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We address the results presented recently by Yacobyet al. @Phys. Rev. Lett.74, 4047 ~1995!# on the
coherency and phase evolution in a resonant tunneling quantum dot embedded in an Aharonov-Bohm~AB!
ring. The observed phase rigidity of the AB conductance oscillations is theoretically explained by invoking
simple symmetry arguments applicable to two terminal measurements, and is corroborated experimentally in
generic experiments. We show that under certain conditionsh/2e oscillations dominate completely the con-
ductance of a single AB ring.

In a recent interference experiment1 we devised a method
to measure a system’s phase evolution~which is not mea-
sured by usual conductance measurements!. The chosen sys-
tem was aresonant tunneling~RT! structure in a form of a
quantum dot ~QD! operating in the Coulomb blockade
regime.2 The QD was inserted in one arm of an Aharonov-
Bohm ~AB! ring,3 and thetwo-terminalconductance of the
modified AB ring was monitored as a function of a magnetic
flux threaded through the center of the ring. The observed
oscillatory conductance, periodic with the elementary flux
quantum, measured when the QD was tuned to conduct reso-
nantly, confirmed conclusively that the QD supports coherent
transport. Moreover, the phase of the oscillating conduc-
tance, measured at different points on a single resonance
peak and compared among different resonant peaks, revealed
unexpected results, suggesting, at first sight, a complicated
behavior that could have resulted due to deviation from the
single-particle-based model. Here we offer a simple explana-
tion for the seemingly bizarre behavior of the phase evolu-
tion in one resonant peak based on simple symmetry argu-
ments, and support it with experimental verifications. We
show that under certain controllable conditions theh/e com-
ponent of the oscillation vanishes, and theh/2e component is
dominant. We conclude in general that adirect phase mea-
surement of the transmission amplitude of any system via a
two-terminal interference experiment is in principle not pos-
sible.

Our test system, a QD in the Coulomb blockade regime, is
tuned to conduct by varying its electrostatic energy with an
external metallic gate~called theplunger gate!, so that the
extra energy needed to add~or subtract! electrons to~from!
the dot is only within the electrons’ temperature. It is known
then that the conductance at low temperatureskBT!G ex-
hibits a Lorentzian line shape with respect to the electrostatic
energy~a Breit-Wigner resonance with a natural line width
G>h/tdwell , with tdwell the dwell time in the QD!. For
higher temperatureskBT@G, the conductance has the form
of the derivative of the Fermi function with width'4kBT.
The device of the phase-sensitive experiments consists of a
modified AB ring: an AB ring and a QD inserted in its left
arm. The QD is adjusted to couple weakly to the ring’s arm
by almost pinching off its twopoint-contact-likeorifices. The
ring is coupled to two-dimensional~2D! reservoirs,drain (D)
and source (S), via its own two point contacts and a small

excitation voltage,VDS, is applied across the ring. The two-
terminal conductivityGDS is then measured as a function of
a magnetic fluxF for different plunger gate voltagesVP ,
and a certain coupling strength of the QD to the ring~a
certain QD resistance!.

A simple two-slit-likemodel4 based on summing two in-
terfering paths~from left and right arms! would predict a
one-to-one dependence between the phase of the oscillating
conductance and the phase of the transmission amplitude of
the QD. However, experiments revealed a totally different
behavior: The conductance oscillations~with fundamental
periodh/e) belonging to different resonance peaks are all in
phase while a rapid phase change ofp, taking place on a
scale of order ofkBT/10, occurs at some point along each
resonance peak. A noninteracting 1D model for the QD in the
two-slit configuration would predict the conductance oscilla-
tion to reverse its phase at subsequent peaks~ignoring
spin!—not seen in the experiment. This phase evolution
along one peak is expected to be smooth on the scale of
'4kBT—also contradicting the experimental results.

Since the actual measurements were done effectively in a
two-terminal configuration, the applicable Onsager relation,
based on time-reversal symmetry, for the transmission am-
plitude of a single-channel wire in the presence of a magnetic
field is tDS(B)5tSD(2B). With conservation of current
utDS(B)u25utSD(B)u2, we find5

GDS~B!5GDS~2B!, ~1!

that is, a symmetric conductance with magnetic field around
B50. This basic relation immediately revokes the notion,
based on the two-slit model, that in a two-terminal interfer-
ence experiment a smooth change in the phase accumulated
in one path leads to a similar smooth change in the phase of
the oscillating conductance of the whole system. On the con-
trary, the phase of the oscillating conductance, with a flux
periodh/e, has to berigid or change abruptly byp as the
accumulated phase in one arm is being varied. Note that
some of the pioneering works with AB rings, such as these
by Benoitet al.,6 Washburnet al.,6 and de Vegvaret al.7 pre-
sented asymmetric conductance with respect to magnetic
field—however, this asymmetry probably resulted solely
from a four-terminal-likecoherent measurement related to a
modification of the AB rings by their coherent leads.

PHYSICAL REVIEW B 15 APRIL 1996-IVOLUME 53, NUMBER 15

530163-1829/96/53~15!/9583~4!/$10.00 9583 © 1996 The American Physical Society



A detailed derivation of the~symmetric! conductance of
an AB ring as a function of a threading magnetic flux was
already derived by Gefen, Imry, and Azbel.8,9 In these works
a single-channel AB ring was assumed to contain a single
arbitrary scatterer in each of its arms~labeled 1 and 2! char-
acterized by transmission and reflection amplitudes from the
left t1 ,r 1 andt2 ,r 2 , and from the rightt18 ,r 18 andt28 ,r 28 . The
incoming (S) and outgoing (D) leads were considered to be
part of such a system, and were coupled to the ring via a
scattering matrix describing the relation between the elec-
tronic flux in the leads and fluxes in the ring’s arms. The
two-terminal conductance of such a system was calculated to
be

GDS5
2e2

h U 2~Aeiw1Be2 iw!

De2iw1Ee22iw1CU
2

, ~2!

wherew5pF/F0 with F05h/e, and the constants, defined
in Ref. 8, are functions of the transmission and reflection
amplitudes of the individual scatterers.

We now replace one of the scatterers in the ring with a
QD, and replace the other scatterer with a fixed phase. The
QD is being simulated with a 1D-RT structure composed of
two barriers~denoteda andb), with transmission from the
left ta and tb and reflection from the leftr a and r b , with
primed coefficients related to flux impinging from the right.
The plunger gate voltage is simulated by a phase accumu-
lated between the barriers,u, with QD transmission and re-
flection coefficients

tQD5
tatbe

iu

12r br a8e
2iu , ~3a!

rQD5r a1
tatb8r be

2iu

12r br a8e
2iu . ~3b!

We also introduce arbitrary phases between the QD andS
andD junctions. Figure 1~a! shows the conductance of the
bare QD and that of the modified AB ring for two sequential
resonances as a function ofu at zero flux. Similar to the
conductance of the bare QD which exhibits Lorentzian-like
resonances with widthG, the conductance of the modified
AB ring also has highly peaked resonances~width depending
on the choice of the different phases! with peaks slightly
shifted relative to the peaks of the QD. When a magnetic
field threads the modified AB ring, its conductance, for a
certain phaseu of the QD, changes in a periodic manner with
a flux periodh/e. The amplitude of the first and second
harmonics of the conductance oscillations~via a Fourier
analysis! is plotted for differentu in Fig. 1~b!. As the reso-
nant peak is approached from the left, the amplitude of the
oscillation grows and so does theh/e component. Near the
peak maximum theh/e component drops dramatically, and
the h/2e component grows, peaking at a phaseu where the
h/e harmonic vanishes. Upon further increase inu the h/e
component reverses sign and grows again, while theh/2e
component gradually vanishes. This explains the rigidity of
the phase of the oscillator conductance observed in the
experiment.10,11 Note the dominance ofh/2e oscillations in
the single AB ring—known before to exist only in an array
of rings or in a cylinder.3

To test the validity of our explanation we experimentally
realized anartificial impurity with a controlled phase in one
of the ring’s arms@the inset of Fig. 2~b!#. Our device consists
of a patterned two-dimensional electron gas~2DEG! formed
in a GaAs/AlxGa12xAs heterostructure. An added metallic
air bridge changes the potential of a small gate deposited
inside one arm, thus changing the height of a local potential
barrier. The two-terminal resistance oscillations of this sys-
tem, measured at 100 mK, and their Fourier transforms, are
shown in Fig. 2. Again, one can clearly see that theh/e
component has a rigid phase~0 or p) as a function of the
voltage applied to the metallic gate. Theh/2e component can
clearly be seen to peak when theh/e component vanishes.
This demonstrates that under certain phase conditions in a
single AB ring only theh/2e oscillations exists—suggesting
that only paths surrounding once the full ring’s circumfer-
ence survive.

Another demonstration of this phase rigidity can be dem-
onstrated by changing the relative phase between the arms of
the ring via changing the energy of the injected electrons.

FIG. 1. A calculated response of a modified AB ring~ring plus
QD!. ~a! The transmission of a bare 1D resonance tunneling QD
and that of the modified AB ring.~b! The amplitude of the AB
oscillation harmonics. Note the largeh/2e signal when theh/e
signal vanishes.
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Carriers were thus injected via a dc voltage applied across
the ring with an added small ac component, allowing us to
sample only electrons in a narrow band~the ac voltage or

kBT). The inset in Fig. 3 gives a few representative oscilla-
tions at different injection energies. The polarity is abruptly
reversed around 50–60mV, as depicted in the plot of the
amplitude of theh/e component as a function of the injec-
tion energy~Fig. 3!. note that the overall amplitude is re-
duced with injection energy as a result of increasing dephas-
ing mediated by electron-electron interactions.11 This
experiment also demonstrates the phase rigidity we are allud-
ing to.

We demonstrated the phase rigidity of a two-terminal
measurement and explained it by invoking basic time-
reversal symmetry. This rigiditymasksthe detailed phase
evolution in interference experiments and leads, under cer-
tain phase accumulation conditions, to the appearance of os-
cillations with period ofh/2e, and the vanishing of theh/e
component, in a single AB ring.
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