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The local density of states of quasiparticle~LDOS! near the interface ofd-wave superconductors is inves-
tigated for various situations based on the Green’s-function method of nonuniform superconductors. In the case
of normal-metal–insulator–d-wave-superconductor junction, the LDOS near the interface of the superconduc-
tor strongly depends on the angle between the normal to the interface and the crystalline axes ofd-wave
superconductor, on the thickness and on the height of the insulating barrier. In the case ofd-wave-
superconductor–insulator–d-wave-superconductor junction, bound states are formed at the interfaces of super-
conductors. The energy levels of bound states which include several limiting cases are explicitly obtained. The
LDOS near the interface of the superconductor is strongly influenced by the bound states and it depends not
only on the angle between the crystalline axes and the normal to the interface but also on the macroscopic
phase difference between two superconductors.

I. INTRODUCTION

Energy spectrum of quasiparticles in nonuniform super-
conductors is one of the basic problems of super-
conductivity.1 Nonuniformity induces the interference of the
quasiparticles which can not be expected in the bulk systems.
In general, two kinds of reflection process occur at the
superconductor–normal-metal (S/N) interface. An electron-
like quasiparticle injected from theN(S) side is reflected as
both an electronlike quasiparticle, which we will call normal
reflection hereafter, and a holelike quasiparticle. The latter
process originates from the existence of finite amplitude of
the pair potentialD(x) and is called the Andreev reflection.2

In general, the local density of states of the quasiparticles
~LDOS! in the nonuniform superconductor is influenced by
the interference of these two kinds of quasiparticles. Previ-
ously there have been many theoretical studies on nonuni-
form superconductors.3–11 However, except for a few cases
of heavy fermion superconductors,12–14 most theories have
dealt with isotropic s-wave superconductors. Nowadays,
symmetry of the pair potential of high-Tc superconductors
has attracted attention,15–17 and several groups have pro-
posedd-wave symmetry for this.18–21Different froms-wave
superconductors, the nature of quasiparticles near the inter-
face of ad-wave superconductor is not fully clarified yet. In
the d-wave superconductors, the quasiparticles experience
different pair potentials depending on the direction of mo-
tion, and at the interface interference effects of quasiparti-
cles, which are absent in thes-wave superconductors, are
expected.

Recently, we developed a tunneling theory for a normal-
metal–insulator–d-wave-superconductor (N/I /d) junction.22

It was revealed that tunneling conductance spectra strongly
depend on tunneling direction relative to crystalline axes and
do not always represent the bulk density of states, in contrast
to those ofs-wave superconductors. In thedx22y2-wave su-

perconductors, since the pair potential changes its sign on the
Fermi surface, the transmitted electronlike quasiparticle and
the holelike quasiparticle feel different signs of the pair po-
tential in theab-plane junction. In such a case, quasiparticles
with zero energy injected from the normal metal do not ex-
perience the insulating barrier due to the zero-energy states
~ZES! which are formed near the interface of superconductor
side. For this reason, tunneling conductance has peaks at
zero energy. In light of our theory,22 qualitative features of
tunneling experiments in high-Tc superconductors are well
understood with thed-wave symmetry of pair potentials.23–26

If the magnitude of the height or thickness of the insulating
barrier becomes infinite, the ZES become the bound states of
the quasiparticle.27–30The origin of this bound states are dis-
cussed by Kashiwayaet al.,31 in terms of quantized levels in
a potential well of pair potentials.

Although, there have been several investigations treating
the surface and interface ofd-wave superconductors, quasi-
particle states near the interface ofd-wave superconductors
are not fully investigated. The LDOS is obtained explicitly
only in thed-wave superconductors27–30having semi-infinite
or finite thickness. The aim of this paper is to elucidate what
is expected in LDOS near the interface ofd-wave supercon-
ductors in more general cases.

In this paper, we will investigate general cases with a
Green’s-function method in nonuniformd-wave supercon-
ductors based on a microscopic wave functions. Using the
Green’s function, quasiparticle states ofd-wave supercon-
ductors near the interface ofN/I /d junctions will be studied
by changing various parameters which characterize the ori-
entation of the junction and the height or thickness of the
barrier. We will also discuss the basic properties ofd-wave
superconductor–insulator–d-wave superconductor (d/I /d)
junctions. It is known that bound states which are formed
near the interface ofs-wave superconductor–insulator–s-
wave-superconductor (s/I /s) junctions strongly influence the
Josephson current.11 To elucidate the microscopic origin of
the Josephson current, we must clarify the bound states in
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d/I /d junctions. We will discuss how bound states at the
interface depend on the angle between the crystalline axes
and the normal to the interface and on the macroscopic phase
difference between two superconductors. The organization of
this paper is as follows. In Sec. II, the model and the method
to calculate the Green’s function in a nonuniform system is
given. We have extended the previous theory of the Green’s
function by Furusaki and Tsukada in a one-dimensional
s-wave superconductor11 to singlet anisotropic superconduc-
tors. In Sec. III, the LDOS near the interface of theN/I /d
junction is investigated. We will also compare the LDOS
with our previous results of the tunneling conductance. In
Sec. IV, the LDOS ofd/I /d junctions is investigated. It will
be clarified that the LDOS near the interface of thed-wave
superconductor depends not only on the angle between the
crystalline axes and the normal to the interface but also on
the macroscopic phase difference between two superconduc-
tors. The relevance between the bound states and the LDOS
is discussed in detail. Effects which are peculiar tod/I /d
junctions will be clarified. In Sec. V, we summarize our re-
sults and the future problems.

II. MODEL AND FORMULATION

For the simplest model calculation, we consider a two-
dimensional anisotropic singlet superconductor–insulator–
anisotropic singlet superconductor junction with perfectly
flat interfaces in the clean limit. In this model, the interface is
perpendicular to thex axis and is located atx50 andx5d,
where d is the thickness of insulating region. The Fermi
wave numberkF and the effective massm are assumed to be
equal both in the left and right superconductor. Quasiparticle
states in inhomogeneous anisotropic singlet superconductors
can be described by the Bogoliubov–de Gennes
equations13,30

Eu~x1!5h0u~x1!1E dx2 D~s,r !v~x2!,

Ev~x1!52h0v~x1!1E dx2 D* ~s,r !u~x2!, ~1!

where s5~x12x2!, r5~x11x2!/2, and h052\2¹x1
2 /2m

1U(x)2m, with m the chemical potential. The energy of the
quasiparticle E is measured from the Fermi energy
EF(EF5m). We can simply express Eq.~1! by the Nambu
matrix formulation as

E dx2HW ~x1 ,x2!C~x2!5C~x1!, C~x1!5S u~x1!
v~x1!

D .
~2!

We assume that the pair potential and Hartree potential are

D~k,r !5H DL~g!exp~ iwL!, x,0
0, 0,x,d,
DR~g!exp~ iwR!, x.d

~3!

U~x!5H 0,U0 ,
0,

x,0
0,x,d
x.d,

where D~k,r ! is the Fourier transform ofD~s,r !, with
exp(ig)[kx/uku1iky/uku using a wave vectork. In the weak-
coupling limit, k is fixed on the Fermi surface~uku5kF!.

The quantitieswL andwR are the macroscopic phase of the
left and right superconductor; respectively. The two compo-
nent wave functionsC~x! satisfy following relations:

C~x!ux502
5C~x!ux501

,
dC~x!

dx U
x502

5
dC~x!

dx U
x501

~4!

C~x!ux5d2
5C~x!ux5d1

,
dC~x!

dx U
x5d2

5
dC~x!

dx U
x5d1

.

~5!

Since the translational invariance is satisfied, the momentum
parallel to the interfaceky5kF sing is conserved. For given
ky , we can make the Green’s function of quasiparticles ex-
tending the method of one-dimensionals-wave superconduc-
tor by Furusaki and Tsukada.11 In general, there are four
kinds of effective pair potentials of quasiparticles for fixedg.
For an energy E.$max[DR(g1),DR(g2),DL(g1),
DL(g2)] %, with g15g and g25p2g, there are four inde-
pendent eigenfunctions corresponding to four types of
boundary conditions shown in Fig. 1. Four types of wave
functionsCl~r !, l51,4, which satisfy Eq.~1! can be written
as

FIG. 1. Schematic illustration of the four types of reflection and
transmission processes at the interface of wave functionsCl(x!
~l51,4!. ~a! C1~x!, ~b! C2~x!, ~c! C3~x!, and ~d! C4~x!. In this
figure, LS~RS!, elq ~ELQ!, and hlq~HLQ! express left~right! su-
perconductor, electronlike quasiparticle in left~right! superconduc-
tor and holelike quasiparticle in left~right! superconductor.

9372 53YUKIO TANAKA AND SATOSHI KASHIWAYA



Cl~x!5exp~ ikFy sing!C l~x,g!, ~ l51,4! ~6!

C1~x,g!5Hca,L~x,g!1a1cā ,L~x,g!1b1cb,L~x,g!, ~x,0!

c1,I~x,g!, ~0,x,d!

g1ca,R~x,g!1h1cb̄,R~x,g!, ~x.d!,
~7!

C2~x,g!5H cb̄,L~x,g!1a2cb,L~x,g!1b2cā,L~x,g!, ~x,0!

c2,I~x,g!, ~0,x,d!

g2cb̄,R~x,g!1h2ca,R~x,g!, ~x.d!,
~8!

C3~x,g!5H g3cb,L~x,g!1h3cā,L~x,g!, ~x,0!,
c3,I~x,g!, ~0,x,d!

cb,R~x,g!1a3cb̄,R~x,g!1b3ca,R~x,g!, ~x.d!,
~9!

C4~x,g!5H g4cā,L~x,g!1h4cb,L~x,g!, ~x,0!

c4,I~x,g!, ~0,x,d!

cā,R~x,g!1a4ca,R~x,g!1b4cb̄,R~x,g!, ~x.d!,
~10!

where j expresses the indicesL andR, and wave functions
ca, j (x,g), cā, j (x,g), cb, j (x,g), cb̄, j (x,g), and cl ,I(x,g)
satisfy the following equations:

SH0

uD j~g1!uexp~2 if j !

uDj~g1!uexp~ if j !

2H0
Dca, j~x,g!

5Eca, j~x,g!, ~11!

SH0

uD j~g1!uexp~2 if j !

uD j~g1!uexp~ if j !

2H0
Dcā, j~x,g!

5Ecā, j~x,g!, ~12!

SH0

uD j~g2!uexp~2 i f̃ j !

uD j~g2!uexp~ i f̃ j !

2H0
Dcb, j~x,g!

5Ecb, j~x,g!, ~13!

SH0

uD j~g2!uexp~2 i f̃ j !

uD j~g2!uexp~ i f̃ j !

2H0
Dcb̄, j~x,g!

5Ecb̄, j~x,g!, ~14!

and

SH01U~x!

0
0
2H02U~x! Dc l ,I~x,g!5Ec l ,I~x,g!,

~15!

with

H052
\2

2m

d2

dx2
2EFcos

2g, ~16!

and

exp~ if j !5
D j~g1!

uD j~g1!u
exp~ iw j !,

exp~ i f̃ j !5
D j~g2!

uD j~g2!u
exp~ iw j !. ~17!

By solving the above equations, Eqs.~11!–~15!, five kinds of
wave functions are explicitly expressed as

ca, j~x,g!5S ujexp~ if j /2!

v jexp~2 if j /2! DexpF i S kFcosg
1

mV j ,1

\2kFcosg
D xG , ~18!

cā, j~x,g!5S v jexp~ if j /2!

ujexp~2 if j /2! DexpF i S kFcosg
2

mV j ,1

\2kFcosg
D xG , ~19!

cb, j~x,g!5S ũ jexp~ i f̃ j /2!

ṽ jexp~2 i f̃ j /2!
DexpF2 i S kFcosg

1
mV j ,2

\2kFcosg
D xG , ~20!

cb̄, j~x,g!5S ṽ jexp~ i f̃ j /2!

ũ jexp~2 i f̃ j /2!
DexpF2 i S kFcosg

2
mV j ,2

\2kFcosg
D xG , ~21!

c l ,I~x,g!5S clexp~2lx!1dlexp~lx!

elexp~2lx!1 f lexp~lx! D , ~ l51,4!,

~22!

with

uj5A1

2 S 11
V j ,1

E D , v j5A1

2 S 12
V j ,1

E D ,

ũ j5A1

2 S 11
V j ,2

E D , ṽ j5A1

2 S 12
V j ,2

E D , ~23!
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and

V j ,15AE22uD j~g1!u2, V j ,25AE22uD j~g2!u2,

l5A2mU0

\2 2kF
2cos2g. ~24!

Here, we have assumed the relation,U0 ,EF@uV j ,6u. To cal-
culate the Green’s function, it is necessary to obtain another
wave functionĈ~x! which satisfies,

E dx1 Ĉt~x1!HQ ~x1 ,x2!5Ĉt~x2!, Ĉ~x2!5S û~x2!
v̂~x2!,

D
~25!

Eû~x2!5h0û~x2!1E dx1 D* ~s,r !v̂~x1!,

Ev̂~x2!52h0v̂~x2!1E dx1 D~s,r !û~x1!. ~26!

Ĉ~x! also satisfies the boundary conditions given by Eqs.~3!
and ~4!. For an energy E.$max[DR(g1),DR(g2),
DL(g1),DL(g2)] %, there are four independent eigenfunc-
tions corresponding to four types of boundary conditions
shown in Fig. 2. Four types of wave functionsĈl(x! ~l
51,4!, which satisfy Eq.~25! can be written as

Ĉl~x!5exp~2 ikFy sing!Ĉl~x,g!, ~ l51,4!. ~27!

TheĈ l(x,g) are obtained from theC l(x,g) in Eqs.~7!–~10!
by replacing all of thecd, j (x,g) for d5a,ā,b,b̄,c j ,I(x,g),
aj ,bj ,...,gj , andhj by the analogousĉd, j (x,g), ĉ j ,I(x,g),
â j , etc. Theĉd, j (x,g) andĉ j ,I(x,g) are obtained from Eqs.
~11!–~15! by replacing thecd, j (x,g), c j ,I(x,g) by ĉd, j (x,g)
andĉ j ,I(x,g), and by interchangingg6 with g7 andf j (f̃ j )
with 2f̃ j (2f j ). The explicit forms for theĉd, j (x,g) can be
obtained from Eqs.~18!–~21! by interchanginguj with ũ j ,
v j with ṽ j , andVj ,1 with Vj ,2 . ĉ l ,I(x,g) may be written
analogously to Eq.~22!, by replacing the coefficientscl , etc.,
by ĉl , etc. We can make the Green’s function as follows:

Gt~x,x8,ky,E!5H a1C3~x,g!Ĉ1
t ~x8,g!1a2C3~x,g!Ĉ2

t ~x8,g!1a3C4~x,g!Ĉ1
t ~x8,g!1a4C4~x,g!Ĉ2

t ~x8,g! x,x8

b1C1~x,g!Ĉ3
t ~x8,g!1b2C2~x,g!Ĉ3

t ~x8,g!1b3C1~x,g!Ĉ4
t ~x8,g!1b4C2~x,g!Ĉ4

t ~x8,g! x.x8.
~28!

Using the above functions, we can construct the Green’s
function as follows:

E @E2HW ~x,x9,ky!#G
t~x9,x8,ky ,E!dx9

5d~x2x8!S 10 0
1D , ~29!

E Gt~x,x9,ky ,E!@E2HQ ~x9,x8,ky!#dx9

5d~x2x8!S 10 0
1D , ~30!

whereH(x,x9,ky) is the Fourier transform with respect to
y2y9 of H(x,x9). The quantitiesai andbi ~i51,4! in Eq.
~28! are determined so thatGt(x,x8,ky ,E) satisfy following
equations:

]

]x
Gt~x,x8,ky ,E!U

x5x810

2
]

]x
Gt~x,x8,ky ,E!U

x5x820

5
2m

\2 S 10 0
21D , ~31!

Gt~x,x10,ky ,E!5Gt~x,x20,ky ,E!. ~32!

The LDOS of the quasiparticle can be obtained as

r~E,x!5(
ky

21

p
Im@G11

t ~x,x,ky ,E!#, ~33!

whereG 11
t (x,x,ky ,E) are the 11 component of a 232 re-

tarded Green’s function. In the following, we calculate the
LDOS for several cases.

FIG. 2. Schematic illustration of the four types of reflection and
transmission processes at the interface of wave functionsĈl(x!,
~l51,4!. ~a! Ĉ1~x!, ~b! Ĉ2~x!, ~c! Ĉ3~x!, and ~d! Ĉ4~x!. In this
figure, LS~RS!, elq ~ELQ!, and hlq~HLQ! express left~right! su-
perconductor, electronlike quasiparticle in left~right! superconduc-
tor and holelike quasiparticle in left~right! superconductor.
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III. LDOS OF NORMAL-METAL –INSULATOR –d-WAVE-
SUPERCONDUCTOR JUNCTIONS

In this section, we calculate the LDOS of normal-metal–
insulator–d-wave-superconductor (N/I /d) junctions for sev-
eral cases, where Hartree potential is expressed as a square
as discussed in Sec. II. The LDOS of the quasiparticle which
is normalized by those in the normal state is explicitly given
as

r~E,x!5ReH 1

2p E
2p/2

p/2

dg@r1~E,x,g!1r2~E,x,g!#J ,
~34!

with

r6~E,x,g!5
1

VR,6
HE1uDR~g6!uF6expF2i ~x2d!

j6
G J ,

j65
\2kFcosg

mVR,6
. ~35!

In the above,F6 is given as

F65
~12sN!GR,7exp@ i ~f̃R2fR!#2GR,6

12~12sN!GR,6GR,7exp@ i ~f̃R2fR!#
, ~36!

using

GR,65
uDR~g6!u
E1VR,7

,

sN5
4Zg

2

~12Zg
2!2sinh2~ld!14Zg

2cosh2~ld!
,

l5~12k2cos2g!1/2l0 , ~37!

with

Zg5
k cosg

A12k2cos2g
, l05A2mU0

\2 , k5
kF
l0

. ~38!

In the above,sN expresses the tunneling conductance of the
N/I /d junction in the normal states which was defined in our
previous papers.22,27The pair potentialsDR~g1! andDR~g2!
in Eqs.~17! and ~24! are expressed as

DR~g1!5D0cos@2~g2b!#,

DR~g2!5D0cos@2~g1b!#, ~39!

whereb stands for the angle between the crystalline axis of
the right superconductor and the normal to the interface. In
Eqs. ~34! and ~35!, the atomic scale oscillations ofr(E,x)
are averaged out. Within this approximation,r(E,x) in the
normal metal becomes 1 for anyx. The drastic effect occurs
when the signs ofDR~g1! andDR~g2! are different from each
other as we will see below.

In Fig. 3, r(E,x) with b50 is plotted for variousl0 and
k. In the case of~a!, sinced is zero,r(E,x) does not depend
on l0 andk. As shown by curve A,r(E,x) at x5d becomes

1 independent ofE, which is the value of the normal state.
However asx increases,r(E,x) approaches that of bulk
DOS of thed-wave superconductor. The characteristic length
of the spatial dependence ofr(E,x) is j05\vF/D0. In the
case of~b! and ~c!, r(E,x) qualitatively coincides with the
bulk DOS of thed-wave superconductor independent ofx. In
~b! and ~c!, since the magnitude of the height and the thick-
ness of the barrier is sufficiently large~sN;0!, quasiparticles
in the superconductor are not influenced by the adjacent nor-
mal metal. In Fig. 4,r(E,x) with b5p/4 is plotted for vari-
ousl0 andk. In the case of~a!, r(E,x) at x5d becomes 1
independent ofE, and it approaches that of the bulk DOS of
the d-wave superconductor with the increase ofx as in the
case of Fig. 3~a!. However, ifl0d becomes finite, as shown
in Figs. 4~b! and 4~c!, qualitative features ofr(E,x) are sig-
nificantly changed. In both curves~b! and ~c!, r(E,x) at
E50 is drastically enhanced. As compared tos(E) of Fig. 2
in,22 when the insulating barrier is sufficiently high,E de-
pendence ofr(E,d) is similar to that ofs(E). It has been
clarified recently, forsN→0, s(E) can be expressed by
r(E,d).32 In the limit of l0d→` ~sN→0!, the denominator
of F6 vanishes forE50 and bound states are formed at this
energy near the interface.28–30

Let us see how the width of this peak changes as the
function ofl0d andk. In Fig. 5,r(E,d) is plotted for various
l0d with a fixed value ofk. The width of the peak becomes
narrower asl0d increases. On the other hand, the width of
the peak becomes narrower ask decreases as seen in the plot
of r(E,d) for variousk with a fixed value ofl0d ~see Fig.
6!. Taking into account the fact that the quantityk decreases
with the increase of the barrier height, it can be summarized
that the width of the peak decreases with the increase of the

FIG. 3. Normalized local density of statesr(E,x) with b50 is
plotted for ~a! l0d50, ~b! l0d53, k50.1, and~c! l0d53, k50.9.
A: x5d, B: x5d10.5j0, C: x5d12.5j0.
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thickness and the height of the barrier. For the next step, we
will discuss the magnitude ofr~0,x!. In Fig. 7,b dependence
of r~0,d! is plotted. As a reference,r~E50.01D0, d! and
r~E50.02D0,d! are also plotted. As seen from Fig. 7,r(E,d)
is drastically suppressed asE deviates from zero andr(E,d)
is strongly enhanced nearb5p/4. The quantityr~0,d! can be
written as

r~0,d!5ReF 1p E
2p/2

p/2 H 12~12sN!exp@ i ~f̃R2fR!#

11~12sN!exp@ i ~f̃R2fR!#
J dgG .

~40!

For b5p/4, DR(g1)DR(g2),0 and exp[i (f̃R2fR)]521
are satisfied for anyg. In such a case, the integrand of Eq.
~40! becomes (22sN)/sN and diverges forsN→0 ~l0d→`,
k→0!. If we used-function barrier model, the integral with
the variableg can be performed rigorously. ReplacingsN in
Eq. ~40! by

sN5
4 cos2u

4 cos2u1Z2
, Z5

l0
2d

kF
, ~41!

we can reproduce thed-function barrier model as discussed
in our previous paper.22,27We can rigorously obtainr~0,d! as

r~0,d!5@12F~Z!#1
2F~Z!

p H tan21FF~Z!tanS p

4
1b D G

2tan21FF~Z!tanS p

4
2b D G J 1

Z2

p F tanS p

4
1b D

2tanS p

4
2b D G , ~42!

with

FIG. 4. Normalized local density of statesr(E,x) with b5p/4
is plotted for~a! l0d50, ~b! l0d53, k50.1, and~c! l0d53, k50.9.
A: x5d, B: x5d10.5j0, C: x5d12.5j0.

FIG. 5. Normalized local density of states at the interface
r(E,d) with b5p/4 and k50.1 is plotted for A: l0d50.5, B:
l0d51, and C:l0d52.

FIG. 6. Normalized local density of states at the interface
r(E,d) with b5p/4 with l0d51 is plotted for A:k50.1, B:k50.5,
and C:k50.9.

FIG. 7. Normalized local density of states at the interface
r(E,d) with l0d51 andk50.1 is plotted as a function ofb for A:
E50, B: E50.01D0, and C:E50.02D0.
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F~Z!5
Z

AZ212
. ~43!

The divergence ofr~0,d! at b5p/4 is obtained forZÞ0.

IV. LDOS OF d-WAVE SUPERCONDUCTOR–
INSULATOR –d-WAVE-SUPERCONDUCTOR JUNCTIONS

In this section, the LDOS of thed-wave superconductor–
insulator–d-wave-superconductor (d/I /d) junction is dis-
cussed for various crystal angle rotationsa andb. The mac-
roscopic phase differencew5wR2wL is measured along the
a axis as shown in Fig. 8. If the electronlike quasiparticle is
injected from the left superconductor, the incidental electron-
like quasiparticle and the reflected electronlike quasiparticle
feel different effective pair potentials foraÞ0. As in the left
superconductor, the transmitted electronlike quasiparticle
and the holelike quasiparticle feel the different pair potentials
for bÞ0. In general, there are four kinds of effective pair
potentials of quasiparticles for fixedu. The bound states are
formed near the interface when the energy of the quasiparti-
cle E satisfiesE<min[DL(u1),DL(u2),DR(u1),DR(u2)],
where the effective pair potentials in the left superconductor
DL~u1! andDL~u2! are expressed as

DL~u1!5D0cos@2~u2a!#, DL~u2!5D0cos@2~u1a!#,
~44!

and those of in the right superconductorDR~u1! andDR~u2!
are expressed as

DR~u1!5D0cos@2~u2b!#,

DR~u2!5D0cos@2~u1b!#. ~45!

The energy levels of the bound states are written as

~12sN!$g1g22exp@ i ~u11u2!#%$g3g42exp@ i ~u31u4!#%

1sN$g1g32exp@ i ~u11u31w!#%$g2g42exp@ i ~u2

1u42w)] %50, ~46!

where

u15arctan~AuDL~u1!u22E2/E!,

u25arctan~AuDL~u2!u22E2/E!,

u35arctan~AuDR~u1!u22E2/E!,

u45arctan~AuDR~u2!u22E2/E!. ~47!

The quantitiesgi ~i51,4! are expressed as

g15
DL~u1!

uDL~u1!u
, g25

uDL~u2!u
DL~u2!

, g35
uDR~u1!u
DR~u1!

,

g45
DR~u2!

uDR~u2!u
. ~48!

Equation ~46! is the generalized version of the quantized
condition of bound states of quasiparticles ins/I /s
junctions.31 In the case ofsN50, bound states are deter-
mined independently in the left and the right superconduc-
tors, and this condition corresponds to that of the semi-
infinite superconductors.27,28–31 In the other limiting case,
sN51, only Andreev reflection exists andu1 andu2 can be
treated separately. In the following, we will pay attention to
the u dependence of the energy level of bound state (Eb)
whose energy is positive. We can expect the same magnitude
of Eb in the negative energy region since time-reversal sym-
metry is not broken. In the case of thes/I /s junction, the
above bound-states condition is reduced to4,5,7,8

Eb5D0Acos2S w

2 D1~12sN!sin2~w/2!. ~49!

In the case ofl0d50, i.e.,sN51, Eb depends onw signifi-
cantly, while for l0d→`, i.e., sN→0, Eb converges toD0
independent ofw. The existence of the normal reflection re-
ducessN and strongly influences the energy levels.11 In the
case ofd/I /d junctions, we can express the energy levels of
bound states simply for several cases. Fora5b50, Eb is
expressed as

Eb5D0ucos~2u!uAcos2~w/2!1~12sN!sin2~w/2!.
~50!

In this case, sinceDL(u1)5DL(u2) andDR(u1)5DR(u2)
are satisfied, the effective pair potentials for the quasiparticle
do not change at the normal reflection process at the interface
in each superconductor. This is the reason why Eq.~50! is
similar to Eq.~49! except for the factor cos~2u!. The u de-
pendence ofEb is plotted in Figs. 9~a! and 9~b!. The zero-
energy states~ZES! for w5p in ~a! disappear in~b! as in the
case ofs-wave superconductor. In the case ofa5b5p/4, u
dependence ofEb is expressed as

Eb5D0u sin~2u!ucos~w/2!AsN, ~51!

and is plotted in Figs. 10~a! and 10~b!. When normal reflec-
tion is absent~sN51! as in~a!, Eb is obtained by substituting
usin~2u!u for ucos~2u!u in Eq. ~50!. While in the case of~b!
~sNÞ1!, the effective pair potentials for quasiparticles
change their sign at the normal reflection at the interface. In
this case, forsN→0, Eb approaches zero for everyw. The

FIG. 8. Schematic illustration of the reflection and transmission
processes at the interface. In this figure, the quantitiesu anda~b!
express the injection angle of the electron and the angle between the
normal vector of the interface and thea axis of the left ~right!
dx22y2-wave superconductor, respectively.DR5DL5D0 .
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origin of the ZES is similar to that of the ZES at the interface
of theN/I /d junction or surface of thed-wave superconduc-
tor as discussed in the previous section.26–32 In general,u
dependence ofEb becomes very complex.

Applying the Green’s-function method discussed in Sec.
II, the LDOS can be expressed as

r~x,E!5ReH 1

2p E
2p/2

p/2 F E

VL,1
1G

uDL,1u
VL,1

expS 2xj1
D

1
E

VL,2
1G̃

uDL,2u
VL,2

expS 2xj2
D GdgJ , ~x,0!.

~52!

In the above,G and Ḡ are expressed as

G52
GAGB~12sN!1sNGCGD

GAGE~12sN!1sNGCGF

, ~53!

G̃52
G̃AG̃B~12sN!1sNG̃CG̃D

G̃AG̃E~12sN!1sNG̃CG̃F

,

with

GA512GR,1GR,2g3g4 , GB5GL,12GL,2g1g2,

GC512GL,2GR,2g2g4exp~ iw!,
~54!

GD5GL,12GR,1g1g3exp~2 iw!,

GE512GL,1GL,2g1g2,

GF512GL,1GR,1g1g3exp~2 iw!,

and

G̃A5GA , G̃B5GL,22GL,1g1g2, G̃C5GF,
~55!

G̃D5GL,22GR,2g2g4exp~ iw!, G̃E5GE , G̃F5GC .

In the aboveGL,6 andGR,6 are given as

GL,65
uDL~g6!u
E1VL,6

, GR,65
uDR~g6!u
E1VR,6

. ~56!

The denominators ofG andG̃ vanish whenE coincides with
Eb for giveng. Equation~52! is the generalized expressions
of the LDOS of thed/I /d junction. ForsN50, we can re-
produce the previous results of the LDOS in the semi-infinite
superconductor.28,30In the following, to see the feature of the
bound states, the quasiparticle energyE is substituted for
E1 id, whered is chosen as 0.01D0. However the essence of
the physics is not changed by the introduction ofd. In Figs.
11 and 12, the LDOS atx50 is plotted for variousa, b, and

FIG. 9. The bound state energyEb is plotted as a function ofu
for ad/I /d junction fora50 andb50 with A: w50, B:w5p/2 and
C: w5p. ~a! l0d50, ~b! l0d51, k50.1.

FIG. 10. The bound-state energyEb is plotted as a function ofu
for ad/I /d junction fora5p/4 andb5p/4 with A: w50, B:w5p/2
and C:w5p. ~a! l0d50, ~b! l0d51, k50.1.

FIG. 11. Normalized local density of statesr~E,0! is calculated
for a50 and b50, with A: w50, B: w5p/2 and C:w5p. ~a!
l0d50, ~b! l0d51, k50.1.
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w. In the case of~a!, l0d is chosen as 0~sN51! and only the
Andreev reflection occurs. On the other hand, in the case of
~b!, both the Andreev and the normal reflections occur, since
l0d51 andk50.1 ~sNÞ1! are satisfied. In Fig. 11, several
parameters are chosen as the same as those of Fig. 9. In
every curve of the LDOS the position of peaks corresponds
to the energy whereEb has maxima as a function ofg. This
fact also holds in Fig. 12, where the same parameters are
chosen as those in Fig. 10. Under the existence ofEb50 for
anyg, r~E,0! has maximum atE50. In the following, let us
discuss the zero-energy level of bound states andr~0,0!. For
E50, Eq. ~46! is transformed into

~11g1g2!~11g3g4!~12sN!1sN@g1g31exp~ iw!#

3@g2g41exp~2 iw!#50. ~57!

In d-wave superconductors, sincegi561 ~i51,4! are satis-
fied in general, bound states are formed only whenw50 or
w5p. For sN51, Eq. ~57! is more simplified as

@g1g31exp~ iw!#@g2g41exp~2 iw!#50. ~58!

In the cases of Figs. 11 and 12,g1g35g2g451 is satisfied for
anyg, and the ZES are only expected forw5p. However as
shown in Fig. 13~a!, wherea5p/4 andb50 are satisfied,
g1g3 and g2g4 have different signs and the ZES are also
expected forw50. While in the limit of l0d→` or k→0,
~sN→0!, Eq. ~46! can be transformed into

~g1g211!~g3g411!50. ~59!

As seen from this equation, the condition whether the ZES
are formed or not does not depend onw at all. We can also
see this tendency forsN;0 shown in Figs. 11~b!, 12~b!, and
13~b!, where thew dependence ofr~0,0! is weak.

In the following, we will see how the ZES are influenced
by w for various a and b. Hereafter, we will define
r0~w,a,b![r~0,0! with p/4.a,b.2p/4. The quantity
r0~w,a,b![r~0,0! satisfies

r0~w,a1p/2,b!5r0~w1p,a,b!,r0~w,a,b1p/2!

5r0~w1p,a,b!. ~60!

In Fig. 14~a!, r0~w,a,b! is plotted for thes/I /s junction as a
reference. In this case,r0~w,a,b! is independent ofa andb,
and is a monotonically increasing function withw~0,w,p!.
If l0d becomes finite, the enhancement atw5p is drastically
reduced andr0~w,a,b! vanishes. In the case of thed/I /d
junction, r0~w,a,b! has two maxima atw50 andw5p for
0,w,p as shown in Figs. 14~b! and 14~c!. This property is
very different from that of thes/I /s junction. Whena andb
have the same sign,r0~0,a,b!,r0~p,a,b! is satisfied. On the
other hand, when they have different signs,r0~0,a,b!
.r0~p,a,b! is expected.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, the basic properties of the local density of
states~LDOS! of d-wave superconductors near the interface

FIG. 12. Normalized local density of statesr~E,0! is calculated
for a5p/4 andb5p/4 with A: w50, B: w5p/2 and C:w5p. ~a!
l0d50, ~b! l0d51, k50.1.

FIG. 13. Normalized local density of statesr~E,0! is calculated
for a5p/4 andb50, with A: w50, B: w5p/2 and C:w5p. ~a!
l0d50, ~b! l0d51, k50.1.

FIG. 14. r0~w,a,b! is plotted as the function ofw for variousa
andb. As a referencer0~w,a,b! in a s/I /s junction is plotted in~a!.
~a! A: l0d50, B: l0d51, k50.5. In ~b! and ~c!, r0~w,a,b! of a
d/I /d junction is plotted for various cases withl0d51, k50.5. ~b!
A: a50.05p, b50.1p, B: a50.05p, b50.2p. ~c! A: a50.05p,
b520.1p, B: a50.05p, b520.2p.
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is investigated based on the Green’s-function method. The
LDOS inN/I /d junctions is investigated for various heights
and widths of the insulating barrier with changingb, which
expresses the angle between the normal to the interface and
the crystal axis of thedx22y2-wave superconductor. The
LDOS has a peak atE50 when the angle between the nor-
mal to the interface and the crystal axis of thedx22y2-wave
superconductor becomes finite, where the transmitted elec-
tronlike quasiparticle and holelike quasiparticles from the
normal metal feel different signs of the pair potentials. The
peak height becomes larger when the magnitude of the
height or the width of the barrier increases, and the width of
this peak becomes narrower at the same time. The enhance-
ment of the LDOS atE50 is reflected on the tunneling con-
ductances which have been discussed in our previous
papers.22,27Furthermore, for an infinite thickness or height of
the barrier, the LDOS coincides with the previous results of
those of semi-infinited-wave superconductors by Matsu-
moto and Shiba.28

The LDOS at the interface of thed/I /d junction is also
investigated. It is revealed that the LDOS strongly depends
on the angles,a~b! which expresses the angle between the
normal to the interface and the crystalline axis of left~right!
superconductors andw, which expresses the macroscopic
phase difference between two superconductors. We have ob-
tained generalized expressions of the energy levels of bound
states and the LDOS which include several limiting cases.
Ther0~w,a,b!, which expresses thew, a, andb dependences
of LDOS at zero energy, shows peculiar behaviors. The im-
portant point is thatr0~w,a,b! is not always a monotonically
increasing function ofw for fixed a andb. This fact is very
different from that of conventionals/I /s junctions. It is
known from the previous investigations of the Josephson ef-
fect in s/I /s junctions, that the ZES influence crucially thew
dependence of the Josephson current.8,11 Since thew depen-
dence of ZES ind/I /d junctions is much more complex as
compared with that of thes/I /s junctions, we can expect an
unconventionalw dependence of the Josephson effect. In the
Josephson junction including ad-wave superconductor, the
Josephson current strongly depends on the direction of the
junction. We have clarified ins/I /d junctions, even when the
ZES do not exist, thew dependence of Josephson current is
different from that of the conventional Josephson effect.33,34

Under the existence of ZES, there may be phenomena which
cannot be expected in the conventional Josephson effect. For
example, there is a possibility that Josephson current is not a
monotonically increasing function with the decrease of
temperature.35 The detailed results will be published else-
where.

There are several experiments which report ZES. Edwards
et al.,36 showed that tunneling into freshly cleavedc-axis
surfaces of Y-Ba-Cu-O via scanning tunnel microscopy
~STM! gave different results for the density of states, de-
pending on whether the oxygen content in the chain was
locally stoichiometric or not. At the sites of oxygen vacan-
cies, the density of states was apparently normal, with a
broad zero-energy peak. Hence one might imagine that tun-
neling into theab plane would give different results, depend-
ing on the local oxygen stoichiometry at the STM site.36 The
magnitude of zero-energy peak is not large as that of in our
theories. However, by choosing parameters of barrier and

taking into account the roughness at the interface, the mag-
nitude of the zero-energy peak can be as large as in the
experiments. Another possible explanation of zero-energy
peaks is due to the role of surface or interface states which
originate from the layered structure.37

There are several open problems. In this paper, to see the
essence of the anisotropy ofd-wave superconductors, we
assumed a two-dimensional model. Since actual high-Tc cu-
prates are regarded as two-dimensional superconductors, our
two-dimensional model will be valid. In general, we can
straightforwardly extend the present theory to three-
dimensional cases. In such cases, the detailed features of
LDOS is changed. However the essence of physics is not
changed, and we can also expect the ZES for several cases.
As regards dx22y2-wave superconductors, the ZES are
formed at the interface forN/I /d or d/I /d junctions with
ab-plane contact. On the other hand, we cannot expect the
ZES for N/I /d and d/I /d junctions for finite width of the
insulator withc-axis orientation. The essential point for the
formation of ZES at the interface of superconductor is that a
transmitted and a reflected electron~hole! like quasiparticle
feel the different signs of the pair potentials~see Fig. 8!. It
should be emphasized that ZES are generally expected for
three-dimensional anisotropic superconductors. So we can
expect ZES in heavy fermion superconductors.38

With regards to tunneling along thec axis, Katzet al.39

and Sunet al.16 observed Josephson current in Y-Ba-Cu-
O/Pb junctions. If we assume the symmetry of the pair po-
tential of Y-Ba-Cu-O isdx22y2 wave, the obtained Josephson
current is proportional to sin~2w!,33 and the magnitude of
Josephson current is drastically reduced which contradicts
with observed value. Sigristet al. proposed that one of the
time-reversal symmetry-breaking states, i.e.,s1 id-wave
state, is induced at the twin boundary in Y-Ba-Cu-O. In such
cases, Josephson coupling is much more enhanced.40 How-
ever, thes1 id-wave state at twin boundaries as proposed by
Sigristet al.would likely lead to overdamped Fiscke modes
in highly twinned Y-Ba-Cu-O/Pbc-axis junctions, contrary
to experiments.

In the present paper, the spatial dependence of the pair
potentials are assumed to be constant. It has been revealed
very recently by Nagato and Nagai,23 that the spatial depen-
dence of the pair potentials near the interface depends on the
angle between the crystalline axis and the normal to the in-
terface. However, the qualitative features of ZES are not
changed seriously. In their theory, a model of finite thickness
superconductor is employed. We are planning to calculate the
pair potentials self-consistently in more general cases, e.g.,
N/I /d or d/I /d junctions, extending our previous numerical
calculations in thes-wave superconductors.9 Furthermore,
the coexistence of another kind of symmetry of pair poten-
tials near the interface is also expected.41 If the time-reversal
symmetry is broken at the interface, the promising states are
s1 idx22y2-wave states ordxy1 idx22y2-wave states.42–44 In
such a case, the LDOS near the interface is changed, since
ZES are not formed at the interface. It is interesting to know
how the tunneling conductance and LDOS are influenced by
the coexistence of two kinds of pair potentials. It is necessary
to solve this problem to clarify several tunneling experiments
more quantitatively.
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