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The Holstein Hubbard and Holsteint-J models are studied for a wide range of phonon frequencies, electron-
electron, and electron-phonon interaction strengths on finite lattices with up to ten sites by means of direct
Lanczos diagonalization. Previously the necessary truncation of the phononic Hilbert space caused serious
limitations to either very small systems~four or even two sites! or to weak electron-phonon coupling, in
particular in the adiabatic regime. Using parallel computers we were able to investigate the transition from
‘‘large’’ to ‘‘small’’ polarons in detail. By resolving the low-lying eigenstates of the Hamiltonian and by
calculating the spectral function, we can identify a polaron band in the strong-coupling case, whose dispersion
deviates from the free-particle dispersion at low and intermediate phonon frequencies. For two electrons
~holes! we establish the existence of bipolaronic states and discuss the formation of a bipolaron band. For the
two-dimensional Holsteint-J model, we demonstrate that the formation of hole polarons is favored by strong
Coulomb correlations. Analyzing hole-hole correlation functions, we find that hole binding is enhanced as a
dynamical effect of the electron-phonon interaction.

I. INTRODUCTION

Following the discovery of high-temperature supercon-
ductivity in ceramic copper oxides, interesting purely elec-
tronic pairing mechanisms due to strong Coulomb correla-
tions within CuO2 planes have been investigated in detail.
Recently, however, it has become clear that lattice degrees of
freedom are essential in understanding the puzzling normal-
state properties of cuprates.1–3 Even if it should turn out that
electron-phonon~EP! interaction is not the relevant pairing
interaction in those materials, its effects need to be reconsid-
ered for the case of strong electron-electron interactions and
low effective dimensionality as realized in high-Tc supercon-
ductors. In particular, polaronic effects are suggested to play
a non-negligible role in the copper-based material
La22xSrxCuO41y,

4–9 and even more in the isostructural
nickel-based charge-transfer oxide La22xSrxNiO41y.

7,10 Ex-
perimentally, photoinduced absorption experiments11 and in-
frared spectroscopy,12 as well as infrared reflectivity
measurements,13 unambiguously indicate the formation of
self-localized polaronic states~small polarons! in the insulat-
ing parent compounds La2CuO41y and Nd2CuO42y of the
hole- and electron-doped superconductors La22xSrxCuO41y
and Nd22xCexCuO42y, respectively. Therefore a growing
theoretical interest in the study of strongly correlated EP
models can be found in the recent literature.14–26

Probably the simplest microscopic models including both
the electron and phonon degrees of freedom are the Holstein
Hubbard model
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and the Holsteint-J model
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where cis
(†) annihilates ~creates! an electron at Wannier

site i with spin projections, ni5ni↑1ni↓ , and t denotes
the transfer amplitude between nearest-neighbor~NN!
pairs ^ i j &. HH-t-J acts in a projected Hilbert space without
double occupancy, i.e.,c̃is

(†)5cis
(†)(12ni2s), and SW i5

1
2

(ss8c̃is
† tWss8c̃is8 . The first two terms in~1! and~2! represent

the standard Hubbard model andt-J model, respectively,
whereU is the on-site Coulomb repulsion, andJ measures
the NN antiferromagnetic exchange interaction strength. The
third and fourth terms take into account the EP interaction
and the phonon energy in a harmonic approximation. Here
the on-site electron~hole! occupation numberni(h̃i512ñi)
is locally coupled to a dispersionsless optical phonon mode,
where «p is the EP coupling constant,v denotes the bare
phonon frequency, andbi

(†) are the phonon annihilation~cre-
ation! operators. In the context of an effective single-band
description of the copper/nickel oxides, the collective Hol-
stein coordinatesqi5A\/2Mv(bi

†1bi) may be thought of
as representing an internal optical degree of freedom of the
lattice site i , i.e., in this case the dominant source of EP
coupling is assumed to result from the interaction of dopant-
induced charge carriers with the apical out-of-plane or the
bond-parallel in-plane breathing-type displacements of oxy-
gen atoms.

Unfortunately, for strongly coupled EP systems exact re-
sults exist only in a few special cases and limits.27–30

Whereas, in an approximate treatment, the weak-coupling
regime ~«p/t!1! is well understood and dealt with by per-
turbation theory, the standard strong-coupling Migdal-
Eliashberg theory31,32based on the adiabatic Migdal theorem
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might break down for strong enough EP interactions
~«p/t@1! due to the familiar polaronic band collapse.5 Note
that in the presence of strong Coulomb correlations, a rather
moderate EP can cause a substantial reduction of the coher-
ent band motion making the particles susceptible to
self-trapping.16,24 The ~single! polaron problem has been
tackled in the strong-coupling adiabatic~\v/t!1! and antia-
diabatic ~\v/t@1! limits using the Holstein33 and
Lang-Firsov34 approximations, respectively. Both approaches
yield a narrow polaronic band with an exponentially reduced
half-bandwidth.18 Whether these small polarons~or bipo-
larons! can exist as itinerant band states is still a heavily
debated issue.1 Apart from variational calculations,35–37,20

little is known for intermediate values of EP coupling and
phonon frequency«p;\v;t and, in particular, for the
many-polaron problem. In principle, exact diagonalization
~ED! ~Refs. 14, 38, 18, and 26! and ~quantum! Monte
Carlo39–43 methods including the full quantum nature of
phonons can close this gap. However, by using direct ED
techniques it is necessary to truncate the phononic Hilbert
space, and hence the accessible parameter space is limited by
the size of the matrix one can diagonalize. Therefore ED
studies up to now were limited to either small values of«p ,
to the so-called frozen phonon approximation,44–47or to very
small systems.14,15,18,26In a previous work,24 the authors pro-
posed a variational Lanczos diagonalization technique on the
basis of an inhomogeneous modified variational Lang-Firsov
transformation~IMVLF ! that allows for the description of
static displacement field, polaron and squeezing effects in
terms of the Holsteint-J and Holstein Hubbard models on
fairly large clusters. Although the adiabatic and antiadiabatic
as well as the weak- and strong-coupling limiting cases are
well reproduced in this approach, the situation becomes less
favorable at intermediate EP couplings and phonon frequen-
cies and, in particular, in the crossover region from large-size
nearly free polarons~FP’s! to small-size quasilocalized po-
larons~i.e., in the vicinity of the so-called self-trapping tran-
sition!. Obviously, this regime requires a more accurate treat-
ment of the phonons as quantum-mechanical objects.

Encouraged by this situation, it is the aim of the present
paper to perform a direct Lanczos diagonalization of the Hol-
stein Hubbard and Holsteint-J models, preserving the full
dynamics of quantum phonons. In particular, we investigate
low-lying excitations ~spectral functions! on large enough
lattices, in order to identify the dispersion relation of the
~bi!polaronic quasiparticles.

II. COMPUTATIONAL PROCEDURE

A general state of the model HamiltonianHH-H @HH-t-J#
describingNel5N↑1N↓ electrons on a finiteD-dimensional
hypercubic lattice withN sites can be written as the direct
product
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where l and k label the basic states of the electronic and
phononic Hilbert space with dimensionsDel5(N↑
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truncation procedure48 restricting ourselves to phononic
states with at mostM phonons:
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(M )5(M1N)!/M !N!. To further reduce the

dimension of the Hilbert space, in the case ofHH-H we
separate out the center-of-mass motion by transforming to
different phonon operatorsBi

(†) , which can be taken into
account analytically as displaced harmonic oscillators. For
the Holsteint-J model it is more effective to exploit the
point-group symmetries of the original basis~3!.

Then the resulting Hamiltonian matrix is diagonalized us-
ing a standard Lanczos method. As the convergence of the
Lanczos procedure depends on the~relative! difference of
neighboring eigenvalues,uEi112Ei u/uEi u, one needs to be
very careful in resolving eigenvalues within the extremely
narrow small-polaron band. To monitor the convergence of
our truncation procedure as a function ofM , we calculate the
weight of them-phonon states in the ground stateuC0& ofH:

ucmu25(
l ,k

ucl
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i51

N
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k . ~6!

At fixed M , the curveucmu2(m) is bell shaped, and its maxi-
mum corresponds to the most probable number of phonon
quanta in the ground state. To illustrate theM dependences
of the ground-state energyE0 and the coefficientsucmu2, we
have shown both quantities for the single-electron Holstein
model in Fig. 1. In the numerical work convergence is
achieved if the relative error of the ground-state energy is
less than 1027. In addition, we check thatE0 is smaller than
the estimate obtained from the IMVLF-Lanczos treatment of
the phonon subsystem.24

FIG. 1. Ground-state energyE0 and weight of them-phonon
statesucmu2 ~inset! as a function of the maximal number of phonons
M for the 1D single-electron Holstein model on a four-site lattice.
The model parameters are«p56.0 and\v50.4 ~all energies are
measured in units oft!.
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We have written the program inFortran90 and ran it on a
64-node CM5. We were able to diagonalize Hamiltonian ma-
trices up to a total dimension~D tot! of about 82 million.
Since a matrix vector multiplication for this matrix size takes
less than 150 s, the limiting factor of our numerical algo-
rithm is the available storage.

III. NUMERICAL RESULTS

A. Holstein Hubbard model

1. One-electron case

In the first place, we investigate the polaron properties of
the Holstein model with a single electron on finite lattices
with up to ten sites using periodic boundary conditions. In
the light of the literature over at least the last two
decades,49,39,26,28–30we expect a gradual transition from a
~nearly free! large-polaron solution to a small-polaron-like
ground state upon increasing the EP coupling. Since, in par-
ticular in the adiabatic regime, the formation of a polaronic
state is accompanied by a strong reduction of the electron
mobility, this effect should be observable in the expectation
value of the kinetic energyEp,kin /t52(^ i j &s^C0u(cis

† cjs
1H.c.)uC0&, where uC0& is the ground-state wave function.
We therefore define an effective polaronic transfer
amplitude24

tp,eff5Ep,kin~«p ,U !/Ep,kin~0,U ! ~7!

in order to characterize the increase in the polaron mass.24

Note that tp,eff substantially differs from the~exponential!
polaron band renormalization factor~r! obtained analytically
in the nonadiabatic Lang-Firsov and adiabatic Holstein
cases.18

We illustrate the dependence of this effective hopping am-
plitude on the EP interaction strength in Fig. 2, where we
have plottedtp,eff as a function of«p at different phonon
frequencies. First it is important to realize that there are two
complementary~adiabatic and nonadiabatic! regimes for the
polaronic motion. In the nonadiabatic regime, where the lat-
tice fluctuations are fast and the phonons are able to follow
immediately the electronic motion forming a nonadiabatic
Lang-Firsov polaron~NLFP!, one observes a very gradual
decrease oftp,eff as«p increases. At the same time the pho-

non distribution functionucmu2 becomes wider but the maxi-
mum is still located at the zero-phonon state. In the adiabatic
regime, one notices a crossover from a large-size polaron
~LP! in one dimension~1D! or nearly free polaron~FP! in
2D, described by atp,eff that is only weakly reduced from its
noninteracting value, to a less mobile~small-size! adiabatic
Holstein polaron~AHP! for large«p . We point out that the
nature of delocalized polaronic states, occurring in the weak-
coupling region, is different in 1D and 2D.24 In the 1D case,
the FP state becomes unstable at any finite EP coupling. As
expected, the transition to the AHP state occurs if the EP
coupling approximately exceeds half the bare electronic
bandwidth and, in accordance with Monte Carlo results,39,40

is much sharper in two dimensions~in the remainder of this
section we focus on the 1D case!. Nonetheless, all physical
quantities are smooth functions of«p ; in particular there are
no ground-state level crossings, i.e., the transition from
LP/FP to AHP iscontinuousand not accompanied by any
nonanalyticities. While in the weak-coupling case we have
mmax50 and the inclusion of higher phonon states~m*5!
does not improve the ground-state energy at all, in the adia-
batic strong-coupling case~«p54, \v50.4!, the maximum in
ucmu2 is shifted to multiphonon states~mmax.8!, and we need
about 16 phonons to reach a sufficient accuracy within our
truncation procedure. Note that a similar behavior can be
observed in thenonadiabaticregime ~\v.t! provided that
«p@\v, e.g., for\v53 and«p58 ~«p510! we findmmax.2
in 1D ~2D!. These results confirm previous findings for the
Holstein Hubbard model on very small-size clusters~with
two or three sites!, where, as«p increases in the adiabatic
regime, a strong increase of the average number of phonons,
^Nph&, contained in the ground state, was observed~cf. Table
I in Ref. 14 and Table I in Ref. 15!. In the center-of-mass
system, the phonon expectation value in the polaronic
ground state may be derived from the phonon distribution
function ucmu2 by ^Nph&5(m50

M ucmu21(«p /\v)(Nel
2 /N).

To elucidate the difference between the extended LP and
quasilocalized AHP states in more detail, we have calculated
the electron-phonon density correlation function

Cel-ph~ u i2 j u!5^C0unibj
†bj uC0&, ~8!

which measures the correlation between the electron occupy-
ing site i and the density of phonons on sitej .50 Results for
Cel-ph(u i2 j u), plotted in Fig. 3 at\v50.4 for all distances
i2 j :5RW i2RW j , show that for small«p the correlation be-
tween the electron and the phonons is fairly weak and exhib-
its little structure, i.e., the few phonons contained in the
ground state are nearly uniformly distributed over the whole
lattice. In contrast, in the case of large EP coupling~«p53!,
the phonons are strongly correlated with the position of the
electron, thus implying a very small radius of the polaron.
Note, however, that the translational invariance of the ground
state is not broken. Since a polaron’s mass is inversely pro-
portional to its size, the AHP formed at large«p is an ex-
tremely heavy quasiparticle. As can be seen from the inset of
Fig. 3, the on-site electron-phonon correlation increases dra-
matically around the same value of«p at which tp,eff be-
comes depressed~cf. Fig. 2!. This means that, in the adia-
batic regime, a strong short-range EP interaction can
sufficiently lower the energy of the system due to a

FIG. 2. Effective hopping amplitudetp,eff vs «p , for a single
electron on a ten-site lattice described by the Holstein model.
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deformation-potential-like contribution to overcompensate
for the loss of kinetic energy. Nonetheless, the quasilocalized
~self-trapped! polaronic state has a bandlike character, i.e.,
the AHP can move itinerantly.

In order to discuss the formation of a small-polaron band,
one has to calculate the low-lying excited states. As a first
step, in Fig. 4 we classify the lowest eigenvalues of the Hol-
stein model according to the allowed wave vectors of the
eight-site lattice for various phonon frequencies at«p53.
Here the band dispersionEK2E0 is scaled with respect to
the so-called coherent bandwidthDE5supKEK2infKEK .
DE strongly depends on both ratios«p/\v and«p/t, for ex-
ample, we foundDE(«p53,\v)50.0157, 0.1957, 2.9165,
and 4.0 for \v50.4, 0.8, 10.0, and̀ , respectively. Of
course, the simple Lang-Firsov formula
DELF54D exp@2«p/\v# gives a good estimate of the po-
laronic bandwidth only in the nonadiabatic regime:
DELF~«p53,\v!50.0022 ~\v50.4!, 0.0941 ~0.8!, 2.9633

~10.0!, and 4~`!. Besides the strong renormalization of the
bandwidth in the low-frequency strong-coupling regime, it is
interesting to note that the deviation of the polaron band
dispersion from a~rescaled! cosine dispersion of noninteract-
ing electrons is most pronounced atintermediatephonon fre-
quencies\v;t, i.e., in between the extreme adiabatic~AHP!
and antiadiabatic~NLFP! limits. This deviation may be due
to a residual polaron-phonon interaction, with the phonons
sitting on sites other than the polaron.51 To demonstrate that
the low-lying eigenvalues do indeed form a well-separated
quasiparticle band in the adiabatic strong-coupling regime
~«p53, \v50.4!, in the inset of Fig. 4 we have displayed the
lowest few eigenvalues in dependence on«p . In the very
weak-coupling regime~«p50.5! the eigenvalues are barely
changed from their«p50 values, where additional eigenval-
ues, separated from the ground-state energyE0 by multiples
of \v ~e.g.,E2, E3, andE4!, enter the spectrum. As«p in-
creases, a band of states separates from the rest of the spec-
trum. These states become very close in energy, and a narrow
well-separated energy band evolves in the strong-coupling
case~«p53!. Obviously, the gap to the next-higher band of
eigenvalues is of the order of the bare phonon frequency\v.
Neglecting degeneracies, one may tentatively identify those
five states as the states of the small-polaron band on the
eight-site lattice.

Keeping this identification in mind, in Fig. 5 we have
plotted the lowest eigenvalues as a function of the~1D! K
vectors belonging to various system sizes~N56, 8, and 10!.
One notices that the dispersionEK is rather size independent,
i.e., theEK values obtained for larger systems just fill the
gaps. Undoubtedly, the smooth shape ofEK already provides
good reasons for a quasiparticle band description of the AHP
in the strong-coupling regime. To substantiate this quasipar-
ticle interpretation further, we also have calculated the one-
particle spectral functions

AK~E!5(
n

u^Cn
~Nel!ucK

† uC0
~Nel21!

&u2d~E2En
~Nel!1E0

~Nel21!
!,

~9!

FIG. 3. Electron-phonon density correlation function
Cel-ph(u i - j u) as a function of the distancei - j and EP coupling«p
~inset! at\v50.4. The results are given for the single-electron Hol-
stein model on an eight-site chain.

FIG. 4. Single-electron band dispersionEK-E0 at «p53 in units
of the coherent bandwidthDE. The inset shows the distribution of
the eigenvalues at\v50.4, where the horizontal axis counts the
eigenvalues sorted by magnitude and the vertical axis gives their
absolute valuesEn :5En

(tot)2N\v/2. All results are given for the
eight-site chain withM518 phonons.

FIG. 5. Band dispersionE(K) of a single electron described by
the Holstein model on 1D rings withN sites, where«p53.0 and
\v50.4. The insets show the low-energy part of the one-particle
spectral functionAK(E) taken at theK values indicated by arrows.
The dotted line corresponds to the dispersion of a free particle with
a renormalized bandwidth.
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with Nel51 for the nonequivalentK values of the six-site
system using a polynomial moment method.52 The idea is to
see a direct verification of the coherent band dispersionEK in
terms ofAK(E). The electronic spectral functionsAK(E) are
shown in the four insets of Fig. 5. The important point we
would like to emphasize is that the position of the first peak
in each spectral functionAK(E) exactly coincides with the
correspondingEK value, and the other peaks are at higher
energies than any of the coherent band-energy values. This
means that our exact results for the low-energy excitation
spectrum of a single electron corroborate the existence of
heavily dressed polaronic quasiparticles, where the electronic
and phononic degrees of freedom are strongly mixed. Of
course, in the very high-energy regime the results forAK(E)
cannot be trusted due to the errors induced by the necessary
truncation of the phononic Hilbert space.

2. Two-electron case

Next we wish to discuss the two-electron problem. Here it
is of special interest to understand in detail the conditions
under which the two electrons form a bipolaron. Whether or
not a transition to a bipolaronic state will occur depends
sensitively on the competition between the short-ranged
phonon-mediated, i.e., retarded~\v,`!, attraction ~}«p!
and the instantaneous on-site Hubbard repulsion~}U!.

We start again with a discussion of the mobility of the
particles. Figure 6~a! shows the strong~gradual! reduction of
the effective polaronic transfer amplitudetp,eff as «p in-
creases in the adiabatic~nonadiabatic! regime. Now let us
mainly focus on the physically more interesting regime of
small phonon frequencies,\v50.4. In the case of vanishing
Coulomb interactionU50 any finite EP interaction causes an
effective on-site attraction between the electrons forming a
bipolaronic bound state~remember, e.g., thatUeff5U22«p
follows from the simple Lang-Firsov approach!. This means
that in the pure Holstein model the state with two nearly free
~large! polarons does not exist, at least in one spatial
dimension.14 In the weak-coupling limit, the two-polaron
state can, however, be stabilized by taking into account the
on-site Coulomb repulsion. In this case, a crossover from a
state of two mobile large polarons to an extended bipolaronic
state occurs. The transition will be shifted to larger EP cou-
plings asU increases@see Fig. 6~a!#. For example, atU56
and \v50.4 ~3.0!, we find that the binding energy of two
electrons,EB

25E0(2)22E0(1), becomes negative at about
«p51.7 ~2.8!. Further justification for this interpretation can
be found from the behavior of the effectivebipolaronic
transfer amplitude53

tb,eff5Eb,kin~«p ,U !/Eb,kin~0,U !, ~10!

with

Eb,kin~«p ,U !/t52(̂
i j &

^C0~«p ,U !u~ci↑
† ci↓

† cj↑cj↓

1H.c.!uC0~«p ,U !&, ~11!

shown in Fig. 6~b!. tb,eff describes the coherent hopping of an
on-site bipolaron from sitei to site j . Contrary totp,eff at low
EP coupling strengths the bipolaronic hopping amplitude
tb,eff grows with increasing«p , showing the increasing im-

portance of the correlated motion of two electrons~but, quite
clearly, we haveuEb,kinu,uEp,kinu!. At large EP couplings
~e.g., for«p*1 atU50 and\v50.4!, the on-site bipolaron
becomes more and more localized, and accordingly we ob-
serve a drop intb,eff which corresponds to the drop intp,eff in
the case of one electron at the parameter values where the
AHP becomes stable. Hence we will call this quasiparticle an
adiabatic Holstein bipolaron~AHBP!.

To better illustrate the effect of pair formation in the 1D
Holstein~Hubbard! model, we present in Fig. 7 the electron-
electron density correlation function

Cel-el~ u i2 j u!5^C0~«p ,U !uninj uC0~«p ,U !&

2^C0~0,U !uninj uC0~0,U !& ~12!

in the adiabatic regime with~b! and without ~a! Hubbard
repulsion. In each case we have displayed the results for
Cel-el(u i2 j u) as a function of«p in comparison to the
electron-phonon correlation functionCel-ph(u i2 j u) given by
~8!. As Fig. 7~a! shows, in the limit of vanishing Coulomb
interaction the on-site electron-electron correlationCel-el~0!
dominates the intersite correlationsCel-el(u i2 j u) with u i
2 j u>1, in particular for«p*0.9, i.e., in the AHBP regime
where both electrons are mainly confined to the same site
sharing a common lattice distortion. Therefore the transition
from a mobile large bipolaron to a quasi-self-trapped on-site
AHBP is manifest in a strongly enhancedCel-ph~0! as well

FIG. 6. The effective polaron and bipolaron transfer amplitudes
tp,eff and tb,eff are shown as a function of the EP coupling strength
«p in ~a! and ~b!, respectively. The results are given for two elec-
trons on the eight-site chain withM521 phonons using periodic
boundary conditions.
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~see the inset!. Moreover, the transition should be associated
with a significant reduction of the local magnetic moment,
mloc(«p ,U)}^C0u(ni↑2ni↓)

2uC0&, indicating the local pair-
ing of spin-up and -down electrons. Indeed we found
mloc(«p51)/mloc(«p50.9)uU50,\v50.450.66. As can be seen
from Fig. 7~b!, a somewhat different scenario emerges in the
presence of a finite Coulomb interaction. Here the Hubbard
repulsion prevents the formation of an on-site bipolaronic
bound state in the weak EP coupling regime. On the other
hand, as recently pointed out by Marsiglio,26 the retardation
effect of the EP interaction may favor the formation of more
extended pairs. That is, due to the time delay the second
electron can take the advantage of the lattice distortion left
by the first one, still avoiding the direct Coulomb repulsion.
In fact, increasing the EP interaction, we find that both the
nearest-neighbor electron-electron and electron-phonon den-
sity correlations starts to rise, while the on-site correlations
remain small@cf. Fig. 7~b!#. Consequently, we may label this
state an adiabatic intersite bipolaron. We expect that at larger
values of«p the short-range EP interaction overcomes the
Hubbard repulsion and, as a result, the two electrons coa-
lesce on a single site forming a self-trapped bipolaron. Un-
fortunately we are unable to increase the dimension of the
Hilbert space to contain a large enough number of phonons
in the adiabatic very strong-coupling regime.

As already mentioned for the one-electron case, the de-
scription of the self-trapping phenomenon requires the inclu-
sion of multiphonon states. This is clearly displayed in Fig.
8, where we have shown the weight of them-phonon state in

the ground state for various EP coupling strengths. One sees
immediately that the maximum ofucmu2 is rapidly shifted to
larger values ofm as «p increases. Increasing the phonon
frequency at fixed«p , this tendency is reversed~see the in-
set!. In the extreme antiadiabatic limit~\v→`! we have
mmax50, and the binding disappears forU.2«p .

As in the case of one electron, it is interesting to look at
the low-lying excitations of the intersite bipolaron. Although
we do not have a clear definition as to the momentum of this
compound particle, it turns out that we indeed find a well-
separated energy band if we again classify the lowest-energy
eigenvalues with respect to the allowedK states of our finite
system~see Fig. 9!. The formation of the~intersite! bipolaron
band can be attributed to pronounced retardation effects@cf.
the maxima in the nearest-neighbor correlation functions
Cel-ph~1! andCel-el~1! ~Fig. 7! as well as the large bipolaronic
hopping amplitudetb,eff ~Fig. 6! at «p53#. Surprisingly the
dispersion of this quasiparticle band becomes exactly like
that of a free particle~with a strongly renormalized band-
width! at «p5U/2, where in the standard Lang-Firsov po-
laron theory the effective Coulomb interaction vanishes. As

FIG. 7. Electron-electron~electron-phonon! correlation function
Cel-el @Cel-ph ~inset!# vs «p at \v50.4 forU50 ~a! andU56 ~b!.

FIG. 8. Weight of them-phonon state in the two-electron ground
state of the Holstein Hubbard model, whereU56 and \v50.4
@\v53 ~inset!#.

FIG. 9. The lowest eigenvaluesEK for the two-electron case on
the eight-site chain, where\v50.4 andU56. The energy band is
given in units of the coherent bandwidthDE50.0481, 0.0217, and
0.0190 for«p52.5, 2.75, and 3.0, respectively.
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the EP coupling exceedsU/2, a deviation from the cosine
dispersion occurs, and we expect that for«p@U/2 an ex-
tremely narrow AHBP band will be formed.

B. Holstein t-J model

Now let us turn to the case where a few dopant-induced
charge carriers~holes! coupled to lattice phonons move in an
antiferromagnetic correlated spin background. In 2D, this
situation, frequently described by the Holsteint-J model
~2!,54,24,25is particularly interesting as it represents the basic
electronic and phononic degrees of freedom in the CuO2
planes of the high-Tc cuprates. As yet, very little is known
theoretically about the interplay between EP coupling and
antiferromagnetic exchange interaction in such systems. Of
course, the exact diagonalization technique, as applied in
Sec. III A to the Holstein Hubbard model, provides reliable
results for the ground-state properties of the Holsteint-J
model as well. Here, however, one usually works near half-
filling, i.e., the electronic basis is very large from the outset
imposing severe restrictions on the dimension of the
phononic Hilbert space. Therefore we are unable to reach the
extreme strong EP coupling regime, especially in the adia-
batic limit. In the following numerical analysis of the Hol-
stein t-J model, the exchange interaction strength is fixed at
J/t50.4 ~which seems to be a realistic value for the high-Tc
systems!.

First let us discuss the behavior of the effective transfer
amplitude, tp,eff5Ep,kin(«p ,J)/Ep,kin(«p,0), shown in Fig.
10. Increasing the EP coupling at a fixed phonon frequency
\v50.8, the mobility of the hole is strongly reduced and a
Holstein-type hole polaron~AHP! is formed at about
« p
c.2.0. The continuous crossover from a nearly free hole

polaron~FP! to the AHP state is similar to that observed in
the 2D single-electron Holstein model; i.e., at«p.« p

c a sec-
ond maximum in the phonon distribution function~ucmu2!
evolves, which, for«p@« p

c, becomes more pronounced and
is shifted to higher phonon states. For example, we obtain

mmax.4 at«p54 and\v50.8. The increasing importance of
multiphonon states in obtaining the true ground-state energy
at large«p becomes clearly visible in Fig. 10 by comparing
the results for various phonon numbersM . There is, how-
ever, an important difference between the one-hole and one-
electron cases which should not be underemphasized: In the
single-hole Holsteint-J model antiferromagnetic spin corre-
lations and EP interactions reinforce each other to the effect
of lowering the threshold for polaronic self-localization. This
fact is in agreement with IMVLF-Lanczos results obtained
recently by the authors.24 As Fig. 10 illustrates, the IMVLF-
Lanczos technique, which variationally takes into account
inhomogeneousfrozen-in displacement-field configurations
as well asdynamicpolaron and squeezing phenomena, de-
scribes the qualitative features of the transition from FP to
AHP states, and gives a reliable estimate of the renormaliza-
tion of the effective transfer-matrix elementtp,eff . Moreover,
the IMVLF-Lanczos method yields an excellent variational
upper bound for the true ground-state energyE0, and there-
fore it provides an additional educated check for the minimal
number of phonons one has to take into account within the
Hilbert space truncation technique.

By analogy to Eq.~8!, we have calculated the correspond-
ing hole-phonon density correlation functionCho-ph(u i2 j u)
5^C0uh̃ibj

†bj uC0& for the 2D Holsteint2J model. Figure
11 showsCho-ph(u i2 j u) as a function of the short-range EP
interaction strength«p at various phonon frequencies. The
transition to the AHP state is signaled by a strong increase in
the on-site hole-phonon correlations, which are about one
order in magnitude larger than the nearest-neighbor ones.
This indicates that the AHP quasiparticle comprising a
quasilocalized hole and the phonon cloud is mainly confined
to a single lattice site. Increasing the phonon frequency the
hole-phonon correlations are smeared out, and the crossover
to the small hole polaron is shifted to larger values of the EP
coupling.

Now let us consider the two-hole case. In Fig. 12 we
show the effective polaronic transfer amplitudestp,eff(Nh) vs
EP coupling strength in the adiabatic~\v50.1!, intermediate
~\v50.8!, and nonadiabatic~\v53.0! regimes. In each case
we compare the one- and two-hole results to obtain a feel for

FIG. 10. Effective hopping amplitudetp,eff and ground-state en-
ergyE0 ~inset! as a function of EP coupling strength«p for the 2D
single-hole Holsteint-J model atJ50.4 and\v50.8. Exact results
for the ten-site square with different numbers of phononsM are
compared with approximate IMVLF-Lanczos data~Ref. 24!. For
further explanation, see text.

FIG. 11. Dependence of the on-site and nearest-neighbor~inset!
hole-phonon correlation functionCho-ph(u i - j u) on the EP coupling
«p and phonon frequency\v at J50.4. Results are given for a
single hole on a ten-site lattice with at mostM512 phonons.
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hole-binding effects. Remarkably we find thattp,eff(2) is
larger thantp,eff(1) for «p&1 and\v50.1, indicating ady-
namical type of hole binding in the low-frequency weak-
coupling regime where retardation effects become important.
Indeed, the two-hole binding energy, defined as usual by
EB

2(J,«p ,\v)5E0(2)1E0(0)22E0(1) with respect to the
Heisenberg energyE0~0!, slightly decreases, i.e., hole bind-
ing is enhanced@EB

2~0.4,0,0!,0#, as the EP interaction in-
creases at low EP coupling strengths. In contrast, at large
phonon frequencies, with increasing«p we find thatEB

2 in-
creases, which seems to be an indication that retardation no
longer plays a role.26 On the other hand, in the adiabatic
strong-coupling regime, where the two holes become self-
trapped on NN sites forming a nearly immobile hole bipo-
laron, we expect an even stronger reduction oftp,eff(2) com-
pared withtp,eff(1) cf. the IMVLF-Lanczos results presented
in Ref. 24. Here a ratherstatic type of hole binding is real-
ized.

To substantiate this interpretation we have calculated the
hole-hole density correlation function

Cho-ho~ u i2 j u!5^C0~«p ,J!uh̃i h̃ j uC0~«p ,J!& ~13!

in the 2D Holsteint-J model. Note thatCho-ho~ui-j u! provides
an even more reliable test for the occurrence of hole binding
than the binding energyEB

2 ~cf. Ref. 55!. Indeed, when cal-
culatingEB

2, we are comparing states with different quantum
numbers, specifically with differentS andSz. In Fig. 13 we
present results for the nonequivalent hole-hole pair correla-
tion functions in the ground state of the Holsteint-J model
with two holes. In the weak-coupling region the hole-density
correlation function becomes maximum at the largest dis-
tance of the ten-site lattice, while in the intermediate EP
coupling regime the preference is on NNN pairs. As ex-
pected, further increasing the EP interaction strength, the
maximum inCho-ho~ui-j u! is shifted to the shortest possible
distance~remember that double occupancy is strictly forbid-
den!, indicating hole-hole attraction. The behavior of
Cho-ho~ui-j u! is found to be qualitatively similar for higher
~lower! phonon frequencies~see the inset!, except that the
crossings of different hole-hole correlation functions occur at
larger ~smaller! values of«p . In essence, our results clearly

indicate that hole bipolarons could be formed in the Holstein
t-J model at large EP coupling.

IV. CONCLUSIONS

To summarize, in this paper we have studied the problem
of ~hole! ~bi!polaron formation in the Holstein Hubbard (t-
J) model by means of direct Lanczos diagonalization using a
truncation method of the phononic Hilbert space. Compared
with previous treatments of the Holstein~Hubbard! model on
very small clusters, we are able to analyze large enough sys-
tems in order to discuss polaron and bipolaron band forma-
tion, which has been a subject of recent controversy.1,9 Our
main results are the following.

~i! In the case of a single electron coupled to Einstein
phonons~Holstein model!, we confirm that the rather sharp
transition from a delocalized nearly free polaron~FP! @or a
large polaron~LP! in 1D# to a quasilocalized Holstein po-
laron ~AHP! in the adiabatic regime and the very smooth
transition to a Lang-Firsov-type polaron~NLFP! in the nona-
diabatic regime are bothcontinuous. In agreement with re-
cent exact results,27,29,30 we observe no ground-state level
crossings or any nonanalyticities as the EP coupling in-
creases. We point out that in the one-dimensional weak-
coupling case a large-size polaron is formed at any finite EP
coupling. In the strong-coupling regime, the AHP state is
characterized by pronounced on-site electron-phonon corre-
lations, making the quasiparticle susceptible to self-trapping.
Most notably, the formation of an adiabatic Holstein polaron
is accompanied by a shift of the maximum in the phonon
distribution function to higher phonon states, which seems to
be an intrinsic feature of the self-trapping transition. By con-
trast, the nonadiabatic NLFP ground state is basically a zero-
phonon state.

~ii ! By calculating the spectral properties of a single elec-
tron, we have found convincing evidence for the formation
of a well-separated narrow polaron band in both the adiabatic

FIG. 12. Effective transfer amplitudes,tp,eff(Nh) vs «p , are com-
pared for the one- and two-hole cases at various phonon frequen-
cies, whereJ50.4 andM512.

FIG. 13. Hole-hole density correlation functionCho-ho~ui-j u! of
the 2D Holsteint-J model shown as a function of the EP-coupling
«p for J50.4 at\v50.8 and 0.1~inset!, where the numbers 1–3
label the nonequivalent distancesuRW i2RW j u/a51, &, and A5 be-
tween NN, next-NN, and third-NN sites on a ten-site lattice with
M512 phonons, respectively.
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and nonadiabatic strong-coupling regimes. In addition to the
expected band narrowing, we also found a deviation from the
cosine dispersion away from the adiabatic and antiadiabatic
limits. Although the coherent bandwidth, deduced from our
finite-lattice ED data, becomes extremely small in the adia-
batic strong-coupling case~polaronic band collapse!, we be-
lieve that the AHP does not lose its phase coherence and can
move itinerantly.

~iii ! Investigating the two-particle problem in terms of the
1D Holstein model, we could clearly identify the transition
from a extended~large! bipolaron to a quasilocalized~on-
site! bipolaron ~AHBP! as the EP interaction strength in-
creases. Stabilizing a two-polaron state in the weak EP cou-
pling regime by taking into account the on-site Coulomb
repulsion~Holstein Hubbard model!, we found a transition to
an intersite bipolaron at about«p.U/2. It is worth empha-
sizing that this intersite bipolaron appears to have a disper-
sion that resembles very closely the cosine dispersion of a
noninteracting particle with a renormalized bandwidth. If the
EP coupling is further enhanced («p@U/2,\v,t), a second
transition to a self-trapped on-site AHBP will occur.51

~iv! Analyzing the hole-polaron formation in the frame-
work of the 2D Holsteint-J model, we found that the critical
EP coupling for the polaron transition is substantially re-
duced due to prelocalization of the doped charge carriers in
the antiferromagnetic spin background. Therefore we suggest

that polaronic effects are of special importance in~low-
dimensional! strongly correlated narrow-band systems like
the nickelates and high-Tc cuprates.

~v! Regarding ground-state properties of the Holsteint-J
model in the two-hole sector, a detailed study of the hole-
hole correlation functions and the two-hole binding energy
was carried out, yielding strong evidence of an enhanced
hole attraction and the formation of hole bipolarons as a
dynamical effect of the EP interaction.

Of course, the exact results presented in this paper hold
for the Holstein Hubbard~Holstein t-J! model with one and
two electrons~holes! on finite 1D ~2D! systems, i.e., we are
not prepared to prove anyrigorousstatements about the ther-
modynamic limit here. However, we believe that our main
conclusions ~i!–~v!, in particular the existence of well-
separated polaronic and bipolaronic quasiparticle bands even
in the adiabatic strong-coupling regime, will survive in the
infinite system.
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22H. Röder, H. Fehske, and R. N. Silver, Europhys. Lett.28, 257

~1994!.
23J. Zaanen and P. B. Littlewood, Phys. Rev. B50, 7222~1994!.
24H. Fehske, H. Ro¨der, G. Wellein, and A. Mistriotis, Phys. Rev. B

51, 16 582~1995!.
25A. Dobry, A. Greco, S. Koval, and J. Riera~unpublished!.
26F. Marsiglio, Physica C244, 21 ~1995!.
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