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Dirac fermions with disorder in two dimensions: Exact results
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Dirac fermions on a two-dimensional lattice with disorder are considered. The Dirac mass, which controls
the gap between the two bands of the fermions, is subject to random fluctuations. Another type of disorder is
discussed presented by a random vector potential. It is shown that the imaginary part of the one-particle
Green’s function can be written as the imaginary part of another Green'’s function, which has only poles on the
lower half plane. Therefore, it is possible to perform a Cauchy integration for a Lorentzian distribution in
analogy with the Lloyd model. The results are compared with calculations performed in the continuum limit
based on renormalization group and bosonization methods.

[. INTRODUCTION ent potential approximatiofiCPA) of the Dirac fermions
with random energy terrko, added toH also gives a non-
The density of state€DOYS) in two-dimensional electron zero DOS! A similar result was found for a random mass
systems with a pseudogap is a subject of interest for a numterm mo; in a modified model withN fermion levels per
ber of physical situations discussed recehtf/A typical  site, using theN—o limit.!! However, these are essentially
model with a pseudogap is represented by the Dirac Hamilmean-field results that may be affected strongly by fluctua-

tonian in two dimensions tions in the two-dimensional system. It is possible that the
CPA or N—oo result are destroyed by fluctuations dr=2.
H=iV,0,+iV,0,+Mo3, (1)  Therefore, as an alternative approach a renormalization

group treatment was applied to this probl&hirom this it

whereo, are Pauli matrices including thex2 unit matrix  turned out that there is asymptotic freedom indicating that
oo. The Dirac equation for a stateyy then is the pseudogap, which is controlled by large-scale degrees of
—dyldt=Hy. The dispersion relation isE(k;,k;)  freedom, is not affected by a random Dirac méasarginally
=+ m?+ki+k5 in the continuum limit.(The lattice will  irrelevant perturbation However, a rigorous estimation
be considered laterThe two signs describe the particle and leads to a nonzero lower bound of the DOS in the
the hole band, respectively. Both bands touch each other fiseudogap? at least for a random Dirac mass. The renor-
the Dirac mass vanishes, as one can see in the p@  malization group calculation indicates that the random en-
«|E|®(E2—m?), where® is the step function. The touch- ergy term is a relevant perturbation, in agreement with the
ing bands are also a feature of a second-order phase tran§iPA result. A third type of disorder was studied recently by
tion because the decay length of the corresponding Greenagding a random vector potential it °® The renormalization
function diverges as one goes to the spe(iaitical) point  group and bosonization treatment indicate a more compli-
m=0. This behavior is indeed formally related to a numbercated behavior of the pseudogap in this case: The average
of critical phenomena in two-dimensional systems like theDOS vanishes like|E|* with a nonuniversal exponent
ferromagnetic phase transition of the two-dimensional Isingx>0 if the randomness is weaker than a critical strength. On
model® Another physical example, described by the Diracthe other hand, the average DOS diverges if the randomness
Hamiltonian, is the degenerate semiconductor which existés stronger than the critical strength becausexef0. (For
for m=0.! Furthermore, the large-scale limit of a two- more detailed results see Sec.)Ill.
dimensional electron gas on a square lattice near the integer A similar system with a pseudogap is tbewave super-
quantum Hall transition for certain commensurate flux situ-conductor. Nersesyan, Tsvelik, and Werfganalyzed this
ations(e.g., half a flux quantum per plaquetis described system ind=2 and found for the pseudogap of the average
by Dirac fermions’*~’ A common feature of all these systems DOS p(E)~|E|Y7 in contrast to the linear behavior of the
is that the DOS at the touching ban@e., atm=0) is zero, pure system. However, this result is in disagreement with
i.e., there is a pseudogap. This raises the question of whethethers, which also find a destruction of the pseuddy@ipe
there is a mechanism that creates states in the pseudogap, &fect of disorder in thel-wave superconductor will be dis-
instance, electron-electron interaction or quenched disordecussed in a separate paper. The aim of this paper is to present
This is important in order to understand if there is a nonva-an exact solution for the imaginary part of the single particle
nishing density of low-energy excitations created by interacGreen’s function of disordered Dirac fermions.
tion or disorder. In this paper only the effect of quenched There are several examples in the theory of a quantum
disorder will be analyzed. particle in a random potential where the average one-particle

There are a number of studies for the effect of disorder inGreen’s function can be calculated exactly. Apart from a
the pseudogap of Dirac fermions. A numerical calculation fomumber of one-dimensional examplésthere is the Lloyd
an electron on a square lattice with half a flux quantum pemodel* It is defined by the Hamiltoniakl =H,+V, where
plaquette shows a nonzero density at low enerfesoher-  H, is a Hermitean matrixe.g., a tight-binding Hamiltonian
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for a particle on a lattice V is a random potential distributed aim is always to find & with Im(G)=Im(G’), where the
according to a Lorentziafor Cauchy distribution analytic properties of G and G’ are different: G
_ 5 2n 1 =(H+ieoy) !, as a function of a random variable at a

P(V)dV=(r/m)[ 7"+ (V=Vo)T] "dV. @) gi\Een site,O)has poles oboth complex half planes whereas
The distribution density has two pole¥=Vyxir. The G’=(H'+ieog) " has only a pole omne of the complex
Green’s functionG(z)=(H+2z) ! must be averaged with half planes. The HamiltoniaH' is obtained fronH by mul-
respect to the random potenti@(z) as a function of, for tiplication with a diagonal matrix. The latter depends on the
a fixed sitex is analytic in the uppeflower) complex half-  specific type of randomness.
plane if Im(z) is positive(negative, respectively. Therefore, ~ This paper is organized as follows. In Sec. Il the random
the path of integration of/, can be closed in that half-plane Dirac mass and in Sec. lll a random vector potential are
whereG is analytic. As a result, only the pole of the Lorent- analyzed. The problem of species multiplication due to the
zian density contributes to the integraG P(V,)dV,. This lattice is discussed in Sec. IV and the projection onto the
integration can be performed for all lattice sites leadinghomogeneous modes on the lattice is given.
eventually to the average Green'’s function

II. RANDOM DIRAC MASS
(G(z))={Ho+Vo+z+isgilm(z)]7} *

The matrixH+ieoy depends on the two complex vari-

=G{z+isgriim(z)]}. () ables +m,+ie. Thus, in contrast to the Lloyd model,
The average DOS then reads G(m,ie) may have singularities in both complex half planes.
Therefore, the Green’s function of Dirac fermions is similar
{p(E))=—(1LNm)lim ImTr(G(E+ie)), (4 to the two-particle Green'’s function of a nonrelativistic par-
€0 ticle. However, it will be shown subsequently that there is an

. . . alternative representation for the imaginary part of the
where Tr is the trace operator ahdis the number of lattice .15 function that depends only on a single complex vari-

sites. Ar_10ther example for an exact sc_)lut|<_)n IS the_ DOS of %ble like the Green's function of the Lloyd model. As a first
particle in a homogeneous magnetic field in two dimensions, tep,H +i eary is multiplied by a diagonal matri o5 from

If the corresponding Hilbert space of the particle is projecte he right [D is the staggered diagonal matrix
onto the lowest Landau levélthe average DOS for a white PX’X’:(_l)XﬁXwX’X, with the two-dimensional space co-
noise potential can be calculated exactly by summing up alordinatesx=(x %) ]
terms of the perturbation theory with respect to the white 172
noise potential. The exact solution is related to the fact that
the lowest Landau level system is equivalent to a zero-
dimensional model. It was discovered by Bre Gross, \yherey D is Hermitean, sinc® anticommutes withV
n® that the latter i ifestation of the dimen- o e ”
ltzykson'™ that the latter is a manifestation of the dimen- | mitean conjugation ofi’ yields
sional reduction of the two-dimensional system by 2 due to a
supersymmetry of the lowest Landau level problem. Unfor-
tunately, the simplicity of the average DOS of the lowest

Landau level cannot be extended to higher Landau levels. N/Ioreover,a3 anticommutes withr, ando,. Consequently,
is also in sharp contrast to the complexity of the description eD o5 commuteswith all other terms irH’. These proper-
of the localization propertie¥. There is some hope that the ties lead to the product

treatment of an electron on the square lattice in a strong

magnetic field is simpler than a continuum model. The latticg ' 't =i (iV.)\D o> +i(iV,) Do+ + MDoa ]2+ €20 8
model is motivated by numerical simulatidisind analytic [(iV)Do2+1(iV2)Doy o] o @
calculations'™’ The reason for a simplification is that the From the definition oH’ follows directly

electron near a quantum Hall transition behaves like a Dirac

H'=i(iV,)Do,+i(iV,)Doy+mDog+ieDoy, (6)

H''=i(iV;)Do,+i(iV,) Do+ mDog—ieDos. (7)

fermlorf1_ because the excitations near the Fermi energy H'H'T=[H+ieoo]osDosD[H+ieao]’

have a linear dispersion. The Hamiltonian of the Dirac fer- . .

mions on a square lattice with unit lattice constant is =[H+ieoo][H—iea]
H+|60'0:(|V1+a.)0'1+|V2(Tz+m(T3+|E(TO (5) :[H_IEGO][H+IEUO] (9)

The lattice gradientiV,, with V f(x)=(1/2)f(x+e,)  The right-hand sidérhs of (8) can also be writtedH”H" T
—f(x—e,)] and lattice unit vector®,, e,, is Hermitean. with

Two types of disorder are discussed subsequently: a random

Dirac massm and a random vector potential The vector H"=i(iV{)Do,+i(iV,) Do+ (mD+ie)og. (10
potential term is chosen ifb) in the same way as in Ref. 6.

It can be considered as a weak disorder approximation of &s a result, H” depends on only one complex variable
fluctuating Peierls phase factor in Landau gauge. Thé—1)*"*2m,+ie for a given sitex. The imaginary part of
Green's function now read&(m,ie)=(H+ieoy) !, i.e., the Green's function H+ieoo) ! reads {/2)([H
m ande correspond with the real and imaginary partzafi ~ +ieog] *—[H—ieoo] !) =e([H—ieog][H+ieao])
the Green’s function of the Lloyd model, respectively. Thei.e., it depends on the Hamiltonian only vi#. Therefore,
treatment of this problem is rather technical, although thehe identityH?+ie?0o=H"H"" can be used to write
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FIG. 1. Average density of states for disorder strength FIG. 2. Average density of states for disorder strengtfD.1.

7=0.01.
I1l. RANDOM VECTOR POTENTIAL

A calculation analogous to that of the random mass sys-
tem can be performed for a random vector potential. For this

_ _ 1 purpose the orthogonal transformatios (- cr3)/\/§ is ap-
=e€([H—ieop][H+ieoq]) plied to the Hamiltonian

:e(HNTHH)fl:iE[Hufl_(HuT)fl]. (11)

%([H+i60’0]71—[H—i600]71)

H+ieog—(iVi+a)oz—iVyos+motieoy. (16)
Thus the imaginary part of the average Green’s function o L
(H—ieoy)~* can be calculated exactly for a Lorentzian dis- | '@ Multiplication of the massle,ss Hamiltoniére., m=0)
tribution due to(11), wherem, can be integrated out explic- from the rhs withD’ o3 [whereD, ,,=(—1)*25; »/] yields
itly as in the Lloyd model. Only a pole of the distribution
contributes leading to the replacements—7+e and H'=(iVi+a)D'o—i(iVy)D'o1+ieD’a3.  (17)

m—mo in H. This implies The lattice difference operatois&/;D’ andi(iV,)D’ are

Hermitean. Sinc®’' o3 commutes with the first two terms of

5 ([H+ieog] t=[H—ieog] 1))=F[H 1=(H" ], H’, one obtains

12
with [H+ieop][H—i€oy]
— =H'H'T=[(iV,+a)D'0—i(iV,)D'g1]*+ €
H=iV10'1+iV202+i(6+T)0'0+m00'3. (13) [( ! ) 7o ( 2) O-l] €90
. : =H"H"T, (18)
The imaginaryr term leads always to an exponential decay
of the average Green’s function with a typical decay lengthwith
é~(m3+72) 2 ate=0. Moreover, from Eq(4) follows for
the average DOS, H"=(iV,i+a)D'oy—i(iV,)D'o+ie€oy, (29

1 _ which can be used to establish again Bq). For(a)=0 the

(p(ie,mg))=— N Im TIH™1. (14 average imaginary part of the Green’s function and, there-
fore, the average DOS fany=0 is related to the Hamil-

The dependence on the enefgys obtained from an analytic tonianH as given in(13).

continuationi e—ie+E. The resulting average DOS is plot-  In contrast to this result, the bosonization of the Dirac

ted in Fig. 1 forr=0.01 and in Fig. 2 forr=0.1. The non- fermions in the continuum limit leads to a different

vanishing DOS is in agreement with a rigorous pféaind a  behavio® For instance, the DOS reads

numerical resulf. For Gaussian disorder with variance

there is a lower bourtd (p(E,0))~E?2"2/7, (20)
<P(0,O)>>cle—cz/9, (15  wherez=1+A,/m (A, is the variance of the fluctuations of
. - _ the vector potential For example, the DOS vanishes at
with some positive constants, ¢,, independent o. E=0 for z<2 (weak disorderand diverges for>2 (strong

In the continuum limit it was argued, using a one-loop disorde}. The Green’s function behaves like
renormalization group calculation, that random fluctuations

of the Dirac mass are irrelevant on large sc&feghis im- <GOX(E,m:0)>~ei‘x‘/)\e_‘x‘/§l, (21)
plies a linearly vanishing DOS and a divergent correlation ’
length atE=mg=0. where forE~0
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FIG. 4. Energy dispersion of lattice Dirac fermions after lifting

FIG. 3. Energy dispersiok(k ,k,) of lattice Dirac fermions. the degeneracy of the low-energy properties.

N~E- (7 8alm), (220 H by the new HamiltoniarH + 5(A—2)o3, whered is a
. positive number (86<1) andA is a lattice operator with
E1~E AR, (23 Af(x)=[f(x+e)+ f(x—e) + f(x+ey) + f(x—ey)]/2.

Thus the Green’s function decays exponentially Bo¢0. ~ The dispersion of the new H is E(kykp)
There is a critical poinE=0 where the correlation length = * V6°(cosq +cosk,—2)*+sirfk, +sirtk, for m=a=0.
diverges withE~1. The difference of the results of Ref. 6 This is shown in Fig. 4 for6=1/2. It is not clear to the
and the present work is probably related to the order of takauthor which tranformation can be applied to relate the
ing the continuum limit and averaging over disorder. It is notimaginary-part Green’s function with the new Hamiltonian in
a consequence of the difference of disorder distribution®rder to get the analytic behavior necessary to perform the
(Gaussian in Ref. 6 versus Lorentzian distribution héwe= ~ Cauchy integration with respect to the randomness. How-
cause the Gaussian distribution could also be treated fagver, this difficulty can be circumvented by generalizitigo
H”~1—H"T"1in a strong-disorder expansion. The result of H with
this expansion is also a finite nonzero DOS and a finite cor- ,
relation length ofG. . (H+8A-2)03 mios

H= m’ o, H-8(A+2)os | (29

IV. REMARK ON SPECIES MULTIPLICATION

wherem’ is a random variable that is statistically indepen-

'_I'he phenom.enon of species muItlpllce_ltlon In-a fermlondem ofm with mean zero. Now the orthogonal transforma-
lattice theory is well known from lattice gauge field fi

theories' It is due to several nodes in the energy dispersion

of the lattice model, which indicate the existence of low- oo 0o
energy excitations on different length scales. The dispersion 1 (25)
of the Dirac fermions considered in this paper for=a=0 J2 0 — 00

is E(kq,ky)=* sirk;+sirk,. It has nine nodes at

k;=0,+ (cf. Fig. 3. In contrast to the lattice model the rotates the diagonal paries, —Aos) in the off-diagonal
ci)rresponding continuum  model with E(Kj ,k,) positions and the off-diagonal part into the diagonal position

’ !
=+ki+k5 has low-energy excitations only for small (m’o5,—m’o3) such that

wave vectordi.e., on large scalgss discussed in the Intro- H—(26—m')os SA oy
duction. It will be shown in this section, using the random 0= , (26)
mass model of Sec. Il, that the species multiplication is not 6Aas H-(26+m')os -

the reason for the smooth properties of the one-particle

Green’s function. The random variablet,=—25+m,+m; and M;=—-26
The degeneracy of the low-energy behavior of the latticet m,—m, in the diagonal part oH can now be considered

model can be lifted by introducing additional terms in theas new independent random variables.

Hamiltonian!® A possible way is to replace the Hamiltonian ~ The transformation

0 Do SDA oy —HDos+(26+m )Dog | =H’ (27)

A oo 0\ [Doz O HDo3—(26—m')Doyg 6AD oy
H=l 0 -¢,/H -
0
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generates the Hermitean mati . A
Using for the rhs 0f27) the notationT,HT,; and applying
the property

ToHT,=T;HT,, (28)
one obtains
(H'—ieDy3)(H' +ieDys)
=To(H—iey) TiTo(H +ieyo) Ty
=To(H—ieyo)(H+ieyo)To (29
with  the diagonal matrices yo=(0g,09) and
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Lorentzian distribution foM, andM,,, the integration can
be performed again as in Sec. Il. As a result the imaginary
part of the average Green'’s function is

0
H-8(A+2)as]| -

H+8(A—2)0s -1

Im 0

(34)

whereH is the average Hamiltoniafl3). Thus the lifting of
the degeneracy of the nodes in the dispersion relation does
not change the analytic behavior of the average one-particle

Green’s function.
V. CONCLUSION

An exact expression for the average imaginary part of the

¥3=(o3,—03). Moreover, one has for the imaginary part of one-particle Green’s function and the average DOS of two-

the one-particle Green’s function as before/2)[(H

+ieye) 1= (H—ieyo) ] = e[ (H—ieyo)(H+ieyo)] ™
Due to(29) andT51=To this can be rewritten as

€To[(H —ieDys)(H' +ieDys)] 1To.
The left-hand side of29) reads

(30

(|:|’—ieD73)(|:|’+ieDy3)
= (H")2+ e2yo=(H' —ieyo)(H' +ieyo)
(31)
becauseH’ andD y; commute. This implies fof30)
€To[(H' —ieyo)(H +ieyo)] 1o

=L[(H'+ieyy) = (H' —ieyy) 1. (32

dimensional lattice Dirac fermions have been derived for a
random Dirac mass and for a random vector potential. We
have shown that there is a nonzero DOS due to disorder and
there is a finite decay length for the average one-particle
Green’s function. This implies the creation of a honvanishing
density of low-energy excitations due to disorder in a vicin-
ity of E=M=0. These lattice results are in agreement with
numerical simulatiori. However, they are in disagreement
with the results of a renormalization group calculation and a
bosonization approach for a continuous system of Dirac
fermions®® where the DOS vanishes or diverges at
E=M=0. Moreover, the lattice model does not exhibit the
critical properties of the Green'’s function and the DOS found
in the renormalization group calculation and in the bosoniza-
tion approach. It is possible to take the continuum limit of
the lattice model after the averaging over disorder, for in-
stance, in the Hamiltoniaf13). This, however, does not lead
to a critical behavior. It seems that the critical behavior of the

Consequently, the imaginary part of the Green’s function satDOS is a consequence of taking the continuum limit first and

isfies
L(A+ieyo) t—(H—ieyo) ™Y
= L Tol(H +ieyg) 1= (H' —ieyo) YT,
(33)

analogously ta11). At a given sitex the matrixI:|’+iey0

depends on the random variables in the combinations

(—1)2"*2M,+ie and (—1)*"*2M,+ie. Assuming a

performing the averaging over disorder afterwards. This is
plausible because the effect of randomness is much stronger
in the continuum due to statistically independent fluctuations
on arbitrarily short scales. It is shown in Sec. IV that species
multiplication, which is a special effect of the lattice model,

is not the reason for the smooth behavior of the average
DOS.
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