
First-principles study of the structure and energetics of neutral divacancies in silicon

Hyangsuk Seong* and Laurent J. Lewis†
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We report a first-principles study of the structure and energetics of the simple and split divacancies in silicon.
The formation energies are estimated to be 4.63 and 5.90 eV, respectively. In both cases, relaxation proceeds
inwards, and clearly is important, even though the relaxation energies amount to less than about 10% of the
unrelaxed formation energies, enough to change the symmetry of the local structure. The binding energy of the
divacancy is close to 2 eV. For the simple divacancy, we find the relaxed structure to be of the resonant-bond
Jahn-Teller type. We also find, for both the divacancy and the split divacancy, the highest occupied states to lie
close to the valence band maximum.

I. INTRODUCTION

The structure and energetics of native defects in semicon-
ductors have been the subject of much experimental and
theoretical research effort over the years~cf., for instance,
Ref. 1!. In spite of this, a definite picture of even the simplest
defects ~vacancies, interstitials, and small complexes of
them, such as divacancies!, in the prototype semiconductor
material~silicon!, has not yet emerged. For example, in the
case of interstitials in Si, the empirical Stillinger-Weber
model2 predicts that the hexagonal interstitial will relax into
the tetrahedral position~i.e., there is no energy barrier be-
tween the two positions!, whereas first-principles calcula-
tions yield the opposite result. Clearly, the energies of the
two sites are similar and precise calculations are necessary in
order to resolve such discrepancies. Likewise, detailed
knowledge of formation energies is required for determining
the relative population of defects in equilibrium, as well as
for the accurate interpretation of calorimetric data.

The case of divacancies is of considerable interest: they
are expected to be created in a relatively large number upon
the irradiation of silicon by electrons, neutrons, or ions,3,4

and, therefore, to play a role in the kinetics of relaxation of
the irradiated material. The structure of the defect, however,
remains controversial: Recently, Saito and Oshiyama
proposed,5 on the basis of first-principles calculations, a new
Jahn-Teller distortion for the negatively charged divacancy,
which the authors refer to as ‘‘resonant bond’’; the positively
charged divacancy exhibits the usual pairing configuration.
The existence of the resonant-bond distortion has been
disputed.6

The study of Saito and Oshiyama is, to our knowledge,
the only one for divacancies where structural relaxation is
fully taken into accountab initio. It is now well established,
e.g., from first-principles calculations of simple point de-
fects, that relaxation plays a significant role and cannot be
ignored. Saito and Oshiyama have considered only the
simple, nearest neighbor, divacancy in the negative and posi-
tive charge states, and have not examined in detail the re-
laxed configuration or the formation energies, including the
effect of relaxation. In view of this, and in need of the accu-
rate defect formation energies mentioned above, we have

carried out detailed first-principles calculations of the struc-
ture and energetics of neutral divacancies in silicon, rigor-
ously and self-consistently taking into account the relaxation
of the host lattice. We consider here the divacancy in both
first-nearest-neighbor ~‘‘simple’’ ! and second-nearest-
neighbor~‘‘split’’ ! configurations, and also examine, for ref-
erence purposes, the monovacancy. A related study was
given recently by Song and co-workers,7 using a semiempir-
ical tight-binding ~TB! model8 coupled with molecular dy-
namics~MD!. In spite of the success of TB models, in de-
scribing the structural properties of various systems~Si and
GaAs among others; see, for instance, Refs. 9–13!, the
method has its limitations and it is important to assess its
validity.

We find the relaxed structure and formation energy of the
monovacancy to be in agreement with other first-principles
calculations. For the divacancies, the relaxed structures are
only in fair agreement with the calculations of Songet al.:
we find the TB model to overestimate somewhat~by a frac-
tion of an eV! the formation energies; in addition, our first-
principles calculations yield somewhat smaller relaxation
displacements and energies than the TB model. The structure
that we observe for the simple divacancy is of the resonant-
bond type, as proposed by Saito and Oshiyama for the nega-
tively charged divacancy. We find also that the divacancy is
relatively tightly bound compared to independent vacancies,
by almost 2 eV. Concerning the electronic structure of the
defects, we observe, for both the divacancy and the split
divacancy, the highest occupied states to lie close to the va-
lence band maximum.

II. COMPUTATIONAL DETAILS

The present calculations were carried out within the
framework of density-functional theory~DFT! in the local-
density approximation~LDA !. We use a nonlocal, norm-
conserving pseudopotential;14 this potential iss local, and
p andd nonlocal, with a core radius of 1.8 Å. The electron
exchange-correlation energy is given by the Ceperley-Alder
form.15 Models of the relaxed defects were constructed as
follows: Starting with an ideal 64-atom crystal of Si~lattice
parametera5 5.395 Å!, atoms at appropriate positions were
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removed to simulate the various defects. The models were
then relaxed at zero temperature, using the conjugate-
gradient program CASTEP~CAmbridge Serial Total Energy
Package!. In the case of the simple divacancy, we also used,

as starting point, the relaxed configuration from the TB cal-
culation of Songet al., and a configuration with pairing-
mode symmetry, in order to test the robustness of our
resonant-bond ground state. As we will see below, we find, in
both cases, the same final configuration as when starting
from the ideal-crystal structure. Only theG point was used
for reciprocal-space sampling. The wave functions were ex-
panded in a plane-wave basis, with an energy cutoffEC of 8
Ry; in the case of the simple divacancy, a 10-Ry cutoff was
also considered~see below!. All defects were taken to be in
their neutral charge state.

III. RESULTS AND DISCUSSION

A. Relaxed configurations

We present, in Fig. 1, the fully relaxed geometries of the
three defects considered here and give, in Tables I and II,
details of the relaxation patterns of the neighbors. Concern-
ing the divacancy, we show only the results obtained with the
8-Ry energy cutoff: we find the relaxed geometry not to de-
pend significantly onEC — displacements are the same to
within about 0.02 Å for the two values ofEC considered —
in agreement with Smargiassi’s findings16 for the monova-
cancy. The relaxation vectors of the atoms, Table I, are ex-
pressed here in terms of the usual breathing and pairing
modes.1 In the case of divacancies, we assume the defects to
consist each of two tetrahedra centered on the two vacant
lattice sites and calculate the breathing and pairing modes of
each atom with respect to the nearest-neighbor vacancy.
Thus, for the simple divacancy, we have in total six-nearest
neighbors, as depicted in Fig. 1~b!. For the split divacancy,
there are seven-nearest neighbors, but one atom@labeled ‘‘4’’

FIG. 1. Relaxed structure of~a! the monovacancy~empty site
labeled 5!, ~b! the simple divacancy~empty sites labeled 7 and 8!,
and ~c! the split divacancy~empty sites labeled 8 and 9!.

TABLE I. Relaxation properties of the atoms neighboring the defects. Atoms are labeled as illustrated in
Fig. 1; ‘‘Vac.’’ is the label of the nearest vacant site. Note that atom number 4 in the case of the split
divacancy is common to the two tetrahedra. All distances are in Å.DV/V05(V2V0)/V0 is the relative
volume change of a defect upon relaxing from the ideal configuration, the volume of which is denoted
V0 . For the breathing mode and the volume,1 and2 refer to outward and inward relaxation, respectively.

System DV/V0 ~%! Atom Vac. Breathing Pairing 1 Pairing 2 Displacement

Monovacancy 235 1 5 20.30 20.14 20.24 0.41
2 5 20.29 20.14 20.24 0.40
3 5 20.29 20.14 20.24 0.40
4 5 20.30 20.14 20.24 0.41

Simple divacancy 217 1 7 20.27 10.05 20.10 0.29
5 7 20.11 10.12 20.01 0.17
6 7 20.11 20.05 20.11 0.17
2 8 20.11 10.12 10.01 0.17
3 8 20.11 20.06 10.11 0.17
4 8 20.27 10.06 10.10 0.29

Split divacancy 228 1 8 20.11 20.02 20.10 0.15
2 8 20.05 20.02 20.09 0.10
3 8 20.31 20.05 20.20 0.37
4 8 20.40 20.09 20.71 0.82
4 9 20.40 10.66 20.27 0.82
5 9 20.05 10.09 20.02 0.10
6 9 20.31 10.20 20.05 0.37
7 9 20.11 10.10 20.03 0.15
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in Fig. 1~c!# is common to the two tetrahedra, and we calcu-
late its relaxation vectors relative to both vacant sites. As a
measure of the variation in open volume resulting from the
relaxation of the defects, we also list, in Table I, the differ-
enceDV/V05(V2V0)/V0 . For the monovacancy,V0 and
V are the volumes of the tetrahedra formed by the four atoms
near the vacant site, before and after relaxation, respectively.
In the case of divacancies, we approximate the total volume
V by the sum of the volumes of the two tetrahedra.

The structure of the monovacancy is well understood,
from both experimental17 and theoretical18 viewpoints. In
particular, its relaxed state has been studied from first prin-
ciples by Smargiassi16 and using a TB model by Songet al.7

and Wanget al.19 Our results agree quite well with both ap-
proaches.~There seems, however, to be a small disagreement
between the two TB calculations, Refs. 7 and 19, which both
use the Goodwin-Skinner-Pettifor TB parametrization:8 the
configuration found by Songet al. has lower symmetry than
that found by Wanget al.This might be due to the different
relaxation procedures used. Our relaxed configuration agrees
precisely with Wanget al.! All four neighbors move inwards,
i.e., towards the vacancy, by a substantial 0.4 Å. The pairing
modes are nonzero, however, i.e., the tetrahedral symmetry is
broken, leading to a Jahn-Teller distortion, such that the at-
oms pair up along the@110# axis; the resulting configuration
hasD2d symmetry. Atom-atom distances in the relaxed con-
figuration are in the range 3.00–3.53 Å~cf. Table II! and
‘‘bond’’ angles ~between the vacancy and adjacent atoms;
such bonds, of course, are virtual! are in the range 94–118°,
to be compared to 3.81 Å and 109° for the ideal geometry.
The open volume of the vacancy decreases by a very signifi-
cant 35% during relaxation.

For the divacancy, we find the displacements of the neigh-
boring atoms from their ideal-crystal positions to be rela-
tively small compared to the monovacancy case—four atoms
move by 0.17 Å and the other two by 0.29 Å—and the open

volume decreases by about 17%, as can be seen in Table I.
Again here, all atoms move inwards, and the pairing-mode
distortions are rather small, although significant enough to
show the symmetry-lowering Jahn-Teller distortion from
D3d to C2h . This is in qualitative agreement with the TB
calculations of Songet al., who also observe inward relax-
ation for all atoms; their model, however, predicts displace-
ments in the range 0.45–0.60 Å, roughly twice as large as
those observed in the TB relaxation of the monovacancy. The
relaxed configuration of the divacancy, shown in Fig. 1~b!, is
characterized by atom-atom distances in the range 3.40–3.71
Å ~cf. Table II!, i.e., a bit smaller than in the perfect struc-
ture; bond angles are narrowly distributed about the ideal
tetrahedral angle.

In order to make sure that the relaxed configuration of the
divacancy shown in Fig. 1 is not a local minimum of the
total-energy surface, we have repeated the structural relax-
ation using, as starting point, the TB-relaxed configuration of
Song et al.7 We found exactly the same configuration as
when starting from the ideal crystal, indicating that, indeed,
the geometry that we obtain corresponds to the ground state
of the defect.

As mentioned in the Introduction, Saito and Oshiyama
have recently proposed a ‘‘resonant-bond,’’ Jahn-Teller dis-
tortion for the negatively charged divacancy in Si;5 the posi-
tively charged divacancy, in contrast, exhibits the conven-
tional pairing pattern, and both have theC2h symmetry. In
the resonant-bond Jahn-Teller configuration, one of the dis-
tances between the three atoms~taken in pairs! neighboring
either empty lattice sites is longer than the other two, while
the opposite is true in the pairing distortion. Our calculations
indicate, as can be seen in Table II, that the neutral Si diva-
cancy also exhibits theC2h resonant-bond distortion. The
question of whether or not this distortion is relevant to the
interpretation of experimental data is under discussion.6 It is
interesting to note that the resonant-bond distortion has very
recently been observed at the As end of the divacancy in
GaAs.20

For the negatively charged divacancy, Saito and
Oshiyama actually observed, using a very similar computa-
tional framework, a bistable situation between resonant-bond
and pairing-mode distortions;5 the difference in energy be-
tween the two states is very small—2.4 meV, within the ac-
curacy of the calculation. We looked for this possible bista-
bility in the case of the neutral divacancy, by starting the
relaxation process from a pairing-mode-distorted initial con-
figuration. This was found to be unstable: the system, again,
relaxed into the resonant-bond configuration, thereby con-
firming the resonant-bond nature of the ground state. Our
calculations indicate, however, that the total-energy surface
between the two states is very flat. It cannot be excluded that
a more accurate model will lead to a small barrier, and there-
fore bistability.

The situation is quite different in the case of the split
divacancy (D2d symmetry in the ideal configuration!, where
some atoms undergo a large relaxation, as demonstrated in
Table I. In particular, atom 4, which is shared by the two
vacancies, moves by a sizeable 0.82 Å~and the 8–4–9 angle
increases to 135°), almost breaking the bond with one of its
original neighbors, labeled 10 in Fig. 1~the relaxed 4–10
distance is 2.78 Å; the equilibrium bond length is 2.35 Å!.

TABLE II. Distances~in Å! between the atoms neighboring the
defects, which are second-nearest neighbors in the ideal crystal.
Atoms are labeled as illustrated in Fig. 1; ‘‘Vac.’’ is the label of the
nearest vacant site. In the perfect crystal, all distances are equal to
3.81 Å.

System Vac. Pair d Vac. Pair d

Monovacancy 5 1–2 3.53
5 1–3 3.53
5 1–4 3.00
5 2–3 3.03
5 2–4 3.53
5 3–4 3.53

Simple divacancy 7 1–5 3.40 8 2–3 3.71
7 1–6 3.40 8 2–4 3.40
7 5–6 3.71 8 3–4 3.40

Split divacancy 8 1–2 3.58 9 4–5 3.85
8 1–3 3.53 9 4–6 2.78
8 1–4 3.85 9 4–7 3.61
8 2–3 3.66 9 5–6 3.66
8 2–4 3.61 9 5–7 3.58
8 3–4 2.78 9 6–7 3.53
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Atom 10, in fact, does not rebond: it relaxes by approxi-
mately 0.3 Å, and retains one bond dangling. The displace-
ments from the ideal structure range from 0.10 to 0.82 Å
~including atom 4!, and again here these are substantially
smaller than the values calculated within the TB model by
Song et al. ~0.35 to 1.25 Å!. Atom-atom distances range
from 2.78 to 3.85 Å~again including atom 4; cf. Table II!, so
that, in fact, some second-neighbor atom pairs now are
weakly bonded~e.g, the pairs 3–4 and 4–6!. The bond
angles, of course, also are severely distorted and lie in the
range 85–112°. Overall, the volume of this defect decreases
by ;28% upon relaxing, which is larger than for the simple
divacancy, and almost as large as in the case of the monova-
cancy, as could be expected.

B. Formation energies

The formation energies of the defects, in their unrelaxed
and relaxed states,Vu and V r , respectively, are listed in
Table III. The formation energy of a defect is defined as the
difference in total energies of the system with and without
the defect at constant number of particles. Here the number
of particles varies, but we may write, equivalently,
V5ED@N#2Nm, whereED@N# is the total energy of the
defective system containingN atoms, andm is the atomic
chemical potential of the host crystal, which we take to be,
approximately, the total energy per atom of a silicon crystal
~m52107.007 and2107.417 eV, forEC58 and 10 Ry, re-
spectively!. We also show in Table III the relaxation ener-
gies, i.e., the difference in energies between unrelaxed and
relaxed states,DV5Vu2V r .

As mentioned earlier there is, to our knowledge, only one
other estimate of the formation energies of divacancies in Si,
based on a TB approach.7 In contrast, there exist many cal-
culations of the formation energy of the monovacancy. The
value we obtain—3.29 eV—is consistent with other DFT/
LDA calculations, which are in the range 3.0–5.0 eV,21 de-
pending on relaxation and on the particular choice of model
parameters, especially the energy cutoff: for a model equiva-
lent to ours, Smargiassi has foundV r to decrease from 3.88
to 3.28 to 2.96 eV, upon increasingEC from 6 to 8 to 10 Ry.
Some first-principles models, also, do not allow, or partially
allow for, neighboring-atom relaxation. This leads to higher
formation energies, which should be compared, rather, with
Vu . Our result forV r for the monovacancy is also consistent
with the TB value of 3.67, using a 64-atom supercell;7,19 the
energy of the monovacancy is, however, found to converge
to about 4.12 eV upon increasing the size of the system to
512 atoms. Since increasingEC causes the formation energy

to decrease, while increasing the system size does the oppo-
site, by roughly the same amount, leading to substantial can-
cellation of errors, we conclude from this that our calcula-
tions are close to convergence, with respect to these two
parameters taken together. Smargiassi has found, in addition,
that G-point-only sampling gives formation energies for the
monovacancy converged to better than 10%. It is quite likely,
therefore, that a similar error bar applies to the case of diva-
cancies.

Turning to divacancies, now, we find a relaxed formation
energy for the simple divacancy of 4.63 eV, substantially
larger than that for the monovacancy, as expected. We note
thatV r decreases to 4.32 eV (20.31 eV, or26.7%!, upon
increasingEC to 10 Ry; this, it turns out, is in excellent
agreement with the corresponding variation reported by
Smargiassi for the monovacancy~20.32 eV! discussed
above. For the split divacancy, we obtainV r5 5.90 eV, quite
a bit more than for the simple divacancy, and almost twice as
much as for the monovacancy. The formation energies, for
the fully relaxed configurations that we obtain, are in fair
agreement with the corresponding TB values of Song
et al.—5.68 and 6.54 eV for the simple and split divacancy,
respectively. Our results, further, differ with the TB values in
one important aspect: relaxation energies, i.e., the energy dif-
ference between relaxed and unrelaxed states. While, in the
TB-MD model of Songet al., the relaxation energies amount
to a very large fraction of the unrelaxed energies; in the
range 23–27 %, they are much less in our case, certainly no
more than 10%, consistent with the smaller displacements
observed in our calculations upon relaxing.

As a final point, we note that the energy required to form
two monovacancies separated by an infinite distance~in an
otherwise perfect crystal! is 6.58 eV, more than the cost of a
split divacancy~5.90 eV! or of a simple divacancy~4.63 eV!.
Vacancies, therefore, may lower their energy, by as much as
1.95 eV, by combining first into split divacancies (20.68
eV!, then into simple divacancies (21.27 eV!. Divacancies,
evidently, are quite stable; this is consistent with the fact that
they are easily formed by electron irradiation at room tem-
perature, and are persistent.3,4

C. Band structure

The band structure of the Si divacancy has been the object
of a lot of debate, ever since the publication of the pioneer-
ing work of Watkins and Corbett on this defect in various
states of charge.3,22–25 As discussed above, the negatively
charged divacancy has been found by Saito and Oshiyama,
on the basis of LDA calculations, to exhibit the resonant-
bond Jahn-Teller distortion,5 for which the highest occupied
state has (au)

2bu
1 symmetry. In contrast, for the conventional

pairing mechanism, electron spin resonance measurements
indicate that the highest occupied state is (ag)

2 ~Refs. 3,6!.
The structure we find for the neutral divacancy, as we have
seen, agrees with the result of Saito and Oshiyama for the
negative divacancy; since it has one fewer electron, it fol-
lows that it must possess (au)

2 symmetry. In the following,
we report our results for the position in energy of the levels
in the gap.

We discuss first the electronic structure of the well-
documented monovacancy. In its unrelaxed state, which is of

TABLE III. Formation energies (Vu : unrelaxed;V r : relaxed!
and relaxation energies (DV5Vu2V r) of the defects, all in eV.
The relaxation energies are also given, in parentheses, as a percent-
age of the unrelaxed formation energy.

System Vu V r DV

Monovacancy 3.65 3.29 0.36~10.0%!

Simple divacancy –EC58 Ry 4.87 4.63 0.23~4.8%!

Simple divacancy –EC510 Ry 4.59 4.32 0.28~6.0%!

Split divacancy 6.47 5.90 0.59~8.9%!
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Td symmetry, we find the highest occupied level of the de-
fect to be triply degenerate and to lie 0.61 eV above the
valence band maximum~VBM !. Upon relaxing, as we have
seen above, the Jahn-Teller distortion causes the symmetry to
decrease toD2d ,

26 and the highest occupied level, now a
singlet, occurs at 0.23 eV. This is in qualitative agreement
with the self-consistent field calculations of Lipariet al.,27

which give the highest occupied state as a triplet at 0.7 and a
singlet at 0.3 eV, before and after relaxation, respectively.

For the unrelaxed simple divacancy now, which is of
D3d symmetry, we find the highest occupied state to be a
doublet at about 0.1 eV above the VBM. After relaxation, the
symmetry is lowered toC2h and the highest occupied state
lies just above the VBM, at 0.04 eV. This result is for a cutoff
in energy of 8 Ry. If we increase the cutoff to 10 Ry, we find
the highest occupied level to lie in the valence band. This
agrees, in fact, with a calculation by Lee and Mcgill, based
of the extended Huckel theory, frequently used to interpret
experimental data.24 In view of the error bar of our calcula-
tions (;0.1 eV!, therefore, we cannot definitely conclude
that the divacancy leads to levels in the gap.

Yet, other calculations give rather different results: In a
self-consistent, parameter-free, Green’s function calculation,
Sugino and Oshiyama22 found the the highest occupied state
~doubly degenerate! to be at 0.31 eV before relaxation; after
relaxation with a valence-force model, the level splits into
two levels, 80 meV apart, close to each other, and still in the
band gap. In contrast, a cluster-method Green’s function cal-
culation by Kirtonet al.25 yields the highest occupied state~a
doublet! to lie in the middle of the gap before relaxation and
a small Jahn-Teller distortion splits the degenerate states. In
their TB study, Songet al.find, before relaxation, the highest
occupied state to be a doublet at 0.94 eV above the VBM,
and, after relaxation, one occupied level at 0.46 eV and one
unoccupied level at 1.00 eV. Here also, therefore, the highest
occupied state moves towards the VBM after relaxation. Evi-
dently, the precise positions of defect-induced gap states are
sensitive to the particular model used, while all calculations
seem to agree that the highest occupied level moves towards
the VBM upon relaxing the structure. It should be noted, as a
final point, that single-electron energy levels are distinct
from ionization levels, i.e., values of the electron chemical
potential at which a change in the charge state of the defect

takes place.18 For instance, the observed values quoted in
Ref. 7 correspond to successive ionizations of the divacancy
from 1 to 22, not to single-electron states.

For the split divacancy, we find the highest occupied state,
before relaxation, to be a doublet at 0.37 eV above the VBM.
Structural relaxation pulls down this level very close to the
VBM, at 0.08 eV. This is only in fair agreement with the TB
results of Songet al., who also find relaxation to shift the
defect states towards the valence band; in their case, how-
ever, the levels remain deep in the gap. To our knowledge,
there exists no experimental electronic structure data for the
split divacancy, and no other first-principles calculations.

IV. CONCLUDING REMARKS

We have presented a first-principles study of the structure
and energetics of divacancies in silicon, within the frame-
work of density-functional theory, with emphasis on relax-
ation and its consequences. We estimate the formation ener-
gies to be 4.63 and 5.90 eV for the simple and split
divacancies, respectively. In both cases, relaxation proceeds
inwards, clearly is significant, and therefore cannot be ig-
nored, even though the relaxation energies amount to less
than about 10% of the unrelaxed formation energies. The
binding energy of divacancies is close to 2 eV, which indi-
cates that they are stable, and explains that they are easily
formed by electron irradiation at room temperature.3,4

We observe, for both the divacancy and the split diva-
cancy, the highest occupied states to lie close to the valence
band maximum. For the simple divacancy, we find the re-
laxed structure to be of the resonant-bond Jahn-Teller type.
This implies that the highest occupied level has (au)

2 sym-
metry, in agreement with recent calculations for the negative
divacancy,5 at odds with electron spin resonance measure-
ments, which suggest that the symmetry is (ag)

2 ~Refs. 3,6!.
Clearly, further studies are needed to resolve this contro-
versy.
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