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The wave functions for a two-dimensional Bloch electron in uniform magnetic fields at the mid-band points
are studied by exploiting a connection to the quantum grdy(sl,): A linear combination of its generators
gives the Hamiltonian. We apply both analytic and numerical methods to obtain and analyze the wave func-
tions, by solving the functional Bethe ansatz equations first proposed by Wiegmann and Zabrodin on the basis
of the above observation. The semiclassical case with the flux per plaguetté is analyzed in detail, by
exploring a structure of the Bethe ansatz equations. We also reveal the multifractal structure of the solutions to
Bethe ansatz equations and corresponding wave functions whsrirrational, such as the golden or silver
mean.

[. INTRODUCTION Schralinger equation can be reduded a difference equa-
tion on a linear lattice, called Harper’s equation, which ap-
The effects of a magnetic field on electrons in the quanpears in many different physical contexts ranging from the
tum regime are a fascinating problem with very rich physics.quantum Hall effect® to quasiperiodic systenfsWhen ¢ is
The path-dependent geometric phase of the wave function isrational, that is, the magnetic flux is incommensurate with
known to play a fundamental role in the problérfor ex-  the periodic potential, the spectrum is known to have an
ample, the geometric phase and other geometric consideextremely rich structure like the Cantor set and to exhibit a
ations, such as gauge invariance in topologically nontriviamultifractal behavior:® Another interesting case is the weak
system$and the effect of edgesare crucial to the quantum field limit. When the flux is small, a semiclassical treatment
Hall effect in a planar electron systélh. Moreover, the of the WKB type is justified?
guantized Hall conductance has a topological character, both Recently, a connection is found between this physical
for a system without boundary(periodic boundary problem and a mathematically new concept, the so-called
conditiong® and for one with boundarie@dge$.? Thus ge-  quantum group? The essential point is that, at least for some
ometry and topology are of central importance in thisspecial points in the spectrum, e.g., at the so-called mid-band
condensed-matter problem. points, the corresponding Hamiltoniéin certain gaugecan
In this paper, we will show that a certain exotic algebraicbe expressed as a linear combination of generators of a quan-
structure plays an important role as well, if one includes theum group, calledJ4(sl,), which is a deformation of usual
effects of a periodic potential in this problem. This is not tooLie groupsl,. (For a self-contained presentation see below.
surprising, since there are two fundamental periods in th@©n the basis of this observation, Wiegmann and Zabrddin
problem: One is the original period in the geometric phasehave proposed a set of functional Bethe ansatz equafions
and the other is that of the periodic potential. Interplay of thefor corresponding wave functions. This opened the possibil-
two intrinsic periods brings more interesting structures andity of solving the problem analytically. Indeed, we have
therefore, richer physics into the problem. turned the dream into reality: We have found explicit analytic
Normally a solid with well localized atomic orbits is mod- solutions to this problem for the first time in the literatdte.
eled by the tight-binding Hamiltonian and the effect of the The Bethe ansatz equations associated Witffsl,) also
magnetic field is included by the Peierls substitution. Thisprovide us a method to solve the problem numerically. Espe-
procedure is usually motivated as an approximation. Howeially when we study the irrational limit of a well-organized
ever, the gauge invariance is preserved by the substitutiosequence of rational fluxes, the method is convenient and
i.e., both the original continuum and the lattice systems haveseful in revealing the multifractal behavior, as we briefly
the same localU(1) symmetry. Thus in our opinion, the reported previously in Ref. 13.
Peierls substitution has captured a fundamental feature of the In this way, it becomes clear that, in addition to the un-
problem and, therefore, has a meaning more fundamentalerlying geometric and topological structures, the problem of
than merely an approximation. a planar Bloch electron in a magnetic field also possesses an
So in the problem of a planar Bloch electron in a uniforminteresting, fundamental algebraic structure hidden in it. Pre-
magnetic field, one can use the flux per plaquette,to  vious works in the literature on possible relevance of quan-
characterize the system. Wheh is rational, the one-body tum groups to physics often deal with a sort of artificigl
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deformation of an originally physical problem. However, in (Ot 0= Ax 0% = Ay 0% 1= 2T, (2.4
our present case, the Bloch electron in magnetic field, the o ’ ’ ' _
quantum groupJy(sl,) is relevant to a realistic, physical Wherg the difference operatats andA, operate on a lattice
problem: We are dealing with ordinary electrons, notfunctionfy, as
g-deformed electrons. Therefore, we have shown that quan- A —f g 2.5
tum groups can have a fundamental meaning for observable ximn™ imila o Tmno '
phenomena. _ _

A clarification of terminology seems appropriate at this Ayfmn=Tmnt1= Fmn- 2.6
point. Usually Bethe ansatz refers to an ansatz for manyAs mentioned in the Introductiofd has a localU(1) gauge
body wave functions in a one-dimensional exactly solvablesymmetry, i.e., it is invariant under
problem. The pseudomomenta parametrizing the many-body
wave function satisfy a set of coupled equations, called the ci—Qici, 2.7)
Bethe ansatz equations. In this paper, the term “Bethe ansatz - (61
equations” is not used in its usual sense, since we are study- eli— Qe ", 28
ing a one-body problem. The one-body wave function in
guestion is shown to be related to a polynomial of an auxil-
iary complex variable, and it is the set of algebraic equations
dgt(_ermlmng the roots of the polym_)m|a| that is of a forma one-particle stat«t‘lfmn):cL 10, which is localized at
similar to usual Bethe ansatz equations. ) . ) Wl

In this paper, we are going to report on more details of ourSIte (m.n), their operation satisfies
published results and to present a number of solutions and Ty T W) =€274mnT, T | T ). (2.10
results. We will describe our analytic solutions in detail and ’ '
in a self-contained manner, and present a great deal of nu- Now let us assume that the magnetic field is uniform, so
merical solutions to the Bethe ansatz equations when thghat we can choose a gauge in which bath6}, , and
analytic ones are not available. In the next section, Sec. ”Ayeﬁq,n are, respectively, constant independent of the site

we review the Bloch electron and magnetiC translations. Ir(m'n)_ In this case, there is an important Symmetry of the
Secs. Il and IV, we summarize necessary stuff about thgjamijltonian under thenagnetic translations

quantum groupU,(sly), its representations, and the func- R R
tional Bethe ansatz equations following Wiegmann and [H,T,J=[H,T,]=0, (2.1)
Zabrodin!! Then, in Sec. V, we explain in detail how to _ , ~ -
analytically solve the Bethe ansatz equations at a particula?here the magnetic translation operatdtsandT, are ex-
mid-band poinE =0. Subsequently, Sec. VI is devoted to an Plicitly given by

analysis of the explicit wave functions obtained. In particu- A

lar, a multifractal analysis of the wave functions for irrational T,=> CTm+1,nCm,neiX?n‘nr (2.12
flux, such as the golden and silver mean, is presented. Fi- m.n

nally, in Sec. VII, we present numerical solutions to the Be-
the ansatz equations at mid-band points other tBa0.
Some technical details are put into several Appendices for
the convenience of reader.

|Q[=1, Vj=(m,n). (2.9

The covariant translationg, andT, do not commute. For

—>

- T ix)
y= 24 Cmn+1Cm,n€Xmn, (2.13

E
S

with the phaseg;, satisfying

Il. BLOCH ELECTRON AND MAGNETIC TRANSLATIONS Axmn=A,0% (2.19

m,n

A tight-binding electron on the square lattice in a perpen-

- Y (— X
diculer magnetic field is described by the Hamiltonian AyXinn= AxOmn(= Ay 0 nT27 bmn), (219

AXX%Ln:AyHE’l,n(:Axern,n_ZW(bm,n)r (2.1

H=T,+T,+Ti+T,, (2.2)
whereT, andT, are thecovariant translationoperators de- AyXinn=AyOhn- (2.17)
fined by In the parenthesis, we have used E2.4). We can easily
solve these equations to get
— T 0o
T 24 CneasCmnel 2 Xon= Bt 271, (218
+ C Y Xym,nzeym,n_zwm‘ﬁm,n- (2.19
Ty=2, Chnt1Cmn€ fmn, (2.3
mn ' Note that these phases are gauge dependent.

. o ) In the following, we further assume the magnetic field is
wherecy, , is the annihilation operator for an electron at site rational, that is,¢,, ,= ¢=P/Q with mutually prime inte-

(m,n). (This Hamiltonian, is obtained from the freely hop- gersP andQ. We can take a “diagonal” gaugé!*such that
ping Hamiltonian with dispersiof =2 cok+2 cok, with

the Peierls substitutionik=p+eA.) The phase factors aan: Tp(m+n), 03,;’,1: —mdp(m+n+1),

0mn and 6}, , are related to the flux per plaqueits, , by (2.20
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which can be viewed as the Landau gauge in (1,1) direction. r

Correspondingly, we define the magnetic translatiohs,
andT_, along the (1,1) and-1,1) directions, respectively,
as

T,=T,(T,, (2.21)
T =T, 'T,. (2.22
They commute with the Hamiltonian, [H,'T'+]

=[H,T_]=0, but do not commute with each other. How-
ever, one can explicitly check that, for example? and

T_ commute with each other. Thus, we can take simulta-

neous eigenstates bf, 'i'? , andT_ , which are specified by
the momentum in the magnetic Brillouin zofgrough the
Bloch theorem as

T|®(p, p-))=€2P+[d(p, p)), (223
T |®(p,,p))=€P[®(p,.p)), (224
where|®) is a one-particle state spanned by
[P+ p))= 2 Winn(Pi P )Cmal0). (229
From Egs.(2.23 and(2.24), we have
Wi o(p) =P (MR L (), (2.26
Ui 20(P)=th(p), k=1,.... Q. (2.27

Written in terms of y(p), the Schrdinger equation
H|®(p))=E(p)|P( p)) becomes

(ei(p++p—)q7k+ ei(p+7p—)qk+1) ¢k+l(p)+(e7i(p++p—)qkfl

+e7 PP ) Y1 (P) =E(P) ¢l P), (2.28
whereq is defined as
q=¢e"¢=¢'"P/Q), (2.29

In the component form, the wave function is a column

vector g{(p)=[u(p),- - ,¢2Q(p)]‘, with t standing for
transpose. Then Ed2.28 can be cast in a matrix form as

H(p) ¥(p) =E(p) ¥{p). with
H(p):ei(p++pf)y—lx—l+ gl (P+—P-)x—Lly
+e iP+tPIX Y+ e P+ —P)y—1x
= (e—i(p++p7)x+ ei(pfp*)X‘l)Y
+Y (e P TPIX 4P tPIX ) (2.30)

where the X 2Q matricesX andY are given by
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0 17
10
-lo 1 o0 0|, Y=diagq',q? ...,q%9.
L0 1 0]
(2.3
They satisfy the following relations:
X2R=Y2R=],,, (2.32
gxXy=YX, X'=Xx1 vl=v, (2.33

wherel g is the unit matrix. The group generated Kyand
Y with the above relations is called the Heisenberg-Weyl
group.

The solvability of the present problem by the Bethe ansatz
equations relies on the fact that, at special points in the mag-
netic Brillouin zone, the HamiltoniaH(p) has a higher
symmetry, described by the quantum graug(sl,)."* As we
will show in the next section, at special lines
p.=m/2(mod«w/Q), usually called as the mid-band lines,
H(p) can be written as

Hve(p-)=H(p,=m/2,p_)
=i(q—q H[e P-pc(B)+eP-pc(C)].
(2.39

Later we will see that the energy is independent of the pa-
rameterp_ . Here,p.:Uqy(sl,) — Mg (2Q-dimensional ma-
trices is a cyclic representation of the generators of the
quantum grouJ4(sl,)={A,B,C,D}, explicitly given by

pe(A)=q~ Q72X (2.35
po(B)=—(q—q~H HX=X"HY, (2.36
po(C)=—(q—q H Y H(X=X1), (2.37
pe(D)=q Q7 1"2X. (2.38

We will elaborate on this in the next section to reveal the
quantum group structure of the problem.

Ill. QUANTUM GROUP AND ITS REPRESENTATIONS

Historically quantum groups arise from mathematical
structures appearing in exactly solvable one-dimensional
quantum many-body models. However, the simplest case,
Uq(sly), can be understood asgadeformation(i.e., an ap-
propriate “extension” with a complex parametg) of the
ordinary Lie algebrasl,. Converselysl, is recovered from
Uq(sly) by taking the “classical” limitq— 1.

More precisely,U,(sl,) is an algebra generated by four
generators{A,B,C,D}, with multiplication and addition
(with complex coefficients subject to the following defining
relations

AD=DA=1, (3.1
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AB=qBA, BD=qDB, (3.2 r 0 07
[2]]q 0
DC=qCD, CA=qAC, (3.3 pn(B): 0 [Zj_l]q 0 ., (3.19
AZ_DZ *. .'.
B,C]= —. 3.4 | O [1], O]
[B.C] q=q * (3.4 a
As g—1, these relations become those satisfied by r0 [1], 0 1

B—S,, C—S., and A—1, D—1, and @A-D)/
(g—g 1 —S;, where{S, ,S_,S;} are generators of usual 0 [2]q
Lie algebrasl, satisfying the relationd S, ,S_]=2$3, ph(C): ) (3.1
[S;,S+]=*S.. Thus, Eqs(3.1-3.4 are aq deformation 0 [2j]
of sl, which, as we will see below, preserves many good q
properties of the representationssi . L O 0 |
It is well known thatsl, has a (2 + 1)-dimensionalspin-
j) representation, which is realized by the differential opera
tors,

Notice that their dimension i®=2j + 1, and they generate
tridiagonal matrices.

Up to this point,U4(sl,) is quite analogous tel,. How-
ever, whenq is a root of unity, there is another representa-

Pr(S3) =2d,—], (3.9 tion, called a cyclic representation, the existence of which is
characteristic tdJ4(sl,). (sl, does not have a cyclic repre-
pr(S)=2(2) —2d,), (3.  sentation. Our case, withq?®=1, is such a case. Here, a

2Q-dimensional cyclic representation is derived from the
highest-weight representation of sgir(Q—1)/2 as fol-
pn(S-)=2, 3.7 lows. First define a cyclic basi¥,, n=1,...,2Q

actihng on a function W(z). Since py(S.)z3  (mod2Qj} by

=pn(S_)z°=0, this finite-dimensional representation has

both a highest weight and a lowest weight; thus, it is a rep- v,=v(q"), (3.17
resentation with¥(z), a polynomial of degreej2 Similarly, i o B

Uq(sl,) has a highest-weight representation realized by rewnhere ¥(z) is the polynomial in the spip=(Q-1)/2

placing the above differential operators with the correspondhighest-weight representation. Singé°=1, the periodic
ing g-difference operators: conditionV, ,o="V, is satisfied, justifying the name “cy-

clic.” Taking z=q" in Egs.(3.89—(3.11), a representation is
induced in the cyclic basis, with the operations explicitly

P(A)¥(2)=q71¥(q2), B8 given by
ph(B)‘I'(z)=(q—q‘l)‘lz[qz"‘lf(q‘lz)—q‘zi‘P(QZ)(]é9) p( AW, =q~ Q- V2y (3.19
POV (2=(a-q" ) 2 [ W(q 2~ ¥(q2)], pel BN = (7@ AT A )
(3.10 '
ph(D)‘l’(Z)qu\I’(qflz). (3.11) Pc(c)q’n:(q_qil)il(qinq,mrl_qinq,nfl)a

(3.20

It hasz' also a Ohighest weight and a lowest weight:

pn(B)z?'=p,(C)z°=0. In the standard basisV(z)=2" _ ~(Q-1)/2

(n=0,1,...Q—1), they operate asp,(A)z"=q" /z", pc(D)¥h=q Voog. (3.2

pr(D)Z2"=q """, pn(B)Z"=[2] —n]gz"*, and py(C)z"  If we write them in matrix form, we get Eq$2.35-(2.38.

=[n]qz“*1. Here,[n] is aq integer defined as We note thatp (B) ¥, returns to a linear combination of
¥, and¥,q_ 1. So there is no highest-weight stdte vec-

q"—q " tor) ¥, that can be annihilated by.(B): p.(B)¥,#0.
(Ng=———1 (3.12  Similarly, there is no lowest-weight state annihilated by
a-q pc(C). This is why this representation is called cyclic.
which approaches to in the limit g—1. Thus, they can be ~ Thus, wheng®?=1, a highest-weight representation of
represented as the following matrices: dimensionQ is related to a cyclic representation of dimen-

sion 2Q through Eq.(3.17). This establishes the following
results about the spectrum and wave functions of the Bloch
electron in a magnetic field at the mid-band momenta. The
spectrum is given by the eigenvalues of the following
pn(D): diaggl,qg ... *q7)), (38149 QxQ tri-diagonal Hermite matrix:

pn(A): diagg~l,q*,...a "), (313
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FIG. 1. Mid-band energy spectra obtained from the Bethe ansatz equatiof® f@r=23 andP=1,3,5...,0—3,Q—1 (+) and(b)
Q=401 andP=1,35...,0—-30Q—-1 (-) .

0 [1],e7'P-
[1],e7P- 0 [2]4e P~ 0
Hiis(P-) [2]4e7"P- 0
e [Q-2]ge P 822
0o [Q—2]qe" P~ 0 [Q—1]e P~
I [Q—1],e"'P- 0

where we have used the fad@—jlo=[jlq- WhenQ is  Actually, Hyg has doubly degenerate eigenvalues. The
large, the eigenvalues of the tri-diagonal matrix gives theabove stat¢3.23 is degenerate with another state
“backbone” of the so-called Hofstadter’s butterfly, i.e., the
midpoints of the magnetic Brillouin zone. In Fig. 1, we show
eigenvalues of thé—l}vl“B as a function of¢p=—i/wInq for
Q=23 andQ=401. Since the eigenvalues of the tridiagonal
matrix does not depend on the phase of the off-diagonal malhese two states have the same energy and they are orthogo-
trix elements, the energy does not depenchan The wave Nal to each other, since
function of the Bloch electron at the mid-band momentum of ,,_;

the jth band is obtained from th¢th eigenvector{v ()}, S oglhgris— 3
(m=0,1,...Q-1), as izo " " pemmeo-1

Q-1
w=w@ =2 vllaT™

(3.29

2Q(m+m’
. 1—q Q( )

U e

=0.
(3.29

Q-1 In this way, we obtain all solutions of the original problem.

V=g =2 vllq™

(3.23
IV. FUNCTIONAL BETHE ANSATZ EQUATIONS

In this section, we derive the functional Bethe ansatz

The dimension of the original Hamiltoniad,,s is 2Q and
equations following Wiegmann and ZabrodinwWe denote

that of the tridiagonal functional HamiltoniaR!\; is Q.
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p_ by p. The Schrdinger equation at a mid-band point is 1 .....” ”.....
: . o )
Hwe(P)¥r=i(q—q~")[e Pp(B)+ePp(C) ¥, =EV,. o° %%,
(4.1) o’ %
' 05 & %,
Recall that the cyclic representation is derivable from a high- 14 [}
est weight representation. Changimgto p,,, and using Egs. ‘o. 3
(3.9 and(3.10, we can write down the equivalent functional ® ®
equation, 0 i §
° o
i(e 1Pqz+ Pz Y)W (qz)—i(q le Pz +ePz Y)W (g 2) S s
o o
—EV(2). (4.2) Rt g
() o
Once we have a solution to this functional equation, we can .‘o.. ..o‘
recover all the solutions of E¢4.1) using Eq.(3.23 and Eq. i TV ...o"
(3.29. -1 -0.5 0 05 1

Central to what follows is the nontrivial property that we
learn from the above long discussion of the representation FIG. 2. The roots of the Bethe ansatz equations in the complex
theory ofU,(sly), namely, being a highest weight represen-plane forE=0, in the case witP=1 andQ=89.
tation, ¥'(z) is a polynomial of finite degreef the auxiliary

variablez. Thus, it can be factorized: V. DISTRIBUTION OF ROOTS FOR E=0
Q-1 Let us consider first Eq(4.8). For the zero energy
V(z)= H [z—z(p)]. (4.3 E=0, Wiegmann anq Zabrodin showgd thiatz) is given
m=1 by the so-called continuoug-ultraspherical polynomidt as

: ¥(2)=(9%9%)n/(9;0%)n(—i2)"Pn(—iz), where P.(2)
First, let us absorb the dependence of Eq4.2) by the =30 (40D ® D)/ (0% 02 (G% 9D n 2" 2, n=(Q

gauge transformation, —1)/2, and &;q)=11%_%(1—aq™).2® The g-ultraspherical
polynomials have several interesting properties. However,

= ip
=28 4.4 we treat the functionV(z) directly.
- —ip 4 In order to understand the properties of the wave function
Zn=Zn(p)e ", 4.9 at E=0, the center of the spectrum, we solve the Bethe an-
0-1 Q-1 :’;ltz equatiori4.9) explicitly. For E=0, Eq. (4.8) is written

V@)= [z=zn(p)]=€ @ P[] (z=2y). (49
) ) aZ+q H¥(q=q (Z+a¥(q 2. (5D

Suppressing the bar over we have
PP J First put z=iq*Y? then one obtains

i(qz+ 2 HW(q2) —i(q ‘z+z HW(q 12)=EW(2). a(—q+q H¥(ig¥)=0 and¥(ig®?)=0. Soiq®? is one
4.7y root. Next put z=iq™®’ then one obtains
a(—g°+q Y)W (ig"?)=¥(iqg¥)=0. Thus,iq”? is also a

From Eq.(4.7) and Eq.(4.3), we get root. We can repeat this procedure and get a series of roots:
ig2™ Y2 with m=1,...,(Q—1)/2. The restriction ofm
) 1 ot (Qz-z,) . 4 et (9 'z—z,) arises due to the fact that the prefactoriofvanishes at the
i(qz+z H ]I ———— (g z+z ) I1 B — last step.
m=1 (2= 2Zy) m=1 (Z2—2Zp) P

Similarly, settingz=iq~ 2, one obtains another sequence

=E. (4.8)  ofroots:iq ™2™ 12 withm=1,...,(Q—1)/2. The number of
independent roots should equal the degree of the polynomial,

Comparing both sides and using the pole-free condition, ong)_ 1: 5o we have obtained a complete set of roots as
obtains the Bethe ansatz equations,
iq2m- V2= gi2md(m-1/4
2 Q17— _ [m=1,..,(Q—-1)/2].
zZ+ Z —{. _  i2md(m— EREE
q 4z —Zn (I=1,...0-1), (4.9 Z= | jq = 2m+ L2 jgi2md(m—1/4

qZ+1  m212—9zZy (5.2

Q-1 . .
. _ They are all on the unit circle. Let us write them as
E=-i(9-q 1)mE:1 Zm- (4.10 z,=€'’m and consider the distribution of6, by
p(0)=limg_..QA6H, whereA ¢ is the difference between ad-
From these equations, one can easily see that the eRegy jacent §,,,. [Note that the gauge transformatigd.5 only
independent op_ . Note that the functional solution, which leads to a simple shift of al#,, by a constanp.]

corresponds toV,, is W(z™Y); it is not a polynomial and The restriction onm [1=m=<(Q—1)/2] gives rise to a
has poles. nontrivial distribution of the roots. The phase factyylooks
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FIG. 3. The roots and pseudo-
roots of the Bethe ansatz equations
for E=0 with the rational fluxes,
which converge to i
=P, /Q=3/5, 13/21, 55/89,
233/377, 987/1597, 4181/6768)
in the whole complex plane and
(b) in an enlarged figure. In each
case, the roots and the pseudoroots

-t “0.5 0 0.5 1 are always on the unit circle. The

(a) i,
radii for ¢, have been scaled to
show the branching rule.

0.88

‘...

®,
.....
® %,
%,
®s
0.875 ® .’°.,.
%
9,
@ ® .
o _ "
® ® "
®,
0.87 . % .
%,
@
®

0.865 ®
0.86 0.5 0.505 0.51 0.515
(b)

like a pseudomomentum in the Bethe ansatz solvable models When the flux is irrational, the situation is quite different.
in which the system size i®. In the following, we consider First, let us take the flup=1/7=(\/5—1)/2, wherer is the
the limit Q—c0, which corresponds to the thermodynamic golden mean {5+ 1)/2. To reach this flux, we consider a
limit in exactly solvable models. sequence of rational fluxesp,=P,/Q,, where Qy
Consider first the cas®=1, i.e.,, $=1/Q. The roots =Fg,;, P,=F3 andF, is a Fibonacci number defined by
{z} are distributed uniformly on the unit circle, except nearF,,,=F,+F,_;, F;=1, Fy=1. In this sequenceR, and
z==*i. The roots forQ=89 are shown in Fig. 2. In the Q, are all odd. The two types of roots in E&.2) are nested
semiclassical limitQ—o, that is, q—1, the distribution andA# has a complex distribution. To gain an insight into
function p(#) =limg_,.QA# is smooth(actually constant the distribution of roots, it is helpful to consider the pseu-
everywhere, except at==*i. A continuous behavior of doroots, which are defined also by E®.2), but with the
p(6) is usually obtained in the Bethe ansatz solvable modelsange ofm modified tom=—-(Q—1)/2,...,—1,0. In Fig. 3
in which p(#6) is determined by an integral equation. we show the distributions of the rootéblack points
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and pseudoroots (gray pointg for several ¢y (@)
(k=1,2,3,4,5,6). Here, the radius of the unit circle has been
scaled so as to show all the cases at once. These figures
clearly show that there is a branching rule for the true roots
(denoted byA) and the pseudorootby B) as follows:

A3 ASB2A3B2AS,
A2 ASB2AS,
B3 B3A2B3AZR3,

B2 B3A2BS,

53
The initial condition isB3A2B3A? (cyclic). At the kth stage,

the number of clusters of the true roots’ and A? is
Qy_1—1 and P,_,+1, respectively. This branching rule
gives rise to a self-similar structure for the distribution -1
p(0) in the limit k—oo. To characterize the distribution, let 1
us define the generation of the roots. According to the
branching rulg5.3), each trugpseudo) root branches into a (b)
cluster of three new trugpseudo} roots, each of which in a
sense has a parent. At the same time, between these clusters
of new pseudof{true) roots, there is a pair of new-born true
(pseudo} roots, which have no parent. We assign the genera-
tion number to a root, so that it is 1 when the root does not
have a parent, otherwise, it is one plus the generation number

[e08925000c000pe,, oane,
e,
4ng,

....‘...
'e,
0.8 nooooo.....

of its parent. Let us denote the number of trgeseudoy
roots at the kth

.'°oo e
LA P8 °
stage

° %o -
8 ® ® R
063 @ ®
with generationg by . .,
na(g,k)(ng(g,k))(g=1,...k). [Then in the special case & ® .,
P=1,na(g,k)=ng(9,K) = 8ig.] In the present case, thereis ° '. %
a recursion formula from the branching rule: i.aa(g,k) o . ® 3
=3np(g—1k—1), with g=2,... k,na(1,k)=2(P,_1+1). 8
Thus, na(g,k)=2x39"Y(P,_4+1) and ng(g.,k)=2
X397 Y(Py_g—1). 0.2}
Next, let us consider the flugp=1/c= \/5—1, whereo
is the so-called silver mea¢/E+ 1 . To realize this flux in the

® o
large Q limit, we consider a sequence of rational fluxes
& =Py /Qy, whereQ =Gy .1, Px=Gy, andG, is defined

®
®
®
@ o
®
0 @
by G, 1=2G+Gy_1, G,=1, G;=1. In this case, we can =

.2
apply our technique of Bethe ansatz equations to each step of
the sequence, since &), andP, are odd. In Fig. 4, we show

@0
0 0l 0.4

0.6 0.8 ]
the distributions of the rootéblack point$ and pseudoroots the rational fluxes, which converge tool/ ¢ =P, /Q\=3/7,

clear branching rule. It is a little different from the golden-
mean case and is given by

FIG. 4. The roots of the Bethe ansatz equationsHerO with
(gray points for several¢,(k=1,2,3,4,5,6). The radius of 7/17, 17/41, 41/99, 99/239, 239/577, and 577/1G93 the whole
the unit circle is also scaled as before. One can observe @mplex plane ango) in an enlarged figure. The radii are scaled.

A% B3, andB*. For both cases, the distribution function of
the roots has a self-similarity and reflects the self-similar
tructure of the original problem.
A—A3—BA’BA’B S N b . .

h ' The above considerations clearly exemplify the difference

A2, A BA2BA2BA2B in the root distribution between the semiclassical limit and

' the incommensurate cases. While the root distribution for the

B— B3 AB2AB2A semiclassical limit is smooth, it has a self-similar structure

B>—B*—AB?AB’AB?A.

(5.4
The initial condition isAB?AB? (cyclic). From this branch-

and is nowhere differentiable in the incommensurate limit.
surate case.

We believe these features are characteristic to the incommen-

Another way to characterize the distribution is to map it to
ing rule, we have a self-similar behavior at every two stagesthe dual(reciproca) space. This can be done for arbitrary
At the odd stage, all the roots and the pseudoroots appear & and Q analytically. We lift 6, (z,=¢€'’m, z,’s are the
A, A, B andB? and at the even stage, they appea”ds

roots to the real axis periodically. On the real axis, the true
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N P —— (@)

038 |
08

0.6 |
0.6

04 |

0.4

02

FIG. 5. Squared amplitudes of the wave function&at0 for
P=1 andQ=5,21,89,377. The wave functions are normalized by 45
their peak heights.

and pseudoroots occupy lattice poifif$2Q|j: intege} with 035
spacing 1/8. Thus, we define the Fourier transform of the
so-called defining function by 03
0 0.25
So(k)= 2 eMSy(), (5.5
J=—
where éQ(j)= 1, if there is a true root at/2Q, and 3
So(j) =0 otherwise. As shown in Appendix A, 0.1
Q-1 0.05 :
Sok)== X shd(k—k,) (0<k<2m), (5.6) i A
Q<™ 0
0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92
where
FIG. 6. Squared amplitudes of the wave function&atO for
(Q—1), r=0, the ratios of successive Fibonacci numbéasin the whole region
; re1 (¢=3/5, 13/21, 55/89) andb) in an enlarged plot in the region
o=y _(2) f=1,.0-1: (5.7 near 0.89 =P,/Q=3/5, 13/21, 55/89, 233/377, 987/1597,
cog Pk /2)’ ’ ’ 4181/6765). The wave function with a larger valueQfss shaded

) darker. The wave functions are normalized by their peak heights.
and k,=2(r/Q), which converges to usual momentum

continuumk e [0,27] in the Q—oo limit. In this limit, we

have
k)|2= 0<k<2 5.8 T ——
|Sa(K)| =2 cosPK2) ( ). (5.9
In the semiclassical limiP=1 andQ—c, |Sy(k)|? is well 08T i
defined and behaves smoothly. In the incommensurate limit,
|So(K)|? is a singular function and is not even differentiable 06+ -
sinceP tends to infinity. Also, it can be shown that the origi- =X
nal defining function is given by 04 | |
Q-1 .
~ 1 cog2mjn/Q)
Lo _,_\ncod2min/Q)
VI. EXPLICIT WAVE FUNCTIONS AT E=0 0 T s 4 o -

0 05 1 1'5(12 25 3 35

Now let us consider the wave functions obtained from the
above explicit solutions of the Bethe ansatz equations. The FIG. 7. The functiorf(a) for the wave function aE=0 for the
wave function at sitgj is given by ¥;=¥(q') and it is  golden-mean flux.
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(a) (b

1 1
0.5 0.5
0 0 U

|
[y

]
(=]

.5 0 0.5 1 0.5 1

Q

)
1 0.5 0
(d)
1 1
) ) /
O O \
-1 0.5 0

-1 -0.5 0 0.5

oy

FIG. 8. The roots of the Bethe ansatz equations Withl andQ=61 in the complex plane for mid-band energi€s#0) in (a) the
highest band(b) the second highest¢) the third highest; an¢d) in the 30th band, the one just above the central band, the mid-band energy
of which isE=0.

written in a compact factorized form as where we have used tlgebinomial theorem
s i 2Me 2y iy —2mt 12 Nt NN
W= nﬂl (@' =ig®™ Y?)(d'-iq ) nfz[l (1+qN_1_2”z):V20 iE2 (6.3
. . s . i _ q
=(—a) (a7 "3%0?) g-12(id 33072 012,
6. g L 6.4
(Q-1)/2 (Q-1)/2 Vg [¥gtlp— vt
sy (Q=1)/2| | (Q—=1)/2 3
I = v q v’ q It is convenient to shift the sitg,=j+J;, by the amount

_ J1, which is determined byPJ;=(Q—P)/2(mod 2Q).
X (—ig hyrtv gRr=r2, (6.2  Then,¥7=0 atj=2m, —2m+1[m=1,...,(Q—1)/2], and
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the wave function is nonzero only ej_t=1,3,...,Q and

Q+1,Q+3,...2Q, as shown in Appendix B. Thus, one has 1
[w1*=Q, (6.9 £
0.5 z
[j—2]q!
[Wii?=Q——, 6.6
[ = 1q! o HE
for j=35..Q and |Wiiol?=|Pj?,  where
[i1q" =[ilgli—2]q- - -[2]q (or[1]g).
When P=1, we can proceed further analytically. As _,
shown in Appendix B, we get a compact form for the wave
function in the semiclassical limP=1 andQ— o>,
2 -1
2_ _ Z
[ (x)| P g (0<x<1), (6.7 1 0.5 0 0.5 1

FIG. 9. The roots of the Bethe ansatz equations in the complex
eolane for each mid-band energy with=1 andQ=41. All the roots
are on the unit circle. The radii are scaled to show them in a dia-
gram. The unit circle for a higher state is scaled to have a smaller
radius.

up to a constant factor, wherg(x)=V;, x=(2j—1)/2Q.
The squared amplitude of the wave function is given by th
inverse chord distance. The recursion relatigi;|?
= | W 5| 2sin? m(j — 2)/QY/sin? m(j — 1)/Q] obtained from Eq.
(6.6) has played a key role in the derivatidh.

We can also calculate the finite-size correction near the

edgex~o orx=~1 for Q—o. As shown in Appendix C, it is pj:Ni|‘I’j|2y (6.10
given by k
Qk
2= e Ne=2, |Wi|2 6.1
[ 0x01 ) 2= C) o 6.9 =2 ¥ (6.11

Next, we define a Lebesgue measlref each site as
| 2 |
1 71+ 1/4 1
ch==(1+ll (kﬂ) ( )
k=1

BEEEETZI S 1 61
(6.9) k—Q_k- (6.12
where C(0)=m/4=0.78539 . ., C(1)=5/16  Fromp; andl, the singularity of the probability measure is
=0.98174.., C(2)=81m/256=0.99402.., .., since represented by an exponemt as

sing=21;_,(1-Z2/K°7?), ;_,(1—1/4?*)=2/m. So the

finite-size correction facto€(l) converges to unity very rap- _q

idly and Eq.(6.7) is quite accurate even for smdll. The pi=1l (6.13

norm of the wave function is @+ const and unnormaliz- .

able, characteristic to a critical wave function. In Fig. 5, theLet_ Qk(a)qa be _the number of sites, the val_ue af o_f
which lies in the interval a,a+da]. One exploits the dis-

amplitudes of the analytic wave functions, normalized by the ", ™. .
peak heights, are shown for several value€of tribution Q) («) to characterize the nature of the wave func-

; ; ion. Sinc increases exponentially &dncreases, so does
Next let us _d|scuss the case ywth golden-mean flux. W% It is i(glt(ural o introdl,l?ce the er):tro functis{a),
plot the analytic result$6.6) in Fig. 6 for a sequence of 'k Py '

rational fluxes converging to 4/ One can easily recognize defined by
the self-similar behavior of the wave function. Each peak

branches into three peaks in the next stage. Presumably, ) 1
these are the reflection of the self-similar distribution of the S(a)=lim S(a)=lim InQy(a), (6.14
roots, Eq.(5.3. k—o0 k— o0

; 1940 } . ) )
. We have performed a multifractal _anal;}‘s‘i%_ to inves or the functionf(«) to characterize the wave function:
tigate the nature of the wave functions. This is useful to

distinguish critical wave functions from extended wave func-

tions. The results for critical wave functions reveal multifrac- S(a)

tal properties. Let us consider &th generation fla)= e ' (6.19
Q=Qx=Fg3;1. First, we define a probability measupg

(2;pj=1) of the wave function as where
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12

4

2

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

3-rd band 18-th band

-1 -0.7% -0.5 -0.25 O

0.25 0.5 0.75%

D+

12 FIG. 10. Approximated distri-
10 bution functions of the roots of the
Bethe ansatz equations with
P=1 and Q=41 for mid-band
points in(a) the highest bandb)

4 the 3rd;(c) the 10th;(d) the 15th;
(e) the 18th; andf) the 21st band,

: which is the central ban@vith the

-1 -0.75 -0.5 -0.25 © 0.25 0.5 0.75 1

10-th band

-1 -0.75 -0.5 -0.25 0

21-st (center) band 12

mid-band pointE=0).

0.25 0.5 0.75

f«n

10

-1 -0.7% -0.5 -0.25 ¢

0.25 0.5

0.75 1

) 1
e=lime=—Ilim <Inl,.

K (6.1

k— o0 k—o0

Thus, we have)(a)~I, ¥,
To calculatef (), let us define the partition function

Qxk Qk
Zi(n)=2, pj=2 1, "%, (6.17)
i=1 i=1
Then one obtain$(«)=Ilim,_,..f (a) from
1
Gk(r)=EInZk(r), (6.18
= 1 d G 6.1
=T dr k(r), (6.19
1
fk(a)ZE—Gk(r)-Ha. (6.20
k

-1 -0.75 -0.5 -0.25 O

0.25 0.5 0.75 1

0

function, the maximunf(a)=1 of which is ata= ay# 1,

the wave function is critical in between the extended and
localized cases. We have performed the above multifractal
analysis?® Here, we stress the importance of the finite-size
effects. In order to have a reliabf¢«), one must perform
extrapolations of the finite-size dafd.(«) obtained from a
finite system is different from the tru&«) (Refs. 8 and
21).] We have done such calculations. The results are shown
in Fig. 7 for the golden-mean flux. It gives a smodifw).

This clearly shows that this wave function is multifractal and
critical. We note the striking resemblance of these wave
functions to that of the d quasicrystal Fibonacci lattice at
the center of the spectruffi The latter was obtained exactly
by a different method anéi(«) is obtained analyticall§*

VII. NUMERICAL SOLUTIONS
FOR MID-BAND POINTS E#0

For mid-band points other thae=0, we have not been
able to obtain analytic results. A natural thought is to try a

The maximum off («) gives the Hausdorff dimension of the numerical approach. However, the Bethe ansatz equations
Lebegue measure, so it is always one in the present casese high-degree algebraic equations of many variables and a
The nature of the wave functions is characterized by thelirect attack would be extremely difficult even numerically.
function f(a) as follows: When the wave function is ex- Again, we have found that information on the quantum

tended, sites witlp;~I, dominate, sd(a¢=1) ata=1. On
the other hand, for a localized wave functidife) consists
of two points ata=0 anda=«. Whenf(«) is a continuous

group can be exploited to reduce the difficulty. Instead of
solving the Bethe ansatz equatio®9) directly, we con-
struct a polynomial{)(z) for a mid-band energg!) by
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(a) (b)
2.

1.

i 0.5

0 *—o—ojo—o * 0

» -0.5

[ ]

-1

-2
- - s - - _1 0.5 0 0.5 1
(c) (d)
[ ] L ]
P *

0.5 . 0.5

0 0

0.5 . -0.5

4 [ J
-1 e -1
[ ] ®
-1 05 0 0.5 1 _1 0.5 0 0.5 1

FIG. 11. The roots of the Bethe ansatz equations With55 andQ =89 for mid-band states ita) the highest bandb) the 22nd(c) the
30th, and(d) the 34th band.

Q-1 unit circle. We conjecture that all roots of the Bethe Ansatz
vi(z)= > vWz™ (7.1)  equations are on the unit circle whex= 1/Q with oddQ. In
m=0 Fig. 8, we present results for several mid-band points with
. . o o Q=61. In Fig. 9, all roots folQ=41 are shown. We notice
where[v{’,... 8. ,]"is given by thejth eigenvector of the  that for the highest energy band, the roots are on the right
QX Q tridiagonal matrixHy . The roots of the Bethe ansatz half of the unit circle and it is almost uniformly distributed
equations are given by the roots of this one-variable polynotthough not exactly for finiteQ). For the second highest
mial. Since theHys is real symmetric\V!(z) is a real poly-  band, one root appears on the left semicifalez= —1). For
nomial. Thus, the roots can be obtained by the traditionathe third highest band, one more root appears on the left, and
numerical techniques. so on. In this way, each time as the ordinal number of the
Let us consider the cases with=1 first. We have calcu- band(from the top decreases by one, one of the roots of the
lated the roots of the Bethe ansatz equations for a large nunBethe ansatz equations for the mid-band point moves from
ber of different odd-number values @. All roots are on the the right semicircle to the left. We have also calculated the
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distribution function of roots. For a finit§, we define an present the results in Fig. 11. The roots of the Bethe ansatz

approximate distribution functlop () as equations are no longer on the unit circle.
Q-1
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T T APPENDIX AL THE STRUCTURE FACTOR

. . . OF THE BETHE ANSATZ ROOTS
z==*i, which we have seen is true for the stateEat 0.
To get an impression for what happens in the cases with Here we derive Eq(5.6) and Eq.(5.7). Using Eq.(5.2),

P+#1, we chooseP=55 and Q=89 as an example and one obtains

[ o0 Q 1
SQ(k):,Z eikj”SQ(j) E E [eik{2Q1+2Pm+ (12(Q~1P)} 4 gik{2Q1-2Pm+(Q+P)/2}]
j=—

|=—0w m=1

_ 2 i 2kQl ooy el QP2

o iPk(Q—1) _ a—iPk(Q-1)
1-e 1-e gl(Q—3P)ki2
———— —

1= 1-e 1-e'°P

_2Q21 ( 27-rr’) SinP(Q—1)k/2
20 sinPk

. 1
e'Qk2p cos; PQk. (A1)
r’'=0
The structure factor is a sum éffunctions, but the amplitude of the peaks has a nontrivial feature=%=r'/2Q, we have

Q—-1, r'=0
. (=)
sinP(Q—1)k/2 : 1 _—
T T T lQkeR = P ' r'=2r#0
sinPk € 2 CO% PQk cosr—<r "2
Q
0, otherwise.

This leads to Eq(5.6) and Eq.(5.7). In the latter, coBK/2 is a smooth function df e (— #, 7], whenP is finite. It, however,
oscillates wildly whenP— o, corresponding to an irrational flux.

APPENDIX B: EXPLICIT WAVE FUNCTIONS IN CLOSED FORM

From the explicit solution to the Bethe ansatz equations#ferl/Q, the wave function at sitg¢ can be written as

(Q—1)12 (Q—1)/2
l,bj: H (qj 2m 1/2)(qj 2m+1/2):q(Q*l)J H (1— 2m 1/2— j)(qj 2m+1/271)
m=1 m=1
=(—a) (19%71;0%) o-12(ia 3507 2) (g 1)2- (B1)

The two sequences of roots that we have discussed before immediately lead to

(Q-1)/2
P=q @V ] (1—ex+2w—{P(2m—J)+(Q P/2}D(1—ex+2w—{P( 2m—J)+(Q+P)/2}D. (B2)

m=1

Let us definel; by
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1
PJ,=5(Q—=P) (mod 2), (B3)
thenP(J;+1)=%(Q+P) (mod 2Q) and #;=0, for j=2m+J;, —2m+J;+1,[m=1,...(Q—1)/2]. Thus, we have

gi=0 for j=2m or —2m+1[m=1,.(Q—-1)/2], (B4)

Wherej_=j —J;.

Now let us consider the amplitude of the wave function. Apparehify,= | ,o|. However, 2) is not the smallest
period. Actually, the smallest period @, becausgzn,}={z;}. Thus, we definé by j=21—1 and consider(l)=¢j_ _1
[[=J1+21-1,1=1,2,...,Q+1)/2]. Then, the squared amplitude is

(Q-1)/2

, P P 2 _ P P 2
(1) |2= rrll_:[1 1—exp{|2w[ﬁ(2m—1)—6(l—l)] 1—ex+2w(ﬁ(—2m)—6(|—1)H (B5)
(Q—1)/2
— Hl (1_q72(|71)q2m71)(1_q2(|71)q7(2m71))(1_q72(|71)q72m)(1_q2(|71)q2m). (BG)

Let us first considefy(l)| for |=1. Denoting
Si={2m—1|m=1,...(Q-1)/2={1,3,...Q—4,Q—2},
S,={—(2m—-1)|m=1,...(Q-1)/2}={-1,-3,...,—(Q—4),—(Q—2)}={Q+2,Q+4...,.0—-3,20—1} (mod 2Q),
S;={—-2mm=1,...(Q-1)/2={-2,—4,...~(Q—3),- (Q-1)}={Q+10Q0+3....Q-4,20-2} (mod ),

S,={2mim=1,...(Q—1)/2}={2,4,...(Q—3),(Q- 1)},

we have
S=S,US,US;uS,={mm=1,...,Q\{0,Q} (mod 2Q). (B7)
SinceP and 2Q are mutually primeS is invariant under a multiplication bl (mod 2Q). This leads to
(Q-1)12 22Q_
7— 2m-1 7— —(2m-1) 7— —-2m 7— 2my 7— ei271-(m/2Q) — . BS
Il (z-a*)(z-q Ne—ame-am= I =Dz ©®
In a limit z— 1, we have
lW(D?=Q, (B9)
which is independent of.
In order to obtain the other amplitudes, we use the recursion relation, which is obtained frdB6E(Q.
1_q72(lfl)fl 1_q2(lfl)+l 1_q72(lfl)7(Q+1) 1_q2(lfl)+(Q+1)
|¢’(|+1)|2:|‘//(|)|2 A 20-DFQ-2 7 _~2(-1)-Q+2 _4-20-D)-2 — 20— +2
1-q 1-q 1-q 1-q
P 2
S|n776(2I -1)
=l ———| - (B10)
sinm 2|
"Q
|
From this we have Now fix P=1 and take the larg® limit. The continuum
coordinatex,; and the square amplitudes are defined by
) [21-1]4!1)?
lp(1+1)[*=Q T2 | (B11) Xp-1=(1-$Ax [I=1,..(Q+1)/2], (B12

where [2n] ! =[2][4]q---[2n]y and [2n—1]4!!

=[1]4[3]q- - -[2n—1],. Ax=

2 B13
) (B13)
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N(xy-1)=|y(1)|% (B14)

In the largeQ limit, x is in the interval (0,1). Taking Eq.
(B10) up to the first order imx, we get

d .
&Inn(x)= — &In sinmX. (B15)
Thus,
B 2xC B16
N0 = Gy’ (B16)

whereC is a constant. The coefficie@ is determined by
considering =0(1)<Q:

YASUHIRO HATSUGAI, MAHITO KOHMOTO, AND YONG-SHI WU

. 2 P ( . l)

I sinl2r—|j—= [ . 2

Q 2 [2]—1]
(1) =QI[ | ———%—|=ll ( S -

)= sin27-rEj = [21]q

Q

(B17)

APPENDIX C: THE FINITE-SIZE CORRECTIONS

FOR LARGE Q

We derive the finite size corrections near the edges of the
wave function forP=1 andE=0. We write the amplitude as
| (Xp1+1) = C(1) 2/sinmxyy 1, Where Xy, =(1+1/4)20Q.
The finite-size correctio€(l) near the edge is given by

1 ([20-1]g1\% 27 | (k=12 w
1 oo 2ol o] s o]l (%] ggas aie-o)
CO=plW0alsinme 0=y 1o ) ak-1)2ke1) w2+ 12, 1 €
z@+ 0l 5 T TF 1) (1_W)’

wherel is large but finite, and)— o, so thatl/Q—0.
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