior reproduces the overall frequency dependences
found experimentally. On the other hand, we have to mention
that similarly small scissors operators have been found to
bring the calculation of«` in agreement with experiment.5,10

TABLE II. Dielectric constant and effective plasma frequency
for three different ways of inclusion of QP shifts. DFT: neglect; QP
~spec!: only in spectral behavior; QP~all!: shift of all DFT-LDA
single-particle energies. The velocity gauge~7! is used, but nonlocal
effects are omitted in the transition operator.NCB58 ~Si, C!,
NCB54 ~SiC!, Nk589.

Material «` (vp
eff/vp)

2

DFT QP~spec! QP ~all! DFT QP~spec! QP ~all!

Si 15.8 13.5 8.7 1.05 1.25 0.79
SiC 8.5 7.3 5.1 0.87 1.09 0.72
C 6.8 5.6 3.9 0.96 1.04 0.59

FIG. 7. Calculated dielectric functions in comparison with experimental data for Si~Refs. 64 and 65! ~a!, SiC ~Ref. 66! ~b!, and diamond
~Ref. 67! ~c!. The theoretical curves~solid lines! are taken within the reduced velocity gaugeva5pa /m and rigidly shifted byD50.46
~0.84, 0.37! eV to higher energies for Si~SiC, C!. Experimental data: dashed lines~Refs. 64, 66, and 67! and dotted line Ref. 65.
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As a general feature of all theoretical spectra of the cova-
lent materials Si and C, the intensity of theE2 peak,

69 i.e.,
high-energy peak in Im«(v), is overestimated and more
sharply peaked than observed. The reason is that Im«(v) is
calculated without inclusion of lifetime broadening effects.
Also, the surface preparation of the samples used in the mea-
surements may influence the peak heights. Wang and Klein19

have taken an empirical lifetime broadening into account to
adjust theE2 peak intensity. However, such a procedure
gives rise to a further reduction of theE1 peak. TheE1 peak
at the low-energy side of the Im«(v) spectra is underesti-
mated in the Si case and appears as a shoulder. In our opin-
ion, this underestimate may be traced back to excitonic ef-
fects. The Coulomb attraction between electron and hole
drastically enhances the oscillator strength, in particular in
the E1 region.18,32 On the other hand, local-field effects
would further reduce the intensity, leading to a poorer agree-
ment with the experiment in this energy range.17,18,32In the
wide-band-gap material C, theE1 peak seems to be rather
depressed in any case. This is due to the band structure. The
highest valence band and the lowest conduction band are not
more parallel along the@111# direction. Hence, the corre-
sponding pronounced peak in the joint density of states is
missing.

In the case of SiC, the character of the double-peak struc-
ture in Im«(v) is quite different. TheE2 peak related to
X5v→X1c transitions in the band structure is only respon-
sible for the low-energy tail in Im«(v). The low-energy
peak should haveE0 and E1 character and may be traced
back to transitionsG15v→G1c and L3v→L1c . However,
there are also contributions from theS line. The high-energy
peak, that is somewhat lower in intensity, possessesE18 ,
E08 , and E21d character. Contributions are related to the
transitionsL3v→L3c , G15v→G15c , and X5v→X3c . More
roughly, the first peak is mainly related to transitions from
the highest valence band to the lowest conduction band,
whereas the high-energy peak is essentially due to transition
from the highest valence band to the second conduction
band. Transitions from the second highest valence band to
the lowest conduction band give more or less rise to the
intensity between the two peaks in Im«(v). Our interpreta-
tion is in rather good agreement with a former Hartree-Fock-
Slater calculation,70 but slightly different from that derived
within an empirical pseudopotential study.71

The comparison of the calculated spectra with experimen-
tal results64–67 indicates different degrees of agreement. In
the case of Im«(v) for diamond, the spectra approach each
other. Considering the neglect of lifetime, excitonic as well
as local-field effects, the agreement remains satisfying in the
case of Si, although theE1 peak cannot be reproduced and
the transition strengths are overestimated for higher energies.
For SiC, the agreement is much poorer. The double-peak
structure is smeared out in the experimental curves.

The general spectral behavior of Re«(v) can be repro-
duced by the calculations as represented in Fig. 7. In particu-
lar, this holds for diamond. In the case of silicon, the peak
slightly below theE1 peak agrees well, although it is some-
what shifted to smaller energies. On the other hand, the os-
cillator character of the spectra below the zero transition is
remarkably overestimated in the theoretical spectra. The
same holds for the high-energy tails. The smearing out of the

oscillator character is most pronounced for SiC. We cannot
exclude that this pronounced effect is a consequence of poor
optical quality of the Bridgman crystals used in the
measurements.66 The consequences will be discussed in the
case of the reflectivity.

Figure 8 represents a comparison of experimental and
theoretical data for the reflectivity of Si, SiC, and C in a wide
energy range. The theoretical curves obtained within the re-
duced velocity gauge and DFT-LDA have been shifted up-
wards by 0.46 eV~Si!, 0.84 eV~SiC!, and 0.37 eV~C!. The
experimental data are taken from Refs. 64, 65, 67, 72, 73,
and 74. There is very good agreement at the low-energy side
of the main peak between theory and reflectivity measure-
ments. The only exception concerns the comparison with
Ref. 73. The reflectivity of the homoepitaxial SiC layers is
remarkably smaller than expected from theory and older
measurements.72 The reflectivity of SiC was also calculated
by Lambrechtet al.73 In order to account for variations in the
sample size and the surface treatments of the samples as well
as numerical uncertainties, they adjusted the low-frequency
reflectivity besides the principal oscillator frequency in the
real part of the dielectric function. In more detail, a multipli-
cative correction is applied to the interpolated experimental
curves, so as to agree with the theoretical low-frequency
limit R(4 eV)5(n21)2/(n11)2, using the calculated
valuen5ARe«(4 eV).

Stronger deviations between theoretical and experimental
reflectivity spectra appear in the high-energy regions, in par-
ticular, for SiC and C. The theory remarkably overestimates
the measurements above 9~14! eV for SiC ~C!. One reason

FIG. 8. Comparison of theoretical reflectivity curves~reduced
velocity gauge; solid lines! with measured ones for Si@dashed line
~Ref. 64!, dotted line~Ref. 65!#, SiC @dashed line~Ref. 73!, dotted
line ~Ref. 72!#, and C@dashed line~Ref. 68!, dotted line~Ref. 74!#.
The theoretical curves are rigidly shifted to higher photon energies
by D50.46 eV~Si!, D50.84 eV~SiC!, andD50.37 eV~C!.
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could be that no instrumental or lifetime broadening effects
are included in the theory. The disagreement above the main
peak may be also explained as an artifact of the theoretical
treatment. Due to the neglect of local-field effects, the dielec-
tric function is somewhat overestimated in this frequency
region. As a consequence, the reflectivity is overestimated.

IV. SUMMARY

We have studied the influence of two different gauges
~length and Coulomb gauge! on the optical properties of
group-IV materials. For vanishing photon wave vectors, the
equality of the two resulting dielectric functions may be ana-
lytically demonstrated if the nonlocal contributions to the
single-particle potential are fully taken into account in the
optical transition operator. In the case of usually converged
calculations, the agreement of the spectra is however not
complete. The reason is the incompleteness of the eigenfunc-
tions used in the explicit computations. Only when the num-
ber of mesh points in the Brillouin-zone integration and the
number of conduction bands are remarkably increased, the
dielectric functions with longitudinal or transversal transition
operator approach each other. The artificial nonlocality due
to the violation of the closure relation vanishes. However, the
nonlocal contributions to the generalized velocity operator
remain important.

Wave-vector and band-index-dependent quasiparticle cor-
rections to the DFT-LDA band energies are considered in the
calculation of optical properties. In the case of the dielectric
function in transverse gauge, only single-particle energies
appearing in thed function of Im«(v), have to be shifted.
Nevertheless, much more theoretical work has to be done to
study how the frequency-dependent exchange-correlation

self-energy influences the dielectric function beyond the in-
clusion of these effects within DFT-LDA.

The results for the dielectric function as well as the re-
flectivity have been compared with experimental data. Con-
sidering the neglect of lifetime, excitonic, and local-field ef-
fects the agreement is satisfying. The variations between the
functions in the various gauges are smaller than the averaged
discrepancies to the experimental curves. So the particular
choice seems to be unimportant. On the other hand, consid-
ering the fulfillment of oscillator-strength and screening sum
rules, the results within the longitudinal-perturbation treat-
ment may be used already for a lower number ofk points
and bands. Shifts of the DFT-LDA eigenvalues towards
higher transition energies bring the experimental and theo-
retical peak positions in close agreement. However, these
shifts are smaller than those estimated from the quasiparticle
calculations. A scissors-operator approximation is too crude.

The theory should be also improved to better describe the
peak intensities and spectral distributions. Further work, con-
cerning theab initio inclusion of local-field effects due to the
atomic structure of matter, of dynamical self-energy effects,
as well as of the electron-hole interaction is necessary. One
has to take care for the interplay of vertex variations due to
dynamical screening and the dynamics in the self-energy.
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