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The diffusion Monte Carlo~DMC! method is used to analyze various properties of the three-dimensional
plasma of charged bosons in the homogeneous fluid regime, over the density range 1<r s<160 extending from
the so-called uniform limit (r s,1) to the crystalline phase (r s.160). The data on the static density response
functionx(k) extend to intermediate and high wave numberk the work of Sugiyama, Bowen, and Alder@Phys.
Rev. B46, 13 042~1992!# and allow us to extract the static local-field factorG(k) for exchange and correla-
tion. The DMC results for the momentum distributionn(k) show that the condensate fraction decreases with
increasing coupling strength from 83% atr s51 to less than 1% atr s5160. We also present results for the
ground-state energyEg(r s) and for the structure factorS(k). The results forEg(r s), n(k), and x(k) are
summarized in analytic interpolation formulas embodying the known asymptotic behaviors. A rigorous upper
bound on the plasmon dispersion curve is obtained from the DMC data through a sum-rule argument.

I. INTRODUCTION

The fluid of pointlike spinless charged bosons embedded
in a uniform neutralizing background has drawn some atten-
tion in the literature as a model in quantum statistical me-
chanics having a close relationship with the physically more
relevant fermionic gas of electrons.1–3 Its role as a primitive
model for the theory of superconductivity was pointed out in
the early days by Schafroth4 and has recently attracted re-
newed interest in connection with ceramic superconducting
materials.5 The charged boson fluid may also have astro-
physical relevance in relation to cores of white dwarf stars
consisting of pressure-ionized helium.6

On the theoretical side, early evaluations of the ground-
state energy and the spectrum of elementary excitations in
the high-density limit7–9 were followed by variational calcu-
lations of the ground state over a wide range ofr s using
Jastrow wave functions.2,3,10,11 The hypernetted-chain ap-
proximation in the Jastrow theory has been used by Saarela12

to evaluate the static linear density response function at
T50. Hore and Frankel13 had earlier given a full analytic
evaluation of the dynamic dielectric functione(k,v) of the
fluid at arbitrary temperature within the random phase ap-
proximation ~RPA!. This approximation appears to be par-
ticularly restrictive for the fluid of interacting bosons at zero
temperature, where the ideal boson gas is fully condensed in
the zero-momentum state. The role of correlations beyond
the RPA has been explored by Caparica and Hipolito14 and
by Gold15 within the so-called STLS~Singwi-Tosi-Land-
Sjölander! approximation as proposed earlier for the electron
fluid. A more extensive study of exchange and correlation
has been given by Conti, Chiofalo, and Tosi.16

Quantum Monte Carlo studies of the boson ground-state
energy3,17 have revealed three distinct physical regimes, de-
pending on the dimensionless length parameterr s5r 0 /a0 ,
where r 0 is related to the particle number densityr by
r 05(4pr/3)21/3 and a0 is the Bohr radius. The fluid at
r s!1 is a weakly coupled gas. The role of correlations in-
creases with decreasing density, leading to a strongly
coupled liquid which eventually undergoes Wigner crystalli-

zation atr s.160. This scenario parallels the behavior shown
by the fluid of charged fermions.

More recently, the static dielectric functione(k,0) has
been directly determined by Monte Carlo methods.18 Data on
the pair distribution functiong(r ) are also available.19

The main purpose of this work is to present extensive
results on the static dielectric function, which has been stud-
ied earlier in a very limited range of wave numbers, and on
the momentum distribution, for which the only published
results have come from variational Monte Carlo.3 In addi-
tion, we present structural and thermodynamic data over a
wide range of densities.

II. METHOD

Diffusion Monte Carlo~DMC! is a well established tech-
nique for studying static ground-state properties of quantum
many-body systems. Its appeal lies in that it yieldsexact
predictions for a number of quantities, subject only to known
statistical errors. In particular, bosonic ground-state energies
and derived quantities are exact. Other properties, such as the
structure factor and the momentum distribution, though bi-
ased by a trial wave function introduced for computational
convenience, are nevertheless extremely accurate provided
the trial function is a good approximation to the true ground
state. We refer to the literature20,21 for the details of the
method. Here we only summarize a few essential notions
with the aim of characterizing the accuracy of the results to
be presented in the later sections.

The DMC procedure basically simulates the Schro¨dinger
equation in imaginary time for a system ofN particles as a
diffusion equation, yielding a set of configurations$Ri%
sampled from the mixed distributionp(R)5F0(R)C(R)/
*dRF0(R)C(R). HereF0 is the exact bosonic ground state
andC is an explicitly known positive trial function, intro-
duced to improve computational efficiency through impor-
tance sampling. ByR we denote the coordinatesr1 , . . . ,rN
of all the particles. The configurations sampled from the
mixed distributionp(R) allow the evaluation of mixed ex-
pectation values of quantum operators,
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vc(r ) being the Coulomb potential. By averaging the local
energy one obtains an estimate of the ground-state energy,
which is subject only to a known statistical error.

The statistical uncertainty comes about because of the fi-
nite numberM of configurations in the sampling. It can be
made arbitrarily small for sufficiently long runs provided
AL(R) has a finite variance. Our runs typically consist of
200 000 Monte Carlo moves after equilibration, a move be-
ing an attempt to displace simultaneously all the particles
followed by a Metropolis test.20 The trial function is of the
pair product~Jastrow! form C(R)5exp@2(i,ju(ur i2r j u)#,
with u(r ) the RPA pseudopotential chosen according to Ref.
22.

The imaginary time evolution in the simulation, i.e., the
Monte Carlo move, is generated by a short time approxima-
tion of the many-body Green function: this causes a finite
time step error, which in principle can be extrapolated out by
doing simulations with various time steps. In practice we
have used a very small time step~ranging from 0.015
Ry21 for r s51 to 45 Ry21 for r s5160) and verified that the
time step effect is not larger than the statistical error for the
quantities we measure.

Of course, simulations can only include a finite number of
particles. The infinite system is represented byN particles in
a cubic box of sideL5(N/r)1/3 with periodic boundary con-
ditions, and the Coulomb interactions are treated by the
Ewald technique, which splits the potential in a short-range
part to be computed exactly in real space and a long-range
part to be represented byk-space sums.22,23The accuracy of
the procedure depends on thek-space cutoff and on the par-
ticular choice for the splitting of the original potential. We
have performed simulations with 200 particles, using 20 stars
of the reciprocal lattice vectors of the simulation box and the
calculated Madelung constant is accurate to 1 part in
23105. Ewald sums have been used to compute the pseudo-
potentialu(r ) as well. We have corrected for the remaining
size effect on the energy by assuming
E(`)5E(N)1A(r s)/N, whereA(r s) is determined by fit-
ting variational Monte Carlo~VMC! energies22 obtained with
different numbers of particles, ranging from 27 to 300~this
procedure assumes that the size effect is the same in VMC
and DMC!.

In the case of operators not havingF0 as an eigenstate
~all but the Hamiltonian in the present context!, we have
calculated theextrapolated estimator Aext52Amix2Avar,

whereAvar5^CuAuC&/^CuC& is obtained by an indepen-
dent VMC simulation.24 The difference between the extrapo-
lated estimator and the true ground-state expectation value
^F0uAuF0&/^F0uF0& is of second order ind, with
C5F01dF, whereas the bias in the mixed estimator itself
is of first order ind.

Quantities which can be routinely computed by this
scheme include~i! kinetic and potential energies obtained
from the corresponding terms in the local energy,~ii ! the pair
distribution function,

g~r !5
1

Nr(iÞ j
^d~ ur i2r j2r u!&, ~2.3!

and ~iii ! the one-body density matrix

n~r !5 K C~r1 , . . . ,r i1r , . . . ,rN!

C~r1 , . . . ,r i , . . . ,rN! L . ~2.4!

In these equationŝ. . . & denotes the average over the con-
figurations$Ri% sampled either fromF0C or from C2 ~in
DMC and VMC, respectively!. The displacementr in Eq.
~2.4! can be chosen either by taking fixed increments along a
prescribed direction or randomly in the simulation box. The
two methods give more accurate results at small and larger ,
respectively. In particular the former gives a precise value for
the curvature ofn(r ) at r50. This provides a useful check of
internal consistency for the simulation, as the kinetic energy,
which is also calculated directly, is proportional to
d2n(r )/dr2ur50 . By Fourier transform of the one-body den-
sity matrix one obtains the momentum distributionn(k).
This quantity can also be computed directly at reciprocal
lattice vectors of the simulation box by

n~k!5 K exp~2 ik•r !
C~r1 , . . . ,r i1r , . . . ,rN!

C~r1 , . . . ,r i , . . . ,rN! L .
~2.5!

Here r is a random displacement, and the average^ . . . &
extends tor . We also average overk vectors of equal length.

Among the quantities to be discussed in the following
sections, the extrapolated estimator^ke& of the kinetic en-
ergy has the largest error compared to statistical noise. For
instance, using the pair product trial function we get
^ke&50.000 472(1) atr s5160, which is as much as 10%
off the exact value of 0.000 517 as derived from the total
energy via the virial theorem~see Sec. III A!. The bias on the
extrapolated estimators can be reduced using better trial
functions: for the case of 64 particles atr s5160, we have
optimized numerically a trial function with both pair and
triplet correlations. This improvement brings into agreement
the extrapolated estimator of the kinetic energy with the ex-
act value. However, in this paper we are concerned mainly
with the dielectric response and the momentum distribution.
The former is not affected by the choice of the trial function
because it is computed from total energies as we explain
shortly, and the latter does not change appreciably in going
to the better wave function in the case mentioned above. For
this reason we have used the simple pair trial function with
an RPA pseudopotential in all our simulations.

The calculation of the static dielectric responsee(k,0)
follows a somewhat different procedure.25,18 We obtain
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e(k,0) from the static linear density response functionx(k)
via the relationship 1/e(k,0)511vc(k)x(k), where
vc(k)54pe2/k2 is the Coulomb coupling. In evaluating
x(k) one perturbs the otherwise homogeneous many-body
system with a static external potential

vext~r !52vkcos~k•r !. ~2.6!

This induces a modulation of the density with respect to its
mean valuer and a shift of the ground-state energy per
particle, which can be written as

Ev5E01
x~k!

r
vk
21

x~3!~k,k,2k!

4r
vk
41•••, ~2.7!

with x (3) the cubic response function. DMC allows one to
evaluateEv for given k and vk and by performing simula-
tions at a few coupling strengthsvk one can extractx(k) as
well as higher-order response functions from the calculated
Ev by fitting in powers ofvk .

At variance with other simulations performed in this
work, for the very time-consuming calculation ofe(k,0) we
have used only 64 particles. Size effects on the energy dif-
ference between the homogeneous and the modulated system
have been shown to be very small in Ref. 18.

For the modulated systems the trial function is multiplied
by a one-body factorP iexp@2g cos(k•r i)#, where the am-
plitude g of the density modulation is determined by varia-
tional minimization. We show in Fig. 1 the external field
strengthvk for which g50.1 is the optimal parameter. For
larger s andkr0;4 the RPA prediction used in Ref. 18 is far
off the result of variational minimization. In principle, DMC
should give the exact energy irrespective of trial function.
However, a poor choice ofg may give extremely slow con-
vergence to the exact result.

III. RESULTS

A. Ground-state energy

The ground-state energy at several densities is listed in
Table I. These results are in fair agreement with the DMC
results of Ceperley and Alder,17 though somewhat higher at
small r s . This small discrepancy is presumably due to dif-
ferences in the size extrapolation. For high density this is an
important correction, being as large as 0.008 74 Ry for the
system ofN5200 particles atr s51. There may also be dif-
ferences in the convergence of the Ewald sums, discussed in
the previous section. In the same Table we also compare our
data with those reported by Hansen and Mazighi3 and with
those obtained through a self-consistent approach to dielec-
tric screening~STLS!.14,16Both of them are very close to the
exact ~DMC! result. The variational results of Hansen and
Mazighi do not provide an upper bound on the energy in the
thermodynamic limit because they have been computed with
128 particles without size extrapolation. In fact they are
higher than our data atN5128 but at smallr s lie below our
size-extrapolated values.

We have found that the following interpolation formula
for Eg(r s) can reproduce both the correct asymptotic behav-
iors and the DMC data:

Eg~r s!52$a1r s
b11a2r s

b21@a31a38ln~r s!#r s
b31a4r s

b4%c.
~3.1!

FIG. 1. External field strengthvk for which the optimal value of
the variational parameter in the one-body factor isg50.1, for
r s510 ~dashed line and circles! and r s5160 ~full line and dots!.
The curves represent the RPA prediction, while the points are the
result of variational minimization.

TABLE I. Ground-state energyEg from DMC simulations compared with the results by Ceperley and
Alder ~Ref. 17! ~CA!, with the variational results by Hansen and Mazighi~Ref. 3! ~HM! and with STLS
results~Refs. 14 and 16! at differentr s . All values are in Rydberg; the digits in parentheses represent the
error bar in the last decimal place. We also give the kinetic energy^ke& and the inverse compressibility
1/rKT as obtained from Eq.~3.1!.

r s Eg CA HM STLS ^ke& 1/rKT

1 20.776 64(5) – 20.7810 20.771 240 0.175 264 20.250 743
2 20.451 92(3) 20.4531(1) 20.4547 20.447 180 0.095 202 20.148 866
5 20.216 420(12) 20.216 63(6) 20.2170 20.212 895 0.038 981 20.074 351
10 20.121 353(5) 20.121 50(3) 20.1216 20.118 800 0.018 256 20.043 501
20 20.066 639(4) 20.066 66(2) 20.066 67 20.064 864 0.007 999 20.024 970
50 20.029 276(3) 20.029 27(1) – 20.028 220 0.002 509 20.011 532
100 20.015 4145(13) 20.015 427(4) 20.015 35 20.014 733 0.000 998 20.006 257
160 20.009 9046(13) – – – 0.000 517 20.004 089
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The parameters in Eq.~3.1! have been chosen so that for
r s→0 this formula reproduces the known limiting expression
obtained by Bru¨ckner,8

Eg~r s→0!.2
0.8031

r s
3/4 10.02801•••. ~3.2!

In the opposite limitr s→` we only impose that the expo-
nents of the two leading terms are21 and23/2, on the
basis of the known asymptotic behavior for the crystal
phase,26,27

Eg~r s→`!.2
1.791 86

r s
1
2.65

r s
3/2 . ~3.3!

Table II contains the final values of the parameters, which we
regard as satisfactory since they correspond to a reduced
x2 of 1.2. The fit is not significantly improved if we do not
requirec to be a ‘‘simple’’ rational number.

From the equation of state~3.1! one obtains an unbiased
estimator~as opposed to the extrapolated estimator! for the
kinetic energy via the virial theorem,̂ke&52d(r sEg)/
drs . The kinetic energy and the inverse compressibility
1/rKT52r s

4d@(Eg1^ke&)/(9r s
3)#/drs are also listed in

Table I.

B. Dielectric response

Our results on the static dielectric functione(k,0) are
shown in Fig. 2. At lowk our data are consistent with the
compressibility sum rule,

e~k→0,0!.
4pe2

k2
r2KT . ~3.4!

Given the well-established fact that the compressibility of
the fluid of charged bosons is negative at allr s.0 ~see also
Table I!, Eq. ~3.4! ensures that 1/e(k,0) goes through a nega-
tive minimum before approaching unity ask→`. This be-
havior implies overscreening of long-wavelength perturba-
tions and does not lead to an instability of the boson plasma,
owing to the presence of the rigid background. We remark
from Fig. 2 that the minimum in 1/e(k,0) becomes deeper
with decreasing density and its location approacheskr0.4,
in approximate correspondence with the first star of recipro-
cal lattice vectors in the Wigner crystal.

From the DMC data one(k,0) we have obtained the static
local-field factorG(k) for exchange and correlation, using
the relation28

e~k,0!512

4pe2

k2
x0~k!

11G~k!
4pe2

k2
x0~k!

, ~3.5!

where x0(k) is the static susceptibility of the ideal boson
gas,

TABLE III. DMC results for the static local-field factorG(k) at differentr s . The digits in parentheses
represent the error bar in the last decimal place.

kr0 r s510 r s520 r s550 r s5100 r s5160

1.9489 0.29~1! 0.36~3! 0.28~5! 0.38~2! 0.50~4!

2.9233 0.71~1! 0.73~1! 0.75~1! 0.74~1! 0.782~8!

3.5134 - - 1.005~5! 0.997~9! 0.973~1!

3.8978 1.18~1! 1.21~2! 1.144~5! 1.107~3! 1.080~1!

4.1342 - - 1.194~7! 1.148~3! 1.119~2!

4.8722 1.54~2! 1.47~1! 1.354~7! 1.210~6! 1.134~6!

5.8467 1.81~7! 1.54~2! 1.26~3! 1.161~7! 1.138~8!

6.8211 2.0~1! 1.53~3! 1.30~5! 1.22~2! 1.17~2!

7.7956 2.4~1! 1.84~8! 1.44~6! 1.53~4! 1.49~2!

8.7700 2.5~2! 2.1~1! 1.8~1! - 1.75~5!

TABLE II. Parameters in Eq.~3.1! as determined by a least-
squares fit with four free parameters and eight data points.

a157.085 56 b15375/56
a252.205 75 b25417/56
a350.251 289 b3559/7
a38520.034 817
a450.009 236 b45125/14
c5214/125

FIG. 2. Inverse static dielectric function 1/e(k,0) as a function
of kr0 for r s 5 10, 20, 50, 100, and 160. The solid lines are the fit
given by Eqs.~3.5! and ~3.10!.
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x0~k!522r
2m

k2
. ~3.6!

The function G(k) is closely related to the exchange-
correlation factorf xc(k) entering density functional theory in
the linear response approximation. In fact 4pe2/k2G(k)
52 f xc(k), where the Fourier transform off xc is defined
through the exchange and correlation energy functional,

f xc~ ur2r 8u!5F d2Exc

dr~r !dr~r 8!G
r0

. ~3.7!

The low-k behaviorG(k→0).2k2/(4pe2r2KT) is deter-
mined by the compressibility sum rule in Eq.~3.4!, while the
high-k limit is given by29

G~k→`!.
4

3

^ke&
vpl
2

k2

2m
1
16

5

^ke2&
vpl
2 2

16

9

^ke&2

vpl
2

1
2

3
@12g~0!#. ~3.8!

In Eq. ~3.8!, ^ke& and ^ke2& are the average kinetic energy
~see Sec. III A! and the average square kinetic energy, which
is determined by the fourth moment of the momentum dis-
tribution. Our DMC results forG(k) at various values of
r s are reported in Table III.

For charged fermions in the density range 2<r s<10 the
DMC results onG(k) ~Ref. 30! show a very smooth cross-

over from the low-k to the high-k behavior and can be inter-
polated with a one-parameter fit to the simple function

G~k!

~kr0!
2 5F ~a2c!2n1S ~kr0!

2

b D nG21/n

1c, ~3.9!

with a, b, andc given by the asymptotic expressions. Our
data for charged bosons are consistent with this picture at
r s510, but at lower densitiesG(k) develops a structure
aroundkr0.4. Possibly neglecting fine details at very large
k of presently unclear relevance, our DMC local-field factor
is adequately described by simply adding a Gaussian term to
the above expression, namely,

G~k!

~kr0!
2 5F ~a2c!2n1S ~kr0!

2

b D nG21/n

1c1dexp2
~k2k0!

2r 0
2

2s2 . ~3.10!

Fitting this four-parameter expression to the DMC data re-
sults in the curves shown in Figs. 2 and 3, with the values of
the parameters given in Table IV.

We remark that atkr0.4 the structure seen in Fig. 3 for
G(k) in the low density regime is not peculiar to the boson
fluid. Unpublished data for the polarized electron gas at crys-
tallization density exhibit a similar behavior in both two and
three dimensions.31

Finally, in Fig. 4 we compare our data forG(k)/k2 at
r s510 with its asymptotic behaviors and with the values
obtained from the results of Sugiyama, Bowen, and Alder.18

Their result atk.2 is compatible with ours within statistical
errors. The situation atr s5100 is completely similar. Figure
4 also shows the results of approximate theories, obtained
from the Jastrow approach12 and from the self-consistent VS
approach to dielectric screening.16 The VS curve from Ref.
16 incorporates the correct long-wavelength behavior, but is
not quantitatively correct at higher wave number. The varia-
tional calculation by Saarela,12 which incorporates both as-
ymptotic behaviors, is in remarkably good agreement with
our DMC data at all wave numbers considered.

C. Momentum distribution

As mentioned in Sec. II we have obtained DMC data for
n(k) corresponding to values ofk on the reciprocal lattice of
the simulation box and for its Fourier transformn(r ). Some
of these results are shown in Figs. 5 and 6. We have collected
this information in a fitting formula incorporating the known
asymptotic behaviors.

At high k the tail of the momentum distributionn(k) is
given by the cusp condition32

FIG. 3. Fitted form of the static local-field factorG(k) at dif-
ferent r s .

TABLE IV. Values of the fit parameter for the static local-field factorG(k), after Eq.~3.10!.

r s a b c d n k0r 0 s

10 0.071 85 0.958 64 0.020 274 0.012 929 3.057 3.666 36 1.498 06
20 0.080 61 0.955 23 0.017 769 0.037 192 0.7825 3.463 74 1.504 38
50 0.084 26 0.977 56 0.013 933 0.048 478 0.5435 2.988 19 1.779 83
100 0.101 35 1.029 61 0.011 078 0.037 348 0.7333 3.096 35 1.372 73
160 0.108 78 1.016 62 0.009 191 0.026 138 0.9670 3.317 96 1.093 57
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n~k→`!.
9r s

2g~0!

~kr0!
8 . ~3.11!

In the opposite low-k limit n(k) diverges with a behavior
given by quantum hydrodynamics:33

n~k→0!.n0
2mvpl

4k2
1
m2n0vpl

2

64rk
1O~1!, ~3.12!

wheren0 is the condensate fraction. Harmonic theory for the
crystalline phase predicts a Gaussian momentum distribu-
tion, determined by the zero-point phonon energy. We expect
that this behavior should be reflected in that of the liquid
close to the transition.

We have therefore chosen the following expression to in-
terpolate the DMC data:

n~k!5~2p!3n0rd3~k!1
a0

k2~k21a1
2!3

1S a4k2 1
a5
k

1a6D expH 2
~k2a3!

22a3
2

2a2
2 J .

~3.13!

Given the known values of the density and the mean kinetic
energy, as well as the known asymptotic behaviors, the re-
maining parameters are determined by a least-squares fit to
the DMC data. We set the parametera3 equal to zero when
this choice is compatible with the data~as seen fromx2

values!, so that the number of fitted parameters is three or
four depending onr s . The fit was performed on both the
k-space points and their Fourier transform, the one-body
density matrix. In the fitting procedure we have included
only the values ofn(r ) obtained from random displacements
of particles, as mentioned in Sec. II. In fact, the value ob-
tained by fixed increments is more accurate for smallr ; how-
ever, in this region it basically gives the extrapolated estima-
tor of the kinetic energy, and we prefer to enforce instead the
unbiased estimator of^ke& of Sec. III A. In order to give the
same weight to real space and to reciprocal space the func-
tion we minimized was the sum of the two reducedx2 val-
ues, which were in the range from 0.3 to 2.5 for allr s except
at r s5160. Table V contains the best-fit parameters and the
resulting values ofn0 and ^ke2&.

Figure 5 shows thek-space data and the fitted curve for
r s5100, while Fig. 6 shows the resultingn(r ) at various
values of r s . The r→` limiting value of n(r ) gives the
condensate fraction.

FIG. 4. Static local-field factorG(k) overk2 at r s510 ~crosses
with error bars!, compared with the asymptotic expressions~full
lines!, with the fit ~dotted line! and with previous results by other
authors. The circles with error bars are the values obtained from the
data of Sugiyama, Bowen, and Alder~Ref. 18!, the dashed line
gives the VS~Vashishta-Singwi! results from Ref. 16, and the dot-
dashed line the variational calculation by Saarela~Ref. 12!. The
corresponding inverse static dielectric function 1/e(k,0) is plotted
in the inset, omitting the asymptotic behaviors and the fit and in-
cluding the RPA curve~long-dashed line!.

FIG. 5. DMC results for the momentum distributionn(k) at
r s5100, compared with the fit given by Eq.~3.13!.

FIG. 6. DMC data and fitted expression for the one-body density
matrix at r s 5 1, 2, 5, 10, 20, 50, 100, and 160~from top to
bottom!.
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Figure 7 shows the resulting expressions fork2n(k) at
various values ofr s . At r s51 the Bogoliubov curve7 is al-
most correct, as could be expected from the fact that the
condensate fraction is above 80%. This is consistent with the
usual picture ofr s→0 as the ‘‘uniform’’~or RPA! limit. With
growing r s the shape of the curves changes qualitatively,
with exchange effects playing a minor role at low density. At
the crystallization density (r s5160) less than 1% of the par-
ticles are in states with occupation number larger than one
and the resulting momentum distribution is similar to the
Maxwell-Boltzmann distribution taken at a fictituous tem-
perature given bŷke&5 3/2kBT.

D. Structure factor

The static structure factorS(k) has been obtained by Fou-
rier transforming the DMC data on the pair distribution func-

tion g(r ) as given by the simulation forr,L/2, with L the
side of the simulation box, after extending the data for
r.L/2 with an oscillatory, decreasing tail of the form
ar2bsin@c(r2r0)#. The parametersa, b, c, andr 0 are fitted
to the higher-r part of the data. This procedure gives reliable
results for intermediate and highk, but does not reproduce
very well the limit k→0 since it does not contain any nor-
malization condition. The resultingS(k) is then smoothly
matched to the correct asymptotic behavior fork→0, the
result being shown in Fig. 8. A strong peak atkr0.4 devel-
ops as the crystallization density is approached.

The statistical errors inS(k) are estimated to be less than
1%, smaller than the systematic errors coming from the use
of extrapolated estimators~see Sec. II! and from the tail
added tog(r ). The final precision can be estimated to be of
a few percent.

E. An upper bound on the plasmon dispersion curve

The so-called sum-rules approach has given useful infor-
mation on excitations in liquid4He.34 A first application of
this method to the boson plasma has led to the rigorous con-
clusion that the leading dispersion coefficient of the plasmon
excitation is negative for all values ofr s.0.35 In this section
we display a rigorous upper bound on the whole plasmon
dispersion curve, from our simulation results onx(k) and
S(k).

We define the moments of the frequency-dependent den-
sity response function as

mn~k!52
2

pE0
`

Imx~k,v!vndv. ~3.14!

If vk
min is the energy of the lowest eigenstate excited by the

operatorrk5(qaq
†aq1k , the following relation holds:36

vk
min<

m0~k!

m21~k!
52

2rS~k!

x~k!
. ~3.15!

FIG. 7. Momentum distribution at various values ofr s com-
pared with Foldy’s results atr s51 ~short-dashed curve! and with a
Maxwell distribution atr s5160 ~dashed curve!. We plotk2n(k) for
greater clarity.

FIG. 8. Static structure factorS(k) as a function ofkr0 for r s 5
1, 2, 5, 10, 20, 50, 100, and 160.

FIG. 9. Upper bound on the plasmon dispersion curve as derived
from the static susceptibility and the static structure factor, forr s 5
10, 20, 50, 100, and 160. The dashed line shows the position of the
minimum in the various curves.
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The value of the upper bound in Eq.~3.15! has been obtained
by using the fluctuation-dissipation theorem and the
Kramers-Kronig relations. This upper bound becomes an
equality when the spectrum consists of a single pole, i.e., for
k→0.

Figure 9 displays the upper bound of Eq.~3.15! at various
values ofr s . In the case of liquid4He direct comparison
with experimental data34 shows that, while the Feynman re-
sult is about a factor of 2 higher than the roton minimum, the
bound given by Eq.~3.15! is only 30% too high. However,
as for 4He one may expect that the approach of the upper
bound to the single particle recoil frequency at highk is
qualitatively incorrect.

We also notice from Fig. 9 that with increasingr s the
minimum in the upper bound decreases down to very low
frequency in approximate correspondence with the first Bril-
louin zone edge of the Wigner crystal.

IV. SUMMARY AND CONCLUDING REMARKS

We have presented a systematic study of the properties of
the charged boson fluid atT50 by diffusion Monte Carlo.
We have given a simple analytical expression for the internal
energy of the fluid as a function of coupling strengthr s ,
from which reliable results for the equation of state can be
obtained in the whole fluid density range 0<r s<160. Our

results for the static density response function cover the rel-
evant region of wave numbers and show significant changes
in the response as the fluid approaches crystallization den-
sity. An analytical interpolation of these data has also been
given. Similar features emerge from the data on the structure
factor. The shape of the momentum distribution changes sig-
nificantly in the evolution of the system from the uniform
limit ( r s,1) to the strongly coupled fluid regime
(r s.160), paralleling the decrease of the condensate fraction
from 83% to less than 1%. These data have also been sum-
marized in an interpolation formula consistent with the
known asymptotic behaviors. As an application we have pre-
sented a rigorous upper bound on the plasmon dispersion
curve, which shows the presence of a deep minimum in the
strong coupling regime.
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