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We consider a localized single impurity in a two-dimensional electron gas with a perpendicular magnetic
field at filling factor 1. A scattering theory calculation is performed for the local electron density around the
impurity in the presence of a finite transport current. It is shown that the current-induced Landauer resistivity
dipole is rotated by 90° compared with the situation in the absence of a magnetic field. This behavior naturally
reflects the structure of the resistivity tensor, with a finite value ofrxy but vanishing longitudinal resistivity
r l due to the absence of backscattering. We briefly discuss the implications of our results on the potential
distribution in the quantum Hall effect, and for scanning tunneling microscopy measurements of the local
density of states.

Quantum transport theory is usually based on Kubo’s for-
mulation of linear response, where one calculates the current
resulting from an applied electric field. A quite different ap-
proach to determine transport coefficients, however, was sug-
gested at about the same time by Landauer.1 In Landauer’s
approach one starts from a given incidentcurrent and then
calculates the resulting electric field in response to that. It
turns out that this field is highly nonlocal, being caused by
the nonuniform electron density associated with the scatter-
ing at localized impurities. Indeed, with carriers impinging
on one side of the barrier, one expects the local density to be
enhanced before and depleted after the barrier, thus leading
to a dipolar density and potential distribution.2 A pure scat-
tering theoretic calculation of this prediction was performed
recently.3 It was shown that the asymptotic density at finite
transport currentjW52nevW indeed has a dipolar distribution
to linear order invW which is superimposed, however, by ad-
ditional Friedel oscillations. Specifically, for a two-
dimensional electron gas at zero temperature one finds that
asymptotically3
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wherex̂ is a unit vector in the direction ofxW , and
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the current-induced dipole moment. Heres tr is the usual
transport cross section of the impurity andf kF(p) the asso-

ciated backscattering amplitude. Obviously forf kF(p)Þ0
the effective dipole moment contains a Friedel-like spatially
oscillating contribution in addition to the constant term pro-
portional tos tr•vW which represents the Landauer resistivity
dipole. In the context of phase-sensitive voltage fluctuations
in quasi-one-dimensional conductors, these oscillations had
previously been discussed by Bu¨ttiker.4 In the presence of a

finite concentrationni of independent, identical impurities,
the spatiallyaveragedelectric field is insensitive to the Frie-
del oscillations and is given by

^EW &522pni^pW &5r~2nevW ! ~3!

~the factor 2p is specific for a two-dimensional system!.
Now, requiring that the average field^EW & obeys Ohm’s law,
Eq. ~3! immediately leads to the standard Boltzmann-Drude
resultr5m/ne2t tr for the ~longitudinal! residual resistivity,
with t tr

215nivFs tr as the corresponding scattering rate. This
derivation explicitly shows that the standard Boltzmann-
Drude theory of transport is equivalent to simply adding up
the polarization field associated with each impurity to give a
homogeneous average field^EW &. Going beyond this rather
crude approximation is an interesting but difficult problem.5

In the present work this is avoided by considering asingle
impurity only, extending our earlier calculation3 to the case
of a finite magnetic field. This problem is of interest for
several reasons. First of all it is important from a conceptual
point of view, in particular in the context of local fluctuations
of the potential distribution in the quantum Hall effect. In
addition to that, recent measurements with a scanning tun-
neling microscope~STM! have been able to map out the
local electronic density of states around impurities in a two-
dimensional electron gas formed at the surface of copper.6

We will comment on both problems in our discussion.
We consider noninteracting electrons in two dimensions

which are subject to a perpendicular magnetic field
BW 5B•eW z . In the Landau gaugeAW 5Bx•eW y the associated
one-particle Hamiltonian is

H05
px
2

2m
1

1

2m
~py1eBx!2. ~4!

Its eigenstatesukn& are products of shifted harmonic oscilla-
tor statesun(x) in the x direction, and plane waves in the
y direction,
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^xW ukn&5eikyun~x1kl0
2!, ~5!

with l 05(\/eB)1/2 the magnetic length. Their energies are
the infinitely degenerate discrete Landau levels
«n5\vc(n1 1

2), n50,1,2,. . . , with vc5eB/m the cyclo-
tron frequency. The normalization of the statesukn& is cho-
sen such that

E
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is the spatially constant density associated with each filled
Landau leveln. It is well known that the statesukn& do not
carry a finite current, and in fact the discrete nature of the
unperturbed spectrum prevents one from developing a
straightforward scattering theory. However, for a given non-
vanishing drift velocity2vW of the electrons with respect to
the fixed impurities, there is a finite Hall fieldEW H5vW 3BW
which the electrons experience in the frame where the scat-
tering potential is stationary. SinceAW is in they direction for
the Landau gauge, it is convenient to choosevW 5v•eW y . Thus
with v.0 the electrons are moving in thenegative-y direc-
tion on average. The effective Hamiltonian in the absence of
scattering is then

H̄05H01eBvx. ~7!

It should be noted that the Hall fieldEW H is different from the
actual electric field even in an ideal sample without scatter-
ing. Indeed, since edge charges generate a logarithmic poten-
tial in two dimensions, the field is concentrated near the
edges while it is much smaller in the bulk of the sample7 ~see
below!. The true local field with impurities is then obtained
from this nonuniform distribution by adding the effect in-
duced by the density variations in the electron gas due to
scattering, which is the problem addressed in the following.

The eigenstatesuk̄n& of H̄0 differ from ukn& only by a
phase factor

^xW uk̄n&5e2 imvy/\
•^xW ukn&; ~8!

however, the spectrum is now no longer discrete but is con-
tinuous:

«n~k!5«n2\kv1mv2/2. ~9!

Physically the dependence of the energy on the momentum
k52^x&/ l 0

2 is a result of the tilting of the Landau levels due
to the Hall field. We now introduce a static short-range scat-
tering potentialV(xW ) such that

H5H̄01V. ~10!

The eigenstatesuk̄n1& of the full HamiltonianH may then
be expressed in terms of the statesuk̄n& by the formal solu-
tion of the Lippmann-Schwinger equation,

uk̄n1&5$12Ḡ0@«n~k!1 i0#V%21uk̄n&. ~11!

HereḠ0(z)5(z2H̄0)
21 is the resolvent of the ideal system

including both the magnetic and Hall fields. Apart from the
scattering statesuk̄n1& there are also localized bound states
ucb&, which are present even for a purely repulsive

potential.8 A simple model where the scattering problem may
be solved analytically to a large extent arises by choosing a
separable potential9

V5V0uw̄0&^w̄0u ~12!

with V0.0. The wave function̂xW uw̄0& differs from ^xW uw0&
by the same phase factor as in~8!. For ^xW uw0& we choose a
Gaussian localized state whose overlap withukn& is9

^knuw0&5~2p!21/4S l 0
\n! D 1/2S kl0A2D

n

exp2~kl0!
2/2.

~13!

For this model there is preciselyone bound state between
successive Landau levels~for V0,0 there would be an ad-
ditional one below the lowest Landau level!. The bound-state
energiesEb follow from8

V0^w̄0uḠ0~Eb!uw̄0&51. ~14!

The associated stateucb& is localized in space, and may be
determined from

ucb&5constḠ0~Eb!uw̄0& ~15!

up to normalization.
With the solution of the scattering problem, it is now

straightforward to evaluate the expectation value of any one
particle operator. In particular the local densityn(xW ) is given
by

n~xW !5 (
n50

`

f ~«n!E
2`

` dk

2p
z^xW uk̄n1& z21(

b
f ~Eb!z^xW ucb& z2.

~16!

Here f («n)5@expb(«n2m)11#21 is the usual Fermi func-
tion, and(b the sum over all bound states. It is important to
note that the relevant occupation probabilities are identical
with those in the absence of the Hall fieldEW H , since the
effect of the average drift is already included in the wave
functions. As a result, the transport velocityv of the elec-
trons enters into~16! only through thev-dependent scatter-
ing and bound statesuk̄n1& and ucb&, but not through a
transformation of the energies. By contrast, in the corre-
sponding expression3

n~xW !5E dk

~2p!d
f ~«kW2mvW /\!z^xW ukW1& z2, ~17!

valid in theabsenceof a magnetic field, the dependence of
the scattering states on the transport velocity could easily be
transformed into a shift«kW→«kW2mvW /\ of the energies, equiva-
lent to a shifted Fermi sphere. Evidently this is not possible
in the present case. As a second point we note that expres-
sion ~16! is gauge invariant, as it should be. In fact a gauge
transformation effectively leads to a shift of the momentum
k of the extended states which is irrelevant after the integra-
tion *dk is done. Similarly the wave function of the local-
ized state is multiplied by a phase factor which drops out in
z^xW ucb& z2.
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In the absence of scattering each filled Landau level
makes a contribution (2p l 0

2)21 to the density, which is con-
stant in space, as is easily seen from~6!. For a finite potential
VÞ0 the density becomes nonuniform and has a strong
variation in the vicinity of the scattering center. An example
of this distortion at zero temperature and vanishing transport
velocity is shown in Fig. 1. It is based on a numerical evalu-
ation of ~16! for the particular case of a completely filled
Landau level and potential strengthV05\vc . Apart from
the strong depletion of the density around the repulsive scat-
tering center there is an appreciable density maximum at
intermediate distance which arises from the bound-state con-
tribution. The fact thatn(xW ) is not radially symmetric is due
to our choice of the scattering potential, where the width of
the Gaussian function̂xW uw0& in the x direction is twice that
in the y direction. In order to study the way in which the
density approaches its asymptotically constant value, we
have to determine the behavior of^xW uḠ0(E)uxW8&. Similar to
the situation atv50, where the propagator may be calcu-
lated analytically,10 it may be shown11 that ^xW uḠ0(E)uxW8&
decays like a Gaussian on the scale of a magnetic lengthl 0 as
long asv is small enough that the coupling to higher Landau
levels remains negligible. As a result, the densityn(xW ) also
decays very quickly on scales of orderl 0 . This is in marked
contrast to the situation at vanishing fieldB50, where the
asymptotic behavior is a static Friedel oscillation decaying
like r22 in two dimensions.3 Clearly the origin of this differ-
ence is the fact that the magnetic field destroys the Fermi
surface and leads to a completely discrete spectrum.

Let us now study the case of a finite transport velocity
vÞ0. Choosing the same parameters as used in Fig. 1 and
v50.1(\vc /m)

1/2, the resulting electron density is shown in
Fig. 2. It is evident thatn(xW ) now exhibits an asymmetry in
the x direction which is transverse to the current, while it
remains symmetric along they direction in which the current
flows. Again, as in the field-free case, there are no Friedel
oscillations, and the whole density variation decays exponen-
tially on a scale of orderl 0 . Similar, but less detailed, results
were found previously by Chaudhuri, Bandyopadhyay, and
Cahey,12 who used attractived impurities as scattering cen-
ters. Qualitatively these results may be understood as fol-
lows: For vanishing magnetic field the resistivity tensor is
diagonal. Its relevant longitudinal componentryyÞ0 is a

measure of the asymmetry in density in the direction of the
incoming current.3 For a strong magnetic field with one com-
pletely filled Landau level, however, the longitudinal resis-
tivity r l vanishes as long as excitation to higher Landau lev-
els may be neglected. In terms of the local-density variation
this property is reflected in the absence of a longitudinal
asymmetry in density. For any system withr l50 the usual
Landauer resistivity dipolepW ;r lvW in the direction of the
incident current is therefore quenched. Since the Hall resis-
tivity rxy5rH is now finite, however, there is a correspond-
ing asymmetrytransverseto the incident current, which is
the effect observed in Fig. 2. Instead of the dipolar contribu-
tion ~1! with an oscillating dipole moment~2! for the case
B50, however, the density variation is now a Gaussian, de-
caying on the scale of the magnetic lengthl 0 . Moreover,
scattering and bound states make opposite contributions to
the current-induced density. This may be seen from a simple
exactly soluble model,11 whereuw0& is just the zero angular
momentum state in the lowest Landau level, i.e.,

^knuw0&5S l 0

Ap\
D 1/2exp2~kl0!

2/2dn,0 . ~18!

To lowest order inv the associated bound state is given by

z^xW ucb& z25 z^xW uw0& z2S 11
\v

V0l 0
2 x1••• D . ~19!

For a repulsive scattering potentialV0.0 the probability
density of the bound state therefore shifts to the right, which
is opposite to the direction of the force an electron experi-
ences through the Hall field. On the other hand, scattering
states turn out to behave just in the opposite way, and appar-
ently overcompensate for the effect of the bound states.11 It
would be very interesting to see how this behavior of the
local densityis connected with the general result8,13 that the
introduction of a single impurity does not change the ideal
value of rxy because the missingcurrent due to localized
states is exactly compensated for by a corresponding increase
in that carried by extended states.

In conclusion, we have calculated the local electron den-
sity around a single impurity in a two-dimensional electron
gas at high magnetic fields both at vanishing and finite trans-
port current. While the spatial variations are irrelevant for

FIG. 1. The normalized local density around a repulsive impu-
rity at the origin. Thex andy coordinates are given in units of the
magnetic lengthl 0 .

FIG. 2. The same as in Fig. 1, but now with a finite transport
current flowing in the negative-y direction, inducing an asymmetry
transverse to that.
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determining the overall conductance coefficientsGm,n ,
14

they are of interest both conceptually2 and in the context of
local fluctuations of the potential distribution in the quantum
Hall effect. As emphasized by Beenakker and van Houten,7

its explanation in terms of the ideal transmission of edge
states15 is quite independent of the detailed spatial depen-
dence of the currents. Nevertheless the local Hall field
EH(x) is an interesting and measurable quantity.16 As was
mentioned above, this field is nonuniform even in the ab-
sence of impurity scattering, whereEH(x) together with the
local currents and densities can be calculated explicitly.7,17,18

Since most of the voltage drop occurs near the edges, the
Hall field in the bulk is smaller than its ideal value by a
factor 2@11 ln(W/j)#21 at filling factor 1.7 HereW is the
width of the Hall bar andj5 l 0

2/pa* a characteristic length
determined by l 0 and the effective Bohr radius
a*5«\2/me2. SinceW is typically much larger thanj, the
effective Hall field is reduced considerably in the bulk. As a
result, the transverse asymmetry in the density and the local
potential around scattering centers is smaller than its ideal
value calculated here because the effective drift velocityv is
reduced by the corresponding factor. The presence of a non-
uniform density around short-range scattering centers for
vanishing transport current will, however, lead to local fluc-
tuations in the potential profile which would be interesting to
observe. In this context a very attractive possibility would be
provided by a two-dimensional electron gas at afreesurface
which allows us to measure directly the local electronic den-
sity of statesn(xW ,«F) ~Ref. 19! at the Fermi energy with a
tunneling microscope.6 In the absence of a magnetic field
and for a two-dimensional scattering potential which van-
ishes asymptotically, this may be written as an angular aver-
age of the wave function squared,

n~xW ,«F!5
m

~2p\!2
E dVkuckF

~xW !u2. ~20!

Taking a single impurity with backscattering amplitude
f kF(p), the resulting behavior sufficiently far from the scat-
tering center is a Friedel oscillation,

n~xW ,«F!5
m

2p\2 F11S 2p D 1/2 1

kFr
Re@ f kF~p!e2ikFr #G ,

~21!

decaying like 1/r , similar to result~2! for the total density at
finite transport current. These oscillations have been ob-
served for impurities in a two-dimensional electron gas at a
copper surface.6 At finite magnetic field where bound states
appear even with repulsive impurities, the local density of
states is given by

n~xW ,«F!5 (
n50

` E
2`

` dk

2p
z^xW uk̄n1& z2d~«n2«F!

1(
b

z^xW ucb& z2d~Eb2«F! ~22!

which is again gauge invariant as required. In contrast to the
total density which involves states at all energies up to«F ,
the local density of states is determined only by states at a
fixed energy. Now in the presence of a finite concentration of
impurities, the Landau levels are broadened into a con-
tinuum. For a finite sample, the states in the vicinity of a bare
Landau level effectively behave like extended states, while
those in the tails are localized.20 Thus by varying the energy,
a STM measurement of the local density of states should be
able to detect the opposite shift of extended or localized
states in a finite current discussed above.

Note added in proof.After submission of the manuscript
Dr. R. Landauer has kindly pointed out to us that the rotation
of the resistivity dipole in a magnetic field was anticipated
by him some time ago@R. Landauer, J. Phys. F8, L245
~1978!#. Moreover, in unpublished results, Briner, Feenstra,
Chin, and Woodall report on a direct experimental observa-
tion of the resistivity dipole in Bi films at high transport
currents.

It is a pleasure to acknowledge useful discussions with M.
Büttiker and K. Scho¨nhammer.
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