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Polarons and bipolarons in strongly interacting electron-phonon systems
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The Holstein Hubbard and Holstetin] models are studied for a wide range of phonon frequencies, electron-
electron, and electron-phonon interaction strengths on finite lattices with up to ten sites by means of direct
Lanczos diagonalization. Previously the necessary truncation of the phononic Hilbert space caused serious
limitations to either very small systen{four or even two sitésor to weak electron-phonon coupling, in
particular in the adiabatic regime. Using parallel computers we were able to investigate the transition from
“large” to “small” polarons in detail. By resolving the low-lying eigenstates of the Hamiltonian and by
calculating the spectral function, we can identify a polaron band in the strong-coupling case, whose dispersion
deviates from the free-particle dispersion at low and intermediate phonon frequencies. For two electrons
(holes we establish the existence of bipolaronic states and discuss the formation of a bipolaron band. For the
two-dimensional Holstein-J model, we demonstrate that the formation of hole polarons is favored by strong
Coulomb correlations. Analyzing hole-hole correlation functions, we find that hole binding is enhanced as a
dynamical effect of the electron-phonon interaction.

I. INTRODUCTION

Following the discovery of high-temperature supercon-
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ductivity in ceramic copper oxides, interesting purely elec- T ~ T 1
tronic pairing mechanisms due to strong Coulomb correla- - Vgpf“"zi (b; eri)hiJrﬁ“’Z (bibi+32),

tions within CuQ planes have been investigated in detail.

Recently, however, it has become clear that lattice degrees of 2

freedom are essential in understanding the puzzling normal-
state properties of cuprat&s: Even if it should turn out that

where ¢(I) annihilates (creates an electron at Wannier

io

electron-phonor(EP) interaction is not the relevant pairing Sit€ 1 with spin projectiono, nj=n;;+n; , andt denotes
interaction in those materials, its effects need to be reconsidh® tr_a_lnsf?r/ amplitude between nearest-neighthiN)
ered for the case of strong electron-electron interactions anb@irS(ij). Zi.i.y acts in a projected Hilbert space without

low effective dimensionality as realized in high-supercon-

double occupancy, i.e.£P=c(1-n;_,), and S=3
t

ductors. In particular, polaronic effects are suggested to play oo’ CiaToo' Cior - The first two terms irf1) and(2) represent
a non-negligible role in the copper-based materialthe standard Hubbard model amel model, respectively,
Laz,XSrXCuo4+y,4—9 and even more in the isostructural whereU is the on-site Coulomb repulsion, addmeasures
nickel-based charge-transfer oxide,LaSr,NiO,, . 1% Ex-

perimentally, photoinduced absorption experim din-
frared spectroscopy, as well as infrared reflectivity
measurementS, unambiguously indicate the formation of
self-localized polaronic statésmall polarongin the insulat-
ing parent compounds L&uQ,,, and NgCuQ,_, of the

hole- and electron-doped superconductorg L&rCuGQ,
and Ng_,CgCuQ,_,, respectively. Therefore a growing ation) operators. In the context of an effective single-band
theoretical interest in the study of strongly correlated ERdescription of the copper/nickel oxides, the collective Hol-

models can be found in the recent literatlfte?®

the NN antiferromagnetic exchange interaction strength. The
third and fourth terms take into account the EP interaction
and the phonon energy in a harmonic approximation. Here
the on-site electrofhole) occupation numben;(h;=1—n;)

is locally coupled to a dispersionsless optical phonon mode,
where g, is the EP coupling constant denotes the bare

b S
phonon frequency, anol ") are the phonon annihilatiofere-

stein coordinates); = A /2M w(biT+ b;) may be thought of

Probably the simplest microscopic models including bothas representing an internal optical degree of freedom of the
the electron and phonon degrees of freedom are the Holstejattice sitei, i.e., in this case the dominant source of EP

Hubbard model

Lng.H:_t(? (CiTa.CjU.‘F HC)+U2I N1 Njy
ij)o

—Vephw2 (b +b)m+he (bibi+3),

and the Holsteirt-J model

0163-1829/96/535)/966610)/$10.00

coupling is assumed to result from the interaction of dopant-
induced charge carriers with the apical out-of-plane or the
bond-parallel in-plane breathing-type displacements of oxy-
gen atoms.

Unfortunately, for strongly coupled EP systems exact re-
sults exist only in a few special cases and linfts
Whereas, in an approximate treatment, the weak-coupling
regime (g,/t<1) is well understood and dealt with by per-

@ turbation theory, the standard strong-coupling Migdal-
Eliashberg theor}*?based on the adiabatic Migdal theorem
53 9666 © 1996 The American Physical Society
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might break down for strong enough EP interactions L L E —
(ep/t>1) due to the familiar polaronic band collapsalote

that in the presence of strong Coulomb correlations, a rather 1
moderate EP can cause a substantial reduction of the coher- \\

ent band motion making the particles susceptible to ! 2 o,
self-trappingt®?* The (single polaron problem has been S o172 \\\

tackled in the strong-coupling adiabaffcw/t<1) and antia- -2 [

diabatic (Zw/t>1) limits using the Holsteif? and
Lang-Firsov* approximations, respectively. Both approaches -
yield a narrow polaronic band with an exponentially reduced -6.174 |
half-bandwidth'® Whether these small polarorer bipo- N
larong can exist as itinerant band states is still a heavily —6.175 R e
debated issut.Apart from variational calculations; 3720 "0 30 40 50 60
little is known for intermediate values of EP coupling and M

phonon frequencys,~%w~t and, in particular, for the

many-polaron problem. In principle, exact diagonalization FIG. 1. Ground-state enerdy, and weight of them-phonon
(ED) (Refs. 14, 38, 18, and 26and (quantum Monte stategc™|? (insed as a function of the maximal number of phonons
Carlc®®* methods including the full quantum nature of M for the 1D single-electron Holstein model on a four-site lattice.
phonons can close this gap. However, by using direct EDJhe model parameters agg=6.0 andfiw=0.4 (all energies are
techniques it is necessary to truncate the phononic Hilbeffi€asured in units of).

space, and hence the accessible parameter space is limited by | o i
the size of the matrix one can diagonalize. Therefore ECFUncation proceduf® restricting ourselves to phononic
studies up to now were limited to either small valuesspf ~ States with at mosk phonons:

to the so-called frozen phonon approximatf8n?’or to very N

small systems*151826n g previous work* the authors pro- K= T1 1 bt nik|o 4
posed a variational Lanczos diagonalization technique on the >ph_i:1 \/ﬁk_!( )"10)ph, @)
basis of an inhomogeneous modified variational Lang-Firsov '
transformation(IMVLF) that allows for the description of with

static displacement field, polaron and squeezing effects in \
terms of the Holsteirt-J and Holstein Hubbard models on K

fairly large clusters. Although the adiabatic and antiadiabatic Z’l ni<M, ®)

as well as the weak- and strong-coupling limiting cases are

well reproduced in this approach, the situation becomes lesgnd 1<k<D{’=(M+N)!/MIN!. To further reduce the
favorable at intermediate EP couplings and phonon frequendimension of the Hilbert space, in the case.#f, , we

cies and, in particular, in the crossover region from large-sizgeparate out the center-of-mass motion by transforming to
nearly free polarongFP's) to small-size quasilocalized po- ifferent phonon operators{", which can be taken into
larons(i.e., in the vicinity of the so-called self-trapping tran- account analytically as displaced harmonic oscillators. For
sition). Obviously, this regime requires a more accurate treatthe Holsteint-J model it is more effective to exploit the
ment of the phonons as quantum-mechanical objects. Point-group symmetries of the original bas).

Encouraged by this situation, it is the aim of the present  Then the resulting Hamiltonian matrix is diagonalized us-
paper to perform a direct Lanczos diagonalization of the Holing g standard Lanczos method. As the convergence of the
dynamics of quantum phonons. In particular, we investigate,eighboring eigenvaluesF;, ;- E;|/|E;|, one needs to be
low-lying excitations (spectral functionson large enough very careful in resolving eigenvalues within the extremely
lattices, in order to identify the dispersion relation of the narrow small-polaron band. To monitor the convergence of
(bi)polaronic quasiparticles. our truncation procedure as a function\f we calculate the

weight of them-phonon states in the ground st#ig) of .77

—6.171

E

-6.173

&-—= Exact results

PRI

IIl. COMPUTATIONAL PROCEDURE

N
A general state of the model Hamiltonia# . [.74.1.1] lc™?=> |c? where m=Y, nk. (6)
describingN,=N;+ N, electrons on a finit®-dimensional Ik i=1

h ic latti ithN si i he di i . . .
pfgdelziltjblc attice with sites can be written as the direct At fixed M, the curvelc™|?(m) is bell shaped, and its maxi-

mum corresponds to the most probable number of phonon
quanta in the ground state. To illustrate tedependences
|w)y=> crll>e|®|k>ph, (3)  of the ground-state enerdy, and the coefficientsc™|?, we
Ik have shown both quantities for the single-electron Holstein
wherel and k label the basic states of the electronic andmodel in Fig. 1. In the numerical work convergence is
phononic Hilbert space with dimensiorDse|=(N )(N )[ Dy achieved if t7he relatllv_e error of the grour_ld—state energy is
_ Ny N-N; B i U . less than 10°. In addition, we check th&E, is smaller than
=(n) (" D] andDyy=20, respectively. Since the bosonic the estimate obtained from the IMVLF-Lanczos treatment of
part of the Hilbert space is infinite dimensional, we use athe phonon subsysteffl.
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. . . ' . . . non distribution functior)c™|? becomes wider but the maxi-
10Li . ®-®hw=041D | mum is still located at the zero-phonon state. In the adiabatic
%;C‘;"‘l\\ ©~Ohe=301D ] regime, one notices a crossover from a large-size polaron
08 b .\g\‘\a\ b ;:;Eﬁg'g ig | (LP) in one dimensior(1D) or nearly free polarorFP) in
I \\\\Q\ ‘\\\\‘ ' ] 2D, described by &, . that is only weakly reduced from its
=06 - \ ol E'\\ ] noninteracting value, to a less mobilemall-size adiabatic
| \ T\\& »\\ ] Holstein polaron(AHP) for large e, . We point out that the
04 | \( ' \@\ ‘\\E] nature of delocalized polaronic states, occurring in the weak-
\‘ ‘. o coupling region, is different in 1D and 2#.In the 1D case,
o2 | 9 the FP state becomes unstable at any finite EP coupling. As
’ expected, the transition to the AHP state occurs if the EP
00 . . . . o . coupling approximately exceeds half the bare electronic
~0.0 2.0 4.0 6.0 8.0 bandwidth and, in accordance with Monte Carlo resti€,
€ is much sharper in two dimensiofis the remainder of this

section we focus on the 1D cas®&onetheless, all physical

FIG. 2. Effective hopping amplitude, « Vs &, for a single guantities are smooth functions of; _in particular th_e_re are

electron on a ten-site lattice described by the Holstein model. ~ N0 ground-state level crossings, i.e., the transition from
LP/FP to AHP iscontinuousand not accompanied by any

We have written the program irortrarf0 and ran it on a nonanalyticities. While in the weak-coupling case we have
64-node CM5. We were able to diagonalize Hamiltonian maMmax=0 and the inclusion of higher phonon staes=5)
trices up to a total dimensio(‘Dtoo of about 82 million. does not improve the ground-state energy at all, in the adia-
Since a matrix vector multiplication for this matrix size takes batic strong-coupling case, =4, fiw=0.4), the maximum in
less than 150 s, the limiting factor of our numerical algo-Ic™|? is shifted to multiphonon staté,,,~8), and we need

rithm is the available storage. about 16 phonons to reach a sufficient accuracy within our
truncation procedure. Note that a similar behavior can be
Ill. NUMERICAL RESULTS observed in thenonadiabaticregime (Aw>t) provided that
gp>thw, e.9., forho=3 ande,=8 (e,=10) we find mp,,~2
A. Holstein Hubbard model in 1D (2D). These results confirm previous findings for the

Holstein Hubbard model on very small-size clusténsth
two or three sites where, ase, increases in the adiabatic

In the first place, we investigate the polaron properties oftegime, a strong increase of the average number of phonons,
the Holstein model with a single electron on finite Iattices(Nph>, contained in the ground state, was obser@dTable
with up to ten sites using periodic boundary conditions. In| in Ref. 14 and Table | in Ref. 5In the center-of-mass
the light of the literature over at least the last two system, the phonon expectation value in the polaronic
decades*¥?*?~%%e expect a gradual transition from a ground state may be derived from the phonon distribution
(nearly freg large-polaron solution to a small-polaron-like function |c™|? by <Nph>zzm:0|cm|2+(Sp/hw)(NgllN)-
ground state upon increasing the EP coupling. Since, in par- Tg elucidate the difference between the extended LP and

ticular in the adiabatic regime, the formation of a polaronicquasilocalized AHP states in more detail, we have calculated
state is accompanied by a strong reduction of the electrofhe electron-phonon density correlation function

mobility, this effect should be observable in the expectation

value of the kinetic energ;Ep'km/t=—E<ij>g(\1’0|(crgcjo c i— i =(Wnblb:|w 8
+H.c.)|Wy), where|W,) is the ground-state wave function. et =1 =(Wolnibybj|Fo), ®
We therefore define an effective polaronic transfer,
amplitudé*

1. One-electron case

which measures the correlation between the electron occupy-
ing sitei and the density of phonons on sjt&° Results for
_ , . Ceipr(li—]l]), plotted in Fig. 3 athw=0.4 for all distances
t.efi=Ep.kin(2p,U)/Ep iin( OU) @ i—e'jeh(=| R; —|Rj, show that for smalls, the correlation be-
in order to characterize the increase in the polaron rffass.tween the electron and the phonons is fairly weak and exhib-
Note thatt, .4 substantially differs from théexponentigl its little structure, i.e., the few phonons contained in the
polaron band renormalization factGs) obtained analytically —ground state are nearly uniformly distributed over the whole
in the nonadiabatic Lang-Firsov and adiabatic Holsteinlattice. In contrast, in the case of large EP coupliag=3),
cases® the phonons are strongly correlated with the position of the
We illustrate the dependence of this effective hopping amelectron, thus implying a very small radius of the polaron.
plitude on the EP interaction strength in Fig. 2, where weNote, however, that the translational invariance of the ground
have plottedt, . as a function ofe,, at different phonon state is not broken. Since a polaron’s mass is inversely pro-
frequencies. First it is important to realize that there are twgportional to its size, the AHP formed at largg is an ex-
complementaryadiabatic and nonadiabakticegimes for the tremely heavy quasiparticle. As can be seen from the inset of
polaronic motion. In the nonadiabatic regime, where the latFig. 3, the on-site electron-phonon correlation increases dra-
tice fluctuations are fast and the phonons are able to follownatically around the same value ef at whicht, o be-
immediately the electronic motion forming a nonadiabaticcomes depresse@f. Fig. 2. This means that, in the adia-
Lang-Firsov polaronNLFP), one observes a very gradual batic regime, a strong short-range EP interaction can
decrease of,, . ase, increases. At the same time the pho- sufficiently lower the energy of the system due to a



53 POLARONS AND BIPOLARONS IN STRONGLY INTERACTI . . . 9669

0.5 0.5 = U ! T T T ! cosine
o4 | &—li-il=0 O—0g =05 -3.362 | BN=6
B =Eli-jl=1 S mGe=20 K=0 Ker3 ON=8
93 I & - ©lii=2, b -~ o a
04 o2 | - »—-u e:=3~0 3 %‘ / AN=10
o1 1 1 ’ ” i
= o) ! -3.367

.03 popeRt i 1/ \ . of -340 A-;Eq/ 30 E;I;J\L I

= 00 10 20 30 40] \ / E", "E¢

o [ € ! \ 1 M / /

o2} ’ S | M a3 b/ ;A ; /
£ A ’
c! / /

\
© 01k 1 Y | k2| ) Ken
- i
\ -3.377
P88 ——I——I———‘
bom e \_\‘ ,/’Q\~\-—___ -3 —q Lt T rredin
0.0¥ q 30 25 30 25
1 1 1 1 1 1 1} -3.382 1 1
-4 -3 -2 -1 0 1 2 3 4 0 /4 2 3n/4 T
i K

FIG. 3. Electron-phonon density correlation function FIG. 5. Band dispersio&(K) of a single electron described by
Cep(li-j|) as a function of the distandej and EP coupling, the Holstein model on 1D rings with sites, wheres;,=3.0 and
(inseh atAw=0.4. The results are given for the single-electron Hol- iw=0.4. The insets show the low-energy part of the one-particle
stein model on an eight-site chain. spectral functiorAy (E) taken at theK values indicated by arrows.

The dotted line corresponds to the dispersion of a free particle with

deformation-potential-like contribution to overcompensate? "énormalized bandwidth.

for the loss of kinetic energy. Nonetheless, the quasilocalize
(self-trappedl polaronic state has a bandlike character, i.e.
the AHP can move itinerantly.

?10.@, and 4(«). Besides the strong renormalization of the

bandwidth in the low-frequency strong-coupling regime, it is

In order to discuss the formation of a small-polaron bandjnterestjng to note that the qlevia_tion O.f the polgron band

one has to calculate the low-lying excited states. As a ﬁrsfiISperSIon fro_m drescaleficosine _dlsper5|o_n of noninteract-
Ing electrons is most pronouncediatermediatephonon fre-

step, in Fig. 4 we classify the lowest eigenvalues of the Hol-

stein model according to the allowed wave vectors of thequenC|eshw~t, e, in between the extreme adiaba#iP)

eight-site lattice for various phonon frequencieszgt-3 and antiadiabati¢NLFP) limits. This deviation may be due
Here the band dispersioy — E, is scaled with respect.to to a residual polaron-phonon interaction, with the phonons
the so-called coherent gand\?vide=sup<E inf E sitting on sites other than the polardriTo demonstrate that
AE strongly depends on both raties/%e and sK/t foKr er.- the low-lying eigenvalues do indeed form a well-separated
ample, we foundAE(z,= 3/ ©)=0.0157, 0 19F’57’ 29165 guasiparticle band in the adiabatic strong-coupling regime
and 4'0 for =04 88 ’100 éndw 'res.pecti\,/elyll Of' (e,=3,hw=0.4), in the inset of Fig. 4 we have displayed the
coursé the ' ’sir.np;le B LangiFirsov fc;rmula lowest few eigenvalues in dependence gn In the very
AE,_F=,4D exd —&,/hw] gives a good estimate of the po- weak-coupling regimee,=0.5 the eigenvalues are barely
laronic bandwidth only in the nonadiabatic regime: canged fromdtr;emp:r? values(,jwhere addlt;?nal ellgelnval-

_ _ _ " ues, separated from the ground-state en&gpy multiples
AE, r(e,=3/w)=0.0022 (hw=0.4), 0.0941 (0.8, 2.9633 of fiw (6.0.,Ey, E5, andEy), enter the spectrum. As, in-
creases, a band of states separates from the rest of the spec-
trum. These states become very close in energy, and a narrow

10 oﬁ?,;h(it i well-separated energy band evolves in the strong-coupling
Ciho=0.8 case(e,=3). Obviously, the gap to the next-higher band of
Sha=10.0 eigenvalues is of the order of the bare phonon frequéngcy
Neglecting degeneracies, one may tentatively identify those
‘é 0 1 five states as the states of the small-polaron band on the
~_~ Oe=05 . . .
uf 03 of oe-15 17 eight-site lattice.
Lt 00009 Keeping this identification in mind, in Fig. 5 we have
) 05000°99 plotted the lowest eigenvalues as a function of thB) K
eawan""" vectors belonging to various system sizbls=6, 8, and 10.
........ ] One notices that the dispersi&y is rather size independent,
004 or234seT | ie., theEy values obtained for larger systems just fill the
0 1:'/4 n'/z 3;{/4 o gaps. Undoubtedly, the §moo_th shapeEQfaIre_aqy provides
K good reasons for a quasiparticle band description of the AHP

in the strong-coupling regime. To substantiate this quasipar-
FIG. 4. Single-electron band dispersiBip-E, at £, =3 in units ticle interpretation further, we also have calculated the one-
of the coherent bandwidth E. The inset shows the distribution of Particle spectral functions
the eigenvalues atw=0.4, where the horizontal axis counts the
eigenvalues sorted by trrllagnitude and the vertical _axis gives theiAK(E):E |<\I,E]Ne|>|CH\PéNerl)Mza(E_EaNeoJr EéNe'_l)),
absolute valuefn::Ef,")—Nﬁw/Z. All results are given for the n
eight-site chain withM =18 phonons. 9
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with Ng=1 for the nonequivalenK values of the six-site
system using a polynomial moment meth8dhe idea is to
see a direct verification of the coherent band disperBipm

terms ofA¢(E). The electronic spectral functios (E) are 08 i
shown in the four insets of Fig. 5. The important point we
would like to emphasize is that the position of the first peak g

un'06 T

in each spectral functioAg(E) exactly coincides with the
correspondingex value, and the other peaks are at higher

energies than any of the coherent band-energy values. This 04l Siﬁﬂig‘;ﬁgi \\A_
means that our exact results for the low-energy excitation | %Y U—0he=3.0
spectrum of a single electron corroborate the existence of £o-—AU=6 h@=3.0
heavily dressed polaronic quasiparticles, where the electronic 02 T o 20 30 a0
and phononic degrees of freedom are strongly mixed. Of g,
course, in the very high-energy regime the resultsXfE)
cannot be trusted due to the errors induced by the necessary . . . '
truncation of the phononic Hilbert space. ®)
2. Two-electron case 50 | 5 - -5 U0 hre04 /,/ \\ ]
Next we wish to discuss the two-electron problem. Here it [ &—-0U=6he=04 O 4 \ ]
| %--¥U=0ho=30 ¢ / A

is of special interest to understand in detail the conditions

/ /

under which the two electrons form a bipolaron. Whether or 2 faRUsshesso // /
not a transition to a bipolaronic state will occur depends 0T O |
sensitively on the competition between the short-ranged TR d/ X
phonon-mediated, i.e., retardgdw<c), attraction (xe) | /V/V %&A
and the instantaneous on-site Hubbard repul$idd). 1.0 2o ad 1

We start again with a discussion of the mobility of the N T Y Y T,
particles. Figure @ shows the stron¢gradual reduction of e
the effective polaronic transfer amplitudg o as e, in- ’
creases in the adiabatioonadiabatig regime. Now let us FIG. 6. The effective polaron and bipolaron transfer amplitudes

mainly focus on the physically more interesting regime ofy . andt, . are shown as a function of the EP coupling strength
small pho.non frequenmehw:Q._&L In the Case_Of vanishing gp in (@) and (b), respectively. The results are given for two elec-
Coulomb interactiotJ =0 any finite EP interaction causes an trons on the eight-site chain withl =21 phonons using periodic

effective on-site attraction between the electrons forming @oundary conditions.

bipolaronic bound statéremember, e.g., thall 4=U —2¢,

follows from the simple Lang-Firsov approgcirhis means portance of the correlated motion of two electr@bst, quite
that in the pure Holstein model the state with two nearly freeclearly, we have|Ey, yin|<|E, kin). At large EP couplings
(large polarons does not exist, at least in one spatiale.g., fore,=1 atU=0 and.w=0.4), the on-site bipolaron
dimension** In the weak-coupling limit, the two-polaron becomes more and more localized, and accordingly we ob-
state can, however, be stabilized by taking into account theerve a drop iy, . Which corresponds to the drop ip e« in
on-site Coulomb repulsion. In this case, a crossover from &he case of one electron at the parameter values where the
state of two mobile large polarons to an extended bipolaronidaHP becomes stable. Hence we will call this quasiparticle an
state occurs. The transition will be shifted to larger EP cou-adiabatic Holstein bipolaro(AHBP).

plings asU increasegsee Fig. 6a)]. For example, at) =6 To better illustrate the effect of pair formation in the 1D
and Aw=0.4 (3.0), we find that the binding energy of two Holstein(Hubbard model, we present in Fig. 7 the electron-
electrons E3=Ey(2)—2E,(1), becomes negative at about electron density correlation function

ep,=1.7 (2.9). Further justification for this interpretation can

be found from the behavior of the effectiveipolaronic Cerelli—j)=(¥o(ep,U)Ninj| Po(e,,U))
transfer amplitud® (o0 To(0U)) (12)
ty,efi= Eb,kin(£pU)/Ep kin(0,U), (100 in the adiabatic regime wittib) and without(a) Hubbard
. repulsion. In each case we have displayed the results for
with C i . .
Cere(li—j|) as a function ofe, in comparison to the
electron-phonon correlation functio®y.,(|i —j|) given by
Epkin(€p,U)/t=—2> (Po(e,,U)l(cl el cjic), (8). As Fig. 7a) shows, in the limit of vanishing Coulomb
(i) interaction the on-site electron-electron correlat®g..(0)
+H.C)[Wo(ep,U)), (11  dominates the intersite correlatiorG, (i —j|) with |i

—j|=1, in particular fore,=0.9, i.e., in the AHBP regime
shown in Fig. @b). ty, . describes the coherent hopping of anwhere both electrons are mainly confined to the same site
on-site bipolaron from siteto sitej. Contrary tot, .z atlow  sharing a common lattice distortion. Therefore the transition
EP coupling strengths the bipolaronic hopping amplitudefrom a mobile large bipolaron to a quasi-self-trapped on-site
ty er grows with increasing:,, showing the increasing im- AHBP is manifest in a strongly enhanceé}, ,{0) as well
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' [w=3 (insed].

the ground state for various EP coupling strengths. One sees
immediately that the maximum ¢€™|? is rapidly shifted to
larger values ofm as e, increases. Increasing the phonon
frequency at fixecs,, this tendency is reversedee the in-

sed. In the extreme antiadiabatic limitiw—>) we have
Mma=0, and the binding disappears for>2e,,.

C, (-
o
&

0.004 . L .
. . . \ . . As in the case of one electron, it is interesting to look at
0.0 1.0 20 3.0 the low-lying excitations of the intersite bipolaron. Although
& we do not have a clear definition as to the momentum of this

compound particle, it turns out that we indeed find a well-
FIG. 7. Electron-electrofelectron-phonaoncorrelation function separated energy band if we again classify the lowest-energy

Cetel [Cel-pn (insed] vs & atfiw=0.4 for U=0 (a) andU =6 (b). eigenvalues with respect to the allowidstates of our finite

system(see Fig. 9. The formation of theintersite bipolaron
(see the insgt Moreover, the transition should be associatedhand can be attributed to pronounced retardation effefts
with a significant reduction of the local magnetic moment,the maxima in the nearest-neighbor correlation functions
Mige(ep,U) = (Wol (nj; =My )% W), indicating the local pair-  C, (1) andCq(1) (Fig. 7) as well as the large bipolaronic
ing of spin-up and -down electrons. Indeed we foundhopping amplitude, o (Fig. 6) at ep=3]. Surprisingly the
Mioe(€p=1)/Mioe(£5=0.9)|y=00-04=0.66. As can be seen dispersion of this quasiparticle band becomes exactly like
from Fig. 7b), a somewnhat different scenario emerges in thehat of a free particlgwith a strongly renormalized band-
presence of a finite Coulomb interaction. Here the Hubbargyidth) at e,=U/2, where in the standard Lang-Firsov po-

repulsion prevents the formation of an on-site bipolaronigaron theory the effective Coulomb interaction vanishes. As
bound state in the weak EP coupling regime. On the other

hand, as recently pointed out by Marsigtfothe retardation

effect of the EP interaction may favor the formation of more 10 F ' ' '
extended pairs. That is, due to the time delay the second ] cosine
electron can take the advantage of the lattice distortion left I Ae=250
by the first one, still avoiding the direct Coulomb repulsion. ] Ve,=275

In fact, increasing the EP interaction, we find that both the He=3.00

nearest-neighbor electron-electron and electron-phonon den- E\
sity correlations starts to rise, while the on-site correlations i 03
remain smal(cf. Fig. 7(b)]. Consequently, we may label this UIJM
state an adiabatic intersite bipolaron. We expect that at larger ~
values ofe, the short-range EP interaction overcomes the

Hubbard repulsion and, as a result, the two electrons coa-

lesce on a single site forming a self-trapped bipolaron. Un- 0.0 i
fortunately we are unable to increase the dimension of the 0 /4 n'/2 3;,4 .
Hilbert space to contain a large enough number of phonons K

in the adiabatic very strong-coupling regime.

As already mentioned for the one-electron case, the de- FiG. 9. The lowest eigenvalud for the two-electron case on
scription of the self-trapping phenomenon requires the incluthe eight-site chain, wherkw=0.4 andU=6. The energy band is
sion of multiphonon states. This is clearly displayed in Fig.given in units of the coherent bandwidE=0.0481, 0.0217, and
8, where we have shown the weight of timephonon state in  0.0190 fore,=2.5, 2.75, and 3.0, respectively.
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hole-phonon correlation functio@.p|i-j|) on the EP coupling
g, and phonon frequencfiw at J=0.4. Results are given for a
single hole on a ten-site lattice with at mddt=12 phonons.

FIG. 10. Effective hopping amplitudg .4 and ground-state en-
ergy Eq (inse) as a function of EP coupling strengt for the 2D
single-hole Holsteiri-J model atJ=0.4 andi»=0.8. Exact results
for the ten-site square with different numbers of phonbdhsare
compared with approximate IMVLF-Lanczos dafaef. 24. For
further explanation, see text.

Mpa=4 ate,=4 andfiiw=0.8. The increasing importance of
multiphonon states in obtaining the true ground-state energy
at largee, becomes clearly visible in Fig. 10 by comparing
the results for various phonon numbeévk There is, how-
ever, an important difference between the one-hole and one-
electron cases which should not be underemphasized: In the
single-hole Holsteiri-J model antiferromagnetic spin corre-
lations and EP interactions reinforce each other to the effect
of loweringthe threshold for polaronic self-localization. This

Now let us turn to the case where a few dopant-inducedact is in agreement with IMVLF-Lanczos results obtained
charge carrier¢noles coupled to lattice phonons move in an fecently by the author¥.As Fig. 10 illustrates, the IMVLF-
antiferromagnetic correlated spin background. In 2D, thid-anczos technique, which variationally takes into account
situation, frequently described by the Holstakd model inhomogeneoudrozen-in displacement-field configurations
(2),5424%5is particularly interesting as it represents the basics well asdynamicpolaron and squeezing phenomena, de-
electronic and phononic degrees of freedom in the puoscribes the qualitative features of the transition from FP to
planes of the highF. cuprates. As yet, very little is known AHP states, and gives a reliable estimate of the renormaliza-
theoretically about the interplay between EP coupling andion of the effective transfer-matrix elemettes. Moreover,
antiferromagnetic exchange interaction in such systems. dhe IMVLF-Lanczos method yields an excellent variational
course, the exact diagonalization technique, as applied iHPPer bound for the true ground-state eneffgy and there-
Sec. Ill A to the Holstein Hubbard model, provides reliable fore it provides an additional educated check for the minimal
results for the ground-state properties of the Holsteih ~number of phonons one has to take into account within the
model as well. Here, however, one usually works near halfHilbert space truncation technique.
filling, i.e., the electronic basis is very large from the outset By analogy to Eq(8), we have calculated the correspond-
imposing severe restrictions on the dimension of theng hole-phonon density correlation functi@y,q.p|i —j|)
phononic Hilbert space. Therefore we are unable to reach the(‘l'olhib;rbjl\I’()) for the 2D Holsteint—J model. Figure
extreme strong EP coupling regime, especially in the adiall showsCp, {|i—j|) as a function of the short-range EP
batic limit. In the following numerical analysis of the Hol- interaction strengtte, at various phonon frequencies. The
steint-J model, the exchange interaction strength is fixed atransition to the AHP state is signaled by a strong increase in
J/t=0.4 (which seems to be a realistic value for the high- the on-site hole-phonon correlations, which are about one
systemg order in magnitude larger than the nearest-neighbor ones.

First let us discuss the behavior of the effective transfefThis indicates that the AHP quasiparticle comprising a
amplitude, t, e=Epxin(¢p,J)/Ep kin(£p,0), shown in Fig. quasilocalized hole and the phonon cloud is mainly confined
10. Increasing the EP coupling at a fixed phonon frequencyo a single lattice site. Increasing the phonon frequency the
hw=0.8, the mobility of the hole is strongly reduced and ahole-phonon correlations are smeared out, and the crossover
Holstein-type hole polaron(AHP) is formed at about to the small hole polaron is shifted to larger values of the EP
ag~—~2.0. The continuous crossover from a nearly free holecoupling.
polaron(FP) to the AHP state is similar to that observed in  Now let us consider the two-hole case. In Fig. 12 we
the 2D single-electron Holstein model; i.e.,sqt=¢; a sec-  show the effective polaronic transfer amplitudgsx(Ny) vs
ond maximum in the phonon distribution functigfc™?) EP coupling strength in the adiabatftw=0.1), intermediate
evolves, which, fore > g, becomes more pronounced and (Aw=0.8), and nonadiabatit¢fv=3.0) regimes. In each case
is shifted to higher phonon states. For example, we obtaimwe compare the one- and two-hole results to obtain a feel for

the EP coupling exceedd/2, a deviation from the cosine
dispersion occurs, and we expect that fge>U/2 an ex-
tremely narrow AHBP band will be formed.

B. Holstein t-J model
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FIG. 12. Effective transfer amplitudes, .«(Np) vs &, , are com-
pared for the one- and two-hole cases at various phonon frequen- FIG. 13. Hole-hole density correlation functia®y..,d[i-j|) of
cies, wherel=0.4 andM =12. the 2D Holsteint-J model shown as a function of the EP-coupling
gp for J=0.4 athw=0.8 and 0.1(inse), where the numbers 1-3
label the nonequivalent distancé®,—R;|/a=1, v2, and |5 be-
tween NN, next-NN, and third-NN sites on a ten-site lattice with
M =12 phonons, respectively.

hole-binding effects. Remarkably we find thgf.(2) is
larger thant, .«(1) for e;=<1 andfw=0.1, indicating ady-
namical type of hole binding in the low-frequency weak-
coupling regime where retardation effects become important. i . )
Indeed, the two-hole binding energy, defined as usual by1d|cate that hole blpolarons_could be formed in the Holstein
E2(J,ep,fiw) =Eq(2)+Eq(0)— 2Eo(1) with respect to the t-J model at large EP coupling.

Heisenberg energi(0), slightly decreases, i.e., hole bind-
ing is enhancecﬂEé(O.4,0,0<0], as the EP interaction in-
creases at low EP coupling strengths. In contrast, at large

phonon frequencies, with increasieg we find thatE § in- To summarize, in this paper we have studied the problem
creases, which seems to be an indication _that retardation rgy (hole) (bi)polaron formation in the Holstein Hubbard-
longer plays a rolé® On the other hand, in the adiabatic j) model by means of direct Lanczos diagonalization using a
strong-coupling regime, where the two holes become selftryncation method of the phononic Hilbert space. Compared
trapped on NN sites forming a nearly immobile hole bipo-ith previous treatments of the HolsteiiHubbard model on
laron, we expect an even stronger reductiomQf(2) com-  very small clusters, we are able to analyze large enough sys-
pared witht, (1) cf. the IMVLF-Lanczos results presented tems in order to discuss polaron and bipolaron band forma-
in Ref. 24. Here a rathestatic type of hole binding is real- tjon, which has been a subject of recent controvéfsgur

IV. CONCLUSIONS

ized. _ o _ main results are the following.
To substantiate this interpretation we have calculated the
hole-hole density correlation function (i) In the case of a single electron coupled to Einstein

phonons(Holstein mode), we confirm that the rather sharp
Chond i _J'|):<\Ir0(8p'J)|ﬁiﬁj|\p0(8p,‘])> (13 transition from a delocalized nearly free polar@P) [or a

large polaron(LP) in 1D] to a quasilocalized Holstein po-
in the 2D Holsteint-J model. Note thaCy,.{li-j|) provides laron (AHP) in the adiabatic regime and the very smooth
an even more reliable test for the occurrence of hole bindingransition to a Lang-Firsov-type polar¢NLFP) in the nona-
than the binding energi 3 (cf. Ref. 55. Indeed, when cal- diabatic regime are botbontinuous In agreement with re-
culatingE 3, we are comparing states with different quantumcent exact results,;?>3°we observe no ground-state level
numbers, specifically with differer§ and$”. In Fig. 13 we  crossings or any nonanalyticities as the EP coupling in-
present results for the nonequivalent hole-hole pair correlacreases. We point out that in the one-dimensional weak-
tion functions in the ground state of the Holsté#d model  coupling case a large-size polaron is formed at any finite EP
with two holes. In the weak-coupling region the hole-densitycoupling. In the strong-coupling regime, the AHP state is
correlation function becomes maximum at the largest discharacterized by pronounced on-site electron-phonon corre-
tance of the ten-site lattice, while in the intermediate EPations, making the quasiparticle susceptible to self-trapping.
coupling regime the preference is on NNN pairs. As ex-Most notably, the formation of an adiabatic Holstein polaron
pected, further increasing the EP interaction strength, thés accompanied by a shift of the maximum in the phonon
maximum in Cy,dJi-j|) is shifted to the shortest possible distribution function to higher phonon states, which seems to
distance(remember that double occupancy is strictly forbid- be an intrinsic feature of the self-trapping transition. By con-
den, indicating hole-hole attraction. The behavior of trast, the nonadiabatic NLFP ground state is basically a zero-
Cho.ndli-i]) is found to be qualitatively similar for higher phonon state.
(lower) phonon frequenciegsee the insef except that the (i) By calculating the spectral properties of a single elec-
crossings of different hole-hole correlation functions occur atron, we have found convincing evidence for the formation
larger (smalley values ofe, . In essence, our results clearly of a well-separated narrow polaron band in both the adiabatic
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and nonadiabatic strong-coupling regimes. In addition to théhat polaronic effects are of special importance (iow-
expected band narrowing, we also found a deviation from thelimensional strongly correlated narrow-band systems like
cosine dispersion away from the adiabatic and antiadiabatithe nickelates and high; cuprates.
limits. Although the coherent bandwidth, deduced from our (v) Regarding ground-state properties of the Holsteih
finite-lattice ED data, becomes extremely small in the adiamodel in the two-hole sector, a detailed study of the hole-
batic strong-coupling caggolaronic band collapsewe be-  hole correlation functions and the two-hole binding energy
lieve that the AHP does not lose its phase coherence and cavas carried out, yielding strong evidence of an enhanced
move itinerantly. hole attraction and the formation of hole bipolarons as a
(i) Investigating the two-particle problem in terms of the dynamical effect of the EP interaction.
1D Holstein model, we could clearly identify the transition
from a extendedlarge bipolaron to a quasilocalizetbn- Of course, the exact results presented in this paper hold
site) bipolaron (AHBP) as the EP interaction strength in- for the Holstein HubbardHolsteint-J) model with one and
creases. Stabilizing a two-polaron state in the weak EP couwo electrongholes on finite 1D (2D) systems, i.e., we are
pling regime by taking into account the on-site Coulombnot prepared to prove amgorous statements about the ther-
repulsion(Holstein Hubbard modglwe found a transition to  modynamic limit here. However, we believe that our main
an intersite bipolaron at abogt,=U/2. It is worth empha-  conclusions (i)=(v), in particular the existence of well-
sizing that this intersite bipolaron appears to have a dispeiseparated polaronic and bipolaronic quasiparticle bands even
sion that resembles very closely the cosine dispersion of & the adiabatic strong-coupling regime, will survive in the
noninteracting particle with a renormalized bandwidth. If theinfinite system.
EP coupling is further enhanced >U/2,iw,t), a second
transition to a self-trapped on-site AHBP will occtr.
(iv) Analyzing the hole-polaron formation in the frame-
work of the 2D Holsteirt-J model, we found that the critical The computations were performed on a CM5 of the GMD
EP coupling for the polaron transition is substantially re-(St. Augustin. We thank D. Ihle, J. Loos, and E. Salje for
duced due to prelocalization of the doped charge carriers imteresting and helpful discussions, and J. Stolze for a critical
the antiferromagnetic spin background. Therefore we suggestading of the manuscript.
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