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The experimental optimization of the detection of non-Gaussian effects in resistance fluctuations was stud-
ied. Sensitivity-optimization criteria for the second spectrum, an important fourth-order statistical spectrum,
were calculated and confirmed by experiment. Also, two additional fourth-order statistical spectra were intro-
duced to separately and independently quantify the correlations in the amplitudes and in the phases of the
Fourier coefficients of a noise signal. For a carbon resistor exhibiting non-Gaussian 1/f noise, the non-
Gaussian effects were predominantly due to high-order phase correlations.

I. INTRODUCTION

The study of the high-order statistics of the voltage noise
of resistors has led to a number of important insights. These
include the equilibrium nature of 1/f noise,1,2 the hierarchical
dynamics of the metastable states of metallic spin glasses,3

the importance of the collective rearrangement of defects in
the sliding state of charge-density waves,4 and most recently,
the presence of a plastic flow regime for the vortex lattice in
clean superconductors.5

By definition, Gaussian noise is characterized as having
both a Gaussian distribution function and also the property
that all high-order statistics of Gaussian noise can be ex-
pressed in terms of second-order statistics, i.e., simple two-
point correlation functions.6 Thus, Gaussian noise is fully
described by its histogram and power spectrum. When one
studies higher-order statistics of random signals, i.e., order
greater than two, the focus is to characterize and understand
the non-Gaussian contributions to the fluctuations.

One of the important experimental measures of non-
Gaussian resistance noise is the ‘‘second spectrum’’ intro-
duced by Restleet al.7 The second spectrum’s utility rests in
its sensitivity to weak correlations between noise-generating
fluctuators. This utility is naturally constrained by both the
experiment’s overall sensitivity to non-Gaussian effects and
also the level of detailed information which can be inferred
from the resulting second spectrum. The purpose of this pa-
per is correspondingly twofold. First, calculations and ex-
periments are reported which aim at determining the experi-
mental conditions necessary for optimal sensitivity to weak
non-Gaussian effects in a noise signal. And second, two ad-
ditional high-order statistic spectra are introduced for the
study of non-Gaussian resistance fluctuations. Intimately re-
lated to the second spectrum, these two spectra separately
probe, respectively, the correlations in the amplitudes and in
the phases of the Fourier coefficients of the noise signal. As
a test case, a carbon resistor exhibiting non-Gaussian
1/f -noise was studied. Surprisingly, the overwhelming con-
tributor to non-Gaussianity was in the fourth-order phase
correlations, with no statistically significant non-Gaussian
signature in the amplitude correlations at the lowest frequen-
cies probed by our experiments.

II. COMPARISON OF EXPERIMENTAL SCHEMATA

The study of the high-order statistics of the voltage noise
of resistors began with the conceptually important work of
Voss and Clark.1 To ascertain whether or not the 1/f noise
observed from current-carrying resistors8,9 is an equilibrium
effect, they measured the power spectrum of the time-
dependent variance of the Johnson noise. Their experiment is
shown schematically in Fig. 1. The amplifiedV(t) of the
resistor is bandpass filtered, and then squared and averaged
over an appropriate time constant by an analog squaring cir-
cuit and integrator to give the time-dependent variance of
V(t). This signal is read by an analog-to-digital converter
~ADC!, and finally the power spectrum of the variance is
calculated using a fast Fourier transform~FFT!. For a few
resistors with large relative noise powers, they were able to
observe a 1/f dependence in the power spectrum of the vari-
ance providing strong evidence that 1/f noise in current-
carrying resistors is due to intrinsic resistance fluctuations.

A few years later, the commonly available computing
power in condensed matter physics laboratories had ad-

FIG. 1. The experimental configuration used by Voss and Clarke
~Ref. 1! for measurement of the power spectrum of the variance of
the Johnson noise power of resistors~see text for description!.
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vanced considerably. To avoid the limitations imposed by
data collection in any one particular bandpass and to remove
any possible corruption of the noise signal by the analog
squaring circuit, Restleet al.7 introduced a somewhat differ-
ent experimental configuration, which is depicted schemati-
cally in Fig. 2.

After appropriate amplification and anti-alias filtering, the
time traceV(t) is discretely sampled by an ADC and sequen-
tially broken intoN2 contiguous segments ofN1 points. Let
f s denote the sampling rate,T15N1 / f s the time duration of
each data segment, andT5N2 / f s the total data collection
time. The power spectrum is calculated using a FFT, and
then integrated over a chosen bandpass to define a sequence
of integrated noise powers (Pi). As a consequence of Parse-
val’s theorem,6 Pi is approximately equal to the output of the
analog squaring and integration circuit element of Fig. 1 over
the same time window and with the integration time set to
T1 . Small differences in the two quantities are caused by
differences in the roll-off of the analog bandpass in Fig. 1
and the effective roll-off imposed on filtering in Fourier
space because of frequency bin smearing. Finally, the power
spectrum ofPi is calculated; this quantity has been intu-
itively named the second spectrum,7 which is denoted here
by S(2).

One motivating factor of the current paper is that the sec-
ond spectrum contains information from both the fourth-
order amplitude correlations and also the fourth-order phase
correlations of the Fourier coefficients ofV(t). As the sepa-
ration of the amplitude-correlation and phase-correlation
contributors toS(2) may lead to further insight into the
mechanisms underlying the various examples of non-
Gaussian resistance fluctuations,1–5,7 a third experimental
configuration for the measurement of high order statistics of
V(t) is reported here. The techniques introduced here often
require the FFT of data sets of 106 points or more to extract
useful information at the lowest experimentally accessible
frequencies; such analysis can be completed on convenient

time scales using present-day workstations or the fastest of
the present-day personal computers. The modified experi-
mental configuration is shown schematically in Fig. 3.

V(t) is once again discretely sampled by an ADC after
amplification and anti-alias filtering. These data are streamed
to a mass storage device~MSD!. Upon the completion of
data collection several analyses are carried out. First, the data
are digitally bandpass filtered, then squared point-by-point,
and finally the power spectrum of the time-dependent vari-
ance of the noise signal is calculated. This computational
path is the nearest digital equivalent of the experimental con-
figuration of Fig. 1. Once again, the second spectrum ob-
tained by this technique will differ slightly from those ob-
tained by the previous two experiments only because of the
details of the roll-offs of their respective bandpass filters.

The second analysis path in Fig. 3 is less conventional,
but qualitatively similar to methods used in electron micros-
copy studies of amorphous materials.10 Here, after applying a
FFT to the data, a bandpass is imposed and the phases of the
remaining nonzero Fourier coefficients are randomized. The
resulting amplitude-sensitive second spectrum is denoted by
S(2,a).

The final analysis quantifies the fourth-order phase corre-
lations in the original signal. After taking the FFT of the
data, a bandpass filter is again imposed but now the magni-
tude of each nonzero Fourier coefficient is set to unity, while
leaving the phase unchanged; that is,

An5arexp~ ifn!→1exp~ ifn!. ~1!

After performing the inverse FFT, the result of this non-
linear filter is bandpass-limited white noise containing ex-
actly the phase correlations present in the original signal, but
with all amplitude-dependent information obviously re-
moved. In image processing this is known as ‘‘whitening,’’
and has been used to demonstrate the importance of phase

FIG. 2. The experimental configuration used by Restleet al.
~Ref. 7! for measurement of a fourth-order statistic spectrum of
1/f noise~see text for description!.

FIG. 3. A modification of the experimental configuration de-
picted in Fig. 2. The dataV(t) is stored on the mass storage device
~MSD! and later digitally filtered to allow analysis ofV(t) in any
bandpass~see text for complete description!.
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correlations in the information content of two-dimensional
images.11 We denote the resulting phase-sensitive second
spectrum byS(2,f). Details on the implementation of each of
these analyses follows below.

III. GAUSSIAN BACKGROUND CALCULATIONS

The definitions of the second spectra introduced above
will now be made rigorous, and several of their properties
will be calculated. Consider a bandpass bounded above and
below in frequency byf H and f L , respectively, and define
bH5T fH and bL5T fL . We assume thatbL.0. Following
the general framework of Ref. 2, expansion of the bandpass
limited V(t) in a Fourier series yields

V~ t !5 (
n5bL

bH

$Anexp~2p i f nt !1An* exp~22p i f nt !% ~2!

so that

V2~ t !5 (
m5bL

bH

(
n5bL

bH

$AmAn* exp@2p i ~ f m2 f n!t#

1AmAnexp@2p i ~ f m1 f n!t#1c.c.%

5 (
p50

`

$Cpexp~2p i f pt !1Cp* exp~22p i f pt !% ~3!

with

Cp5 (
m5bL

bH

(
n5bL

bH

$AmAndp,m1n1AmAn* dp,m2n

1Am*An~dp,n2m2dp,0dm,n!%. ~4!

Individual Fourier coefficients ofV2(t) consist of the super-
position of all beats of appropriately related frequencies
present in the bandpass limited signalV(t); the first term in
Eq. ~4! is the contribution from sum-beats, the last two terms
from difference-beats withm>n and m,n, respectively.
The second spectrum is given by

Sp
~2!52TCpCp*52T (

j5bL

bH

(
k5bL

bH

(
m5bL

bH

(
n5bL

bH

$AjAkdp, j1k

1AjAk* dp, j2k1Aj*Akdp,k2 j%$Am*An* dp,m1n

1Am*Andp,m2n1AmAn* dp,n2m% ~5a!

for p.0 and

S0
254TS (

m5bL

bH

AmAm* D 2 ~5b!

for p50; henceforth we assume thatp.0. This is the key
point where the assumption of Gaussian noise is to be made,
or alternatively, where the necessary characteristics for pos-
sible contributions from non-Gaussian noise are to be exam-
ined.

Given that the existing literature onS(2) always demon-
strates non-Gaussian phenomenon only in the low beat-
frequency limit,3,7,9 the present discussion is restricted to
f p,2 f L and hence ignores the terms in Eq.~5a! coming

from sum-beats. Equation~5a! then simplifies after contract-
ing two pairs of summations with thed functions and rela-
beling the indices, giving

^Sp
~2!&58T (

k5bL

bH2p

(
n5bL

bH2p

^Ak1pAk*An1p* An&. ~6!

If the fluctuations inV(t) are Gaussian, then

^Sp
~2!&Gaussian58T (

n5bL

bH2p

^An1pAn1p* &^AnAn* &

5
2

T (
n5bL

bH2p

^Sn1p
~1! &^Sn

~1!&. ~7!

The equation defines the so-called Gaussian background of
S(2). As pointed out by Beck and Spruit2 in the context of
non-Gaussian Johnson noise,1 this background is a direct
consequence of the finite detection bandwidth of the mea-
surement.

To determine the Gaussian backgrounds inS(2,a) and
S(2,f), rewrite Eq.~6! in polar coordinates,

^Sp
~2!&58T (

k5bL

bH2p

(
n5bL

bH2p

^ak1pakan1panexp$ i @~fk1p

2fk!2~fn1p2fn!#%&. ~8!

If the phase differences are uncorrelated then only those
terms withn5k will have nonzero expectation and contrib-
ute to the sum. Therefore

^Sp
~2a!&58T (

n5bL

bH2p

^An1pAn1p* AnAn* &5
2

T (
n5bL

bH2p

^Sn1p
~1! Sn

~1!&.

~9!

In the limit of Gaussian noise, this reduces to Eq.~7!; the
Gaussian backgrounds ofS(2) andS(2,a) are identical.

Returning to Eq.~8!, it follows from the definition of
S(2,f) that

^Sp
~2,f!&58T (

k5bL

bH2p

(
n5bL

bH2p

^exp$ i @~fk1p2fk!

2~fn1p2fn!#%&. ~10!

As a consequence of the sums having the same bounds, it is
not difficult to show that

^Sp
~2,f!&58T (

k5bL

bH2p

(
n5bL

bH2p

^cos@~fk1p2fk!

2~fn1p2fn!#&. ~11!

In the limit of Gaussian noise, once again only terms with
n5k have nonzero expectation, and thus

^Sp
~2,f!&Gaussian58T~bH2bL2p!58T2~ f H2 f L2 f p!.

~12!

The normalized second spectra are defined by
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sp
~2!5

Sp
~2!

K 1T (
n5bL

bH

Sn
~1!L2 , ~13a!

sp
~2,a!5

Sp
~2a!

K 1T (
n5bL

bH

Sn
~1!L2 , ~13b!

and

sP
~2,f!5

Sp
~2,a!

4T2~ f H2 f L!2
. ~13c!

The normalized second spectra each have units of Hz21. A
similar normalization in the definition of the second spec-
trum has been used in previous works employing the experi-
mental configuration of Fig. 2.3

As a consequence of the whitening imposed on the data in
the definition ofS(2,f), it follows that

^sp
~2,f!&Gaussian5

2~ f H2 f L2 f p!

~ f H2 f L!2
~14!

for any broadband example ofS(1), whether white, 1/f ,
Lorentzian, or more complicated.

Using Eq. ~7! and the above definitions, the Gaussian
backgrounds of the normalized second spectrums(2) can
now be calculated for several physically relevant examples
of S(1). First, consider Johnson noise, which has

^AnAn* &52kuR/T, ~15!

wherek is Boltzmann’s constant,u is the temperature, and
T is the total measurement time. One obtains

^sp
~2!&Johnson5

^Sp
~2!&

K 1T (
n5bL

bH

Sn
~1!L 2 5

2~ f H2 f L2 f p!

~ f H2 f L!2
~16!

as should be expected from the above discussion of the
Gaussian background ofs(2,f) because Eq.~15! is white. @In
general, the Gaussian backgrounds ofs(2) ands(2,f) are quite
different, as is demonstrated below.# In the low-f p limit Eq.
~16! differs by a factor of two from that of Beck and Spruit.2

comparison to experiment is presented below.

Pure 1/f noise also allows a simple evaluation of the
Gaussian background. After replacing the pertinent sums by
the corresponding integrals in Eq.~13a! it really follows that

^sp
~2!&Gaussian5

2

f P

ln@~ f H2 f p!~ f L1 f p!/ f H f L#

@ ln~ f H / f L!#2
~17!

and

lim
p→0

^sp
~2!&Gaussian5

2~ f H2 f L!

f H f L@ ln~ f H f L!#2
. ~18!

Extremizing with respect tof L at fixed f H yields a local
minimum in the low-f p Gaussian background when
f H / f L'4.921. Hence

min~ lim
p→0

^sp
~2!& Gaussian!5

2~ f H2 f L!

f H f L@ ln~ f H / f L!#2
U
f H / f L54.921

'
3.088

f H
. ~19!

The common practice of taking octave-sized bandpasses3,7 is
therefore suboptimal for detection of weak non-Gaussian sig-
natures inV(t). Also, one can see from Eq.~19! that the
Gaussian background decreases with increasingf H . Both of
these features are verified by experiments described below in
the current paper. Unfortunately, the general case of a power
law noise power does not lend itself to a closed solution of
the resulting integrals; instead the Gaussian backgrounds
must be calculated numerically from Eqs.~7! and ~13a!.

Finally, for completeness, consider the case whenS(1) is
Lorentzian with zero center frequency,

^AnAn* &5
a

~11n2/T2f 0
2!
, ~20!

wheref 0 is the knee frequency. Such a first spectrum occurs,
for example, in the important case of a two-level system,8,9

and also in experiments of the type of Voss and Clarke1,2

wheref 0 would be the rc frequency of the combined sample
resistance and circuit stray capacitance. Then

^sp
~2!&Gaussian5

8T2a2* f L

fH2 f P d f /@~11 f 2/ f 0
2!$11~ f1 f p!

2/ f 0
2%#

H 2TaE
f L

fH d f

~11 f 2/ f 0
2! J 2

5
2

f 0

F f 0f p lnS 11~ f1 f p!
2/ f 0

2

11~ f / f 0!
2 D 1arctan~ f / f 0!1arctan[~ f1 f p!/ f 0] GU

f L

fH2 f p

@41~ f p / f 0!
2#@arctan~ f H / f 0!2 arctan~ f L / f 0!#

2 . ~21!

9756 53G. T. SEIDLER AND S. A. SOLIN



IV. EXPERIMENT

The resistances of the samples studied here fall within the
narrow range from 1 – 2 kV. The same amplifier and filter
chain therefore could be and in fact was used for all mea-
surements of the second spectra. Specifically, the first pre-
amplifier was a Stanford Research model 552 bipolar tran-
sistor amplifier. The boost amplifier was a Princeton Applied
Research model 113. A Stanford Research model 640 was
used as a low-pass filter for anti-aliasing and, in some cases,
for additional gain. The SR552 was verified to have a noise
figure of less than 3 dB for all samples reported here. In the
studies of 1/f noise, the power supply was a series chain of
four 12.5 V Panasonic batteries with either a commercial
metal-film resistor or a Genrad 1433-G wirewound-
resistance decade box as the current limiting resistor. Mea-
surements of the first spectra were obtained either using stan-
dard dc techniques with the above apparatus, or by a
standard ac technique12 for frequencies below 1 Hz. All data
were collected at room temperatures in a temperature and
humidity controlled room, with the sample, the batteries, and
the first two amplifiers in magnetically shielded, draft-free
environments.

Effective 14-bit analog-to-digital conversion was obtained
from a National Instruments MIO-16X general purpose pe-
ripheral board in a 66 MHz 80486 PC. Some real-time analy-
sis ofs(1) ands(2) was performed by the data collection PC,
but all computations presented here were performed on a
multi-R8000-processor workstation equipped with 1 Gbyte
of RAM; the large RAM was more than sufficient to allow
the most computationally demanding FFT’s necessary for the
present experiments~8 Mpoints! to be performed without the
use of virtual memory via disk swapping. Thereal ft ~ ! and
four1~ ! routines from Numerical Recipes13 were used in our
C-language analysis software.

V. RESULTS AND DISCUSSION

First s(2) for the Johnson noise of a commercial 2.00
kV metal-film resistor at room temperature was measured.
The power spectrum was indeed found to be white~not
shown!, and the noise figure of the preamplifier was less than
0.5 dB. The second spectrum was also found to be white at
low frequencies, as shown in Fig. 4 for various bandpasses.
The solid curves in the figure are graphs of Eq.~16! with no
free parameters. The calculation is in excellent agreement
with the data.

Next, a simple experiment was performed which serves
two roles. First, agreement with the calculations of the
Gaussian background for 1/f noise was demonstrated. Sec-
ond, it was proven that the chosen normalization fors(2) is in
fact a relevant choice for questions of detectability of weak
non-Gaussian effects.

The sample was a manually deposited carbon-composite
resistor with dimensions;0.2 mm long31.0 mm wide
31 mm thick andR51.61 kV;14 copper leads were attached
in a quasi-four-probe configuration with silver paint. The
power spectrum was found to scale roughly as 1/f 1.15 from
10 mHz to 12 kHz as shown in Fig. 5. In Fig. 6,s(2) is shown
for three different bandpasses withI547mA and the data set
consisting ofN58 Mpoints continuous measurements at a

sampling rate of 30 kHz. The roll-off of the anti-aliasing
filter was set at 13 kHz. The three bandpasses are concentric
aboutf57.2 kHz, i.e., (f L , f H)5(7.05 kHz, 7.35 kHz! open
circles,~6.6 kHz, 7.8 kHz! open triangles,~4.8 kHz, 9.6 kHz!
filled circles. The dashed lines are the prediction of Eq.~17!
for the Gaussian backgrounds of the three bandpasses.

At the lowest frequencies depicted in the figure, i.e.,
where the signal-to-background ratio is large, the three spec-
tra agree well. Further, the threshold frequency where devia-
tions from the predicted Gaussian backgrounds occur sys-
tematically increase as the Gaussian background is lowered.
As these bandpasses are concentric and fairly narrow, the
resultings(2) necessarily characterize the same non-Gaussian
effects.9 The choice of normalization fors(2) made in Eq.
~13! is verified to be valid for questions of detectability; i.e.,
a lower Gaussian background ins(2) does in fact imply a
more sensitive measurement.

In Fig. 7, s(2) is evaluated atf5100 Hz for a number of
different bandpasses all withf H512 kHz. Note the local
minimum at f H / f L;5, as predicted by Eq.~19!. The dashed
line in the figure is the prediction of Eq.~17! for f p5100 Hz.
The deviation is consistent with some residual non-
Gaussianity at these frequencies.

FIG. 4. The second spectrums(2) for Johnson noise from a 2.00
kOhm resistor at room temperature for various bandpasses. The
sampling frequency was 30 kHz, andN58 Mpoints. From top to
bottom in the figure the bandpass limits are (f L , f H)5(4.5 kHz,
4.875 kHz!, ~9 kHz, 9.75 kHz!, ~1.5 kHz, 3 kHz!, ~3 kHz, 7.5 kHz!,
~3 kHz, 12 kHz!. The solid lines are plots of Eq.~16! for each of the
specified bandpasses.

FIG. 5. The normalized first spectrumS(1) corrected for Johnson
noise for the homemade carbon resistor described in the text.
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One can of course instead holdf H / f L constant while
varying the bandpass limits. In Fig. 8,s(2) is again evaluated
at 100 Hz for the same data set but now as a function of
f H with f H / f L held equal to 5. The dashed line is the pre-
diction of Eq. ~17! with f p5100 Hz. As was the case with
Fig. 7, the data shows a small systematic deviation from the
calculated background for perfect 1/f noise.

Despite the small differences between the experiments
and the calculations, it is clear that the Gaussian background
has a local minimum as a function off H / f L and decreases
monotonically with increasingf H . In those cases where non-
Gaussianity exists at high frequencies, it is the combination
of the latter property with the desire to probes(2) over the
widest possible beat-frequency range that necessitates the
use of large data sets.

Finally, the family of second spectra for the sample and
data set analyzed in the preceding four figures is presented in
Fig. 9. The solid curve is the predicted Gaussian background
for s(2) ~and also fors(2,a)! from Eq.~17! assuming a perfect
1/f power spectrum. The dashed line in the figure shows the

Gaussian background fors(2,f), as per Eq.~14!.
One subtlety special to the computation ofs(2,f) exists: it

is necessary to use a simple square window on the initial
FFT of V(t). Smoother windows insert unacceptable levels
of spurious phase correlations into the data. This technique
~with the square window! was tested on an extensive variety
of data with known absence or presence of fourth-order
phase correlations, including: real Johnson noise, Gaussian
1/f noise generated by power-law filtering of real Johnson
noise, artificially generated Gaussian noise with a variety of
physically relevant noise-power spectra, and various artifi-
cially generated non-Gaussian signals. In all tests no spuri-
ous correlations were introduced when a simple square win-
dow was used on the data FFT. However, the use of a square
window has the drawback of frequency smearing in the
power spectrum which decreases only as 1/(D f )2,13 which
may severely limit the usefulness of this technique when
studying narrow-band noise signals.

Returning to Fig. 9, note the similarity between the be-
haviors ofs(2) ands(2,f). Furthermore, note the absence of
statistically significant non-Gaussian behavior ins(2,a). The

FIG. 6. s(2) for the homemade carbon composite resistor de-
scribed in the text at room temperture withI547 mA and N58
Mpoints. s(2) is shown for three progressively wider bandpasses,
each concentric aboutf57.2 kHz. (f L , f H) 5 ~7.05 kHz, 7.35 kHz!
open circles,~6.6 kHz, 7.8 kHz! open triangles,~4.8 kHz, 9.6 kHz!
filled circles. The dashed lines are the prediction of Eq.~17! for the
Gaussian backgrounds of the three bandpasses. Note the systematic
improvement in detectability of non-Gaussian effects with increas-
ing bandwidth.

FIG. 7. The open circles ares(2) evaluated atf5100 Hz for the
same data set as was studied in Fig. 5 withf H512 kHz for all
bandpasses. The dashed line is the prediction of Eq.~17! with
f p5100 Hz.

FIG. 8. The open circles ares(2) evaluated atf5100 Hz for the
same data set as was studied in Fig. 5 withf H / f L55 for all band-
passes. The dashed line is the prediction of Eq.~17! with f p5100
Hz.

FIG. 9. The second spectra for the carbon resistor studied in the
preceding figures for the bandpass~2.34 kHz, 11.7 kHz!. The open
triangles ares(2), the filled circles ares(2,f), and the open circles
ares(2,a). The solid line is the prediction of Eq.~17! for the Gauss-
ian background ofs(2) ands(2,a) for perfect 1/f noise in the chosen
bandpass. Similarly, the dashed line is the prediction of Eq.~14! for
the Gaussian background ofs(2,f).
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importance of phase information has been recognized in the
analysis of scattering experiments,15 in the reconstruction of
two-dimensional ~2D! pictures from their Fourier
coefficients,11 and in the intelligibility of human speech.11 To
the best of our knowledge, this is the first demonstration of
the predominance of phase information for non-Gaussian
1/f noise. Preliminary results of an ongoing study of 1/f
noise in GaAs/AlxGa12xAs superlattices

16 also demonstrate
statistically significant non-Gaussian behavior only as a con-
sequence of fourth-order phase correlations. A more com-
plete discussion of this phenomenon, including extensive
computer simulations of typical physical fluctuators, is in
progress and will be reported elsewhere.17

VI. CONCLUSIONS

In summary, optimization criteria for the detection of
weak non-Gaussian effects in resistance noise were calcu-

lated and verified by experiment. Also, borrowing nonlinear
filters which have been used with success in 2D image
processing,10,11 two additional second spectra were intro-
duced for the study of resistance fluctuations. Unlike the
original method of Restleet al.,7 the new spectra allow pre-
cise separation of the high-order correlations in the ampli-
tudes and in the phases of the Fourier coefficients of a noise
signal. Non-Gaussian 1/f noise from a carbon resistor dis-
played statistically significant non-Gaussian fluctuations only
as a consequence of high-order phase correlations.
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