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We present a tight-binding model which goes beyond the traditional two-center approximation and allows
the hopping parameters and the repulsive energy to be dependent on the binding environment. Using carbon as
an example, we show that the approach improves remarkably the transferability of the tight-binding model. The
properties of the higher-coordinated metallic structures are well described by the model in addition to those of
the lower-coordinated covalent structures.

Tight-binding molecular dynamics~TBMD! has recently
been emerging as a useful and powerful scheme for atomistic
simulation study of structural, dynamical, and electronic
properties of realistic materials.1 The advantages of TBMD
are that it includes explicit quantum-mechanical calculations
into molecular dynamics and it is much faster thanab initio
methods. The scheme becomes even more attractive and
promising due to recent developments in order-N algorithms
for electronic calculation and the use of parallel
computers.2–5Nevertheless, generating accurate and transfer-
able tight-binding models for molecular dynamics simulation
of realistic materials is still a very challenging task. In the
last several years, a lot of effort has been devoted to the
development of transferable tight-binding potentials.6–14Re-
sults from these studies indicated that the tight-binding ap-
proach is quite successful for strongly bonded covalent sys-
tems such as carbon and silicon. However, even for these
systems, the accuracy of existing models for the higher-
coordinated metallic structures~e.g., simple-cubic,b-tin,
bcc, and fcc structures! are still far from satisfactory.1

We note that previous work on tight-binding potentials
almost invariably adopts the two-center approximation for
the hopping integrals.15 While the two-center approximation
greatly simplifies the TB parametrization, neglecting multi-
center interactions is justified only when the electrons are
well localized in strong covalent bonds. For systems where
metallic effects are significant, the two-center approximation

is inadequate. In order to generate a tight-binding model that
has good transferability over a wide range of coordination
numbers, one can include multicenter interactions by allow-
ing the interatomic interactions to depend on the binding
environment.

In this paper, we present an approach that goes beyond
traditional two-center approximations and allows the tight-
binding parameters and the repulsive potential to be depen-
dent on the bonding environment. We tested this model for
the case of carbon and show that, in contrast to previous
two-center models, the new approach describes properly the
higher-coordinated metallic structures in addition to the dia-
mond, graphite, and linear chain structures.

In this approach, the environment dependence of the hop-
ping parameters is modeled through incorporating two new
scaling functions into the traditional two-center integrals.
The first one is a screening function, which mimics the elec-
tronic screening effects in solids such that the interaction
strength between two atoms in the solid becomes weaker if
there are intervening atoms located between them. This ap-
proach allows us to distinguish between first- and farther-
neighbor interactions within the same interaction potential
without having to specify separate interactions for first and
second neighbors. The second function scales the distance
between two atoms according to their effective coordination
numbers. Longer effective bond lengths are assumed for
higher-coordinated atoms. The strength of the hopping pa-

TABLE I. The parameters obtained from the fitting. The tight-binding parameters are in the unit of eV and the
interatomic distances are in the unit of Å.f is dimensionless.

a1 a2 a3 a4 b1 b2 b3 d

Vsss 28.9491 0.8910 0.1580 2.7008 2.0200 0.2274 4.7940 0.0310
Vsps 8.3183 0.6170 0.1654 2.4692 1.3000 0.2274 4.7940 0.0310
Vpps 11.7955 0.7620 0.1624 2.3509 1.0400 0.2274 4.7940 0.0310
Vppp 25.4860 1.2785 0.1383 3.4490 0.2000 8.5000 4.3800 0.0310
f 30.0000 3.4905 0.00423 6.1270 1.5035 0.205325 4.1625 0.002168
Des , Dep 0.79881 0.029681 0.19667 2.2423 0.055034 0.10143 3.09355 0.272375
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rameters between atomsi and j is therefore dependent on the
coordination number of the atoms: weaker interaction
strength for larger-coordinated structures. This model pre-
serves the two-center form of the tight-binding hopping in-
tegral while taking multicenter effects into account.

We use a minimal basis set of ones and threep atomic
orbitals to construct the tight-binding Hamiltonian for carbon
with the hopping parameters and the pairwise repulsive po-
tential expressed as

h~r i j !5a1Ri j
2a2 exp@2a3Ri j

a4#~12Si j !. ~1!

In this expression,h(r i j ) denotes the possible types of
interatomic hopping integrals,Vsss , Vsps , Vpps , Vppp , or
pairwise repulsive potentialf(r i j ) between atomsi and j .
r i j is the real distance andRi j is the scaled distance between
atomsi and j @see Eq.~4!#. Si j is a screening function. The
parametersa1 , a2 , a3 , anda4 and parameters for the scal-
ing functionRi j and the screening functionSi j can be differ-
ent for different hopping integrals and pairwise repulsive po-
tential. These parameters will be determined in the fitting
procedure. In general, we require thatSi j is near 0 ifi and j
are nearest-neighbor atoms, and close to 1 otherwise so that

nearest-neighbor interactions dominate. Note that expression
~1! reduces to the traditional two-center form if we setRi j 5
r i j andSi j50.

The screening function is modeled as

Si j5
exp~j i j !2exp~2j i j !

exp~j i j !1exp~2j i j !
, ~2!

with

j i j5b1(
l
expF2b2S r il1r j l

r i j
D b3G , ~3!

whereb1 , b2 , andb3 are screening parameters. Note that
j i j depends not only on the distance between atomsi and j ,
but also on the positions of the neighbors of atomsi and j .
The maximum screening effect occurs when the atoml is
just sitting on the line connecting the atomsi and j
(r il1r l j is minimum!. The screening function decays rapidly
when the neighboring atoms move away from the line join-
ing atomsi and j . The screening function varies smoothly
from 0 to near 1 asj is increased.

The scaling between the real and effective interatomic
distance is defined by

TABLE II. The coefficients~in unit of eV! of the polynomial functionf (x).

c0 c1 c2 c3 c4

12.201499972 0.583770664 0.33641890131023 20.533409373531024 0.765071719731026

FIG. 1. The electronic energy bands of various
crystalline structures of carbon calculated using the
present TB model~solid curves! are compared with the
first-principles LDA calculation results~dots!. The
Fermi levels are located aroundE50 eV.
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Ri j5r i j H 11
d

2 F S gi2g0
g0

D1S gj2g0
g0

D G J , ~4!

wheregi and gj are the effective coordination numbers of
atomsi and j , andg0 denotes the coordination number for a
reference atom in a reference structure. We will use the dia-
mond structure as the reference structure for group IV ele-
ments.

The effective coordination number is given by

gi5(
j

~12Si j !, ~5!

whereSi j is also in the form of the screening function de-
fined above~but with different parameters!. Note that wheni
and j are nearest-neighbor atoms,Si j is close to 0 andgi
counts almost one neighbor. On the other hand,Si j is close to
1 if i and j are not nearest-neighbor atoms, so thatgi counts
only a small fraction of a neighbor.gi defined as~5! thus
provides a continuous and smooth function for counting the
neighbors. In this paper, the parameters forSi j in Eq. ~5! are
chosen before the band structures and binding energies are
fitted. These parameters areb152.0, b250.0478, and
b357.16. Using these parameters,gi are calculated to be
2.08639, 3.17678, 4.41022, 6.23620, 10.38529, and
11.89829 for the linear-chain, graphite, diamond, simple-
cubic, bcc, and fcc structures, respectively. These values give
a reasonable representation of the effective coordinations in
these structures.

Besides the hopping parameters, the diagonal matrix ele-
ments in this model are also dependent on the bonding envi-
ronments. The expression for the diagonal matrix elements is

el,i5el,01(
j

Del~r i j !, ~6!

whereDel(r i j ) takes the same expression as Eq.~1! andl
denotes the two types of orbitals (s or p!. es,0 andep,0 are
chosen to be26.041 and 1.024 eV, respectively.

Finally, we express the repulsive energy term in a func-
tional form as in the previous tight-binding model for carbon
developed by Xuet al.,9 that is,

Erep5(
i
f S (

j
f~r i j ! D , ~7!

wheref(r i j ) is a pairwise potential between atomsi and j
and f is a functional expressed as a fourth-order polynomial
with argumentx5( jf(r i j ), i.e., f (x)5(n50

n54cnx
n.

The parameters in the model are determined by first fitting
to the electronic band structures and then the cohesive en-
ergy versus volume curves for linear chain, graphite, dia-
mond, simple cubic, bcc, and fcc structures, respectively ob-
tained from the self-consistent first-principles density-
functional calculations. The local density functional
calculations were performed using the Ceperly-Alder local
exchange-correlation energy as parametrized by Perdew and

TABLE III. Elastic constants, phonon frequencies, and Gru¨nneisen pa-
rameters of diamond calculated from the present TB model are compared
with previous TB model~Ref. 9! and experimental results~Ref. 18!. Elastic
constants are in units of 1012 dyn/cm2 and the phonon frequencies are in
terahertz.

Present Previous
model model Experiment

a (Å) 3.585 3.555 3.567
B 4.19 4.56 4.42
c112c12 9.25 6.22 9.51
c44 5.55 4.75 5.76
nLTO~G! 41.61 37.80 39.90
nTA~X! 25.73 22.42 24.20
nTO~X! 32.60 33.75 32.0
nLA ~X! 36.16 34.75 35.5
gLTO~G! 0.93 1.03 0.96
gTA~X! 0.30 -0.16
gTO~X! 1.50 1.10
gLA ~X! 0.98 0.62

TABLE IV. Elastic constants, phonon frequencies, and Gru¨neisen param-
eters of graphite calculated from the present TB model are compared with
the previous TB model~Ref. 9! and experimental results~Ref. 19!. Elastic
constants are in units of 1012 dyn/cm2 and the phonon frequencies are in
terahertz.

Present Previous
model model Experiment

c112c12 8.94 8.40 8.80
E2g2

48.99 49.92 47.46
A2u 26.07 29.19 26.04
g(E2g2

) 1.73 2.00 1.63
g(A2u) 0.05 0.10

FIG. 2. ~a! The binding energies as a function of nearest-neighbor dis-
tance for carbon in different crystalline structures calculated using the
present TB model are compared with the results from the first-principles
LDA ~with gradient correction! calculations. The solid curves are the TB
results and the dashed curves are the LDA results.~b! The results obtained
from the two-center TB model of Ref. 9. The LDA results~dashed curves! in
~b! are calculated without gradient correction.
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Zunger,16 gradient corrections for the exchange-correlation
energy were also included following the generalized gradient
approximation proposed by Perdew and Wang.17 The elec-
tronic wave functions were expanded in a mixed basis set
containing plane waves up to an energy cutoff of 25 Ry and
4 localized orbitals per carbon atom. The sampling grid for
Brillouin zone integration of the total-energy and electronic
charge calculations contains 60, 90, 50, 165, 165, and 146k
points, respectively, for the diamond, graphite, linear chain,
and the simple cubic, bcc, and fcc structures.

The fitting is performed with heavier weight on the lower-
energy diamond, graphite, and linear chain structures~about
10 times the weight for bcc and fcc structures!. Because the
use of a minimal basis set is inadequate for describing the
higher-energy bands, we focus our fitting on the occupied
energy bands and some states above but near the Fermi level.
Additional checks have also been made to ensure that the
model gives reasonable results for the elastic moduli and
phonon frequencies in the diamond and graphite structures.
The parameters obtained from such fitting are listed in Tables
I and II.

In Fig. 1, the band structures obtained from the present
model for carbon are compared with the first-principles cal-
culation results. The tight-binding model reproduces very
well the occupied bands for carbon crystalline structures
with coordination numbers varying from 2~linear chain! to
12 ~fcc!. The lower part of the conduction bands in simple-
cubic, bcc, and fcc structures and the band gap in the dia-
mond structure are also fairly well described. Due to the
absence of higher-energy orbitals in the basis set, our model
does not have a good fit to the conduction bands of the three
lower-coordinated covalent structures. However, a good de-
scription of the occupied energy bands should be adequate
for studying the total energies and structural properties of
condensed phases.

The binding energies as a function of nearest-neighbor
distance for carbon in different crystalline structures are pre-
sented in Fig. 2~a!. Results from the previous tight-binding
model of Xuet al.9 using the two-center approximation is
also shown in Fig. 2~b! for the purpose of comparison. It is

clear that the present tight-binding model improves signifi-
cantly the transferability of the model to describe the ener-
gies of the metallic structures. The model also describes ac-
curately the binding energy of the hexagonal diamond
structure, which is about 0.2 eV/atom higher than that of
cubic diamond.

We have also calculated some phonon frequencies and
elastic constants for diamond and graphite structures. The
results are listed in Tables III and IV in comparison with the
results of previous TB models and experimental values. The
results also show overall improvements over the previous
model using the two-center approximation. In particular, the
elastic constants of diamond obtained from the present
model are in much better agreement with the experimental
data. The vibration frequencies calculated at zero tempera-
ture are slightly higher than the experiment values. Since the
experimental values are obtained at room temperature, we
believe that the vibration frequencies from the present tight-
binding model should be in even better agreement with ex-
periments if one takes into account temperature effects.

In summary, we show in this paper an empirical scheme
to incorporate environment dependence of interactions into
the tight-binding model. We demonstrated that the inclusion
of three-center interactions into the tight-binding model im-
proves the transferability of the model to describe the higher
coordinated metallic structures. This approach is very suc-
cessful in describing the band structures, banding energies,
and elastic and vibrational properties of carbon structures
with coordination numbers ranging from 2 to 12. We antici-
pate that it will improve the transferabilities of the tight-
binding models for silicon, germanium, and transition-metal
elements.
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