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In a magnetic field an interacting electron gas in one dimension may be described as a Tomonaga-Luttinger
model comprising two components with different Fermi velocities due to the Zeeman splitting. This destroys
the spin-charge separation, and even the quantities such as the density-density correlation involve the spins.
Specifically, we have shown that the ratio of the up-spin and down-spin conductivities in a dirty system
divergesat low temperatures like an inverse power of the temperature, resulting in a spin-polarized current. In
finite, clean systems the conductance becomes different for up and down spins as another manifestation of the
electron-electron interaction.

Recent studies of mesoscopic systems have brought to
light many unusual features in their quantum transport
properties.1 This is heightened by recent advances in fabri-
cating nanostructure quantum wires and quasi-one-
dimensional~1D! crystal structures.

In 1D systems, the interactions between the electrons is so
crucial due to the strong constraint in the phase space that the
system becomes universally what is called the Tomonaga-
Luttinger ~TL! liquid as far as low-lying excitations are con-
cerned no matter how small the interaction may be.2 A most
striking feature of this 1D model is the spin-charge separa-
tion. The transport properties3 are also dominated by the
spin-charge separation in the following sense. The low-
temperature conductivity of the dirty TL liquid as studied by
Luther and Peschel4 exhibits a power law, s(T)
;T22Kr2Ks. The power law comes from the degraded
Fermi singularity in the TL liquid, while the critical expo-
nents~which are functions of the interaction! enter as a sum
of Kr for the charge phase of the system andKs for the spin
phase~which is actually unity for spin-independent interac-
tions!. A recent experiment7 for high-quality quantum wires
seems to support this result. For clean systems Kane and
Fisher5 and Furusaki and Nagaosa6 found that the conduc-
tance quantization in noninteracting mesoscopic systems be-
comes proportional to the exponent,G5(e2/p)Kr ~where
\5kB51 is assumed hereafter!.

Now we can raise an intriguing question: what happens if
we degrade the spin-rotational@SU~2!# symmetry in some
way? This is indeed realized by applying a magnetic field,
which makes the Fermi velocities spin dependent due to the
Zeeman splitting. In this paper, we show that the degraded
spin-charge separation, which will make even the quantities
such as the density-density correlation involve spins, may
manifest itself in the transport, leading such a drastic effect
as spin-polarized currents in a right condition.

The generation of spin-polarized currents itself has been
of a long-standing interest for academic8 as well as practical
points of view, where typical applications include spin-
polarized scanning tunneling microscopy9 ~STM! and the
Mott detector.10 Fasol and Sakaki11 have suggested that in
the spin-orbit split bands of GaAs quantum wires the curva-
ture in the band dispersion~as opposed to the linearized dis-
persion in the Tomonaga-Luttinger model! will make the re-

laxation time due to the electron-electron interaction spin
dependent and consequently make the outgoing current spin
polarized. The mechanism proposed here is by contrast a
purely electron-correlation effect, where the ratios↑ /s↓ di-
verges towardT50.

We start from a clean, two-band Tomonaga-Luttinger
model, which is similar to the one employed in Refs. 12 and
13. The Hamiltonian is given by

Hclean5H01H int , ~1!

with the noninteracting Hamiltonian being

H05 (
k,s,i

vFs@~2 ! i11k2kFs#ciks
† ciks . ~2!

HerevF↑ (vF↓) is the Fermi velocity of the up~down! spin
subband in a magnetic fieldB, for which we denote an av-
erage v0[(vF↑1vF↓)/2 and the differenceDv[(vF↑
2vF↓)/2. Similarly, kF↑ (kF↓) is the Fermi momentum of
the up~down! spin.ciks

† creates a right-going (i51) or left-
going (i52) electron with momentumk and spins, andL is
the system size.

In the interaction,H int , the charge and spin are no longer
decoupled for DvÞ0, in sharp contrast to the usual
Tomonaga-Luttinger model. If we introduce the usual phase
field u1(x) @f1(x)# and the dual fieldu2(x) @f2(x)# that
correspond to the charge~spin! degree of freedom, the spin-
charge separated part is cast into the usual phase Hamil-
tonian withv0 playing the role of the Fermi velocity, while
additionallyu-f coupled terms appear as

Hclean5
vr

4pE dxH 1

Kr
@]xu1~x!#21Kr@]xu2~x!#2J

1
vs

4pE dxH 1

Ks
@]xf1~x!#21Ks@]xf2~x!#2J

1
Dv
2pE dx$@]xu1~x!#@]xf1~x!#1@]xu2~x!#

3@]xf2~x!#%, ~3!
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whereKr (Ks) is the critical exponent of the charge~spin!
phase. In the following we assume that the coupling con-
stants between electrons have no significant magnetic-field
dependences, so that we setKs51, vs5v0 ,
Kr51/A114g, and vr5v0 /Kr5v0A114g, where
g (;U/2pv0 for the Hubbard model! is the dimensionless,
forward-scattering coupling constant. Here we have ne-
glected the backward-scattering and umklapp-scattering pro-
cesses, since they have large momentum transfers.

We can diagonalizeHclean, as is done for the electron-
hole system in a two-channel Tomonaga-Luttinger study of
the excitonic phase by Nagaosa and Ogawa,14 via a linear
transformation to two new phases,

S u1~x!

f1~x!
D 5S cosa 2

1

y
sina

y sina cosa
D S ũ1~x!

f̃1~x!
D , ~4!

where a is the ‘‘rotation angle in the spin-charge
space’’ (}Dv for small Dv) with tan2a52(Dv/
v0)A2(Kr

2211)/(Kr
2221) andy25 1

2(Kr
2211). The diago-

nalized phases have gapless, linear dispersions, in which the
new velocities are given by

ṽ r,s
2 5Dv21 1

2 v0
2@Kr

22116~Kr
2221!A11tan22a#, ~5!

where the1 (2) sign corresponds toṽ r ( ṽ s).
Now we can turn to the calculation of the conductivity in

a dirty system. We then add to the Hamiltonian the impurity-
scattering part,

H imp5(
s

(
l
E dxNs~x!u~x2xl !, ~6!

whereu(x2xl) is the impurity potential situated atxl and
Ns(x) is the density operator of spins electrons, whose
phase representation is Ns5 (1/2p) ]x(u11sf)
1 (1/pL)cos@2kFsx1u11sf# with L being a short-range
cutoff. The conductivityss of spin s subband is given by
ss5nee

2ts/2ms* , wherets is the relaxation time for spin
s, ne the density of electrons, andms*}vs

21 the effective
mass of the spins subband. In 1D we havene52kF /p, but
we ignore the trivial magnetic-field dependence ofkF↑ and
kF↓ to single out the effect ofvF↑ /vF↓Þ1.

We can calculatets following Götze and Wo¨lfle in the
Mori formalism for the conductivity15,16 in the second order
in H imp as

1

ts
'4pvFsniu

2~2kF!(
q

lim
v→0

ImPs~2kFs1q,v!

v
, ~7!

whereni is the density of impurities andu(q) is the Fourier
transform ofu(x). HerePs is the density-density correlation
function for spins, which is related to the density operator
rs(x) as

lim
v→0

(
q

ImPs~2kFs1q!

v
5

1

2T(s8
E

2`

`

dt^rs~0,t !rs8~0,0!&.

~8!

In the summation over the spins8 we can readily show that
the cross term̂r↑(0,t)r↓(0,0)& vanishes. Then the conduc-
tivity becomes a sum of the two spin components, each of
which has a simple power-law temperature dependence as in
the usual Luttinger theory,

ss~T!5s0S vFsv0
D 2S T

vF
D 22Ks

, ~9!

wheres0[s(T5vF) ~whose dependence onkFs is again
ignored here! andvF;eF is the high-energy cutoff.

Here the spin-dependent exponentKs is given by

Ks5~cosa1sy sina!2K̃r1S cosa2
s

y
sina D 2K̃s , ~10!

which involves both the critical exponent,K̃r , for the
phaseũand the critical exponent,K̃s , for f̃given by

K̃r~s!
2 5y72@Kr

22136~Kr
2221!A11tan22a#@3Kr

2211

6~Kr
2221!A11tan22a#21, ~11!

where the upper~lower! sign corresponds toK̃r (K̃s).
The above equations~10!–~12! are the key result of this

paper: the electron-electron interaction does indeed make the
conductivity dependent on the spin, where the power-law
dependence inT is retained so that the spin dependence be-
comes more enhanced at lower temperatures. The ratio
s↑ /s↓}T

2(K↑2K↓) diverges towardT→0, which implies a
spin-polarized current there. Note that the divergence is an
effect of the electron correlation.

We display in Fig. 1 the temperature dependence of
s↑ /s↓ numerically calculated for various values of
vF↑ /vF↓ for a fixed electron-electron interactiong. Figure 2
shows the dependence ofs↑ (s↓) on the ratiovF↑ /vF↓ at a
fixed temperature with a fixedg.

FIG. 1. The result for the temperature dependence of the ratio
s↑ /s↓ with a fixed interactiong50.5, and with several ratios
vF↑vF↓ .
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The result shows that the more conductive channel is the
spin having a larger vF , since K↑.K↓ for Dv
}(vF↑2vF↓).0. Physically, the effective electron-electron
interaction is smaller~larger! in the lighter ~heavier! spin
subband, since it is the ratio of the electron-electron coupling
constant to the kinetic energy (}vF) that matters. Thus the
result is roughly consistent with the observation in a single
TL liquid that the electron-electron repulsive interaction sup-
presses the conductivity.4

We can further give an intuitive interpretation of the
present result, if we mimic the single TL model of spin-1/2
electrons as a double-chain system of spinless electrons. The
present situation is then regarded as a generalization of our
previous model,16 where we have considered two equivalent
chains having intrachain and interchain interactions in the
absence of interchain tunneling. When the two ‘‘chains’’ are
made inequivalent by the differentiatedvF , this modifies
both the ‘‘intrachain’’~parallel-spin! dimensionless coupling
constant,g/vF , and ‘‘interchain’’ ~antiparallel-spin! g/vF .
Note that if theg parameters derive from an SU~2! symmet-
ric interaction~such as the HubbardU), the g’s for intra-
chain and interchain interactions are the same. It is then a
highly nontrivial question what conductivities will come out.
The present result indicates that the chain that has a smaller
g/vF does indeed remain more conductive, so that the effect
of parallel-spin interaction eventually prevails. This is con-
sistent with the double-chain result that the intrachain repul-
sion suppresses the conductivity, while the effect of inter-
chain interactions, which incidentally enhances the
conductivity, is only of the second order.

Next we consider theconductanceof finite, clean systems
in magnetic fields. The conductanceGs of spins subband is
calculated from the current-current correlation function as5

Gs5 lim
v→0

(
s8

1

vLE dtE dxeivt^TtJs~t!Js8~0!&, ~12!

where Js5e]t(u1sf)/2 is the spins current, andt the
imaginary time. Then we end up with

Gs5
e2

2p F S cos2a1
ys

2
sin2a D K̃r1S 1y2 sin2a

2
s

2y
sin2a D K̃sG . ~13!

Thus the conductance too depends on the spin in contrast to
the ordinary case withG↑5G↓5(e2/2p)Kr . We may em-
phasize that the Fermi velocity of the system does not appear
in conductances as shown in the Landauer formula17 ~while
in the conductivity the Fermi velocities do appear in the
power of the temperature!, so the spin-dependent conduc-
tance here is an effect of the electron-electron interaction in a
more manifest manner. Figure 3 numerically depicts the way
in which G↑ (G↓) increase ~decrease! with the ratio
vF↑ /vF↓ with a fixedg.

Finally let us make a comment on the Anderson localiza-
tion. In order to discuss this effect at very low temperatures,
we must treat the impurity scattering beyond the simple per-
turbation to consider the renormalization effect due to the
impurities. In fact, Giamarchi and Schulz have shown in the
absence of magnetic fields that the temperature at which the
localization sets in shifts downward for largerKr .

19 We can
actually show that such a renormalization for the present
system results in a flow diagram divided into three regions.18

In region I withK↑ ,K↓,3, the impurity scatterings for both
spins are monotonically enhanced at low temperatures. In
region II with K↑,3,K↓.3, the impurity scattering of the
heavier spin subband is suppressed~except at lower tempera-
tures!, while that of the lighter spin is enhanced. Then we
expect large spin polarization of the current. At lower tem-
peratures the impurity scattering of the heavier subband too
will be eventually enhanced. In region III withKs.3 both
spins will remain delocalized forT→0.

We believe these many-body effects can be experimen-
tally measured in quantum wires by taking appropriate fill-
ings of the up- and down-spin subbands in a given magnetic
field. Unfortunately, in the case of the usual electron-doped

FIG. 2. The result for the dependence onvF↑ /vF↓ ~keeping
vF↑1vF↓5const! of the conductivitys↑ /s0 and s↓ /s0 with a
fixed temperatureT51023vF;100 mK and with a fixed interac-
tion g50.5.

FIG. 3. The result for the dependence onvF↑ /vF↓ ~keeping
vF↓1vF↑5const! of the conductanceG↑ and G↓ normalized by
e2/p with a fixed interactiong50.5.

9574 53BRIEF REPORTS



GaAs quantum wires the smallg factor (;20.4 in the bulk!
will require sufficiently low electron fillings for the Zeeman
splitting effect to appear. However, if we can prepare, e.g.,
InSb quantum wires~whoseg factor is as large as;250 in
the bulk20!, the strength of the Zeeman splitting in a typical
magnetic field of 1 T amounts to gmBH; 3.0 meV. In such

cases a significant deviation ofv↑ /v↓ from unity may be
expected.

We are much indebted to Professor Gerhard Fasol for
illuminating discussions, and to Professor Tetsuo Ogawa for
sending us results prior to publication.
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