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Nonlocality and many-body effects in the optical properties of semiconductors
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We report numerical calculations of the frequency-dependent dielectric function for different gauges of the
electromagnetic field in the optical transition operator. Comparing the results, we draw conclusions about the
importance of different nonlocality effects entering the calculations. Apart from the spatial inhomogeneity
related to the atomic structure of matter, they are due to nonlocal pseudopotentials, quasiparticle self-energies,
and the incompleteness of the basis functions. Besides their influence on optical spectra, their effect on the
validity of the f-sum rule and the magnitude of the resulting dielectric constants is also discussed. We present
results for optical spectra where the many-body quasiparticle effect is included beyond the scissors-operator
approximation. The group-IV materials Si, SiC, and C are considered as model substances.

[. INTRODUCTION ficulty actually arises when the formulas defining the dielec-
tric function are used naively-?’

In the past few years, a number of highly accurate calcu- The most recent DFT-LDA calculations of the electronic
lations of optical and dielectric properties of semiconductorsstructures are performed in the framework of the plane-wave
have appeareti!® In general, they are based on the pseudopotential method, where the Bloch functions of the
independent-particle approximation'® [often called the valence and conduction electrons are expanded in terms of
random-phase approximatiaiRPA)] and a first-principles plane waves up to a certain energy cutoff and the electron-
description of the electronic and atomic structure in theion interaction is described by semilocal pseudopotentials of
framework of the density-functional theoffpFT) (Ref. 14 Bachelet-Hamann-Schier (BHS) type’® or full nonlocal
in the local-density approximatiofLDA).'® These papers pseudopotentials of Kleinman-BylandgikB) type?® or
supplement earlier work in the fidfi?° (and references pseudopotentials generated by similar schemes. In any case,
therein, in which in addition local-field effects and excitonic the effective potential in the single-particle Kohn-Sham
effects have been partially included. equation®’ contains a spatially nonlocal contribution that re-

The most serious error of band-structure calculationgjuires a careful treatment of the optical transition operators
within the DFT-LDA for semiconductors and insulators con-in the different gauge¥°3!A third type of nonlocality is
cerns the discrepancies between the Kohn-Sham eigetue to numerical uncertainties related to the restriction of the
values® and experimental band energf@$ The problem of  wave-function basis in all explicit calculations. On the one
the underestimation of the gaps between filled and empthand, the number of plane waves is limited by the cutoff. On
states has been solved by taking into account quasiparticlie other hand, only a finite number of conduction bands and
(QP) correctioné*?® within the GW approximatio”*?° for ~ wave vectors in the Brillouin zone are taken into account,
the many-body exchange-correlatigC) self-energy for  which violates the closure relation of the Bloch functions. A
electrons and holes, which is, in general, nonlocal in spacéurth type of nonlocalities is due to the atomic structure of
and time. The inclusion of QP corrections allows agreemenmatter. These so-called local-field effédét are, therefore,
of theory with one-electron energies obtained from direct anaglways present in the calculation independent of the actual
inverse photoemission experiments at a level of about 0.1 e\description of the electronic structure.
when the bands of the underlying DFT-LDA band structure In the present paper, the introduced nonlocality and many-
already possess the correct energetical ordering, but certabody effects(with the exception of local-field effedtsare
underestimated gaps. In these cases, the QP wave functiosidied in more detail for the optical properties of semicon-
are in excellent agreemefwave-function overlaps exceed- ductors. As model substances the group-IV materials dia-
ing 0.999 with the DFT-LDA ones, at least for near gap mond(C), silicon (Si), and silicon carbid¢SiC) crystallizing
excitations?> The simplest description of such QP correc-in diamond or zinc-blende structure are considered. We cal-
tions is the application of a scissors operafowhich dis-  culate joint density of states, the imaginary as well as real
places the empty and occupied band against each other bypart of the frequency-dependent dielectric function, and the
rigid shift. In a series of papers, Levine and ARdfihave  optical reflectivity. These studies are performed in the frame-
shown how to calculate optical and dielectric propertieswork of two different gauges of the external electromagnetic
within the QP scissors-operator approximation. Howeverfield. Simultaneously, also the validity of the equivalence of
this approach introduces two other difficulties: Thelongitudinal and transverse dielectric function, as well as the
oscillator-strength sum rule and the gauge invariance of thé-sum rule, is investigated analytically and numerically. All
electromagnetic-field description are violatgde latter dif- calculations are done starting from the independent-particle
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approximation or independent-quasiparticle approximationthem within the independent-QP approximation. In both
but varying the approximations and numerical details of thecases, we take into account some kind of XC effects. The
electronic-structure description. corresponding formal generalization of the polarization func-
Section Il is devoted to the introduction of the longitudi- tion is P=P,[1— PyKyc] 1,2®3*where the kerneK y. de-
nal and transverse dielectric functions. The gauge invariancecribes the XC effects taken into the two-particle Green
as well as the oscillator-strength sum rule, are examinedunction. Within the DFT, it may be represented by
Explicit formulas are derived. In Sec. lll, we illustrate our Kyc= 8°Eyc/dndn’ with the electron densitp and the to-
analytical findings by computing the optical properties for C,tal XC energyEyc. The same result follows within the so-
Si, and SiC in different approximations and using differentcalled time-dependent local-density approximafign.
numerical limitations. In this section, we also present the firswithin the DFT-LDA or the theory improved by QP correc-
QP calculation of optical spectra beyond the scissorstions, it would be consistent to takéc into account. How-
operator aproximation, by taking into account the full wave-ever, its LDA description gives rise to an incorrect behavior,
vector and band-index dependence of the QP correctionat least for the most important diagonal Fourier components
The most converged results are compared with experiment@=G’.? On the other hand, forms of the diagoréc,
spectra. A brief summary and final remarks are given in Seavhich exhibit the correct asymptotic behavior and are almost
\VA derived in electron-gas theori&s®*® bring the product
PoKxc to vanish for small wave vectors. This limit is, how-
Il. BASIS THEORY ever, relevant for the description of optical properties. We,
therefore, neglect corrections relatedktg- and restrict our-
selves to expressiof2) for the polarization function.
In the independent-particle approximation and applying Since the local-field effects, however, do not change the
the RPA decoupling of the two-particle Green function, onepeak position in the spectra very much, at least in the absorp-

A. Dielectric function

obtains for the dielectric matri} 1332 tion spectra, but mostly the intensity distributiti®?we ne-
glect them in the following. From Eqg$l) and(2), one ob-
e(q+G,q+G',w)=dge —v(q+G)P(q+G,q+ G, w), tains for the corresponding longitudinal dielectric function

(1) with G=G’'=0 andq—0,

with v(q+ G) =4me?/|q+ G|? and the polarization function 4
of independent particleB=P, (p— +0), e1(q,w)=limg_g 1+u(q)v

2 . ot .
Po(q+G.a+G" w)= 2 2 (nk|e@ ¢ |n’k’) s [ec(k)—&,(K)]|(ck|e'®fvk’)|?
ot “ & & Tedl— e, (K P— A% wtin)? |
X<nrkr|efl(q+G)x|nk> ’
(©)
fen/(K))—=f(en(k))
en(K)—en(K)+h(w+in)’ B. Gauge invariance

2 The dielectric function may be also derived within the
transverse-response formalism, where the light-matter inter-
action is described by the coupling of the vector potential
with the current density of the electrons, i.e., the so-called
Coulomb® or velocity’’*°gauge. In this gauge, the polariza-
htion function is related to the current-current correlation
function®* To derive only the longitudinal part of the dielec-
tric function, we go another way and transform expression
(3). The limit of vanishing photon wave vectors can be easily
erformed in Eq(3). However, this has to be done with care.
therwise, ill-defined quantities as matrix elements of the
dipole operator appear. A better way is to use the relation

Here, Bloch integrals of exponential functions with the
Bloch eigenfunctiongnk) belonging to the band indem,
the wave vectok in the first Brillouin zone(BZ), and the
energye,(k) are introduced. The Fermi functiori$e) de-
fine the occupation of the bands. In the following, the Bloc
states will be taken to have occupancies ofcOnduction
bandsn=c) or 1 (valence bands=v). The wave vector

is also restricted to the first BZ, whereas the vecBi&’
are elements of the reciprocal Bravais lattice of the crysta
with the volumeV. Equationg1) and(2) represent the linear
response(the charge density at wave vectqr-G and at
frequencyw) of a system of independent particles to a lon- (ck|[€% H]_|uok")=[e,(k") —ec(k)](ck|e'®vk")
gitudinal microscopic perturbatiota scalar potential of ' v ¢ '
wave vectorg+ G’ and frequencyw). The restriction to a

longitudinal perturbation that may be described by a scalawhere H denotes the single-particle Hamiltonian fulfilling

potential of the electromagnetic field alone is sufficient forthe Kohn-Sham equatiors|nk) = e,(k)|nk) for both local
the derivation of the density response? and nonlocal potentiaf€. Using Eq.(4) and the fact that

The RPA decoupling leading to E() for the polariza- the two involved bands are different, the result of the limit
tion function omits XC effects. On the other hand, we will d—0 can be related to matrix elements of the velocity op-
describe the Bloch states by the solutions of the single€ratorv, in a certain Cartesian directiom,
particle Kohn-Sham equations of the DFT-LDA; the bare ]

Kohn-Sham eigenvalues are used within the independent- v =I—[H X, ] )
particle approximation, while QP corrections are added to R
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From Eq.(3), one obtains whereV denotes the spatially nonlocal contribution to the
effective total potential in the single-particle equations and

0ol p, is a Cartesian component of the momentum operator.
e(Qo)= > —fe o), (6)  Equation (8) indicates that a naive approximation of the
ap=xy,z { . . . . .
electron-photon interation, which ends up with expression
with (7), but with the replacement af, by p,/m, in general,

violates the gauge invariance and can be only applied in the
16me2h2 1 limit of local pseudopotentials and neglecting QP effects.
2 When QP effects are included, the spatial nonlocality of
V. o Lec(k) =gy (k)] the self-energy may be treated in the same manner as the
(cklv |ok)(vklo 5lck) potential V,,,. However, in addition, a problem arises from
i > 2‘* — (7)  the energy shift,(k) of the DFT-LDA eigenvaluesﬂ(k) to
[ec(k)—&,(K) "~ (w+in) en(k), the position of the main peak in the spectral function
f the single-QP Green function. Within th mption of
Whnthe Catesian coordiatesystem i define by he prf s, Snle"SF Creen fucon, Witn the assumpton o
cipal axes of the crystal, the dielectric tensor is diagonal. The, o onocality effects in the optical transition operator, this
diagonal elements,.(«w) of the dielectric tensor can be i opiem has been originally attacked by Levine and Allan
calculated in two different ways. It can be dlregtly evaluated; 4 pel Sole and Girland They applied Eq(4) only in the
from Eq. (3) in the g—0 limit for suitable choices of the 5y \yhere the single-particle energies are replaced by those
wave-vector direction parallel to the principal axes of the ¢« pET.LDA £9(k), whereas the energies in expression
tensor. The second possibility starts from expres§ionOne 63) are taken as 'thg le ones(k). As the result formuld?7)

2g\éintagiitizntgago?r;gr eIzi(i;iogir::ésktzl:ctuhr;evgatlgulljaetioreli fo s obtained, however with an additional renormalization fac-
b P 9 PET™  tor [eq(k) — &, (k) 12/ £2(k) — £%(k) ]2 which increases the

formed. On the other hand, matrix elements of the compli-

cated velocity operator instead of an exponential functionosc'"ator strengths according to the increase of the averaged

have to be considered gap and, consequently, the high-frequency dielectric con-
The relation of the dielectric function in expressi) to stant. Meanwhile, first a_ttemﬁfsemst to mclud_e also the
the second-rank tensaf(w) indicates that we have indeed consequences of dynamical screening effects in the QP self-

introduced the longitudinal dielectric functioms,(q,w) energy. However., the resulting strong reduction of the ab-
—§-2(w)- G, with G=q/|q. The transverse dielectric func- sorption spectra indicates that these effects have to be taken

tion, £,(q,w) =e-&(w) - e, with a unit vectore=e(q)Lq, is into account more consistently.
also simply related to the dielectric tensefw). For cubic
crystals this tensor is diagonas,g(w)= d,pe(w), with
equal components independent of the choice of the Cartesian In the limit »— +0, the oscillator-strengthf¢) sum rule
coordinate system. Consequently, longitudinal and transverseay be easily obtained, because of the appearance of the
dielectric function are equal in the limit of vanishing photon Dirac’s § function as a consequence of the energy conserva-
wave vectors® tion. We restrict ourselves to the case, where the microscopic
The appearance of the matrix elements of the velocityspatial inhomogeneity of the matter, i.e., the local-field ef-
operator in Eq.(7) can be also interpreted as a result of fects, can be neglected. We start from the longitudinal dielec-
another derivation of the dielectric function starting from thetric function in expression(3), but sum up over all bands
vector-potential description of the electromagnetic field. Ininstead only the unoccupied ones. A proof of that extension
this sense, the equality of expressid8$ and (6) with (7)  can be easily given by an exchange of the occupied band
may be interpreted to follow as a consequence of the gaugstates in the additional terms that have to be subtracted. One
invariance of the description of optical properties. This in-obtains
variance is generally valid, even beyond the independent-
particle (or independent-QPapproximation, as shown by Jx d

gap(®)= 6,5+

C. f-sum rule

Ambegoakar and KoH# for cubic crystals and by Del Sole —w Img|(q, )
and Fiorind® for less symmetric materials. ™

In general, nonlocal potentials are included in the
independent-particle Hamiltoniat. This happens already at
the DFT-LDA level, because of the use of nonlocal pseudo-
potentials. This fact makes the calculation of the matrix ele- _
ments of the velocity operator more difficult. Since the X|(nk|e'P|vk’)|. 9
Hamiltonian has the formal structuté=p?/2m+V,+V ,,
where the total potential/=V,+V,,, is divided into a local
(1) and a nonloca(nl) part and the momentum operais
introduced, the velocity operat@) can be transformed into
the representatioh,

—o0

4
=limg_ov() 7722 2 2 [en(k)=eu(K')]

k,k’ n=c,v v

By means of relatiori4), one of the matrix elements on the
right-hand sidgrhs) can be rewritten as a matrix element of
the operatofe€'®,H]_ and the sum over all Bloch states
Ink) can be performed. On the rhs, diagonal matrix elements
of the operatore™'®[e'¥* H]_ with valence states occur.
The limit g—0 can be calculated in a similar way as by the

i
Vo= Pa/mt %[V“"X“]" ® introduction of the velocity operator in E@5) and its ex-
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plicit representation in Eq8). Replacing the diagonal ma-

trix element of the velocity operator by,e,(k)/A and tak-
ing into account thak,V,e,(k)=0, one derives - _
K Es
J— 3 ] z 30
e Ime|(q, ) £ A /! ] &
E i 1 5 15 - / " R,
. d.dp 2m o /
=wi) 1-limg_o > a—zﬂz——
af=xyz A~ #*nV (10 .20 ' : ‘ oLl s '
4 6 8 10 12 4 6 8 10 12
Energy (ev) Energy (eV)
XEK: E (vk|[[Vn|,Xa], !X,B]*|Uk> ’ 2 T T T T T 0.8 T
v
where the definitions of the averaged electron density ® 280
n=(2NV)ZZ, and the plasma frequency of the valence >4 §
eIectron&u§=4we2n/m are used. 5 ko
Considering expressiofl0), a word of caution is neces- E 04 r

sary. Taking into account nonlocal contributions to the poten- N
tial in the single-particle Hamiltonian, the Thomas-Reiche-
Kuhn f-sum rule is violated. This is somewhat surprising 0 T2 16 20 2a 02 T T 0 e
since, usually, the RPA, i.e., the approximation of the two- Energy (eV) Energy (eV)

particle Green function as a product of two single-particle

Green functions, should not give rise to a violation of the FIG. 1. Real and imaginary part of dielectric function, joint
sum rule. It seems that in the presence of nonlocal potentialdensity of states, and reflectivity of SiC for different numbissof

the representation of the two-particle excitation energies ak points within the irreducible part of the BZ. The velocity gauge
differences of band energies is not more possible, even withEg. (7) is used, but nonlocality contributions to the optical transition
out taking into account electron-hole Coulomb interaction. Inoperator are omitted. Solid liné\,=89; dashed lineN, = 240;
other words, even when excitonic effects are neglected, thgotted line:Ny=505.Ncg=4.

total many-body Hamiltonian cannot be simply replaced by a o ) _

sum of effective single-particle Hamiltonians in the presencdn beginning of our studies, the pseudopotentials were gen-
of nonlocal pseudopotentials or QP self-energieBrevi-  erated for Si and C according to the data of Ref. 47, giving
ously, other authoPs?2%°has noted this problem. Mean- 'S€ t0 potentials similar to those of BHSUnfortunately for

while, it is also discussédin the case of the Johnson this choice of the carbon pseudopotentials, too many plane

f-sum rule?43j.e., when local fieldG#G’, as in expres- Waves have to be taken into account to reach convergence.

sions(1) and(2), have been included. Therefore, the Cgagtennals are softened by careful choosing
The second term on the rhs of EGLO) represents an of the core radif®° The electronic wave functions are ex-

additional oscillator strength induced by nonlocal potential®@nded in terms of plane waves. The energy cutoffs for the
when the total Hamiltonian is represented by a sum of effecPlane-wave expansion are chosen to 15, 34, and 42 Ry for
tive single-particle ones. Considering this reason,fisam  Silicon (Si), silicon carbidg(SiC), and diamondC). They are

rule may be reformulated according to Levine and Afidy, sufficient for converged energy and lattice calculations. The

introducing the square of an “effective plasma frequencyntptal-energy optimization gives rise. to theoretical cubi.c lat-
(weff 2 related to the rhs of Eq10). Consequently, an effec- tice constants o =10.227 a.u. for Sia=8.109 a.u. for SiC,

p _

tive (pseudo) valence electron density occurs that is modi-and a=6.681 a.u. for C. They are Useo%v although they

fied with respect to the averaged densitgy the nonlocality. ~ SI9htly underestimate the experimental ofieand, hence,

A physical discussion of this effect is given in Ref(@. also ~ €narge somewhat the DFT-LDA transition energies. The QP

references therelnlt is based on the fact that in the pseudo- CO'Téctions to the DFT-LDA eigenvalues are corgg)éjted
within the GW approximation for the XC self-energ?,

potential construction the core electrons are removed. ; P -
according to a simplified scheme developed by Cappellini
_ _ and co-workers!~>® Using the numerical input described
C. Numerical details above, corresponding shift values have been published for
The electronic-structure calculations underlying the com=zinc-blende SiC in Ref. 54. In the self-energy calculations,
putations of the optical properties are based on théhe number of conduction bandlky is typically restricted to
DFT-LDA.* The many-body electron-electron interaction is a value ofNcg=60. In the case of the dielectric function, the
described within LDA, more precisely within the Ceperley- sufficient numbeN¢g is tested.
Alder schemé? as parametrized by Perdew and Zurijer. The longitudinal dielectric function is calculated within
The electron-ion interaction is treated by norm-conservingpoth the length gauge, according to expresgi®nand the
ab initio, fully separable pseudopotentials in the KB foftn. velocity gauge according to Eq®) and(7). First, the imagi-
They are based on relativistic all-electron calculations for thenary part Inz(w) is computed. Thek-space integration is
free atoms by solving the Dirac equation self-consistently. Irperformed numerically by means of the linear analytic tetra-
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FIG. 2. The same quantities as in Fig. 1, but for different num-  FIG. 3. Longitudinal dielectric function, Ed3), without local-
bers Neg of conduction bands. Solid lineNcg=4; dashed line: field corrections for SiC in dependence on the wave vector with a
Ncg=30; dotted lineNcg=60. N, =89. finite component= k2w/a parallel to a Cartesian axis. Solid line:

«=1/160; long-dashed linet= 1/80; dotted linex=1/16, dashed

. . line: k=1/8. Ny=89, Ncg=4.
hedron method>® usually based on 8R points in theth
irreducible wedge of the Brillouin zon@Z) of the fcc struc- ) ) ) ] )
ture. However, larger numbekg, have also been checked, as "dly, in a wide energy range until the main structure in the
demonstrated in Fig. 1. Generally, the inclusion of mkre reflectivity spectrum, four conduction bands are sufficient for
points does not produce any significant changes in the Spegptical properties. The reason are the matrix element effects
tra. On|y the peak maxima are S||ght|y reduced and’ in théhat Significantly reduce the influence of the jOint denSity of
high-energy case, also somewhat shifted. We use the fact thatates, because the transition probabilities become small for
the dielectric tensor should be a scalar and compute its tracbjgh energies.
g(w)=[exx(®)+eyy(w)+e,{w)]/3, for which the restric- The transition matrix elements are calculated by different
tion to the irreducible part of the BZ is valid. This corre- methods. For zero reciprocal lattice vectors and applying the
sponds to the method of invariants. The real part of the diCoulomb gauge matrix elements of the tyjod|e'®|vk’) in
electric function, Re(w), is obtained by a Kramers-Kronig Eq. (3) are computed using the results of two different
transformation of Im(w), in which a tail of the form electronic-structure calculations at the Bloch wave vectors
(Bw)I[(hw)?+y]? as used by other authot$?®’is at- k andk+q, with a certain small but finite wave vectqr
tached for energied w greater thanfiwy=17.8 (Si), 25  Usually, we have considered wave vectors with a nonvanish-
(SiC), or 35(C) eV, wherey is fixed to be equal to 4.5 eV. ing Cartesian componenf=2/a/80. From Fig. 3, it fol-
The parametergB is determined by the continuity of lows that this value is reasonable. Smaller values do not
Ime(w) athwq. To reduce the influence of numerical fluc- change the dielectric function. On the other hand, values
tuations ong, the function Inz(w) is fit in the interesting large compared to the photon wave vector give rise to re-
frequency region around,. Because of the large values markably broadened line shapes.
fhwg used, we find the tail of minor importance. In the worst  In the case of the Coulomb gauge Bloch matrix elements
case(diamond, many conduction bandthe variation of the of the velocity operator in Eq(8) have to be considered.
dielectric constank.,, as well as of the plasma frequency They are related to those taken between plane wggeand
wgﬁ, is smaller than 1%. |K') at wave vectork =k+ G andK'=k+G’. It follows?

Another important input parameter is the number of con-
duction bandsNcg taken into account. The influence of
Ncg is indicated in Fig. 2, in the case of cubic SiC. No
noticeable differences were found for difw) in the energy
range of interest. The same holds foreRe) around the
frequency of the most pronounced oscillator. However, its
increase in the high-energy region produces a remarkabl€he fully separable pseudopotentials in the KB fétailows
reduction of the reflectivity for these frequencies. Surpris-a factorization according to

h 1
<K|V|K,>: EK(SKK/"‘ ﬁ(VK+VK')<K|Vn||K,> (11)
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potentials. In any case, we conclude that within the

transversal gauge, the replacement of the velocity operator
by the momentum operator gives rise to a certain error, de-
pending on the bonding properties of the material consid-
ered.

The small discrepancies between the dielectric functions
in length and velocity gauge in Fig. 4 are somewhat surpris-
ing, although practically they only concern the frequency
regions below and above the main peaks. In general, the
module of the dielectric function is overestimated by chang-
ing from the longitudinal perturbation to the transversal

Energy (eV) Energy (V) gauge. As a consequence, the equality of the dielectric func-
] . _ ) o ) tions in the two gauges is slightly violated for the considered
FIG. 4. Dlelectnc_funcnon for SiC. Solid line: vz_alocny gauge ¢ pic crystals Si, SiC, and C.
_[Eq. ], but neglecting the nonlocal pse_udopotentlal _contrlbutlon Two reasons for the discrepancies may be mentioned.
in the transition operatdiq. (8)]; dashed line: full velocity gauge, gt one assumption used in the derivation of expressions
|ncl_ud|ng noEIocaI contributions; dotted line: length gauge B4. (6) and (7) from Eq. (3) must be invalid, due to the applied
N,=89, Ncg=4. : I el
numerical approximations. Relatidd) is only based on the
validity of the Kohn-Sham equations independent of the de-
(K|VylK )= 2 exdi (K —K")t] tails of the wave-function description anq Fhe diagonalization
s procedure. On the other hand, the explicit representd8pn
1 of the velocity operatof5) starts from the assumption that
s st the local part of the single-particle Hamiltoniar,
Xgo m§_| CiFim(K)Fim(K"), =p?/2m+V,, gives rise to the momentum operator when it
commutates with the space operator. However, the commu-
_ tator relationim[H, ,x,]_=%p, involves the orthogonality
Ffm(K)Zf d®r e” VR @fiN(r), (120 and the completeness of the eigenfunctidnk). More
strictly speakingx, andp, cannot exactly obey the under-
with the nonlocal contributio’(r) of the ionic pseudopo- lying commutator relatiorfx,p]_=i#1 in any finite basis
tential localized at the poirt in the unit cell, the pseudo- set. This relation cannot hold in a representation with only a
wave function®>(r) of the corresponding atom, and a nor- finite number of basis states, as has recently been pointed out

30 +

Dielectric Function (Re}

-
(4]
T

malization constan€, . in the case of a restricted tight-binding baSi$n our case of
a plane-wave expansion, one uses a finite basis of plane
IIl. APPLICATION TO SILICON, SILICON CARBIDE, waves limited by the energy cutoff. Moreover, we restrict the
AND DIAMOND numberN¢g of conduction bands, as well as the number of
k pointsN,, with the consequence that the closure relation
A. Gauge dependence in explicit calculations = 0kInk){nk|=1+A(Ncg,Ny) is only fulfilled with a devia-

In order to study the gauge influence, the dielectric funciion A(Ncg.Ni). A nonlocal functionA(Ncg,Ny) appears
tion is represented for SiC, in the framework of certain nu-On the rhs, which vanishes in the limitdcg—c and
merical approximations in Fig. 4. Silicon carbide is selectedNk— . In our explicit numerical calculations, this unphysi-
as a model substance. First, we consider the velocity gaug@l nonlocality appears and enlarges the dielectric function
in Eq. (7). Generally, we find that the nonlocal pseudopoten-Somewhat for the transverse gauge. Second, in principle, the
tials are of remarkable influence on the optical transition opcalculations of the dielectric function starting from a longi-
erator in Eq.(8), as well as the resulting dielectric function. tudinal perturbation are converged with respect to the small
In the case of the Stronger bonded group-|v materials, e_gwave vector. However, a small increase of the SpeCtra Chang-
SiC, we observe a reduction of the amplitude of the dielectridnd the wave vector fronk = 1/80 to a smaller value cannot
function by about 16 25 % in the average, due to the non- be excludedcf. Fig. 3.
locality effects. The physical reason of the reduction is not
very clear. We expect a small increase of the amplitudes,
since the nonlocal contributions to the pseudopotential give
rise to a small gap opening. In the case of GaAs, not shown The calculation of optical spectra with the inclusion of QP
here, indeed we find such an enlargement. There seems to b#ects is complicated by the nonlocality and energy depen-
an opposite tendency changing from free-electron-like matedence of the self-energy. As a consequence of the latter, the
rials to crystals containing first-row elements, where thespectral behavior of the single particles is different from a
wave functions are stronger localized. The polarizability isshifted Dirac’s § function with the full spectral weigt
effectively reduced by the nonlocality contributions. In a lo- This leads to a stron@y about one thirdreduction of the
cal picture, this would be consistent with a spatial redistribu-optical oscillator strengtft However, there are indications
tion of the oscillator strength. In the case of materials, suclhat dynamical vertex corrections mét least partiallycan-
as GaAs, there is an additional influence from the energetieel such a reduction. Therefore, at present, we neglect dy-
cally highlying d electrons. They have a remarkable influ- namical effects, as in all calculations up to now, and briefly
ence in constructing the nonlocal part of the atomic pseudorecall how the self-energy nonlocality can be handfed.

B. Quasiparticle effects
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The presence of a nonlocal self-energy, as well as of a

nonlocal pseudopotential, does not affect the linear-response s 1 el
formulation in the case of a longitudinal perturbation. Hence, sl |V si ] Si
equation(3) remains valid, with QP corrections embodied in sr

the band energies. Also, the transformation to the transverse 15
gauge described in Sec. Il B remains valid, together with
equation(7). The problem is that the matrix elements of the
velocity operator(5) must be used herein, which include asl ]
complicated terms arising from the nonlocality of the self- IR 0
energy contained ifl. In order to avoid their calculation, we
exploit the aforementioned similarity of DFT-LDA and QP
wave functions. We use E@4), with the DFT-LDA Hamil-
tonianH®: hence, the energy eigenvalues in E4). are the
DFT-LDA ones. Coming to equatiofY), the recipe for deal-
ing with nonlocal self-energy effects is clear: only the single-
particle energies, which arise from the spectral behavior of
the single-electron as well as single-hole Green function, are
replaced by the QP valu€3but not those occurring due to
the rewriting of optical matrix elements as argued in Sec.
II B. In a naive approach, all single-particle energies appear-
ing in expressior(7) are shifted by the QP corrections. This
leads, however, to the breaking down of the gauge invari-
ance, as discussed above, and to a strong reduction of oscil- ‘,
lator strengths. Therefore, the naive approach is incorrect, 0 s 0 25 %0 & 10 15 20 25
and calculations carried out according to it will be shown, in Energy (eV) Energy (eV)
this paper, only for the sake of comparison. In order to better
evidentiate the nonlocality of the self-energy, that of the FIG. 5. Dielectric function in velocity gauge amg=p,/m, for
pseudopotential will be neglected, namely, only the first ternSi, SiC, and C. Solid line: DFT-LDA; dashed line: Q&ll energies
on the right-hand side of E¢11) is retained for the velocity replaced, doltted line: QF(en.ergies replaced only in single-particle
operator. Green funptlon)s Ncg=8 (Si, O, 4.(S|C), N, .= 89. Wave-vector-
Consequently, in the computations, only the DFT-LDA 24 band-index-dependent QP shifts are used.
single-particle energies, which arise from the spectral behav-
ior of Green'’s functions, are corrected by wave-vector- and The apparent validity of the scissors-operator approxima-
band-index-dependent QP shifis(k) . For SiC, such val- tion is somewhat surprising considering the wave-vector and
ues have been published in Ref. 54. For Si and C, they areand-index dependences of the QP shiktgk). For in-
calculated according to the same scheme. stance, in the case of zinc-blende SiC, we have fdtiad
The results of changing the single-particle energies in twagemarkable variation of the shifts. The variationAgf(k) for
ways from the DFT-LDA to the QP values is presented inthe upper valence bands is as large as 0.6 eV going from the
Fig. 5 for silicon, silicon carbide, and diamond. At first sight, center of the BZ to its boundaries. Similar values are ob-
the main effect of the QP corrections looks like the applica-served for thep-like conduction bands. The above results
tion of a scissors operatét2°twith a rigid shift A of the = may be explained by two different effects acting on the di-
conduction bands against the valence bands averaged owelectric function. First, the evidence of the energy shifts is
combinations of QP shifts of the Bloch states. In the naivemodified by the curvature of the bands, i.e., the joint-density-
approximation, it simply holds Is(w)=[fw/(fio+ of-states effect, and the magnitude of the corresponding ma-
A)]?ImePFT(w—A/%), like in the results of Levine and trix elements. Seconai- andk-dependent QP shifts can act
Allan.® A similar rough description is possible for the real like rigid shifts. This is shown by Janadt al®? and Wang
part in a wide frequency range for not too small frequenciesand Klein® They started from an idea of Sham and K&hn
However, in the static case, the frequency in the prefactobeing valid in the case of slowly varying electron densities.
has to be replaced by the average gap of the system. If onkxccording to this idea, electron-hole-pair excitation energies
the spectral properties are changed, one findén DFT-LDA may be corrected by QP shifts in the form
Ime(w)=ImeP (w—A/#R), which is correct within an A (K)—A,(K)=Aec(k)—e,(k)]. It results in In(w)
independent-QP approximatiéh.Similarly, the real parts =1/(1+X)Ime® [ w/(1+\)].1° With respect to the imagi-
may be related to each other. Whereas, in the fimsive nary part, this result is intermediate between the two former
approach, the peak intensity is remarkably changed, in thenes. However, it takes into account that in the average, the
second case, the spectra are only nearly rigidly shifted, eve@QP effect on the excitation energies is larger for more distant
if this shift seems to be larger for higher photon energiesbands.
The calculations shown in Fig. 5, with wave-vector and In order to study the quality of a scissors-operator ap-
band-index-dependent QP shifts, are very similar to the segroximation, we have studied the influence of the wave-
ond approach. The only difference not accounted for by avector- and band-index-dependent QP shifts in Fig. 6 for the
rigid shift is a very slight reduction of the main peak. imaginary part of the dielectric function. The problem is de-
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TABLE I. Dielectric constant and effective plasma frequency for

three different approximations of the optical transition operator and
varying number of conduction band$.g and k points Ny.. L:
longitudinal (length gauge;T(nl): transversdvelocity) gauge with
full velocity operator (including nonlocal contributions T(l):
transverse gauge, where nonlocal-potential contributions are omit-
ted.
_ Material ~ Ncg/Ny & (05" wp)?
£ L T T L T T
S Si 8/89 136 145 158 090 114 105
= 16 / 89 15.9 1.07
'-"_-) SiC 4/89 7.0 7.5 85 0.76 0.75 0.87
'% 30/89 7.2 7.7 87 093 0.86 1.06
% 100/89 7.2 8.3 87 099 091 1.00
a 4/240 7.1 7.6 86 0.72 0.76 0.87
4/505 7.4 7.6 86 0.75 0.75 0.87
C 8/89 5.9 6.9 6.8 085 0.94 0.96
30/89 6.8 0.85
2 o
(wgﬁ)2=—J do o Ime(w), (13
TJo
1o 0 12 14 16 18
Energy (eV) and the screening sum rule,
FIG. 6. Imagi.nary part of the dielectric f'unct!on.of SI SiC,. and e =1+ Edewi Ime (o), (14)
C in QP approximation. Scissors operator: solid line; inclusion of 7)o w

wave-vector- and band-index-dependent QP shifts: dashed line; dif-
ference: dotted line. with e,,=Ree(0), which may be interpreted as a direct con-
sequence of the Kramers-Kronig transform at zero frequency.

fining a reasonable scissors operatar We have used the The appearing quantities, the square of the “effective plasma
shift of the first zero in the real part af() from its DFT-  frequency” o' and the(high-frequency electronic dielec-
LDA value to that within the QP approximation. The result- tric constant ., represent suitable measures for the
ing valuesA=0.95 (Si), 1.65 (SiC), and 2.65 eV(C) are  frequency-averaged effects.

somewhat larger than the openings of the indirect energy The effect of the gauge of the electromagnetic field to-
gaps 0.78Si), 1.31(SiC), and 1.86 eM(C), but remain be- gether with the incompleteness of the Bloch functions used
low the values obtained by averaging all QP shifts. Figure n the numerical calculations anf" ande.. is represented in
makes the influence of the dependence of the QP shifts ofable I. The electronic dielectric constast, reflects the

the Bloch guantum numbersandk obvious. In comparison same dependence on the particular gauge of the electromag-
to the simply shifted DFT-LDA spectra, one observes a tenfetic field as already discussed for the frequency-dependent
dency for broadening of the absorption spectra. The intensitglielectric function. In general, the largest values are observed
of the principal peak decreases, whereas the spectral weighits the transversalvelocity) gauge, neglecting the nonlocal

of the low- and high-energy tails increase. In addition, thecontributions to the transition operator. The smallest ones
peaks in the imaginary part are somewhat differently shiftedappear in the longitudindlength gauge. All calculated val-
This holds especially for those at the high-energy side, foues are larger than the experimental oags-11.7 (Si), 6.7
which the scissors operator is too small. The broadening efSiC), and 5.7(C),*® expressing the underestimation of the
fect is mainly due to changes in the joint density of statestransition energies within the DFT-LDA. This is in agree-
The parallelism of the conduction and valence bands contribment with the findings of other authors. With the improve-

uting to the principal peak is reduced by the shiftg(k), ment of the completeness of the eigenfunctions, i.e., increas-
whereas other pairs of empty and occupied bands beconigg number of conduction bands and mesh points space,
more parallel. the values ofe.,, decrease. The SiC results for increasing

N, strongly indicate the tendency for convergence of the two

different gauges when the nonlocal-pseudopotential effects
C. Sum rules are not neglected and the wave functions are complete.

The spatial nonlocalities due to pseudopotentials and nu- The total oscillator strength, represented in Table | by the
merical uncertainties as well as the QP effects also influencequare of the effective plasma frequencyr in units of the

the various sum rules via the spectral behavior of the undemplasma frequency,,, is almost smaller than 1, reflecting the

lying dielectric functions. We consider the generalizedreduction of the oscillator strength, due to the influence of

oscillator-strength sum rulef. Eq. (10)], the nonlocal potentials, as can be seen from &g). Only
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TABLE II. Dielectric constant and effective plasma frequency 5 remarkable reduction af, and (wgﬁ/wp)z happens, since

for three different ways of inclusion of QP shifts. DFT: neglect; QP

(speg: only in spectral behavior; QRall): shift of all DFT-LDA
single-particle energies. The velocity gau@gis used, but nonlocal
effects are omitted in the transition operatdtcg=8 (Si, O),
Ncg=4 (Si0), N,=89.

Material £ (05 wp)?
DFT QP(speg¢ QP(alll DFT QP(speg¢ QP (all)

Si 15.8 135 8.7 1.05 1.25 0.79
SiC 8.5 7.3 51 0.87 1.09 0.72
Cc 6.8 5.6 3.9 0.96 1.04 0.59

the renormalization~ (% w)?/(hw+A)? of the oscillator
strengths disappears. The resulting extreme reduction of both
quantities confirms that the underlying approximation is
rather unrealistic.

D. Comparison with experiment

In Fig. 7, the dielectric functions of Si, SiC, and C are
calculated within the reduced velocity gaugge=p,/m and
DFT-LDA and are compared with experimental dtat®
The theoretical spectra are shifted towards higher energies by
A=0.47 eV(Si), A=0.84 eV(SiC), andA=0.40 eV(C), to
bring the zeros of the experimental and theoretical real part
together. These shifts are much smaller than the state-

silicon exhibits larger values within the transversal gaugeindependent opening of the energy gaps used gen¥talty
indicating the more delocalized character of the wave funcderived from our QP calculations, especially for diamond.

tions as for the C-based materidt$. above discussionin

One reason for this finding should be excitonic effects that

contrast to the case of the spectral behavior, the number gfre not included in our calculations. The Coulomb attraction
BZ integration points plays no important role. After the fre- hetween electrons and holes gives rise to smaller transition

guency integration according to E(.1), the integrand rep-
resents a smooth function k. More important is the in-

energies. Another reason concerns the details of the underly-
ing DFT-LDA calculations. Although the calculations are

crease of the numbecg of the conduction bands. In the rather converged and only small reductions of transition en-
longitudinal case, one clearly sees thab?,f(/wp)2 ap-  ergies with a further increase of the plane-wave cutoffs are
proaches the value 1. We speculate that the nonlocalities, dwxpected, there remains an influence. We use the theoretical
to the incompleteness, partially compensate those related tattice constants in the electronic-structure calculations. They

the pseudopotentials.

are smaller by about 1% than the experimental ones. An

The dielectric constant, as well as the oscillator strengthincrease of the lattice constant, however, enlarges the transi-

reacts sensitively to the QP effectsf. Table Il). The in-

tion energies. Nevertheless, the resulting theoretical spectral

crease of the energy gaps only in the spectral behavior givdsehavior reproduces the overall frequency dependences
rise to smaller dielectric constants and an enlargement of thidund experimentally. On the other hand, we have to mention

total oscillator strength roughly by a factor {-]A/hwp)z.

that similarly small scissors operators have been found to

When all DFT-LDA energies are replaced by the QP valuesbring the calculation of.. in agreement with experimet?

60 T T T T 80

Dielectric Function (Re)

Energy (eV) (a)

30

30 -

20

Dielectric Function (Re)
Dielectric Function (Im)

[} 10 20 30 0 10 20 30
Energy (eV) (€) Energy (eV)

60

Dielectric Function (Re)
Dielectric Function (Im)

5 6 7 8 9 10
Energy (eV) (b) Energy (eV)

FIG. 7. Calculated dielectric functions in comparison with experimental data figte$s. 64 and 66(a), SiC (Ref. 66 (b), and diamond
(Ref. 67 (c). The theoretical curvessolid lineg are taken within the reduced velocity gaugg=p,/m and rigidly shifted byA=0.46
(0.84, 0.37 eV to higher energies for §5iC, . Experimental data: dashed lin€Refs. 64, 66, and §7and dotted line Ref. 65.



9806 B. ADOLPH et al. 53

As a general feature of all theoretical spectra of the cova- 0.8 ——— 0.8
lent materials Si and C, the intensity of the peak® i.e.,
high-energy peak in I8(w), is overestimated and more
sharply peaked than observed. The reason is thafdmis
calculated without inclusion of lifetime broadening effects.
Also, the surface preparation of the samples used in the mea-
surements may influence the peak heights. Wang and Rlein
have taken an empirical lifetime broadening into account to
adjust theE, peak intensity. However, such a procedure
gives rise to a further reduction of tlg peak. TheE; peak 0.2 e oo LA
at the low-energy side of the kjw) spectra is underesti- tes 4 s 8 Y ey
mated in the Si case and appears as a shoulder. In our opin-
ion, this underestimate may be traced back to excitonic ef- 08
fects. The Coulomb attraction between electron and hole
drastically enhances the oscillator strength, in particular in
the E; region!®32 On the other hand, local-field effects
would further reduce the intensity, leading to a poorer agree-
ment with the experiment in this energy rargé®3?In the
wide-band-gap material C, the; peak seems to be rather 0.4
depressed in any case. This is due to the band structure. The
highest valence band and the lowest conduction band are not
more parallel along th¢111] direction. Hence, the corre- 02 fom—e—e "24
sponding pronounced peak in the joint density of states is Energy (eV)
missing.

In the case of SiC, the character of the double-peak struc- FIG. 8. Comparison of theoretical reflectivity curve@educed
ture in Ime(w) is quite different. TheE, peak related to velocity gauge; solid lingswith measured ones for $ilashed line
Xs,— X4 transitions in the band structure is only respon-(Ref. 64, dotted line(Ref. 65], SiC[dashed lingRef. 73, dotted
sible for the low-energy tail in Im(w). The low-energy line (Ref. 72], and C[dashed lingRef. 68, dotted line(Ref. 74].
peak should hav&, and E; character and may be traced The theoretical curves are rigidly _shifted to higher photon energies
back to transitionsI'ys,—T';. and Ls,—L,.. However, PYA=0.46eV(S), A=0.84 eV(SiC), andA=0.37 eV(C).
there are also contributions from tBeline. The high-energy
peak, that is somewhat lower in intensity, possedsgés oscillator character is most pronounced for SiC. We cannot
Ep, and E,+ & character. Contributions are related to theexclude that this pronounced effect is a consequence of poor
transitions L3, —L3c, I'15,—1 15, and Xs,—Xs.. More  optical quality of the Bridgman crystals used in the
roughly, the first peak is mainly related to transitions from measurement®. The consequences will be discussed in the
the highest valence band to the lowest conduction band;ase of the reflectivity.
whereas the high-energy peak is essentially due to transition Figure 8 represents a comparison of experimental and
from the highest valence band to the second conductiotheoretical data for the reflectivity of Si, SiC, and C in a wide
band. Transitions from the second highest valence band tenergy range. The theoretical curves obtained within the re-
the lowest conduction band give more or less rise to theluced velocity gauge and DFT-LDA have been shifted up-
intensity between the two peaks in éifw). Our interpreta- wards by 0.46 e\(Si), 0.84 eV(SiC), and 0.37 eMC). The
tion is in rather good agreement with a former Hartree-Fockexperimental data are taken from Refs. 64, 65, 67, 72, 73,
Slater calculatiori® but slightly different from that derived and 74. There is very good agreement at the low-energy side
within an empirical pseudopotential stufly. of the main peak between theory and reflectivity measure-

The comparison of the calculated spectra with experimenments. The only exception concerns the comparison with
tal result§*~% indicates different degrees of agreement. InRef. 73. The reflectivity of the homoepitaxial SiC layers is
the case of Ina(w) for diamond, the spectra approach eachremarkably smaller than expected from theory and older
other. Considering the neglect of lifetime, excitonic as wellmeasurements. The reflectivity of SiC was also calculated
as local-field effects, the agreement remains satisfying in thy Lambrechtet al.” In order to account for variations in the
case of Si, although thE; peak cannot be reproduced and sample size and the surface treatments of the samples as well
the transition strengths are overestimated for higher energie8s numerical uncertainties, they adjusted the low-frequency
For SiC, the agreement is much poorer. The double-peateflectivity besides the principal oscillator frequency in the
structure is smeared out in the experimental curves. real part of the dielectric function. In more detail, a multipli-

The general spectral behavior of @) can be repro- cative correction is applied to the interpolated experimental
duced by the calculations as represented in Fig. 7. In particieurves, so as to agree with the theoretical low-frequency
lar, this holds for diamond. In the case of silicon, the peakimit R(4 eV)=(n—1)%(n+1)? using the calculated
slightly below theE, peak agrees well, although it is some- valuen=\Res(4 eV).
what shifted to smaller energies. On the other hand, the os- Stronger deviations between theoretical and experimental
cillator character of the spectra below the zero transition igeflectivity spectra appear in the high-energy regions, in par-
remarkably overestimated in the theoretical spectra. Thécular, for SiC and C. The theory remarkably overestimates
same holds for the high-energy tails. The smearing out of ththe measurements abovg®) eV for SiC (C). One reason
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could be that no instrumental or lifetime broadening effectsself-energy influences the dielectric function beyond the in-
are included in the theory. The disagreement above the maitiusion of these effects within DFT-LDA.

peak may be also explained as an artifact of the theoretical The results for the dielectric function as well as the re-
treatment. Due to the neglect of local-field effects, the dielecflectivity have been compared with experimental data. Con-
tric function is somewhat overestimated in this frequencysidering the neglect of lifetime, excitonic, and local-field ef-

region. As a consequence, the reflectivity is overestimated.fects the agreement is satisfying. The variations between the
functions in the various gauges are smaller than the averaged

V. SUMMARY disc_repancies to the experimental curves. So the particul_ar
' choice seems to be unimportant. On the other hand, consid-
We have studied the influence of two different gaugesering the fulfillment of oscillator-strength and screening sum
(length and Coulomb gaugeon the optical properties of rules, the results within the Iongitudinal-perturbation treat-
group-1V materials. For vanishing photon wave vectors, thenent may be used already for a lower numbeikaoints
equality of the two resulting dielectric functions may be ana-2nd bands. Shifts of the DFT-LDA eigenvalues towards
lytically demonstrated if the nonlocal contributions to the Nigher transition energies bring the experimental and theo-
single-particle potential are fully taken into account in the'€tical peak positions in close agreement. However, these
optical transition operator. In the case of usually converge&h'fts are smaller than those estimated from the quasiparticle

calculations, the agreement of the spectra is however r](5:[alculat|ons. A scissors-operator approximation is too crude.

complete. The reason is the incompleteness of the eigenfunc- Th? theo_ry should be also 'T”F’TOV?‘O' to better describe the
tions used in the explicit computations. Only when the numPeak intensities and spectral distributions. Further work, con-

ber of mesh points in the Brillouin-zone integration and theterning theab initio inclusion of local-field effects due to the

number of conduction bands are remarkably increased, th%tomic structure of matter, of dynamicgl sglf-energy effects,
dielectric functions with longitudinal or transversal transition as Wte"talf of the fele;:gro_n-tholel mtefractut)n IS ngigssarg. Otne
operator approach each other. The artificial nonlocality ducl.aas ola Ie care for ec;ntr(lerpday of ver gxtxarla :?ns ueto
to the violation of the closure relation vanishes. However, théjyn‘"‘m'c"jl screening and the dynamics in the sell-energy.

nonlocal contributions to the generalized velocity operator
remain important.

Wave-vector and band-index-dependent quasiparticle cor- We thank P. Vogl for useful discussions and comments on
rections to the DFT-LDA band energies are considered in théne manuscript. We are indepted to P.cKall, K. Karch, W.
calculation of optical properties. In the case of the dielectricwindl, W.G. Schmidt, and B. Wenzien for their help with
function in transverse gauge, only single-particle energieseveral computer codes. This work was financially supported
appearing in thes function of Ime(w), have to be shifted. by the Deutsche Forschungsgemeinsck@RB 196, Project
Nevertheless, much more theoretical work has to be done thos. A0O8 and BOY and the EC Programme Human Capital
study how the frequency-dependent exchange-correlatioand Mobility (Contract No. ERBCHRXCT 930337
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