PHYSICAL REVIEW B VOLUME 53, NUMBER 15 15 APRIL 1996-I

Generation of spin-polarized currents in Zeeman-split Tomonaga-Luttinger models
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In a magnetic field an interacting electron gas in one dimension may be described as a Tomonaga-Luttinger
model comprising two components with different Fermi velocities due to the Zeeman splitting. This destroys
the spin-charge separation, and even the quantities such as the density-density correlation involve the spins.
Specifically, we have shown that the ratio of the up-spin and down-spin conductivities in a dirty system
divergesat low temperatures like an inverse power of the temperature, resulting in a spin-polarized current. In
finite, clean systems the conductance becomes different for up and down spins as another manifestation of the
electron-electron interaction.

Recent studies of mesoscopic systems have brought faxation time due to the electron-electron interaction spin
light many unusual features in their quantum transpordependent and consequently make the outgoing current spin
properties- This is heightened by recent advances in fabri-polarized. The mechanism proposed here is by contrast a
cating nanostructure quantum wires and quasi-onepurely electron-correlation effect, where the ratip/o| di-
dimensional(1D) crystal structures. verges towardl =0.

In 1D systems, the interactions between the electrons is so We start from a clean, two-band Tomonaga-Luttinger
crucial due to the strong constraint in the phase space that thigodel, which is similar to the one employed in Refs. 12 and
system becomes universally what is called the Tomonagal3. The Hamiltonian is given by
Luttinger (TL) liquid as far as low-lying excitations are con-
cerned no matter how small the interaction may Bemost H gear=Ho+ Hint» (1)
striking feature of this 1D model is the spin-charge separa-
tion. The transport propertidsare also dominated by the with the noninteracting Hamiltonian being
spin-charge separation in the following sense. The low-
temperature conductivity of the dirty TL liquid as studied by
Luther and Pesch®l exhibits a power law, o(T) Ho= > vr (=) *k—KgslChCiks- 2
~T27%"Ks. The power law comes from the degraded ksl
Fermi singularity in the TL liquid, while the critical expo- ) ) _ _
nents(which are functions of the interactipenter as a sum Heréve; (vg) is the Fermi velocity of the ugdown) spin
of K , for the charge phase of the system #gfor the spin subband in a magnetic field, for Whlc_h we denote an av-
phase(which is actually unity for spin-independent interac- €rage vo=(vg;+vg|)/2 and the differencedv=(ve,
tions). A recent experimefitfor high-quality quantum wires —vr|)/2. Similarly, ke; (Kg)) is the Fermi momentum of
seems to support this result. For clean systems Kane arth€ up(down) spin.c;, creates a right-goingi & 1) or left-
FisheP and Furusaki and Nagadstound that the conduc- going (i=2) electron with momenturk and spins, andL is
tance quantization in noninteracting mesoscopic systems b&e system size.
comes proportional to the exponem,:(ezlq-r)Kp (where In the interactionH;,;, the charge and spin are no longer
fi=kg=1 is assumed hereafler decoupled for Av#0, in sharp contrast to the usual

Now we can raise an intriguing question: what happens iffomonaga-Luttinger model. If we introduce the usual phase
we degrade the spin-rotationfBU(2)] symmetry in some field 6, (x) [¢(x)] and the dual field_(x) [¢_(x)] that
way? This is indeed realized by applying a magnetic fieldcorrespond to the chardepin) degree of freedom, the spin-
which makes the Fermi velocities spin dependent due to theharge separated part is cast into the usual phase Hamil-
Zeeman splitting. In this paper, we show that the degradetbnian withv, playing the role of the Fermi velocity, while
spin-charge separation, which will make even the quantitiegdditionally 8-¢ coupled terms appear as
such as the density-density correlation involve spins, may
manifest itself in the transport, leading such a drastic effect v 1
as spin-polarized currents in a right condition. Hc|ean=4—pf dx{ —[d,04(X)]>+ Kp[&xa_(x)]z]

- . . : T K

The generation of spin-polarized currents itself has been p
of a long-standing interest for acadefhits well as practical vy 1
points of view, where typical applications include spin- + EJ dX[ K—[ﬁx¢+(x)]2+ Kg[t?xcﬁ—(x)]z]
polarized scanning tunneling microsc8p§8TM) and the 7

Mott detectort® Fasol and Sakaki have suggested that in Av

the spin-orbit split bands of GaAs quantum wires the curva- + Ef AX{[ 950+ (X)][xp+(X)]+[x0-(X)]
ture in the band dispersidias opposed to the linearized dis-

persion in the Tomonaga-Luttinger mogalill make the re- X[ dydp_(x)]1}, 3
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whereK, (K,) is the critical exponent of the chargspin T
phase. In the following we assume that the coupling con- I
stants between electrons have no significant magnetic-field
dependences, so that we seK,=1, v,=vg,
K,=1/J1+4g, and v,=vo/K,=voyl+4g, where =
g (~U/27v, for the Hubbard modglis the dimensionless, & 101k 1
forward-scattering coupling constant. Here we have ne- Ny

glected the backward-scattering and umklapp-scattering pro- A m
cesses, since they have large momentum transfers. !

We can diagonalizeH .., as is done for the electron-

hole system in a two-channel Tomonaga-Luttinger study of _—

the excitonic phase by Nagaosa and Ogatvaia a linear . I“Fl =0~97)IFT , '

transformation to two new phases, 107505 10%  10° 102
T/wr

1 ~

0., (Xx) cosx — —sina | [ 0:+(X)

(x) = ~ ) (4) FIG. 1. The result for the temperature dependence of the ratio
b+ y sina cosw ¢+(X) o/, with a fixed interactiong=0.5, and with several ratios

UrRtUF| -

where « is the “rotation angle in the spin-charge

space” _(OSAU for_2 small Ag) 1W't_h2 tanze=2(Av/  |n the summation over the spsi we can readily show that

vo) V2(K, “+1)/(K,“—1) andy“=3(K,“+1). The diago-  the cross tern{p;(0.t)p,(0,0)) vanishes. Then the conduc-

nalized phases have gapless, linear dlsperS|ons in which th\.Qny becomes a sum of the two spin components, each of

new velocities are given by which has a simple power-law temperature dependence as in

the usual Luttinger theory,
52, =Av2+ LudK,2+1%(K; 2~ 1) 1T tarf2a], (5)

~ ~ 2 2—K
where the+ (—) sign corresponds to, (v,). o= (v_FS) (l) s ©
Now we can turn to the calculation of the conductivity in s Vo OF ’
a dirty system. We then add to the Hamiltonian the impurity-

scattering part, where oo=0(T=wg) (Whose dependence dq, is again

ignored hergand wg~ €f is the high-energy cutoff.
Himp= 2 Z J dxNg(X)u(x—Xx,), 6) Here the spin-dependent exponéntis given by

S

whereu(x—x;) is the impurity potential situated a4 and
Ng(x) is the density operator of spia electrons, whose
phase representation is Ng= (1/27) d,(6, +S¢)
+ (1/mA)cog 2kp X+ 0, +s¢] with A being a short-range
cutoff. The conductivityo of spin s subband is given by Which involves both the critical exponentg, for the
os=Nnee?7/2m? , where 7, is the relaxation time for spin phasegand the critical exponenk, , for pgiven by

s, ne the density of electrons, anat* <v ' the effective

mass of the spis subband. In 1D we have,= 2k /7, but 2 yFK 243+ 2 1+ tart2a 4
we ignore the trivial magnetic-field dependencekef and Kooy =Y 72LK, 43 (K, *~ 1)1+ tarf2a][3K, *+ 1

K, to single out the effect of g, /vg # 1. i(K;Z_l),/lﬂanZza]*l, (11)
We can calculaterg following Gotze and Wdfle in the
Mori formalism for the conductivit}?*®in the second order

s 2.
COSa—ySina) K,, (10

=(cosu+sy sina)2~lg,+

in Hipp as where the uppeflower) sign corresponds t§, (K,).
The above equationd0)—(12) are the key result of this
IMILy( 2K+ q, @) paper: the electron-electron interaction does indeed make the
—~47-rv,:sn u (2k,:)2 lim , (7 conductivity dependent on the spin, where the power-law
a4 ©—0 w dependence it is retained so that the spin dependence be-

comes more enhanced at lower temperatures. The ratio

ol =T~ &K diverges towardT —0, which implies a

spin-polarized current there. Note that the divergence is an

effect of the electron correlation.

ps(X) as We display in Fig. 1 the temperature dependence of

o/o, numerically calculated for various values of

lim > E f dt{p(0)ps(0,0)).  Vri/ve for afixed electron-electron interactign Figure 2

0—0 d shows the dependence @f (o) on the ratiovg, /vg| at a

(8 fixed temperature with a fixed.

wheren; is the density of impurities and(q) is the Fourier
transform ofu(x). Herell is the density-density correlation
function for spins, which is related to the density operator

ImHs(Zsz+q
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FIG. 2. The result for the dependence op; /vg (keeping
vgy+ug =cons) of the conductivityo; /oy and o) /oq with a
fixed temperaturd =10 3we~100 mK and with a fixed interac-
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FIG. 3. The result for the dependence op, /vg, (keeping
v, +vgp=cons) of the conductances; and G, normalized by
e?/ 7 with a fixed interactiorg=0.5.

tion g=0.5.

2
The result shows that the more conductive channel is the GS:e_ (co§a+ ys sin2a |K + izsinza
spin having a largervg, since K;>K; for Av 2m 2 7oy
x(vg;—vg;)>0. Physically, the effective electron-electron S
interaction is smaller(largep in the lighter (heaviej spin - sinZa)k } (13)
subband, since it is the ratio of the electron-electron coupling 2y

constant to the kinetic energy<( ) that matters. Thus the
result is roughly consistent with the observation in a single

TL liquid that the electron-electron repulsive interaction sup-' Nus the conductance too depends on the spin in contrast to

presses the conductivify. the ordinary case withT=Gl=(e2/27r)Kp. We may em-

We can further give an intuitive interpretation of the Phasize that the Fermi velocity of the system does not appear
present resdult, if we mimic the single TL model of spin-1/2in conductances as shown in the Landauer forru(ahile
electrons as a double-chain system of spinless electrons. TH@ the conductivity the Fermi velocities do appear in the
present situation is then regarded as a generalization of o@ower of the temperatuyeso the spin-dependent conduc-
previous modet® where we have considered two equivalenttance here is an effect of the electron-electron interaction in a
chains having intrachain and interchain interactions in thenore manifest manner. Figure 3 numerically depicts the way
absence of interchain tunneling. When the two “chains” arein which G, (G,) increase (decrease with the ratio
made inequivalent by the differentiated:, this modifies v, /vg| with a fixedg.

both the “intrachain”(parallel-spin dimensionless coupling
constant,g/vg, and “interchain” (antiparallel-spin g/vg .
Note that if theg parameters derive from an &) symmet-
ric interaction(such as the Hubbarld), the g’s for intra-

Finally let us make a comment on the Anderson localiza-
tion. In order to discuss this effect at very low temperatures,
we must treat the impurity scattering beyond the simple per-
turbation to consider the renormalization effect due to the

chain and interchain interactions are the same. It is then gnpurities. In fact, Giamarchi and Schulz have shown in the

highly nontrivial question what conductivities will come out. ahsence of magnetic fields that the temperature at which the
The present result indicates that the chain that has a smallg§cajization sets in shifts downward for largéy, 19\\e can
g/ve does indeed remain more conductive, so that the effecictually show that such a renormalization for the present
of parallel-spin interaction eventually prevails. This is con-gystem results in a flow diagram divided into three regiSns.
sistent with the double-chain result that the intrachain repulip region | withK, ,K <3, the impurity scatterings for both
sion suppresses the conductivity, while the effect of interspins are monotonically enhanced at low temperatures. In
chain interactions, which incidentally enhances theregion Il with K, <3, >3, the impurity scattering of the

conductivity, is only of the second order.

Next we consider theonductancef finite, clean systems
in magnetic fields. The conductan€g of spins subband is
calculated from the current-current correlation function as

Ge= lim Y,

w—0 s’

1 joT
— drf dxde (T 31 (0)), (12)

where J;=ed (0+s¢)/2 is the spins current, andr the
imaginary time. Then we end up with

heavier spin subband is suppresgextept at lower tempera-
tureg, while that of the lighter spin is enhanced. Then we
expect large spin polarization of the current. At lower tem-
peratures the impurity scattering of the heavier subband too
will be eventually enhanced. In region 11l witkg>3 both
spins will remain delocalized fof — 0.

We believe these many-body effects can be experimen-
tally measured in quantum wires by taking appropriate fill-
ings of the up- and down-spin subbands in a given magnetic
field. Unfortunately, in the case of the usual electron-doped
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GaAs quantum wires the smajlfactor (~— 0.4 in the bulk

9575

cases a significant deviation of; /v from unity may be

will require sufficiently low electron fillings for the Zeeman expected.
splitting effect to appear. However, if we can prepare, e.g.,

InSb quantum wiregwhoseg factor is as large as- —50 in

We are much indebted to Professor Gerhard Fasol for

the bulk), the strength of the Zeeman splitting in a typical illuminating discussions, and to Professor Tetsuo Ogawa for

magnetic field 61 T amounts to ggH~ 3.0 meV. In such

sending us results prior to publication.
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