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Monte Carlo simulations of the charged boson fluid atT =0
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The diffusion Monte CarldDMC) method is used to analyze various properties of the three-dimensional
plasma of charged bosons in the homogeneous fluid regime, over the density fange160 extending from
the so-called uniform limiti(;<<1) to the crystalline phase {>160). The data on the static density response
function y(k) extend to intermediate and high wave numbéhne work of Sugiyama, Bowen, and Alddé?hys.
Rev. B46, 13 042(1992] and allow us to extract the static local-field fac®(k) for exchange and correla-
tion. The DMC results for the momentum distributinfk) show that the condensate fraction decreases with
increasing coupling strength from 83% rat=1 to less than 1% at;=160. We also present results for the
ground-state energfg(rs) and for the structure factaB(k). The results forEgy(rg), n(k), and x(k) are
summarized in analytic interpolation formulas embodying the known asymptotic behaviors. A rigorous upper
bound on the plasmon dispersion curve is obtained from the DMC data through a sum-rule argument.

[. INTRODUCTION zation atr4=160. This scenario parallels the behavior shown
by the fluid of charged fermions.

The fluid of pointlike spinless charged bosons embedded More recently, the static dielectric functiog(k,0) has
in a uniform neutralizing background has drawn some attenbeen directly determined by Monte Carlo methd¥Bata on
tion in the literature as a model in quantum statistical methe pair distribution functiory(r) are also availabl&’
chanics having a close relationship with the physically more The main purpose of this work is to present extensive
relevant fermionic gas of electrofs’ Its role as a primitive  results on the static dielectric function, which has been stud-
model for the theory of superconductivity was pointed out inied earlier in a very limited range of wave numbers, and on
the early days by Schafrdttand has recently attracted re- the momentum distribution, for which the only published
newed interest in connection with ceramic superconductingesults have come from variational Monte Catln addi-
materials> The charged boson fluid may also have astrotion, we present structural and thermodynamic data over a
physical relevance in relation to cores of white dwarf starswvide range of densities.
consisting of pressure-ionized helitm.

On the theoretical side, early evaluations of the ground-
state energy and the spectrum of elementary excitations in
the high-density limit-° were followed by variational calcu- Diffusion Monte Carlo(DMC) is a well established tech-
lations of the ground state over a wide rangergfusing  nique for studying static ground-state properties of quantum
Jastrow wave functiors®!%! The hypernetted-chain ap- many-body systems. Its appeal lies in that it yielbact
proximation in the Jastrow theory has been used by Saarelapredictions for a number of quantities, subject only to known
to evaluate the static linear density response function astatistical errors. In particular, bosonic ground-state energies
T=0. Hore and Franké&t had earlier given a full analytic and derived quantities are exact. Other properties, such as the
evaluation of the dynamic dielectric functiarfk,w) of the  structure factor and the momentum distribution, though bi-
fluid at arbitrary temperature within the random phase apased by a trial wave function introduced for computational
proximation (RPA). This approximation appears to be par- convenience, are nevertheless extremely accurate provided
ticularly restrictive for the fluid of interacting bosons at zero the trial function is a good approximation to the true ground
temperature, where the ideal boson gas is fully condensed state. We refer to the literatf&?! for the details of the
the zero-momentum state. The role of correlations beyondhethod. Here we only summarize a few essential notions
the RPA has been explored by Caparica and Hiplismd ~ with the aim of characterizing the accuracy of the results to
by Gold® within the so-called STLSSingwi-Tosi-Land- be presented in the later sections.

Sjolande) approximation as proposed earlier for the electron The DMC procedure basically simulates the Sclimger
fluid. A more extensive study of exchange and correlatiorequation in imaginary time for a system Nf particles as a
has been given by Conti, Chiofalo, and T&5i. diffusion equation, yielding a set of configuratio&;}

Quantum Monte Carlo studies of the boson ground-statsampled from the mixed distributiop(R)=®y(R)¥(R)/
energy'*’ have revealed three distinct physical regimes, de{dR®(R) ¥ (R). Here®d, is the exact bosonic ground state
pending on the dimensionless length parametetr,/ag, and ¥ is an explicitly known positive trial function, intro-
where rq is related to the particle number densipyby  duced to improve computational efficiency through impor-
ro=(4mp/3)~ 2 and a, is the Bohr radius. The fluid at tance sampling. B\R we denote the coordinates, . . . fy
r«<1 is a weakly coupled gas. The role of correlations in-of all the particles. The configurations sampled from the
creases with decreasing density, leading to a stronglynixed distributionp(R) allow the evaluation of mixed ex-
coupled liquid which eventually undergoes Wigner crystalli- pectation values of quantum operators,

II. METHOD
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(DolAW) 1M where A o= (¥ |A|W)/(¥|¥) is obtained by an indepen-
L T MZ AL(R), (2D dent VMC simulatiorf* The difference between the extrapo-
0 =1 lated estimator and the true ground-state expectation value
whereA, (R) =AW (R)/¥(R). (Po|A| Do)/ (Po|Pp) is of second order ins, with
tonian. The quantity to be averaged, called the local energy$ of first order iné. _ _
reads explicitly Quantities which can be routinely computed by this
scheme includdi) kinetic and potential energies obtained
HW(R) 52 [N from the corresponding terms in the local enef@y,the pair
= = 2 distribution function,
A (R) TR Zm{; ViAn¥(R)
1
N 2
ry=——2, (o(|ri—r;—r|)), (2.3
+ X ViIn®(R) | |+ vollri—1), o Npgj< (Iri=ry=rh)
i=1 <]
22 and (i) the one-body density matrix
v(r) being the Coulomb potential. By averaging the local n(r):<\1'(r1, i) > (2.4)
energy one obtains an estimate of the ground-state energy, W(ry, oo fivefn)

which is subject only to a known statistical error.
The statistical uncertainty comes about because of the f
nite numberM of configurations in the sampling. It can be

made arbitrarily small for sufficiently long runs provided (2.4) can be chosen either by taking fixed increments along a

';68%)083& a flnge Ivarlance. (.?tur runsfl_éyplt_:ally consist l;)f prescribed direction or randomly in the simulation box. The
: onte Carlo moves after equilibration, & move bey,, methods give more accurate results at small and large
ing an attempt to displace simultaneously all the particle

%espectively In particular the former gives a precise value for
followed by a Metropolis test? The trial function is of the ture oh(r) atr —0. Thi : ful check of
pair product(Jastrowy form ‘If(R)=exp[—2i<ju(|ri—rj|)], e curvature of(r) atr=0. This provides a useful check o

i . . internal consistency for the simulation, as the kinetic energy,
‘é";h u(r) the RPA pseudopotential chosen according to Refynich is also calculated directly, is proportional to

2 2 ;
. . . L . . . n(r)/dr<|,—,. By Fourier transform of the one- n-
The imaginary time evolution in the simulation, i.e., thed (r)/dr?,_. By Fourier transform of the one-body de

Monte Carl . ted b hort ti .~ sity matrix one obtains the momentum distributiogk).
vionte £.arlo move, 1S generated by a short ime approximas;q quantity can also be computed directly at reciprocal
tion of the many-body Green function: this causes a finit

. L T Sattice vectors of the simulation box by
time step error, which in principle can be extrapolated out by

doing simulations with various time steps. In practice we

have used a very small time stgpanging from 0.015 n(k)=<exp(—ik-r)
Ry ! forr,=1 to 45 Ry ! for r¢= 160) and verified that the 2.5
time step effect is not larger than the statistical error for the '
guantities we measure. Herer is a random displacement, and the averdge.)

Of course, simulations can only include a finite number ofextends ta. We also average ovérvectors of equal length.
particles. The infinite system is represented\bparticles in Among the quantities to be discussed in the following
a cubic box of sidd = (N/p)Y® with periodic boundary con- sections, the extrapolated estimatée) of the kinetic en-
ditions, and the Coulomb interactions are treated by theergy has the largest error compared to statistical noise. For
Ewald technique, which splits the potential in a short-rangédnstance, using the pair product trial function we get
part to be computed exactly in real space and a long-rangge)=0.000 472(1) atr¢ =160, which is as much as 10%
part to be represented tyspace sum&?The accuracy of off the exact value of 0.000517 as derived from the total
the procedure depends on tkespace cutoff and on the par- energy via the virial theorerfsee Sec. Il A. The bias on the
ticular choice for the splitting of the original potential. We extrapolated estimators can be reduced using better trial
have performed simulations with 200 particles, using 20 starfunctions: for the case of 64 particles mt=160, we have
of the reciprocal lattice vectors of the simulation box and theoptimized numerically a trial function with both pair and
calculated Madelung constant is accurate to 1 part irriplet correlations. This improvement brings into agreement
2x10°. Ewald sums have been used to compute the pseuddhe extrapolated estimator of the kinetic energy with the ex-
potentialu(r) as well. We have corrected for the remaining act value. However, in this paper we are concerned mainly
size effect on the energy by assuming with the dielectric response and the momentum distribution.
E()=E(N)+A(rg)/N, whereA(r,) is determined by fit- The former is not affected by the choice of the trial function
ting variational Monte Carl¢VMC) energie& obtained with  because it is computed from total energies as we explain
different numbers of particles, ranging from 27 to 3@dis  shortly, and the latter does not change appreciably in going
procedure assumes that the size effect is the same in VM® the better wave function in the case mentioned above. For

In these equationé. . .) denotes the average over the con-
hgurations{Ri} sampled either fromb,¥ or from W2 (in
DMC and VMC, respectively The displacement in Eq.

W(ry, ... r+r,...ry)
W(ry, .. iy ofN)

and DMQ. this reason we have used the simple pair trial function with
In the case of operators not havidy, as an eigenstate an RPA pseudopotential in all our simulations.
(all but the Hamiltonian in the present contgxive have The calculation of the static dielectric responsigk,0)

calculated theextrapolated estimator &= 2Amix— Avars follows a somewhat different procedure'® We obtain
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At variance with other simulations performed in this

A B B L work, for the very time-consuming calculation efk,0) we
y= 01 / have used only 64 particles. Size effects on the energy dif-
/ ference between the homogeneous and the modulated system
3 /b have been shown to be very small in Ref. 18.

For the modulated systems the trial function is multiplied
by a one-body factofl;exd —vycosk-r;)], where the am-
plitude y of the density modulation is determined by varia-
tional minimization. We show in Fig. 1 the external field
strengthuv for which y=0.1 is the optimal parameter. For
larger ¢ andkry~4 the RPA prediction used in Ref. 18 is far
off the result of variational minimization. In principle, DMC
should give the exact energy irrespective of trial function.
However, a poor choice of may give extremely slow con-
vergence to the exact result.
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FIG. 1. External field strength, for which the optimal value of A. Ground-state energy

the variational parameter in the one-body factoryis 0.1, for The ground-state energy at several densities is listed in
r<=10 (dashed line and circlgsand r =160 (full line and dot. ~ Table I. These results are in fair agreement with the DMC
The curves represent the RPA prediction, while the points are theesults of Ceperley and Aldé?,though somewhat higher at
result of variational minimization. smallrg. This small discrepancy is presumably due to dif-
ferences in the size extrapolation. For high density this is an
€(k,0) from the static linear density response functigik)  important correction, being as large as 0.008 74 Ry for the
via the relationship ¥(k,0)=1+v.(k)x(k), where system ofN=200 particles at,=1. There may also be dif-
ve(k)=4me?/k® is the Coulomb coupling. In evaluating ferences in the convergence of the Ewald sums, discussed in
x(k) one perturbs the otherwise homogeneous many-bodghe previous section. In the same Table we also compare our

system with a static external potential data with those reported by Hansen and MaZigirid with
those obtained through a self-consistent approach to dielec-
Vexd 1) = 2vcogKk-r). (2.6 tric screeningSTLS).**®Both of them are very close to the

. . . . ., exact(DMC) result. The variational results of Hansen and
This induces a modulatl_on of the density with respect to 'tST\/Iazighi do not provide an upper bound on the energy in the
me?nl valuhgphand ‘E Sh'f.tttOf the ground-state energy perthermodynamic limit because they have been computed with
particle, which can be written as 128 particles without size extrapolation. In fact they are
higher than our data &i=128 but at smalt lie below our

(3) _ s
X(k)v§+ XKk, k)v‘k‘+ ..., (2.7  size-extrapolated values.

4p We have found that the following interpolation formula
for E4(rg) can reproduce both the correct asymptotic behav-
iors and the DMC data:

EU: Eo+

with x® the cubic response function. DMC allows one to
evaluateE, for givenk andv, and by performing simula-
tions at a few coupling strengthg one can extrack (k) as
well as higher-order response functions from the calculated Eg(rs)= —{a1r21+ a2r22+[a3+ aéln(rs)]r:3+ a4r24}c.
E, by fitting in powers ofv, . 3.0

TABLE I. Ground-state energf, from DMC simulations compared with the results by Ceperley and
Alder (Ref. 17 (CA), with the variational results by Hansen and MazigRef. 3 (HM) and with STLS
results(Refs. 14 and 1pat differentr. All values are in Rydberg; the digits in parentheses represent the
error bar in the last decimal place. We also give the kinetic enékgy and the inverse compressibility
1/pK; as obtained from Eq3.1).

s Eq CA HM STLS (ke) LpK
1 —0.776 64(5) - —~0.7810 —0.771240 0.175264 —0.250 743
2 —0.451 92(3) —0.4531(1) —~0.4547 —0.447180 0.095202 —0.148 866
5 —~0.216420(12) —0.21663(6) —0.2170 —0.212895 0.038981 —0.074 351
10 —-0.121353(5) —0.12150(3) —0.1216 —0.118800 0.018 256 —0.043501
20 —0.066 639(4)  —0.06666(2) —0.06667 —0.064864 0.007999 —0.024 970
50 —~0.029276(3)  —0.02927(1) - ~0.028220 0.002509 —0.011532
100  —0.0154145(13) -0.015427(4) -0.01535 —0.014733 0.000998 —0.006 257

160 —0.009 9046(13) - - - 0.000 517 —0.004 089
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TABLE Il. Parameters in Eq(3.1) as determined by a least-

squares fit with four free parameters and eight data points. =
0 ,
a,=7.085 56 by=375/56 /

a,=2.205 75 b,=417/56

a;=0.251 289 by=50/7 oL A

a,=—0.034 817 I ]

a,=0.009 236 b,=125/14 ’f L 1

c=—14/125 < .
S-ar -

The parameters in Eq3.1) have been chosen so that for L
r— 0 this formula reproduces the known limiting expression -6 -
obtained by Brakner?

8031 gl 1 1 1 PP VR IR
Eg(rs—0)=——37—+0.0280f - - -. (3.2 0 2 4 6 8 10
I's kr,
In the opposite limitr¢—oo we only impose that the expo-
nents of the two leading terms arel and —3/2, on the FIG. 2. Inverse static dielectric functionelk,0) as a function
phaS(-:z,6'27 given by Eqgs(3.5 and(3.10.
1.79186 2.65 Given the well-established fact that the compressibility of
Eg(rg—e)=— ; + =37 (3.3 the fluid of charged bosons is negative atral-0 (see also
s s Table ), Eq.(3.4) ensures that ¥(k,0) goes through a nega-

Table Il contains the final values of the parameters, which wdive minimum before approaching unity &s-. This be-
regard as satisfactory since they correspond to a reducdtvior implies overscreening of long-wavelength perturba-
¥2 of 1.2. The fit is not significantly improved if we do not tions and does not lead to an m_st_ablllty of the boson plasma,
requirec to be a “simple” rational number. owing FO the presence qf the r.|g|d background. We remark
From the equation of stat@.1) one obtains an unbiased from Fig. 2 that the minimum in &(k,0) becomes deeper
estimator(as opposed to the extrapolated estimafor the ~ With decreasing density and its location approadigs=4,
kinetic energy via the virial theorem(ke)=—d(rEg)/ in approximate correspondence with the first star of recipro-

drs. The kinetic energy and the inverse compressibilitycal lattice vectors in the Wigner crystal. _

UpK1=—r*d[(E,+(ke))/(9r3)]/dr, are also listed in From the DMC data om(k,0) we have obtained the static

Table | ° ’ s local-field factorG(k) for exchange and correlation, using
' the relatioR®

B. Dielectric response 4e?
Our results on the static dielectric functiartk,0) are k2 Xo(K)
shown in Fig. 2. At lowk our data are consistent with the e(k,0)=1~- yp= : (3.9
compressibility sum rule, 1+G(k)v)(o(k)
47re? : i ibili i
€(K—0,0)= = p?K . (3.4 \év:SereXO(k) is the static susceptibility of the ideal boson

TABLE IIl. DMC results for the static local-field factoB(k) at differentr. The digits in parentheses
represent the error bar in the last decimal place.

krg rs=10 rs=20 rs=>50 rs=100 rs=160
1.9489 0.291) 0.363) 0.285) 0.382) 0.504)
2.9233 0.711) 0.731) 0.751) 0.741) 0.7828)
3.5134 - - 1.0065) 0.99719) 0.9731)
3.8978 1.181) 1.21(2) 1.1445) 1.1073) 1.0801)
4.1342 - - 1.1947) 1.1483) 1.1192)
4.8722 1.58) 1.471) 1.3547) 1.2106) 1.1346)
5.8467 1.817) 1.542) 1.263) 1.1617) 1.1388)
6.8211 2.01) 1.533) 1.305) 1.222) 1.172)
7.7956 241 1.848) 1.446) 1.534) 1.492)

8.7700 2.%2) 2.1(1) 1.8(1) - 1.7595)
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FIG. 3. Fitted form of the static local-field fact@(k) at dif-
ferentry.

2m
XO(k):_ZP?Z- (3.6)

The function G(k) is closely related to the exchange-
correlation factorf (k) entering density functional theory in

the linear response approximation. In factref/k?G(k)
=—f,.(K), where the Fourier transform df,. is defined
through the exchange and correlation energy functional,

R =

fxc(|r_r/|):[W (3.7

Po
The lowk behaviorG(k—0)=—k?/(4me®p?K+) is deter-

mined by the compressibility sum rule in E&.4), while the
highk limit is given by?®

) _4(ke) K 16(ke&®) 16(ke)?
Gk =3z am 5 W3 9 W
2
+3[1-9(0)]. 39
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over from the lowk to the highk behavior and can be inter-
polated with a one-parameter fit to the simple function

G(k) (kro)z)”
(krg)® b

with a, b, andc given by the asymptotic expressions. Our
data for charged bosons are consistent with this picture at
r<=10, but at lower densitie§s(k) develops a structure
aroundkry=4. Possibly neglecting fine details at very large
k of presently unclear relevance, our DMC local-field factor
is adequately described by simply adding a Gaussian term to
the above expression, namely,

2\n]—1n
(a—c)“+((k[j°) ) }

(k—ko)?r}
+Cc+ dexp ——20_2—.

—1in

(a—c) "+ +c,

(3.9

G(k)

(kro)z_

(3.10

Fitting this four-parameter expression to the DMC data re-
sults in the curves shown in Figs. 2 and 3, with the values of
the parameters given in Table IV.

We remark that akry=4 the structure seen in Fig. 3 for
G(k) in the low density regime is not peculiar to the boson
fluid. Unpublished data for the polarized electron gas at crys-
tallization density exhibit a similar behavior in both two and
three dimensiong!

Finally, in Fig. 4 we compare our data f@(k)/k? at
r<=10 with its asymptotic behaviors and with the values
obtained from the results of Sugiyama, Bowen, and Alfer.
Their result ak=2 is compatible with ours within statistical
errors. The situation at;=100 is completely similar. Figure
4 also shows the results of approximate theories, obtained
from the Jastrow approathand from the self-consistent VS
approach to dielectric screenif§The VS curve from Ref.

16 incorporates the correct long-wavelength behavior, but is
not quantitatively correct at higher wave number. The varia-
tional calculation by Saaref&,which incorporates both as-
ymptotic behaviors, is in remarkably good agreement with
our DMC data at all wave numbers considered.

C. Momentum distribution

As mentioned in Sec. |l we have obtained DMC data for

In Eq. (3.8), (ke) and(ke?) are the average kinetic energy n(k) corresponding to values &fon the reciprocal lattice of
(see Sec. Il Aand the average square kinetic energy, whichthe simulation box and for its Fourier transform(r). Some
is determined by the fourth moment of the momentum dis-of these results are shown in Figs. 5 and 6. We have collected

tribution. Our DMC results forG(k) at various values of

rs are reported in Table Ill.
For charged fermions in the density range2,<10 the

this information in a fitting formula incorporating the known

asymptotic behaviors.
At high k the tail of the momentum distribution(k) is

DMC results onG(k) (Ref. 30 show a very smooth cross- given by the cusp conditidh

TABLE IV. Values of the fit parameter for the static local-field fac®tk), after Eq.(3.10.

rs a b c d n kro o

10 0.071 85 0.958 64 0.020 274 0.012 929 3.057 3.666 36 1.498 06
20 0.080 61 0.955 23 0.017 769 0.037 192 0.7825 3.46374 1.504 38
50 0.084 26 0.977 56 0.013 933 0.048 478 0.5435 2.988 19 1.779 83
100 0.101 35 1.029 61 0.011 078 0.037 348 0.7333 3.096 35 1.37273
160 0.108 78 1.016 62 0.009 191 0.026 138 0.9670 3.317 96 1.093 57
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FIG. 6. DMC data and fitted expression for the one-body density
matrix atrg = 1, 2, 5, 10, 20, 50, 100, and 16from top to

: : 2 —
FIG. 4. Static local-field factoG (k) overk= atr =10 (crosses bottom.

with error bar$, compared with the asymptotic expressidifig|

lines), with the fit (dotted ling and with previous results by other whereny is the condensate fraction. Harmonic theory for the

authors. The circles with error bars are the values obtained from thEryStaIIine phase predicts a Gaussian momentum distribu-
data of Sugiyama, Bowen, and AldéRef. 18, the dashed line 0 qetermined by the zero-point phonon energy. We expect
gives the VS(Vashishta-Singwiresults from Ref. 16, and the dot- ¢ his pehavior should be reflected in that of the liquid

dashed line the variational calculation by Saar@t®f. 12. The close to the transition

corresponding inverse static dielectric functior(k/0) is plotted We have therefore .chosen the following expression to in-
in the inset, omitting the asymptotic behaviors and the fit and in- .
cluding the RPA curvedlong-dashed ling terpolate the DMC data:

o
9rZg(0) n(k)=(2m)°nopd°(K) + {72 273
~ 1
n(kﬂoo) W (31]) ,
a, as (k—ag)®—a3
In the opposite lowk limit n(k) diverges with a behavior @™ Tas exm - 2a5 '

given by quantum hydrodynamics: (3.13
2 Given the known values of the density and the mean kinetic
P +0(1), (3.12 energy, as well as the known asymptotic behaviors, the re-
maining parameters are determined by a least-squares fit to
the DMC data. We set the parametey equal to zero when
this choice is compatible with the datas seen fromy?
values, so that the number of fitted parameters is three or
four depending orrg. The fit was performed on both the
k-space points and their Fourier transform, the one-body
density matrix. In the fitting procedure we have included
only the values oh(r) obtained from random displacements
of particles, as mentioned in Sec. Il. In fact, the value ob-
tained by fixed increments is more accurate for smahow-
ever, in this region it basically gives the extrapolated estima-
tor of the kinetic energy, and we prefer to enforce instead the
unbiased estimator dke) of Sec. Il A. In order to give the
same weight to real space and to reciprocal space the func-
tion we minimized was the sum of the two reducgdval-
ues, which were in the range from 0.3 to 2.5 forralexcept
atr,=160. Table V contains the best-fit parameters and the
resulting values oh, and(ke?).

Figure 5 shows th&-space data and the fitted curve for
rs=100, while Fig. 6 shows the resulting(r) at various

FIG. 5. DMC results for the momentum distributior(k) at  values ofrg. The r—« limiting value of n(r) gives the
r<=100, compared with the fit given by E(.13. condensate fraction.

mep| " mznow
4Kk? 64pk
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FIG. 7. Momentum distribution at various values f com- FIG. 9. Upper bound on the plasmon dispersion curve as derived

pared with Foldy’s results at,=1 (short-dashed curyeand with a  from the static susceptibility and the static structure factorr for
Maxwell distribution atr ;=160 (dashed curve We plotk?n(k) for 10, 20, 50, 100, and 160. The dashed line shows the position of the
greater clarity. minimum in the various curves.

Figure 7 shows the resulting expressions #8n(k) at  tion g(r) as given by the simulation far<L/2, with L the
various values of ;. At rg=1 the Bogoliubov curveis al-  side of the simulation box, after extending the data for
most correct, as could be expected from the fact that the>L/2 with an oscillatory, decreasing tail of the form
condensate fraction is above 80%. This is consistent with thar ~Psinc(r—ry)]. The parametera, b, ¢, andr, are fitted
usual picture of ¢— 0 as the “uniform”(or RPA) limit. With  to the higher part of the data. This procedure gives reliable
growing rg¢ the shape of the curves changes qualitativelyresults for intermediate and high but does not reproduce
with exchange effects playing a minor role at low density. Atvery well the limitk— 0 since it does not contain any nor-
the crystallization densityr(=160) less than 1% of the par- malization condition. The resultin§(k) is then smoothly
ticles are in states with occupation number larger than onenatched to the correct asymptotic behavior kor:0, the
and the resulting momentum distribution is similar to theresult being shown in Fig. 8. A strong peakkat=4 devel-
Maxwell-Boltzmann distribution taken at a fictituous tem- ops as the crystallization density is approached.

perature given byke)= 3/2kgT. The statistical errors i®(k) are estimated to be less than
1%, smaller than the systematic errors coming from the use
D. Structure factor of extrapolated estimatorésee Sec. )l and from the tail

added tog(r). The final precision can be estimated to be of

The static structure fact@(k) has been obtained by Fou-
a few percent.

rier transforming the DMC data on the pair distribution func-

E. An upper bound on the plasmon dispersion curve

a 1 The so-called sum-rules approach has given useful infor-
— mation on excitations in liquidHe3* A first application of

1 this method to the boson plasma has led to the rigorous con-
1 clusion that the leading dispersion coefficient of the plasmon
excitation is negative for all values of>0.3° In this section

we display a rigorous upper bound on the whole plasmon
J dispersion curve, from our simulation results gtk) and

. S(k).

1 We define the moments of the frequency-dependent den-
sity response function as

S(k)

j 5
i m, (k)= — ;f Imy(k,w)w"dw. (3.19
] 0
o 5 4 6 é R If o™ is the energy of the lowest eigenstate excited by the
kr, operatorp,= S qalaq. k., the following relation holds®
FIG. 8. Static structure fact@(k) as a function okrq for rg = min_ Mo(K) __ 2pS(k) (3.15

1,2, 5, 10, 20, 50, 100, and 160. YT mak T xk)
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TABLE V. Fitted values for the parameters in E§.13).

re 1 2 5 10 20 50 100 160

No 0.827  0.722 0.542 0.359 0.206 0.053 0.0104 0.004
(ke?) 0745 0115 0.00863 0.00122 0.000167 ka4 °> 2.05x10°° 4.72x10°7
ag 3.8 8.64 12.4 - - - - -

a, 1.45 1.75 2.6 - - - - -

a, 1.03 1.12 1.3 1.1 1.07 1.5 2.59 2.35
as - - 0.105 1.3 1.57 0.754 -3.03 -0.77
a, 0.264  0.531 0.902 0.938 0.693 0.325 0.0901 0.0438
as 0.153  0.267 0.422 -0.334 -0.247 0.412 0.245 0.132
ag -0.028 -0.0481 -0.0817 0.0615  0.0639 0.165 0.919 0.417

The value of the upper bound in E®.15 has been obtained results for the static density response function cover the rel-
by using the fluctuation-dissipation theorem and theevant region of wave numbers and show significant changes
Kramers-Kronig relations. This upper bound becomes ain the response as the fluid approaches crystallization den-
equality when the spectrum consists of a single pole, i.e., fogity. An analytical interpolation of these data has also been
k—0. given. Similar features emerge from the data on the structure
Figure 9 displays the upper bound of £g§.15 at various  factor. The shape of the momentum distribution changes sig-
values ofrg. In the case of liquid*He direct comparison nificantly in the evolution of the system from the uniform
with experimental daf4 shows that, while the Feynman re- limit (r,<1) to the strongly coupled fluid regime
sult is about a factor of 2 higher than the roton minimum, the(r ;~160), paralleling the decrease of the condensate fraction
bound given by Eq(3.15 is only 30% too high. However, from 83% to less than 1%. These data have also been sum-
as for “He one may expect that the approach of the uppemarized in an interpolation formula consistent with the
bound to the single particle recoil frequency at highis  known asymptotic behaviors. As an application we have pre-
qualitatively incorrect. sented a rigorous upper bound on the plasmon dispersion
We also notice from Fig. 9 that with increasimg the  curve, which shows the presence of a deep minimum in the
minimum in the upper bound decreases down to very lowstrong coupling regime.
frequency in approximate correspondence with the first Bril-

louin zone edge of the Wigner crystal.

IV. SUMMARY AND CONCLUDING REMARKS
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