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The wave functions for a two-dimensional Bloch electron in uniform magnetic fields at the mid-band points
are studied by exploiting a connection to the quantum groupUq(sl2): A linear combination of its generators
gives the Hamiltonian. We apply both analytic and numerical methods to obtain and analyze the wave func-
tions, by solving the functional Bethe ansatz equations first proposed by Wiegmann and Zabrodin on the basis
of the above observation. The semiclassical case with the flux per plaquettef51/Q is analyzed in detail, by
exploring a structure of the Bethe ansatz equations. We also reveal the multifractal structure of the solutions to
Bethe ansatz equations and corresponding wave functions whenf is irrational, such as the golden or silver
mean.

I. INTRODUCTION

The effects of a magnetic field on electrons in the quan-
tum regime are a fascinating problem with very rich physics.
The path-dependent geometric phase of the wave function is
known to play a fundamental role in the problem.1 For ex-
ample, the geometric phase and other geometric consider-
ations, such as gauge invariance in topologically nontrivial
systems2 and the effect of edges,3 are crucial to the quantum
Hall effect in a planar electron system.4,1 Moreover, the
quantized Hall conductance has a topological character, both
for a system without boundary~periodic boundary
conditions!5 and for one with boundaries~edges!.6 Thus ge-
ometry and topology are of central importance in this
condensed-matter problem.

In this paper, we will show that a certain exotic algebraic
structure plays an important role as well, if one includes the
effects of a periodic potential in this problem. This is not too
surprising, since there are two fundamental periods in the
problem: One is the original period in the geometric phase,
and the other is that of the periodic potential. Interplay of the
two intrinsic periods brings more interesting structures and,
therefore, richer physics into the problem.

Normally a solid with well localized atomic orbits is mod-
eled by the tight-binding Hamiltonian and the effect of the
magnetic field is included by the Peierls substitution. This
procedure is usually motivated as an approximation. How-
ever, the gauge invariance is preserved by the substitution,
i.e., both the original continuum and the lattice systems have
the same localU(1) symmetry. Thus in our opinion, the
Peierls substitution has captured a fundamental feature of the
problem and, therefore, has a meaning more fundamental
than merely an approximation.

So in the problem of a planar Bloch electron in a uniform
magnetic field, one can use the flux per plaquette,f, to
characterize the system. Whenf is rational, the one-body

Schrödinger equation can be reduced7 to a difference equa-
tion on a linear lattice, called Harper’s equation, which ap-
pears in many different physical contexts ranging from the
quantum Hall effect5,6 to quasiperiodic systems.8 Whenf is
irrational, that is, the magnetic flux is incommensurate with
the periodic potential, the spectrum is known to have an
extremely rich structure like the Cantor set and to exhibit a
multifractal behavior.9,8 Another interesting case is the weak
field limit. When the flux is small, a semiclassical treatment
of the WKB type is justified.10

Recently, a connection is found between this physical
problem and a mathematically new concept, the so-called
quantum group.11 The essential point is that, at least for some
special points in the spectrum, e.g., at the so-called mid-band
points, the corresponding Hamiltonian~in certain gauge! can
be expressed as a linear combination of generators of a quan-
tum group, calledUq(sl2), which is a deformation of usual
Lie groupsl2 . ~For a self-contained presentation see below.!
On the basis of this observation, Wiegmann and Zabrodin11

have proposed a set of functional Bethe ansatz equations12

for corresponding wave functions. This opened the possibil-
ity of solving the problem analytically. Indeed, we have
turned the dream into reality: We have found explicit analytic
solutions to this problem for the first time in the literature.13

The Bethe ansatz equations associated withUq(sl2) also
provide us a method to solve the problem numerically. Espe-
cially when we study the irrational limit of a well-organized
sequence of rational fluxes, the method is convenient and
useful in revealing the multifractal behavior, as we briefly
reported previously in Ref. 13.

In this way, it becomes clear that, in addition to the un-
derlying geometric and topological structures, the problem of
a planar Bloch electron in a magnetic field also possesses an
interesting, fundamental algebraic structure hidden in it. Pre-
vious works in the literature on possible relevance of quan-
tum groups to physics often deal with a sort of artificialq
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deformation of an originally physical problem. However, in
our present case, the Bloch electron in magnetic field, the
quantum groupUq(sl2) is relevant to a realistic, physical
problem: We are dealing with ordinary electrons, not
q-deformed electrons. Therefore, we have shown that quan-
tum groups can have a fundamental meaning for observable
phenomena.

A clarification of terminology seems appropriate at this
point. Usually Bethe ansatz refers to an ansatz for many-
body wave functions in a one-dimensional exactly solvable
problem. The pseudomomenta parametrizing the many-body
wave function satisfy a set of coupled equations, called the
Bethe ansatz equations. In this paper, the term ‘‘Bethe ansatz
equations’’ is not used in its usual sense, since we are study-
ing a one-body problem. The one-body wave function in
question is shown to be related to a polynomial of an auxil-
iary complex variable, and it is the set of algebraic equations
determining the roots of the polynomial that is of a form
similar to usual Bethe ansatz equations.

In this paper, we are going to report on more details of our
published results and to present a number of solutions and
results. We will describe our analytic solutions in detail and
in a self-contained manner, and present a great deal of nu-
merical solutions to the Bethe ansatz equations when the
analytic ones are not available. In the next section, Sec. II,
we review the Bloch electron and magnetic translations. In
Secs. III and IV, we summarize necessary stuff about the
quantum groupUq(sl2), its representations, and the func-
tional Bethe ansatz equations following Wiegmann and
Zabrodin.11 Then, in Sec. V, we explain in detail how to
analytically solve the Bethe ansatz equations at a particular
mid-band pointE50. Subsequently, Sec. VI is devoted to an
analysis of the explicit wave functions obtained. In particu-
lar, a multifractal analysis of the wave functions for irrational
flux, such as the golden and silver mean, is presented. Fi-
nally, in Sec. VII, we present numerical solutions to the Be-
the ansatz equations at mid-band points other thanE50.
Some technical details are put into several Appendices for
the convenience of reader.

II. BLOCH ELECTRON AND MAGNETIC TRANSLATIONS

A tight-binding electron on the square lattice in a perpen-
diculer magnetic field is described by the Hamiltonian

H5Tx1Ty1Tx
†1Ty

† , ~2.1!

whereTx andTy are thecovariant translationoperators de-
fined by

Tx5(
m,n

cm11,n
† cm,ne

ium,n
x
, ~2.2!

Ty5(
m,n

cm,n11
† cm,ne

ium,n
y
, ~2.3!

wherecm,n is the annihilation operator for an electron at site
(m,n). ~This Hamiltonian, is obtained from the freely hop-
ping Hamiltonian with dispersionE52 coskx12 cosky with
the Peierls substitution,\k5p1eA.) The phase factors
um,n
x andum,n

y are related to the flux per plaquettefm,n by

rot~m,n!u5Dxum,n
y 2Dyum,n

x 52pfm,n , ~2.4!

where the difference operatorsDx andDy operate on a lattice
function f m,n as

Dxf m,n5 f m11,n2 f m,n , ~2.5!

Dyf m,n5 f m,n112 f m,n . ~2.6!

As mentioned in the Introduction,H has a localU(1) gauge
symmetry, i.e., it is invariant under

ci→V ici , ~2.7!

eiu i j→V ie
iu i jV j

21 , ~2.8!

uV j u51, ; j5~m,n!. ~2.9!

The covariant translationsTx andTy do not commute. For
a one-particle stateuCm,n&5cm,n

† u0&, which is localized at
site (m,n), their operation satisfies

TyTxuCm,n&5ei2pfm,nTxTyuCm,n&. ~2.10!

Now let us assume that the magnetic field is uniform, so
that we can choose a gauge in which bothDxum,n

y and
Dyum,n

x are, respectively, constant independent of the site
(m,n). In this case, there is an important symmetry of the
Hamiltonian under themagnetic translations:

@H,T̂x#5@H,T̂y#50, ~2.11!

where the magnetic translation operatorsT̂x and T̂y are ex-
plicitly given by

T̂x5(
m,n

cm11,n
† cm,ne

ixm,n
x
, ~2.12!

T̂y5(
m,n

cm,n11
† cm,ne

ixm,n
y
, ~2.13!

with the phasesxm,n
x,y satisfying

Dxxm,n
x 5Dxum,n

x , ~2.14!

Dyxm,n
x 5Dxum,n

y ~5Dyum,n
x 12pfm,n!, ~2.15!

Dxxm,n
y 5Dyum,n

x ~5Dxum,n
y 22pfm,n!, ~2.16!

Dyxm,n
y 5Dyum,n

y . ~2.17!

In the parenthesis, we have used Eq.~2.4!. We can easily
solve these equations to get

xm,n
x 5um,n

x 12pnfm,n , ~2.18!

xm,n
y 5um,n

y 22pmfm,n . ~2.19!

Note that these phases are gauge dependent.
In the following, we further assume the magnetic field is

rational, that is,fm,n5f5P/Q with mutually prime inte-
gersP andQ. We can take a ‘‘diagonal’’ gauge14,11such that

um,n
x 5pf~m1n!, um,n

y 52pf~m1n11!,
~2.20!
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which can be viewed as the Landau gauge in (1,1) direction.
Correspondingly, we define the magnetic translations,T̂1

andT̂2 , along the (1,1) and (21,1) directions, respectively,
as

T̂15T̂xT̂y , ~2.21!

T̂25T̂x
21T̂y . ~2.22!

They commute with the Hamiltonian, @H,T̂1#
5@H,T̂2#50, but do not commute with each other. How-
ever, one can explicitly check that, for example,T̂1

Q and
T̂2 commute with each other. Thus, we can take simulta-
neous eigenstates ofH, T̂1

Q , andT̂2 , which are specified by
the momentum in the magnetic Brillouin zone~through the
Bloch theorem! as

T̂1
Q uF~p1 ,p2!&5ei2Qp1uF~p1 ,p2!&, ~2.23!

T̂2uF~p1 ,p2!&5eip2uF~p1 ,p2!&, ~2.24!

whereuF& is a one-particle state spanned by

uF~p1 ,p2!&5(
m,n

Cm,n~p1 ,p2!cm,n
† u0&. ~2.25!

From Eqs.~2.23! and ~2.24!, we have

Cm,n~p!5eip2~m2n!1 ip1~m1m!cm1n~p!, ~2.26!

ck12Q~p!5ck~p!, k51, . . . ,2Q. ~2.27!

Written in terms of ck(p), the Schro¨dinger equation
HuF( p)&5E(p)uF( p)& becomes

~ei ~p11p2!q2k1ei ~p12p2!qk11!ck11~p!1~e2 i ~p11p2!qk21

1e2 i ~p12p2!q2k!ck21~p!5E~p!ck~p!, ~2.28!

whereq is defined as

q5eipf5eip~P/Q!. ~2.29!

In the component form, the wave function is a column
vector c(p)5@c1(p),•••,c2Q(p)#

t, with t standing for
transpose. Then Eq.~2.28! can be cast in a matrix form as
H(p)c(p)5E(p)c(p), with

H~p!5ei ~p11p2!Y21X211ei ~p12p2!X21Y

1e2 i ~p11p2!XY1e2 i ~p12p2!Y21X

5~e2 i ~p11p2!X1ei ~p12p2!X21!Y

1Y21~e2 i ~p12p2!X1ei ~p11p2!X21!, ~2.30!

where the 2Q32Q matricesX andY are given by

X5F 0 1

1 0 0

0 1 0 0

� �

0 1 0

G , Y5diag~q1,q2, . . . ,q2Q!.

~2.31!

They satisfy the following relations:

X2Q5Y2Q5I 2Q , ~2.32!

qXY5YX, Xt5X21, Yt5Y, ~2.33!

whereI 2Q is the unit matrix. The group generated byX and
Y with the above relations is called the Heisenberg-Weyl
group.

The solvability of the present problem by the Bethe ansatz
equations relies on the fact that, at special points in the mag-
netic Brillouin zone, the HamiltonianH(p) has a higher
symmetry, described by the quantum groupUq(sl2).

11As we
will show in the next section, at special lines
p15p/2(modp/Q), usually called as the mid-band lines,
H(p) can be written as

HMB~p2![H~p15p/2,p2!

5 i ~q2q21!@e2 ip2rC~B!1eip2rC~C!#.

~2.34!

Later we will see that the energy is independent of the pa-
rameterp2 . Here,rc :Uq(sl2)→M2Q (2Q-dimensional ma-
trices! is a cyclic representation of the generators of the
quantum groupUq(sl2)5$A,B,C,D%, explicitly given by

rc~A!5q2~Q21!/2X21, ~2.35!

rc~B!52~q2q21!21~X2X21!Y, ~2.36!

rc~C!52~q2q21!21Y21~X2X21!, ~2.37!

rc~D !5q~Q21!/2X. ~2.38!

We will elaborate on this in the next section to reveal the
quantum group structure of the problem.

III. QUANTUM GROUP AND ITS REPRESENTATIONS

Historically quantum groups arise from mathematical
structures appearing in exactly solvable one-dimensional
quantum many-body models. However, the simplest case,
Uq(sl2), can be understood as aq deformation~i.e., an ap-
propriate ‘‘extension’’ with a complex parameterq) of the
ordinary Lie algebrasl2 . Conversely,sl2 is recovered from
Uq(sl2) by taking the ‘‘classical’’ limitq→1.

More precisely,Uq(sl2) is an algebra generated by four
generators$A,B,C,D%, with multiplication and addition
~with complex coefficients!, subject to the following defining
relations

AD5DA51, ~3.1!
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AB5qBA, BD5qDB, ~3.2!

DC5qCD, CA5qAC, ~3.3!

@B,C#5
A22D2

q2q21 . ~3.4!

As q→1, these relations become those satisfied by
B→S1 , C→S2, and A→1, D→1, and (A2D)/
(q2q21)→S3, where$S1 ,S2 ,S3% are generators of usual
Lie algebra sl2 satisfying the relations@S1 ,S2#52S3 ,
@S3 ,S6#56S6 . Thus, Eqs.~3.1–3.4! are aq deformation
of sl2 which, as we will see below, preserves many good
properties of the representations ofsl2 .

It is well known thatsl2 has a (2j11)-dimensional~spin-
j ) representation, which is realized by the differential opera-
tors,

rh~S3!5z]z2 j , ~3.5!

rh~S1!5z~2 j2z]z!, ~3.6!

rh~S2!5]z ~3.7!

acting on a function C(z). Since rh(S1)z
2 j

5rh(S2)z
050, this finite-dimensional representation has

both a highest weight and a lowest weight; thus, it is a rep-
resentation withC(z), a polynomial of degree 2j . Similarly,
Uq(sl2) has a highest-weight representation realized by re-
placing the above differential operators with the correspond-
ing q-difference operators:

rh~A!C~z!5q2 jC~qz!, ~3.8!

rh~B!C~z!5~q2q21!21z@q2 jC~q21z!2q22 jC~qz!#,
~3.9!

rh~C!C~z!5~q2q21!21z21@C~q21z!2C~qz!#,
~3.10!

rh~D !C~z!5qjC~q21z!. ~3.11!

It has also a highest weight and a lowest weight:
rh(B)z

2 j5rh(C)z
050. In the standard basis,Cn(z)5zn

(n50,1,...,Q21), they operate asrh(A)z
n5qn2 j zn,

rh(D)z
n5qj2nzn, rh(B)z

n5@2 j2n#qz
n11, and rh(C)z

n

5@n#qz
n21. Here,@n# is aq integer defined as

@n#q5
qn2q2n

q2q21 , ~3.12!

which approaches ton in the limit q→1. Thus, they can be
represented as the following matrices:

rh~A!: diag~q2 j ,q12 j ,...,qj21,qj !, ~3.13!

rh~D !: diag~qj ,q211 j ,...,q2 j11,q2 j !, ~3.14!

rh~B!:F 0 0

@2 j #q 0

0 @2 j21#q 0

� �

0 @1#q 0

G , ~3.15!

rh~C!:F 0 @1#q 0

0 @2#q

� �

0 @2 j #q

0 0

G . ~3.16!

Notice that their dimension isQ[2 j11, and they generate
tridiagonal matrices.

Up to this point,Uq(sl2) is quite analogous tosl2 . How-
ever, whenq is a root of unity, there is another representa-
tion, called a cyclic representation, the existence of which is
characteristic toUq(sl2). (sl2 does not have a cyclic repre-
sentation.! Our case, withq2Q51, is such a case. Here, a
2Q-dimensional cyclic representation is derived from the
highest-weight representation of spin-j5(Q21)/2 as fol-
lows. First define a cyclic basis$Cn , n51,...,2Q
~mod 2Q!% by

Cn[C~qn!, ~3.17!

where C(z) is the polynomial in the spin-j5(Q21)/2
highest-weight representation. Sinceq2Q51, the periodic
conditionCn12Q5Cn is satisfied, justifying the name ‘‘cy-
clic.’’ Taking z5qn in Eqs.~3.8!–~3.11!, a representation is
induced in the cyclic basis, with the operations explicitly
given by

rc~A!Cn5q2~Q21!/2Cn11 , ~3.18!

rc~B!Cn52~q2q21!21~qn11Cn112qn21Cn21!,
~3.19!

rc~C!Cn5~q2q21!21~q2nCn112q2nCn21!,
~3.20!

rc~D !Cn5q~Q21!/2Cn21 . ~3.21!

If we write them in matrix form, we get Eqs.~2.35!–~2.38!.
We note thatrc(B)C2Q returns to a linear combination of
C1 andC2Q21 . So there is no highest-weight state~or vec-
tor! Cn that can be annihilated byrc(B): rc(B)CnÞ0.
Similarly, there is no lowest-weight state annihilated by
rc(C). This is why this representation is called cyclic.

Thus, whenq2Q51, a highest-weight representation of
dimensionQ is related to a cyclic representation of dimen-
sion 2Q through Eq.~3.17!. This establishes the following
results about the spectrum and wave functions of the Bloch
electron in a magnetic field at the mid-band momenta. The
spectrum is given by the eigenvalues of the following
Q3Q tri-diagonal Hermite matrix:
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HMB
tri ~p2!

i ~q2q21!
53

0 @1#qe
2 ip2

@1#qe
1 ip2 0 @2#qe

2 ip2 O

@2#qe
1 ip2 0 �

� � @Q22#qe
2 ip2

O @Q22#qe
1 ip2 0 @Q21#qe

2 ip2

@Q21#qe
1 ip2 0

4 , ~3.22!

where we have used the fact@Q2 j #q5@ j #q . WhenQ is
large, the eigenvalues of the tri-diagonal matrix gives the
‘‘backbone’’ of the so-called Hofstadter’s butterfly, i.e., the
midpoints of the magnetic Brillouin zone. In Fig. 1, we show
eigenvalues of theHMB

tri as a function off52 i /p lnq for
Q523 andQ5401. Since the eigenvalues of the tridiagonal
matrix does not depend on the phase of the off-diagonal ma-
trix elements, the energy does not depend onp2 . The wave
function of the Bloch electron at the mid-band momentum of
the j th band is obtained from thej th eigenvector$vm

( j )%,
(m50,1,...,Q21), as

Cn
~ j !5C~qn!5 (

m50

Q21

vm
~ j !qnm. ~3.23!

The dimension of the original HamiltonianHMB is 2Q and
that of the tridiagonal functional HamiltonianHMB

tri is Q.

Actually, HMB has doubly degenerate eigenvalues. The
above state~3.23! is degenerate with another state

C8n
~ j !5C~q2n!5 (

m50

Q21

vm
~ j !q2nm. ~3.24!

These two states have the same energy and they are orthogo-
nal to each other, since

(
n50

2Q21

Cn
~ j !C8n

~ j !*5 (
0<m,m8<Q21

vmvm8
*
12q2Q~m1m8!

12q~m1m8!
50 .

~3.25!

In this way, we obtain all solutions of the original problem.

IV. FUNCTIONAL BETHE ANSATZ EQUATIONS

In this section, we derive the functional Bethe ansatz
equations following Wiegmann and Zabrodin.11 We denote

FIG. 1. Mid-band energy spectra obtained from the Bethe ansatz equations for~a! Q523 andP51,3,5,...,Q23,Q21 (1) and ~b!
Q5401 andP51,3,5,...,Q23,Q21 (•) .
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p2 by p. The Schro¨dinger equation at a mid-band point is

HMB~p!Cn5 i ~q2q21!@e2 iprc~B!1eiprc~C!#Cn5ECn .
~4.1!

Recall that the cyclic representation is derivable from a high-
est weight representation. Changingrc to rh , and using Eqs.
~3.9! and~3.10!, we can write down the equivalent functional
equation,

i ~e2 ipqz1eipz21!C~qz!2 i ~q21e2 ipz1eipz21!C~q21z!

5EC~z!. ~4.2!

Once we have a solution to this functional equation, we can
recover all the solutions of Eq.~4.1! using Eq.~3.23! and Eq.
~3.24!.

Central to what follows is the nontrivial property that we
learn from the above long discussion of the representation
theory ofUq(sl2), namely, being a highest weight represen-
tation,C(z) is a polynomial of finite degreeof the auxiliary
variablez. Thus, it can be factorized:

C~z!5 )
m51

Q21

@z2zm~p!#. ~4.3!

First, let us absorb thep dependence of Eq.~4.2! by the
gauge transformation,

z̄5ze2 ip, ~4.4!

z̄m5zm~p!e2 ip, ~4.5!

C̄~ z̄!5 )
m51

Q21

@z2zm~p!#5ei ~Q21!p)
m51

Q21

~ z̄2 z̄m!. ~4.6!

Suppressing the bar overz, we have

i ~qz1z21!C̄~qz!2 i ~q21z1z21!C̄~q21z!5EC̄~z!.
~4.7!

From Eq.~4.7! and Eq.~4.3!, we get

i ~qz1z21! )
m51

Q21
~qz2zm!

~z2zm!
2 i ~q21z1z21! )

m51

Q21
~q21z2zm!

~z2zm!

5E. ~4.8!

Comparing both sides and using the pole-free condition, one
obtains the Bethe ansatz equations,

zl
21q

qzl
211

52 )
m51

Q21
qzl2zm
zl2qzm

~ l51, . . . ,Q21!, ~4.9!

E52 i ~q2q21! (
m51

Q21

zm . ~4.10!

From these equations, one can easily see that the energyE is
independent ofp2 . Note that the functional solution, which
corresponds toCn8 , is C(z21); it is not a polynomial and
has poles.

V. DISTRIBUTION OF ROOTS FOR E50

Let us consider first Eq.~4.8!. For the zero energy
E50, Wiegmann and Zabrodin showed thatC(z) is given
by the so-called continuousq-ultraspherical polynomial15 as
C(z)5(q2;q2)n /(q;q

2)n(2 iz)nPn(2 iz), where Pn(z)
5(k50

n (q;q2)k(q;q
2)n2k /(q

2;q2)k(q
2;q2)n2kz

n22k, n5(Q
21)/2, and (a;q)k5)m50

k21 (12aqm).16 Theq-ultraspherical
polynomials have several interesting properties. However,
we treat the functionC(z) directly.

In order to understand the properties of the wave function
at E50, the center of the spectrum, we solve the Bethe an-
satz equation~4.9! explicitly. For E50, Eq. ~4.8! is written
as

q~z21q21!C~qz!5q21~z21q!C~q21z!. ~5.1!

First put z5 iq11/2, then one obtains
q(2q1q21)C( iq3/2)50 andC( iq3/2)50. So iq3/2 is one
root. Next put z5 iq15/2, then one obtains
q(2q51q21)C( iq7/2)}C( iq3/2)50. Thus, iq7/2 is also a
root. We can repeat this procedure and get a series of roots:
iq2m21/2 with m51, . . . ,(Q21)/2. The restriction ofm
arises due to the fact that the prefactor ofC vanishes at the
last step.

Similarly, settingz5 iq21/2, one obtains another sequence
of roots:iq22m11/2, withm51,...,(Q21)/2. The number of
independent roots should equal the degree of the polynomial,
Q21; so we have obtained a complete set of roots as

zm5H iq2m21/25 iei2pf~m21/4!

iq22m11/25 iei2pf~m21/4!
@m51,...,~Q21!/2#.

~5.2!

They are all on the unit circle. Let us write them as
zm5eium, and consider the distribution ofum by
r(u)5 limQ→`QDu, whereDu is the difference between ad-
jacent um . @Note that the gauge transformation~4.5! only
leads to a simple shift of allum by a constantp.#

The restriction onm @1<m<(Q21)/2# gives rise to a
nontrivial distribution of the roots. The phase factorum looks

FIG. 2. The roots of the Bethe ansatz equations in the complex
plane forE50, in the case withP51 andQ589.
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like a pseudomomentum in the Bethe ansatz solvable models
in which the system size isQ. In the following, we consider
the limit Q→`, which corresponds to the thermodynamic
limit in exactly solvable models.

Consider first the caseP51, i.e., f51/Q. The roots
$zm% are distributed uniformly on the unit circle, except near
z56 i . The roots forQ589 are shown in Fig. 2. In the
semiclassical limitQ→`, that is, q→1, the distribution
function r(u)5 limQ→`QDu is smooth~actually constant!
everywhere, except atz56 i . A continuous behavior of
r(u) is usually obtained in the Bethe ansatz solvable models
in which r(u) is determined by an integral equation.

When the flux is irrational, the situation is quite different.
First, let us take the fluxf51/t5(A521)/2, wheret is the
golden mean (A511)/2. To reach this flux, we consider a
sequence of rational fluxesfk5Pk /Qk , where Qk
5F3k11 , Pk5F3k andFk is a Fibonacci number defined by
Fk115Fk1Fk21 , F151, F051. In this sequence,Pk and
Qk are all odd. The two types of roots in Eq.~5.2! are nested
andDu has a complex distribution. To gain an insight into
the distribution of roots, it is helpful to consider the pseu-
doroots, which are defined also by Eq.~5.2!, but with the
range ofm modified tom52(Q21)/2,...,21,0. In Fig. 3
we show the distributions of the roots~black points!

FIG. 3. The roots and pseudo-
roots of the Bethe ansatz equations
for E50 with the rational fluxes,
which converge to 1/t:
fk5Pk /Qk53/5, 13/21, 55/89,
233/377, 987/1597, 4181/6765~a!
in the whole complex plane and
~b! in an enlarged figure. In each
case, the roots and the pseudoroots
are always on the unit circle. The
radii for fk have been scaled to
show the branching rule.
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and pseudoroots ~gray points! for several fk
(k51,2,3,4,5,6). Here, the radius of the unit circle has been
scaled so as to show all the cases at once. These figures
clearly show that there is a branching rule for the true roots
~denoted byA) and the pseudoroots~by B) as follows:

A3→A3B2A3B2A3,

A2→A3B2A3,

B3→B3A2B3A2B3,

B2→B3A2B3. ~5.3!

The initial condition isB3A2B3A2 ~cyclic!. At the kth stage,
the number of clusters of the true rootsA3 and A2 is
Qk2121 and Pk2111, respectively. This branching rule
gives rise to a self-similar structure for the distribution
r(u) in the limit k→`. To characterize the distribution, let
us define the generation of the roots. According to the
branching rule~5.3!, each true~pseudo-! root branches into a
cluster of three new true~pseudo-! roots, each of which in a
sense has a parent. At the same time, between these clusters
of new pseudo-~true! roots, there is a pair of new-born true
~pseudo-! roots, which have no parent. We assign the genera-
tion number to a root, so that it is 1 when the root does not
have a parent, otherwise, it is one plus the generation number
of its parent. Let us denote the number of true~pseudo-!
roots at the kth stage with generation g by
nA(g,k)„nB(g,k)…(g51,...,k). @Then in the special case
P51, nA(g,k)5nB(g,k)5dkg .# In the present case, there is
a recursion formula from the branching rule: i.e.,nA(g,k)
53nA(g21,k21), with g52,...,k,nA(1,k)52(Pk2111).
Thus, nA(g,k)5233g21(Pk2g11) and nB(g,k)52
33g21(Pk2g21).

Next, let us consider the fluxf51/s5A221, wheres
is the so-called silver meanA211 . To realize this flux in the
large Q limit, we consider a sequence of rational fluxes
fk5Pk /Qk , whereQk5Gk11 , Pk5Gk , andGk is defined
by Gk1152Gk1Gk21 , G251, G151. In this case, we can
apply our technique of Bethe ansatz equations to each step of
the sequence, since allQk andPk are odd. In Fig. 4, we show
the distributions of the roots~black points! and pseudoroots
~gray points! for severalfk(k51,2,3,4,5,6). The radius of
the unit circle is also scaled as before. One can observe a
clear branching rule. It is a little different from the golden-
mean case and is given by

A→A3→BA2BA2B,

A2→A4→BA2BA2BA2B,

B→B3→AB2AB2A,

B2→B4→AB2AB2AB2A. ~5.4!

The initial condition isAB2AB2 ~cyclic!. From this branch-
ing rule, we have a self-similar behavior at every two stages.
At the odd stage, all the roots and the pseudoroots appear as
A, A2, B andB2 and at the even stage, they appear asA3,

A4, B3, andB4. For both cases, the distribution function of
the roots has a self-similarity and reflects the self-similar
structure of the original problem.

The above considerations clearly exemplify the difference
in the root distribution between the semiclassical limit and
the incommensurate cases. While the root distribution for the
semiclassical limit is smooth, it has a self-similar structure
and is nowhere differentiable in the incommensurate limit.
We believe these features are characteristic to the incommen-
surate case.

Another way to characterize the distribution is to map it to
the dual~reciprocal! space. This can be done for arbitrary
P and Q analytically. We lift um (zm5eium, zm’s are the
roots! to the real axis periodically. On the real axis, the true

FIG. 4. The roots of the Bethe ansatz equations forE50 with
the rational fluxes, which converge to 1/s, fk5Pk /Qk53/7,
7/17, 17/41, 41/99, 99/239, 239/577, and 577/1393~a! in the whole
complex plane and~b! in an enlarged figure. The radii are scaled.
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and pseudoroots occupy lattice points$ j /2Qu j : integer% with
spacing 1/2Q. Thus, we define the Fourier transform of the
so-called defining function by

SQ~k!5 (
j52`

`

eik j S̃Q~ j !, ~5.5!

where S̃Q( j )51, if there is a true root atj /2Q, and
S̃Q( j )50 otherwise. As shown in Appendix A,

SQ~k!5
p

Q (
r50

Q21

sQ
r d~k2kr ! ~0<k,2p!, ~5.6!

where

sQ
r 5H ~Q21!, r50,

~2 !r11

cos~Pkr /2!
, r51,...Q21;

~5.7!

and kr52p(r /Q), which converges to usual momentum
continuumkP@0,2p# in the Q→` limit. In this limit, we
have

uSQ~k!u25
1

4 cos~Pk/2!
~0,k,2p!. ~5.8!

In the semiclassical limitP51 andQ→`, uSQ(k)u2 is well
defined and behaves smoothly. In the incommensurate limit,
uSQ(k)u2 is a singular function and is not even differentiable
sinceP tends to infinity. Also, it can be shown that the origi-
nal defining function is given by

S̃Q~ j !5
1

2Q (
n51

Q21 F12~2 !n
cos~2p jn/Q!

cos~pPn/Q! G . ~5.9!

VI. EXPLICIT WAVE FUNCTIONS AT E50

Now let us consider the wave functions obtained from the
above explicit solutions of the Bethe ansatz equations. The
wave function at sitej is given byC j5C(qj ) and it is

FIG. 5. Squared amplitudes of the wave functions atE50 for
P51 andQ55,21,89,377. The wave functions are normalized by
their peak heights.

FIG. 6. Squared amplitudes of the wave functions atE50 for
the ratios of successive Fibonacci numbers:~a! in the whole region
(f53/5, 13/21, 55/89) and~b! in an enlarged plot in the region
near 0.89 (f5Pk /Qk53/5, 13/21, 55/89, 233/377, 987/1597,
4181/6765). The wave function with a larger value ofQ is shaded
darker. The wave functions are normalized by their peak heights.

FIG. 7. The functionf (a) for the wave function atE50 for the
golden-mean flux.
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written in a compact factorized form as

C j5 )
m51

~Q21!/2

~qj2 iq2m21/2!~qj2 iq22m11/2!

5~2q!2 j~ iq2 j13/2;q2!~Q21!/2~ iq
2 j23/2;q22!~Q21!/2 ,

~6.1!

5 (
n50

~Q21!/2

(
n850

~Q21!/2 F ~Q21!/2

n
G
q

F ~Q21!/2

n8
G
q

3~2 iq2 j !n1n8qQ~n2n8!/2, ~6.2!

where we have used theq-binomial theorem

)
n51

N21

~11qN2122nz!5 (
n50

N FN
n
G
q

zn, ~6.3!

Fm

n
G
q

5
@m#q!

@n#q! @m2n#q!
. ~6.4!

It is convenient to shift the site,j5 j̄1J1 , by the amount
J1 , which is determined byPJ15(Q2P)/2(mod 2Q).
Then,C j̄50 at j̄52m, 22m11 @m51,...,(Q21)/2#, and

FIG. 8. The roots of the Bethe ansatz equations withP51 andQ561 in the complex plane for mid-band energies (EÞ0) in ~a! the
highest band;~b! the second highest;~c! the third highest; and~d! in the 30th band, the one just above the central band, the mid-band energy
of which isE50.
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the wave function is nonzero only atj̄51,3,...,Q and
Q11,Q13,...2Q, as shown in Appendix B. Thus, one has

uC 1̄u25Q, ~6.5!

uC j̄ u25Q
@ j̄22#q!!

@ j̄21#q!!
, ~6.6!

for j̄53,5,...,Q and uC j̄1Qu25uC j̄ u2, where
@ j #q!!5@ j #q@ j22#q•••@2#q ~or @1#q).

When P51, we can proceed further analytically. As
shown in Appendix B, we get a compact form for the wave
function in the semiclassical limitP51 andQ→`,

uc~x!u25
2

sin~px!
~0,x,1!, ~6.7!

up to a constant factor, wherec(x)5C j̄ , x5(2 j21)/2Q.
The squared amplitude of the wave function is given by the
inverse chord distance. The recursion relationuC j̄ u2
5uC j̄22u2sin2@p(j22)/Q#/sin2@p(j21)/Q# obtained from Eq.
~6.6! has played a key role in the derivation.17

We can also calculate the finite-size correction near the
edgex'0 or x'1 forQ→`. As shown in Appendix C, it is
given by

uc~x2l11!u25C~ l !
2

sinpx2l11
, ~6.8!

C~ l !5p~ l1 1
4 !)

k51

l S 12
1

2kD
2

5
p

2

111/4l

111/2l)k51

l S 12
1

4k2D ,
~6.9!

where C(0)5p/450.785 39. . . , C(1)55p/16
50.981 74. . . , C(2)581p/25650.994 02. . . , ..., since
sinz5z)k51

` (12z2/k2p2), )k51
` (121/4k2)52/p. So the

finite-size correction factorC( l ) converges to unity very rap-
idly and Eq.~6.7! is quite accurate even for smallQ. The
norm of the wave function is lnQ1 const and unnormaliz-
able, characteristic to a critical wave function. In Fig. 5, the
amplitudes of the analytic wave functions, normalized by the
peak heights, are shown for several values ofQ.

Next let us discuss the case with golden-mean flux. We
plot the analytic results~6.6! in Fig. 6 for a sequence of
rational fluxes converging to 1/t. One can easily recognize
the self-similar behavior of the wave function. Each peak
branches into three peaks in the next stage. Presumably,
these are the reflection of the self-similar distribution of the
roots, Eq.~5.3!.

We have performed a multifractal analysis8,18,19 to inves-
tigate the nature of the wave functions. This is useful to
distinguish critical wave functions from extended wave func-
tions. The results for critical wave functions reveal multifrac-
tal properties. Let us consider akth generation
Q5Qk5F3k11 . First, we define a probability measurepj
(( j pj51) of the wave function as

pj5
1

Nk
uC j u2, ~6.10!

Nk5(
j51

Qk

uC j u2. ~6.11!

Next, we define a Lebesgue measurel k of each site as

l k5
1

Qk
. ~6.12!

Frompj and l k , the singularity of the probability measure is
represented by an exponenta j as

pj5 l k
a j . ~6.13!

Let Vk(a)da be the number of sites, the value ofa j of
which lies in the interval@a,a1da#. One exploits the dis-
tributionVk(a) to characterize the nature of the wave func-
tion. SinceQk increases exponentially ask increases, so does
Vk . It is natural to introduce the entropy functionS(a),19

defined by

S~a!5 lim
k→`

Sk~a!5 lim
k→`

1

k
lnVk~a!, ~6.14!

or the functionf (a) to characterize the wave function:

f ~a!5
S~a!

e
, ~6.15!

where

FIG. 9. The roots of the Bethe ansatz equations in the complex
plane for each mid-band energy withP51 andQ541. All the roots
are on the unit circle. The radii are scaled to show them in a dia-
gram. The unit circle for a higher state is scaled to have a smaller
radius.

53 9707QUANTUM GROUP, BETHE ANSATZ EQUATIONS, AND BLOCH . . .



e5 lim
k→`

ek52 lim
k→`

1

k
lnl k . ~6.16!

Thus, we haveVk(a)' l k
2 f (a) .

To calculatef (a), let us define the partition function

Zk~r !5(
j51

Qk

pj
r5(

j51

Qk

l k
2rka jek . ~6.17!

Then one obtainsf (a)5 limk→` f k(a) from

Gk~r !5
1

k
lnZk~r !, ~6.18!

a52
1

ek

d

dr
Gk~r !, ~6.19!

f k~a!5
1

ek
Gk~r !1ra. ~6.20!

The maximum off (a) gives the Hausdorff dimension of the
Lebegue measure, so it is always one in the present cases.
The nature of the wave functions is characterized by the
function f (a) as follows: When the wave function is ex-
tended, sites withpj' l k dominate, sof (a51) ata51. On
the other hand, for a localized wave function,f (a) consists
of two points ata50 anda5`. Whenf (a) is a continuous

function, the maximumf (a)51 of which is ata5a0Þ1,
the wave function is critical in between the extended and
localized cases. We have performed the above multifractal
analysis.20 Here, we stress the importance of the finite-size
effects. In order to have a reliablef (a), one must perform
extrapolations of the finite-size data.@ f (a) obtained from a
finite system is different from the truef (a) ~Refs. 8 and
21!.# We have done such calculations. The results are shown
in Fig. 7 for the golden-mean flux. It gives a smoothf (a).
This clearly shows that this wave function is multifractal and
critical. We note the striking resemblance of these wave
functions to that of the 1d quasicrystal Fibonacci lattice at
the center of the spectrum.22 The latter was obtained exactly
by a different method andf (a) is obtained analytically.21

VII. NUMERICAL SOLUTIONS
FOR MID-BAND POINTS EÞ0

For mid-band points other thanE50, we have not been
able to obtain analytic results. A natural thought is to try a
numerical approach. However, the Bethe ansatz equations
are high-degree algebraic equations of many variables and a
direct attack would be extremely difficult even numerically.
Again, we have found that information on the quantum
group can be exploited to reduce the difficulty. Instead of
solving the Bethe ansatz equations~4.9! directly, we con-
struct a polynomialC ( j )(z) for a mid-band energyE( j ) by

FIG. 10. Approximated distri-
bution functions of the roots of the
Bethe ansatz equations with
P51 and Q541 for mid-band
points in ~a! the highest band;~b!
the 3rd;~c! the 10th;~d! the 15th;
~e! the 18th; and~f! the 21st band,
which is the central band~with the
mid-band pointE50).
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C~ j !~z!5 (
m50

Q21

vm
~ j !zm, ~7.1!

where@v0
( j ) , ...,vQ21

( j ) # t is given by thej th eigenvector of the
Q3Q tridiagonal matrixHMB

tri . The roots of the Bethe ansatz
equations are given by the roots of this one-variable polyno-
mial. Since theHMB

tri is real symmetric,C j (z) is a real poly-
nomial. Thus, the roots can be obtained by the traditional
numerical techniques.

Let us consider the cases withP51 first. We have calcu-
lated the roots of the Bethe ansatz equations for a large num-
ber of different odd-number values ofQ. All roots are on the

unit circle. We conjecture that all roots of the Bethe Ansatz
equations are on the unit circle whenf51/Q with oddQ. In
Fig. 8, we present results for several mid-band points with
Q561. In Fig. 9, all roots forQ541 are shown. We notice
that for the highest energy band, the roots are on the right
half of the unit circle and it is almost uniformly distributed
~though not exactly for finiteQ). For the second highest
band, one root appears on the left semicircle~at z521). For
the third highest band, one more root appears on the left, and
so on. In this way, each time as the ordinal number of the
band~from the top! decreases by one, one of the roots of the
Bethe ansatz equations for the mid-band point moves from
the right semicircle to the left. We have also calculated the

FIG. 11. The roots of the Bethe ansatz equations withP555 andQ589 for mid-band states in~a! the highest band,~b! the 22nd,~c! the
30th, and~d! the 34th band.
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distribution function of roots. For a finiteQ, we define an
approximate distribution functionre

Q(u) as

re
Q~u!5 (

m51

Q21

de~u2um!, ~7.2!

de~x!52
1

p
ImS 1

2sinS x2D2 i eD , ~7.3!

wheree is the width of an approximated function and we
take it to bee52/Q. The distance is measured by the chord
distance. In Fig. 10, we plot the results for several mid-band
energies withQ541. From these results for finiteQ, one
may speculate that the distributions for mid-band pointsE
Þ0 in the Q→` limit are likely to have singularities at
z56 i , which we have seen is true for the state atE50.

To get an impression for what happens in the cases with
PÞ1, we chooseP555 andQ589 as an example and

present the results in Fig. 11. The roots of the Bethe ansatz
equations are no longer on the unit circle.
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APPENDIX A: THE STRUCTURE FACTOR
OF THE BETHE ANSATZ ROOTS

Here we derive Eq.~5.6! and Eq.~5.7!. Using Eq.~5.2!,
one obtains

SQ~k!5 (
j52`

`

eik j S̃Q~ j !5 (
l52`

`

(
m51

Q21

@eik$2Ql12Pm1~1/2!~Q21P!%1eik$2Ql22Pm1~Q1P!/2%#

5 (
l52`

`

ei2kQlH 12eiPk~Q21!

12ei2Pk
ei ~Q13P!k/21

12e2 iPk~Q21!

12e2 i2Pk ei ~Q23P!k/2J
5 (

r 850

2Q21
2p

2Q
dS k2

2pr 8

2Q D sinP~Q21!k/2

sinPk
eiQk/22 cos

1

2
PQk. ~A1!

The structure factor is a sum ofd functions, but the amplitude of the peaks has a nontrivial feature. Atk52pr 8/2Q, we have

sinP~Q21!k/2

sinPk
eiQk/22 cos

1

2
PQk55

Q21, r 850

~2 !r

cosp
P

Q
r

,
r 852rÞ0

0, otherwise.

~A2!

This leads to Eq.~5.6! and Eq.~5.7!. In the latter, cosPk/2 is a smooth function ofkP(2p,p#, whenP is finite. It, however,
oscillates wildly whenP→`, corresponding to an irrational flux.

APPENDIX B: EXPLICIT WAVE FUNCTIONS IN CLOSED FORM

From the explicit solution to the Bethe ansatz equations forf51/Q, the wave function at sitej can be written as

c j5 )
m51

~Q21!/2

~qj2 iq2m21/2!~qj2 iq22m11/2!5q~Q21! j )
m51

~Q21!/2

~12 iq2m21/22 j !~qj2 iq22m11/22 j !

5~2q!2 j~ iq3/22 j ;q2!~Q21!/2~ iq
23/22 j ;q22!~Q21!/2 . ~B1!

The two sequences of roots that we have discussed before immediately lead to

c j5q~Q21! j )
m51

~Q21!/2 S 12expF i2p
1

2Q
$P~2m2 j !1~Q2P!/2%G D S 12expF i2p

1

2Q
$P~22m2 j !1~Q1P!/2%G D . ~B2!

Let us defineJ1 by
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PJ1[
1

2
~Q2P! ~mod 2Q!, ~B3!

thenP(J111)[ 1
2(Q1P) (mod 2Q) andc j50, for j[2m1J1 , 22m1J111, @m51,...(Q21)/2#. Thus, we have

c j̄50 for j̄52m or 22m11 @m51,...~Q21!/2#, ~B4!

where j̄5 j2J1 .
Now let us consider the amplitude of the wave function. Apparently,uc j̄ u5uc j̄12Qu. However, 2Q is not the smallest

period. Actually, the smallest period isQ, because$zm%5$zm* %. Thus, we definel by j̄52l21 and considerc( l )5c j̄52l21

@ j5J112l21, l51,2,...,(Q11)/2#. Then, the squared amplitude is

uc~ l !u25 )
m51

~Q21!/2 U12expF i2pH P

2Q
~2m21!2

P

Q
~ l21!J GU2U12expF i2pH P

2Q
~22m!2

P

Q
~ l21!J GU2 ~B5!

5 )
m51

~Q21!/2

~12q22~ l21!q2m21!~12q2~ l21!q2~2m21!!~12q22~ l21!q22m!~12q2~ l21!q2m!. ~B6!

Let us first consideruc( l )u for l51. Denoting

S15$2m21um51,...,~Q21!/2%5$1,3,...,Q24,Q22%,

S25$2~2m21!um51,...,~Q21!/2%5$21,23,...,2~Q24!,2~Q22!%[$Q12,Q14...,2Q23,2Q21% ~mod 2Q!,

S35$22mum51,...,~Q21!/2%5$22,24,...,2~Q23!,2~Q21!%[$Q11,Q13...,2Q24,2Q22% ~mod 2Q!,

S45$2mum51,...,~Q21!/2%5$2,4,...,~Q23!,~Q21!%,

we have

S5S1øS2øS3øS4[$mum51,...,2Q%\$0,Q% ~mod 2Q!. ~B7!

SinceP and 2Q are mutually prime,S is invariant under a multiplication byP (mod 2Q). This leads to

)
m51

~Q21!/2

~z2q2m21!~z2q2~2m21!!~z2q22m!~z2q2m!5 )
mP$1,...,2Q%\$0,Q%

~z2ei2p~m/2Q!!5
z2Q21

~z21!~z11!
. ~B8!

In a limit z→1, we have

uc~1!u25Q, ~B9!

which is independent ofP.
In order to obtain the other amplitudes, we use the recursion relation, which is obtained from Eq.~B6!:

uc~ l11!u25uc~ l !u2
12q22~ l21!21

12q22~ l21!1Q22

12q2~ l21!11

12q2~ l21!2Q12

12q22~ l21!2~Q11!

12q22~ l21!22

12q2~ l21!1~Q11!

12q2~ l21!12

5uc~ l !u2F sinp P

Q
~2l21!

sinp
P

Q
2l

G 2

. ~B10!

From this we have

uc~ l11!u25Q S @2l21#q!!

@2l #q!!
D 2 , ~B11!

where @2n#q!!5@2#q@4#q•••@2n#q and @2n21#q!!
5@1#q@3#q•••@2n21#q .

Now fix P51 and take the largeQ limit. The continuum
coordinatexl and the square amplitudes are defined by

x2l215~ l2 3
4 !Dx @ l51,...,~Q11!/2#, ~B12!

Dx5
2

Q
, ~B13!
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n~x2l21![uc~ l !u2. ~B14!

In the largeQ limit, x is in the interval (0,1). Taking Eq.
~B10! up to the first order inDx, we get

d

dx
lnn~x!52

d

dx
ln sinpx. ~B15!

Thus,

n~x!5
2xC

sinpx
, ~B16!

whereC is a constant. The coefficientC is determined by
consideringl5O(1)!Q:

n~x2l11!5Q)
j51

l F sin2p P

Q S j2 1

2D
sin2p

P

Q
j

G5Q)
j51

l S @2 j21# q
@2 j #q

D 2.
~B17!

APPENDIX C: THE FINITE-SIZE CORRECTIONS
FOR LARGE Q

We derive the finite size corrections near the edges of the
wave function forP51 andE50. We write the amplitude as
uc(x2l11)u25C( l )2/sinpx2l11, where x2l115( l11/4)2/Q.
The finite-size correctionC( l ) near the edge is given by

C~ l !5
1

2
uc~x2l11!u2sinpx2l1155

1

2
QS @2l21#q!!

@2l #q!!
D 2sin2p

Q
~ l1 1

4 !→Q)
k51

l S 2k21

2k D 2 p

2Q
~2l1 1

2 ! ~ l /Q→0!

p

2
~2l1 1

2 !)
k51

l
2k21

2k11

~2k21!~2k11!

4k2
5

p

2

2l11/2

2l11 )
k51

l S 12
1

4k2D ,
~C1!

wherel is large but finite, andQ→`, so thatl /Q→0.
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