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We illustrate a method for performing first-principles free-energy calculations within the Kohn-Sham
scheme. We show that the method can be used in cases in which electrons have to be decoupled from the
system and illustrate it with results for the formation free energy of the Si vacancy. The results agree well with
the available data from experiments andab initio calculations.

I. INTRODUCTION

In recent years, there has been growing interest in the
calculation of thermal properties of condensed matter via
computer simulation. The most general and direct way is to
calculate an appropriate free energy, from which all the equi-
librium thermodynamic properties can be obtained. For in-
stance, the knowledge of the free energy of formationF f of
a defect allows one to compute its equilibrium concentration
c5eFf /kBT which, in addition to being important in itself,
also enters the defect-induced diffusion coefficient and other
important quantities.

Unfortunately, absolute free energies are not directly mea-
surable, neither experimentally or in a computer simulation,
as they contain an entropic part which cannot be computed in
any conceivable amount of time. Therefore, indirect methods
must be used.1 A popular choice is ‘‘thermodynamic integra-
tion.’’ In this method, one takes the potential energyU of the
system studied to be a smooth function of a parameterl. It
is then easy to show that]F/]l5^F(l)& @where
F(l)5]U/]l and the angled brackets indicate thermal av-
eraging#; the free-energy difference between the states corre-
sponding to the valuesl51 andl50 can then be expressed
as*0

1^F&dl. As F is a function of state, the states at inter-
mediate values ofl do not need to have any physical mean-
ing: only the smoothness ofU(l) and its values at the end
points are relevant.

This method has been used widely in the past, on simple
model systems like Lennard-Jones,2 showing that a proper
account of anharmonic effects is essential for a full under-
standing of diffusion processes. On the other hand, similar
calculations on important materials like semiconductors have
been hindered to date by the lack of sufficiently reliable in-
teratomic potentials. In fact, even well-established potentials
may easily lead to unphysical results for defects, if not con-
structed and handled with great care.3 And even in these
cases, the results are not sufficiently accurate to allow one to
draw reliable quantitative conclusions, as it can be seen by
comparing the results of Ref. 4 with those obtainedab
initio.5 The alternative route of usingab initio methods has
long been confined toT50 or, at best, harmoniclike

approximations,6 due to the huge requirements in terms of
computer resources. To overcome these problems, first-
principles molecular dynamics~FPMD! schemes7 have been
developed, which make calculations of thermal properties of
real materials from first principles affordable. Therefore the
extension to FPMD of the above methods for calculating free
energies is now an important issue.

The characteristics of the thermodynamic integration
method depend in an important way on the transformation
which is chosen. The parameterl may, in principle, be any-
thing. It can be chosen as a physical parameter of the system,
in which case, the system is driven through a physically re-
alizable transformation. In this case, the extension of the
method to first-principles calculations is straightforward: all
one has to do is to compute energies and forces using one of
the existingab initio schemes, instead of using classical in-
teratomic potentials. The calculation of the thermal average
of F in a first-principles scheme is in this case no more
complicated than the calculation of the forces acting on the
ions ~actuallyF can be considered a ‘‘generalized force’’!:
First, one computes, analytically, the derivative of thefunc-
tional U($r i%), with respect tol. Second, one performs an
MD simulation at the chosenl points, taking care of keeping
the system as close as possible to the instantaneous Born-
Oppenheimer~BO! ground state. By invoking the Hellman-
Feynman theorem and assuming ergodicity in the subspace
of the ionic coordinates, one can then show that the calcu-
lated^]U/]l& coincides with the desired ensemble average.
In a recent work,8 for instance,l was taken to be the reaction
coordinate of an atom jumping across a potential barrier. In
this case,F was the component of the force acting on the
jumping atom along the reaction path, thus obtaining the free
energy of migration across the barrier.

Many interesting applications, however, require that the
system be led through an unphysical transformation. In sev-
eral important cases, one or more atoms have to be decou-
pled from the others, thusl is the coupling of one or more
atoms to the rest of the crystal. This is the case of the calcu-
lation of formation free energies of defects, or of free ener-
gies of extended systems. When usingab initio schemes,
where electrons are treated explicitly, some or all of them
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must then be decoupled, together with the corresponding
ions. This procedure has no counterpart in the approaches
that makes use of effective interatomic potentials only~a
discussion of this point in general terms is given in Ref. 9!,
and makes the whole exercise quite more complicated. As it
will be shown in this paper in fact, the applicability of the
thermodynamic integration method in the framework of the
Kohn-Sham formalism to these unphysical transformations is
not obvious. We had already shown that it is nevertheless
feasible10 and used the method to calculate the free energy of
formation of the vacancy in Si.11 The results have been pub-
lished previously,12 therefore, in this paper we mainly focus
the discussion on the technical aspects of our work. We treat
in detail the case of the vacancy, but modifications of the
method for use in other cases are straightforward. To sim-
plify matters further, we shall discuss only the case of simu-
lations at a constant lattice parameter.

II. FORMALISM

The formation free energyF f
N of a vacancy, as calculated

by using anN atoms supercell, is

F f
N~VC ,T!5FV

N21~VV ,T!2
N21

N
FC
N~VC ,T!, ~1!

whereFC
N(VC ,T) is the free energy of a crystal withN at-

oms, volumeVC , and temperatureT, while FV
N21(VV ,T) is

the free energy of a crystal with the same number of lattice
sites, but one of them is vacant. After choosing a suitable
single-body reference state, defined by a potential energy
u, we define now the following.

~i! UN(l51)5UC
N5 potential energy of the perfect crys-

tal.
~ii ! UN(l50)5UV

N211u5 potential energy of the va-
cancy crystal plus the energy of the decoupled atom.

In other words, one ion is adiabatically removed from the
crystal and put in the state described byu, while at the same
time its valence electrons are made to disappear. The free
energies of the bulk system and of the vacancy system are
thus, respectively,

FC
N5FN~l51!,

FV
N215FN~l50!2w, ~2!

wherew is the free energy of an atom in a potentialu, at the
appropriate temperature. This is a well-defined quantity, as
long as the potentialu is a single-body potential. Clearly, the
form of u is arbitrary: its free energyw is implicitly added in
FN(l50) and then explicitly subtracted. For calculations on
solids,u is well chosen as a harmonic potential, which has
the additional advantage that, in this case,w is analytically
computable. We use the following form:

u5«01
1

2
MIv

2~R2R0!
2, ~3!

where«0 is the energy of an atom in the perfect crystal at
T50, R0 is the lattice site of the atom to be made to disap-
pear ~i.e., that in which the vacancy will appear!, MI the
ionic mass, andv is a typical lattice frequency, which we

chose to be the experimental Debye frequency. In this case,
the decoupled atom behaves approximately as a bulk atom.

We now exploit the fact thatF has the form of a canoni-
cal average and can, therefore, be computed by MD:

]F~l!

]l
52kBT

]

]l
lnE d3NRe2U~l!/kBT

5
1

Zq~l!
E d3NRF~l!e2U~l!/kBT5^F~l!& ~4!

whereZq is the configurational integral entering the parti-
tion function. Then,

F~l51!2F~l50!5E
0

1

dl^F~l!&. ~5!

The formation free energy is finally obtained as

F f5F~l50!2F~l51!1
1

N
FC2w52E

0

1

dl^F~l!&

1DF. ~6!

The correction factorDF is the difference betweenw, which
is known independently~here analytically!, and the free en-
ergy per atom in the perfect crystal. The latter is easily ob-
tained from accurateab initio calculations of phonons or
directly from experimental data.

The next step is now to find a potential energyU(l)
satisfying the appropriate conditions atl50 andl51. We
chose it in the following way.

~i! We multiply by l the occupation numbersf i of the
states occupied byZ electrons (Z54 being the valence of
the Si ion!.

~ii ! We multiply byl the ionic charge Ze of the ion to be
decoupled and its bare pseudopotential.

To compute the thermal averages needed, we use FPMD,
with the standard Car-Parrinello~CP! method,7 with the fol-
lowing Lagrangian:

L5
1

2(I
N

MIR̈I1
1

2(i m i^ċ i uċ i&2EKS@$RI%,$c i%#2EII

1 constraints, ~7!

whereEKS is the Kohn-Sham energy functional,EII is the
direct ion-ion interaction and the ‘‘constraint’’ term imposes
the orthonormality condition on the wave functions.

The electron pseudomassesm i must be chosen in such a
way that the pseudoelectronic frequencies are much higher
than all ionic frequencies.13WhenZ electrons are decoupled,
however, the occupation numbers of the corresponding states
become smaller by a factorl and it is easy to see13 that, for
l→0, this requirement will be violated. We therefore choose
to set the pseudoelectronic masses as follows: for the elec-
trons, which stay fully coupled,m i5m5 constant, for the
electron states corresponding to disappearing electrons
m i5lm ~it should be noted that this affects the form of the
orthonormalization procedure: the appropriate form is given
in Ref. 10!. With this choice, the less coupled electrons have
correspondingly low masses and thus the frequency of their
motion remains high.
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III. THE Si VACANCY

We applied the above scheme to the case of the Si va-
cancy. We used a 64 atom cell and the standard ‘‘local den-
sity approximation plus plane waves plus pseudopotential’’
scheme. We used theG point to sample the Brillouin zone,
and a plane-wave cutoff of 8 Ry. These values are sufficient
for giving phonon frequencies within 10% of the converged
value. We found that using a sufficient number ofl points
the results obtained from Eq.~4! at T50 coincide with the
ones obtained directly from Eq.~1!. This is indeed the case,
within 0.05 eV, if one uses a three-point Gauss-Legendre
formula. It is possible to show that the states corresponding
to the electrons being decoupled are necessarily the ones
with the highest orbital energies. In our case these states
become, at decreasingl, the two highest states of the three
introduced by the vacancy in the band gap. We verified that
this indeed remains true, even during the dynamical runs.

We verified that the CP procedure gives correct results for
F, by performing a series of calculations as follows. First,
we evolved the system according to the CP Lagrangian using
the same parameters that were subsequently used in the cal-
culationsm5875 a.u. andDt510 atu~atomic time units; 1
atu52.4188 1025 ps!. Second, we evolved the same system
from the same initial conditions by minimizing explicitly the
electronic energy at every ionic step, by usingn steepest
descent steps and computing the forces on ions via the
Hellman-Feynman theorem; this must give the correct ionic
evolution in the BO approximation in the limitn→`. The
results are shown in Fig. 1. The slow oscillation, which is
present in all curves, comes from the ionic dynamics. The
fast oscillation, present only in the CP curve, is due to the
fast electronic motion around the instantaneous ground state.
Apart from this oscillation, which should average to zero, it
is seen that asn increases the broken curves converge to the
full curve and forn>20 they already lie within the oscilla-
tion band of the fast motion.

On longer runs we, however, observed that the usual cri-
teria used to check for drifts from the BO surface are not
sufficiently tight to guarantee accurate results forF; drifts

which could be tolerated in other simulations are not accept-
able here. Indeed,F is a differential quantity and as such it
can be expected to be prone to large numerical errors. In this
particular case, the problem arises becauseF mainly de-
pends on the behavior of a small number of electrons, i.e.,
those that are being decoupled, which being the highest in
energy are also the ones which are more likely to create
problems with the adiabatic behavior.13 A good strategy
would be to force the electrons to stay close to the ground
state by imposing a thermostat on them.14We used a simpler
approach and just quenched periodically the electronic de-
grees of freedom on the instantaneous BO surface~one mini-
mization every 100 steps!. Of course, this implies that the
system of electrons plus ions is not conservative anymore
and, in fact, energy is gradually transferred from the hot ions
to the cold electrons. We kept the ionic temperature constant
by using a Nose´ thermostat,15 coupled to the ionic degrees of
freedom only. This also ensured that under the assumption
that the ionic subsystem is ergodic—for a discussion of this
point see Ref. 9—the sampling of the ionic phase space is
indeed canonical. We found that our method is sufficient to
give accuracy onF better than 0.1 eV. We are then satisfied
that, if the system is evolved via the CP dynamics and care is
taken that the electrons do not drift away from the BO sur-
face, the values obtained forF in this way are correct.

We run the program for two different temperatures,
T5500 andT51000, and the three Gauss-Legendre points
of the interval@0,1#. We used a fixed cell, the lattice param-
eter a of which was chosen to be the experimental one at
T50. By performing aT50 calculation ofF f at the value of
a, corresponding to a temperature of 1400 K, we checked
that thermal expansion would give a correction of the order
of 0.1 eV or less. The value ofF f at T50, which gives the
largest contribution, was taken to be the one obtained by
accurate calculation of the formation energy5 and the dy-
namical runs were only used to compute the temperature-
dependent part. We checked that a simulation time of 6 ps is
sufficient to give reasonable thermalization and statistics,
i.e., formation entropies with a statistical uncertainty of
;1kB , this agrees with the findings of Ref. 9.

The results have been previously published12 and here we
only discuss them. The value atT5500 K agrees with the
value obtained,5 by using the same model of Si, but using the
local harmonic approximation,16 which shows that the anhar-
monic effects are still small at that temperature. Also,F f
decreases with increasingT. This is to be expected, as it is
reasonable that the entropy of the defective crystal is larger
than the perfect crystal and thus its free energy decreases
more rapidly. It also looks likeF f is bent downward; this is
an expected effect too, since the anharmonic effects, which
become more and more important asT increases, are argu-
ably larger in the defective crystal and so its entropy should
increase faster than the entropy of the perfect crystal. In con-
trast, values calculated by usingT50 calculations in connec-
tion with standard statistical-mechanics methods6 do not
show any temperature dependence of the entropy.

It should be noted that the calculated values only include
the ionic free energy. As the vacancy introduces closely
spaced electronic levels in the band gap, only one of whom
is occupied atT50, there has to be a sizeable contribution to
F f coming from electronic excitations. To calculate this elec-

FIG. 1. F as calculated using the CP dynamical procedure~full
line!. The dashed, dotted, and dashed-dotted lines represent calcu-
lations done by minimizing the total electronic energy at every ionic
step, usingn steepest descent steps per each ionic step.Dt5 10
a.u.,m5 875 a.u.
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tronic contribution, one must have a good description of ex-
cited states, which is not the case within the local density
approximation. This contribution, however, has been esti-
mated to be approximately 1kB .

5 Even neglecting this, the
calculated values forF f agree well with the experimental
estimates.17 Our data, therefore, show that the observed high
entropy of vacancies is a direct consequence of the vacancy-
induced phonon softening. This may possibly be true for
other point defects as well.

IV. CONCLUSIONS

We have shown how the thermodynamic integration
method can be used within the Kohn-Sham scheme, includ-
ing the cases in which the initial and final states have a
different number of electrons and, thus, some electrons have
to be decoupled from the rest of the crystal. The implemen-

tation of the method requires some care to avoid spoiling the
adiabatic separation between the ionic and pseudoelectronic
motion; we showed how these problems can be successfully
overcome and how good results can be achieved.
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