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Landauer resistivity dipole in a strong magnetic field
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We consider a localized single impurity in a two-dimensional electron gas with a perpendicular magnetic
field at filling factor 1. A scattering theory calculation is performed for the local electron density around the
impurity in the presence of a finite transport current. It is shown that the current-induced Landauer resistivity
dipole is rotated by 90° compared with the situation in the absence of a magnetic field. This behavior naturally
reflects the structure of the resistivity tensor, with a finite valug,gfbut vanishing longitudinal resistivity
p, due to the absence of backscattering. We briefly discuss the implications of our results on the potential
distribution in the quantum Hall effect, and for scanning tunneling microscopy measurements of the local
density of states.

Quantum transport theory is usually based on Kubo’s forfinite concentratiom; of independentidentical impurities,
mulation of linear response, where one calculates the currefje spatiallyaveragedelectric field is insensitive to the Frie-
resulting from an applied electric field. A quite different ap- ge| oscillations and is given by
proach to determine transport coefficients, however, was sug-
gested at about the same time by Landaduer.Landauer’s 2\ _ RN el
approach one starts from a given incidentrent and then (E) 2mni(p)=p(~nev) ©

calculates the resulting electric field in response to that. Ifihe factor 27 is specific for a two-dimensional systgm

turns out that this field is highly nonlocal, being caused by, L T ;
the nonuniform electron density associated with the scattergovzé)rei?nurgg:% ;tr:llt tlzzdi,vfc:atgz gifé a?gegzlggr;]:nl_%vrh de
ing at localized impurities. Indeed, with carriers impinging g y

on one side of the barrier, one expects the local density to b%e_sult;ilzm/nezrt, for the (Iongnudmg} residual .re5|st|V|ty, .
th 7,”=n;uroy as the corresponding scattering rate. This

enhanced before and depleted after the barrier, thus leading . N licitly sh that the standard Bolt

to a dipolar density and potential distributid pure scat- D rlzj/a 't?]n exp :‘Ctl y s O‘f[VTQ' at Ie ??n ar | Odzma“”'

tering theoretic calculation of this prediction was performed rude theory of transport 1S equivalent to simply adding up

recently? It was shown that the asymptotic density at finite the polarization field assomegted with each impurity to give a
homogeneous average fie{@). Going beyond this rather

transport currenf = —nev indeed has a dipolar distribution S T \ . e
i o which i : h crude approximation is an interesting but difficult problgm.
to linear order inv which is superimposed, however, by ad- |, the present work this is avoided by consideringiagle

ditional - Friedel oscillations. Specifically, for a tWo- jn, ity only, extending our earlier calculatidto the case
dimensional electron gas at zero temperature one finds thag 5 finjte magnetic field. This problem is of interest for

asymptotically several reasons. First of all it is important from a conceptual
point of view, in particular in the context of local fluctuations

n()=n()|. _ _eﬁ_n p(r)-Xx 0 of the potential distribution in the quantum Hall effect. In
v=0 Fou addition to that, recent measurements with a scanning tun-
A . neling microscope(STM) have been able to map out the
wherex is a unit vector in the direction of, and local electronic density of states around impurities in a two-
dimensional electron gas formed at the surface of copper.
fike (8m)Y? We will comment on both problems in our discussion.

S(r) = 2ikery |7
P(N= 5 e Ot Ke Refi(me™) v (2) We consider noninteracting electrons in two dimensions

which are subject to a perpendicular magnetic field
B=B-€,. In the Landau gaugd=Bx-e, the associated
one-particle Hamiltonian is

the current-induced dipole moment. Hewsg is the usual
transport cross section of the impurity ahg (7r) the asso-
ciated backscattering amplitude. Obviously beF(w);&O
the effective dipole moment contains a Friedel-like spatially pi

oscillating contribution in addition to the constant term pro- Ho=5+ m(pﬁ—eBx)z. (4)

portional tomrﬂ which represents the Landauer resistivity

dipole. In the context of phase-sensitive voltage fluctuationsts eigenstatefkn) are products of shifted harmonic oscilla-
in quasi-one-dimensional conductors, these oscillations har statesu,(x) in the x direction, and plane waves in the
previously been discussed by tiiker* In the presence of a 'y direction,
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<)Z|kn>:eikyun(x+ ki2), (5) Eoten}ialZA sirrlptle rno?el Wlhere thetsc?ttering Erob:]em may
e solved analytically to a large extent arises by choosing a
with 1o=(%/eB)Y? the magnetic length. Their energies are separable potentil
the infinitely degenerate discrete Landau levels

en=Rhw(n+3), n=0,1,2,..., with o,=eB/m the cyclo- V=Vy| o) @ (12)
tron frequency. The normalization of the stajks) is cho- ) . -
sen such that with Vo>0. The wave function(x|¢,) differs from (x| ¢q)
dk 1 by the same phase factor as(B). For (x| ¢,) we choose a
o) . . . .9
f x|k 2= | ©6) Gaussian localized state whose overlap Wih) is

1/2 n
is the spatially constant density associated with each filled  (kn|p,)=(27)" 1/4( lo ) (ﬁ) exp—(klo)2/2.
Landau leveln. It is well known that the statel&n) do not Ain! V2

carry a finite current, and in fact the discrete nature of the (13
unperturbed spectrum prevents one from developing

straightforward scatterlng theory. However, for a given nonia_'or this model there is preciseyne bound state between

successive Landau levelfor V<0 there would be an ad-
vanishing drift velocity— v of the electrons with respect t0 gitional one below the lowest Landau lexeThe bound-state
the fixed impurities, there is a finite Hall ﬂeIEH vXB energiesE,, follow from®

which the electrons experience in the frame where the scat-

tering potential is stationary. Sindeis in they direction for Vol @0l Go(Ep)| @0y =1. (19
the Landau gauge, it is convenient to choosev - €,. Thus
with v >0 the electrons are moving in thegativey direc-

tion on average. The effective Hamiltonian in the absence o
scattering is then

The associated stafé,) is localized in space, and may be
etermined from

B |#0) = consGo(Ep)| ¢o) (15
Ho=HoteBux. (™ up to normalization.
It should be noted that the Hall fiel, is different from the With the solution of the scattering problem, it is now

actual electric field even in an ideal sample without scatterStraightforward to evaluate the expectation value of any one

ing. Indeed, since edge charges generate a logarithmic poteRarticle operator. In particular the local densitx) is given
tial in two dimensions, the field is concentrated near thedy
edges while it is much smaller in the bulk of the samtee
below). The true local field with impurities is then obtained - = dk .- -
from this nonuniform distribution by adding the effect in- ”(X):nzo fen) J_w §|<X|k”+>|2+% FEp) (X[ ).
duced by the density variations in the electron gas due to (16)
scattering, which is the problem addressed in the following.
The eigenstatetkn) of H, differ from |kn) only by a  Here f(e,)=[expB(e,—x)+1]* is the usual Fermi func-
phase factor tion, andX, the sum over all bound states. It is important to
B note that the relevant occupation probabilities are identical
(x|kn)y=e" MY (x|kn); (8  with those in the absence of the Hall fiefl,, since the
however, the spectrum is now no longer discrete but is con(-effem of the average drift is already included in the wave
tinuous: functions. As a result, the transport velocityof the elec-
trons enters intq16) only through thev-dependent scatter-
en(K)=g,—fikv +mv?/2. (9) ing and bound statefkn+) and |#,), but not through a
transformation of the energies. By contrast, in the corre-

Physically the dependence of the energy on the momenturgbondmg expressidn

k=—(x)/13 is a result of the tilting of the Landau levels due

to the Hall field. We now introduce a static short-range scat- . dk o
tering potentiaM(x) such that n(x)= J (2—77)df(8|2—m5/h)|<x|k+>|2v (17)
H=Ho+V. (100 valid in the absenceof a magnetic field, the dependence of

the scattering states on the transport velocity could easily be
transformed into a shit;— e _ ;5 Of the energies, equiva-
lent to a shifted Fermi sphere. Evidently this is not possible
in the present case. As a second point we note that expres-
= _ = . 14 sion (16) is gauge invariant, as it should be. In fact a gauge
_ |kn+>__{1_G°[8“(k)+'0]V} [kn). (D transformati%n gﬁectively leads to a shift of the momgntu?”n
HereGy(z) =(z—H,) ! is the resolvent of the ideal system k of the extended states which is irrelevant after the integra-
including both the magnetic and Hall fields. Apart from thetion fdk is done. Similarly the wave function of the local-
scattering statefkn+) there are also localized bound statesized state is multiplied by a phase factor which drops out in
|), which are present even for a purely repulsivel(x|yp)?.

The eigenstatelsl?n+> of the full HamiltonianH may then
be expressed in terms of the states) by the formal solu-
tion of the Lippmann-Schwinger equation,
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FIG. 1. The normalized local density around a repulsive impu-
rity at the origin. Thex andy coordinates are given in units of the
magnetic length,.

FIG. 2. The same as in Fig. 1, but now with a finite transport
current flowing in the negativg-direction, inducing an asymmetry
transverse to that.

In the absence of scattering each filled Landau levemeasure of the asymmetry in density in the direction of the
makes a contribution (213) ~* to the density, which is con- incoming current For a strong magnetic field with one com-
stant in space, as is easily seen fr@@n For a finite potential pletely filled Landau level, however, the longitudinal resis-
V+#0 the density becomes nonuniform and has a strongjvity p, vanishes as long as excitation to higher Landau lev-
variation in the vicinity of the scattering center. An exampleels may be neglected. In terms of the local-density variation
of this distortion at zero temperature and vanishing transpotthis property is reflected in the absence of a longitudinal
velocity is shown in Fig. 1. It is based on a numerical evalu-asymmetry in density. For any system wjih=0 the usual
ation of (16) for the particular case of a completely filled | andauer resistivity dipol@~p,v in the direction of the
Landau level and potential strengty=fiwc. Apart from incident current is therefore quenched. Since the Hall resis-
thg strong depletion _of the densny around thg repulslve scativity pxy=pH is now finite, however, there is a correspond-
tering center there is an appreciable density maximum ghg asymmetrytransverseto the incident current, which is
intermediate distance which arises from the bound-state cofhe effect observed in Fig. 2. Instead of the dipolar contribu-
tribution. The fact thah(x) is not radially symmetric is due tion (1) with an oscillating dipole momer(2) for the case
to our choice of the scattering potential, where the width ofB=0, however, the density variation is now a Gaussian, de-

the Gaussian functiotx|¢) in the x direction is twice that caying on the scale of the magnetic lenggh Moreover,

in the y direction. In order to study the way in which the scattering and bound states make opposite contributions to
density approaches its asymptotically constant value, wéhe current-induced density. This may be seen from a simple
have to determine the behavior ©?|GO(E)|>Z’). Similar to exactly soluble modéft where|¢g) is just the zero angular

the situation a =0, where the propagator may be calcu- momentum state in the lowest Landau level, i.e.,

lated analytically’® it may be showh that (x|Go(E)|x’)
decays like a Gaussian on the scale of a magnetic ldggth (kn|gg)=
long asv is small enough that the coupling to higher Landau

levels remains negligible. As a result, the densifx) also
decays very quickly on scales of ordgr. This is in marked
contrast to the situation at vanishing fieid=0, where the . R ko
asymptotic behavior is a static Friedel oscillation decaying [(X] o) 2= [(X] @) —
like r ~2 in two dimensions.Clearly the origin of this differ- Volo

ence is the fact that the magnetic 1_‘ie|d destroys the Fermtq, 4 repulsive scattering potentis,>0 the probability
surface and leads to a completely discrete spectrum.  gensity of the bound state therefore shifts to the right, which
Let us now study the case of a finite transport velocityjs opposite to the direction of the force an electron experi-
v#0. Choosing the same parameters as used in Fig. 1 anghces through the Hall field. On the other hand, scattering
v=0.1(iwc/m)"? the resulting electron density is shown in states turn out to behave just in the opposite way, and appar-
Fig. 2. It is evident thah(x) now exhibits an asymmetry in ently overcompensate for the effect of the bound stHtéss.
the x direction which is transverse to the current, while it would be very interesting to see how this behavior of the
remains symmetric along thedirection in which the current local densityis connected with the general reéift that the
flows. Again, as in the field-free case, there are no Friedeintroduction of a single impurity does not change the ideal
oscillations, and the whole density variation decays exponenvalue of p,, because the missingurrent due to localized
tially on a scale of ordelr,. Similar, but less detailed, results states is exactly compensated for by a corresponding increase
were found previously by Chaudhuri, Bandyopadhyay, andn that carried by extended states.
Cahey!? who used attractiveéd impurities as scattering cen- In conclusion, we have calculated the local electron den-
ters. Qualitatively these results may be understood as fokity around a single impurity in a two-dimensional electron
lows: For vanishing magnetic field the resistivity tensor isgas at high magnetic fields both at vanishing and finite trans-
diagonal. Its relevant longitudinal componemjf,#0 is a  port current. While the spatial variations are irrelevant for

| 1/2
—0) exp—(klg)%/258, 0. (18)

Jrh

To lowest order irv the associated bound state is given by

1+ X+, (19
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determining the overall conductance coefficiei@s, ,,"* . m 12 _
they are of interest both conceptudlgnd in the context of N(X,eg) = W[lﬂL (;) or Re[fkp(ﬂ)ez'k”]},
local fluctuations of the potential distribution in the quantum F
Hall effect. As emphasized by Beenakker and van Holten,
its explanation in terms of the ideal transmission of edged
state$® is quite independent of the detailed spatial depen
dence of the currents. Nevertheless the local Hall fiel
En(x) is an interesting and measurable quarfiths was
mentioned above, this field is nonuniform even in the ab
sence of impurity scattering, whekg,;(x) together with the
local currents and densities can be calculated explititiy:
Since most of the voltage drop occurs near the edges, the

Hall field in the bulk is smaller than its ideal value by a - Zo(> dk, .- )

factor Z1+In(W¢] ! at filling factor 17 Here W is the ”(X,EF)=Z,O J:w El<x|kn+>| Sen—ef)

width of the Hall bar ant=13/7a* a characteristic length

determined by I, and the effective Bohr radius -

a* =eh?/me’. SinceW is typically much larger thag, the +§b: KX g)?6(Ep—2¢) (22
effective Hall field is reduced considerably in the bulk. As a

result, the transverse asymmetry in the density and the 10Cgliqp, s again gauge invariant as required. In contrast to the

potential around scaitering centers is ana”ef. than it§ ide%tal density which involves states at all energies uggo
value calculated here because the effective drift velacity the local density of states is determined only by states at a

rec_juced by th_e corresponding factor. The presence of a NOHsed energy. Now in the presence of a finite concentration of
uniform density around short-range scattering centers fOf’

o ) mpurities, the Landau levels are broadened into a con-
vanishing transport current will, however, lead to local fluc-

. " th ial orofile which Id be i . tinuum. For a finite sample, the states in the vicinity of a bare
tuations in the potential profile which would be Interesting to, 54,y |evel effectively behave like extended states, while

obsgrve. In this cont'ext avery attractive possibility would bethose in the tails are localiz€d.Thus by varying the energy,
prqwded by a two-dlmen5|onql electron gas dies surfa_\ce a STM measurement of the local density of states should be
which allows usﬁto measure directly the local electronic den-able to detect the opposite shift of extended or localized
sity of statesn(x,e¢) (Ref. 19 at the Fermi energy with a states in a finite current discussed above.

tunneling microscop&.In the absence of a magnetic field  Note added in proofAfter submission of the manuscript
and for a two-dimensional scattering potential which van-pr, R. Landauer has kindly pointed out to us that the rotation
ishes asymptotically, this may be written as an angular avelof the resistivity dipole in a magnetic field was anticipated

(21)

ecaying like 17, similar to result(2) for thetotal density at
inite transport current. These oscillations have been ob-
erved for impurities in a two-dimensional electron gas at a
copper surfac@ At finite magnetic field where bound states
“appear even with repulsive impurities, the local density of
states is given by

age of the wave function squared, by him some time agdR. Landauer, J. Phys. B, L245
(1978]. Moreover, in unpublished results, Briner, Feenstra,
n(i,s,:)= lzf dQ,| ()2)|2_ (20) Chin, and Woodall report on a direct experimental observa-
(2wti) F tion of the resistivity dipole in Bi films at high transport
currents.

Taking a single impurity with backscattering amplitude
fx.(7), the resulting behavior sufficiently far from the scat- |t is a pleasure to acknowledge useful discussions with M.

tering center is a Friedel oscillation, Buttiker and K. Schahammer.
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