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The local density of states of quasiparti¢leDOS) near the interface afi-wave superconductors is inves-
tigated for various situations based on the Green’s-function method of nonuniform superconductors. In the case
of normal-metal—insulatord-wave-superconductor junction, the LDOS near the interface of the superconduc-
tor strongly depends on the angle between the normal to the interface and the crystalline exsavef
superconductor, on the thickness and on the height of the insulating barrier. In the casevavke-
superconductor—insulatod-wave-superconductor junction, bound states are formed at the interfaces of super-
conductors. The energy levels of bound states which include several limiting cases are explicitly obtained. The
LDOS near the interface of the superconductor is strongly influenced by the bound states and it depends not
only on the angle between the crystalline axes and the normal to the interface but also on the macroscopic
phase difference between two superconductors.

I. INTRODUCTION perconductors, since the pair potential changes its sign on the

Fermi surface, the transmitted electronlike quasiparticle and
Energy spectrum of quasiparticles in nonuniform superthe holelike quasiparticle feel different signs of the pair po-
conductors is one of the basic problems of Super_tent|al in theab-plane junction. In such a case, quasiparticles
conductivity? Nonuniformity induces the interference of the With zero energy injected from the normal metal do not ex-

quasiparticles which can not be expected in the bulk system&EM€Nce the insulating barrier due to the zero-energy states
In general, two kinds of reflection process oceur at the ZES) which are formed near the interface of superconductor

terf | side. For this reason, tunneling conductance has peaks at
superconductor—normal-mete/N) interface. An electron- 71 energy. In light of our theof, qualitative features of

like quasiparticle injected from thei(S) side is reflected as  tnneling experiments in high; superconductors are well
both an electronlike quasiparticle, which we will call normal ynderstood with thel-wave symmetry of pair potentiafs-2°
reflection hereafter, and a holelike quasiparticle. The lattetf the magnitude of the height or thickness of the insulating
process originates from the existence of finite amplitude obarrier becomes infinite, the ZES become the bound states of
the pair potential\(x) and is called the Andreev reflectidn. the quasiparticlé’~3°The origin of this bound states are dis-
In general, the local density of states of the quasiparticle§ussed by Kashiwayet al.*" in terms of quantized levels in
(LDOS) in the nonuniform superconductor is influenced by@ Potential well of pair potentials. _ o _
the interference of these two kinds of quasiparticles. Previ- Although, there have been several investigations treating
ously there have been many theoretical studies on nonun}he surface and interface dfwave superconductors, quasi-
form superconductors! However, except for a few cases particle states near the interface dfvave superconductors
of heavy fermion superconductd:1 most theories have are not fully investigated. The LDOS is obtained explicitly

y = ) only in thed-wave superconductdrs *having semi-infinite
dealt with isotropic s-wave superconductors. Nowadays, o finite thickness. The aim of this paper is to elucidate what

symmetry of the pair potential of high; superconductors  ig eypected in LDOS near the interfacedbfvave supercon-
has attracted attentidr;*’ and several groups have pro- quctors in more general cases.
posedd-wave symmetry for this?~** Different froms-wave In this paper, we will investigate general cases with a
superconductors, the nature of quasiparticles near the integsreen’s-function method in nonuniform-wave supercon-
face of ad-wave superconductor is not fully clarified yet. In ductors based on a microscopic wave functions. Using the
the d-wave superconductors, the quasiparticles experienc@reen’s function, quasiparticle states afvave supercon-
different pair potentials depending on the direction of mo-ductors near the interface df/1/d junctions will be studied
tion, and at the interface interference effects of quasipartiby changing various parameters which characterize the ori-
cles, which are absent in thewave superconductors, are entation of the junction and the height or thickness of the
expected. barrier. We will also discuss the basic propertiesdlefave
Recently, we developed a tunneling theory for a normal-superconductor—insulatod-wave superconductord(l/d)
metal—insulatord-wave-superconductoN/1/d) junction?®  junctions. It is known that bound states which are formed
It was revealed that tunneling conductance spectra stronglyear the interface ob-wave superconductor—insulat@—
depend on tunneling direction relative to crystalline axes anavave-superconductos(l/s) junctions strongly influence the
do not always represent the bulk density of states, in contrasiosephson curreftt. To elucidate the microscopic origin of
to those ofs-wave superconductors. In thg2_2-wave su-  the Josephson current, we must clarify the bound states in
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B0 s nO EuO)=houO)+ | dx, Als v,
eTq\ /ELQ Jq\ /ELQ
el S, HLQ
e o blg - ‘\;LQ Ev(x1)=—h0v(x1)+J dx, A*(sH)u(xp), (1)
elq
) e where s=(X;—X,), r=(x;+x,)/2, and ho=—h2V§1/2m
g wg LS| RS N LS | RS HLO +U(X)— ,u,l with u the chemical potential. The energy of the
e g P quasiparticle E is measured from the Fermi energy
g™\ /EDQ \ %LQ Er(Eg=u). We can simply express E¢l) by the Nambu
=3 . wig | matrix formulation as
& o hlg, .\;LQ
N u(xy)
dxoH (X1, %) W(Xo) = W(X1), W(Xy)= :
v(X1)

FIG. 1. Schemaitic illustration of the four types of reflection and 2
transmission processes at the interface of wave functiiy(x)
(1=1,4). (@ Wy(x), (b) W(x), (c) W5(x), and (d) W4(x). In this  \We assume that the pair potential and Hartree potential are
figure, LS(RS), elq (ELQ), and hig(HLQ) express lefi(right) su-
perconductor, electronlike quasiparticle in lafght) superconduc- .
tor and holelike quasiparticle in leftight) superconductor. A(yexpie), x<O
A(k,r)=140, 0<x<d,
Ar(y)explier), x>d
d/I/d junctions. We will discuss how bound states at the (3
interface depend on the angle between the crystalline axes 0, x<0
and the normal to the interface and on the macroscopic phase Ux)=1{ U 0<x<d
difference between two superconductors. The organization of e
this paper is as follows. In Sec. Il, the model and the method 0, x>d,
to calculate the Green’s function in a nonuniform system is
given. We have extended the previous theory of the Green'yhere A(k,r) is the Fourier transform ofA(sr), with
function by Furusaki and Tsukada in a one-dimensionapyp| y)=k,/|k|+ik,/|k| using a wave vectdk. In the weak-
s-wave superconductrto singlet anisotropic superconduc- coupling limit, k is fixed on the Fermi surfacgk|=kg).
tors. In Sec. lll, the LDOS near the interface of tNel/d The quantitiess, and¢g are the macroscopic phase of the
junction is investigated. We will also compare the LDOS |eft and right superconductor; respectively. The two compo-

Sec. IV, the LDOS ofd/1/d junctions is investigated. It will

be clarified that the LDOS near the interface of thevave

superconductor depends not only on the angle between the d\p(x)| d\p(x)‘
crystalline axes and the normal to the interface but also on ‘P(X)Ix:m:‘I’(X)Ix:oy ax | R |

the macroscopic phase difference between two superconduc- x=0_ x=0,
tors. The relevance between the bound states and the LDOS (4)

is discussed in detail. Effects which are peculiardid/d
junctions will be clarified. In Sec. V, we summarize our re-
sults and the future problems. d‘I’(x)‘ _d\If(x)‘

dx | dx |

\I’(X)|x:d7:‘1’(x)|x:d+y
x=d_ x=d
5
Il. MODEL AND FORMULATION
Since the translational invariance is satisfied, the momentum
For the simplest model calculation, we consider a two-parallel to the interfack,= kg sin y is conserved. For given
dimensional anisotropic singlet superconductor—insulatork,, we can make the Green’s function of quasiparticles ex-
anisotropic singlet superconductor junction with perfectlytending the method of one-dimensiosalvave superconduc-
flat interfaces in the clean limit. In this model, the interface istor by Furusaki and Tsukada.In general, there are four
perpendicular to the axis and is located at=0 andx=d, kinds of effective pair potentials of quasiparticles for fixed
where d is the thickness of insulating region. The Fermi For an energy E>{max[Ag(v.),Ar(y-).AL(7v4),
wave numbekg and the effective mass are assumed to be A (y_)]}, with y,=v and y_=m—1, there are four inde-
equal both in the left and right superconductor. Quasiparticlgpendent eigenfunctions corresponding to four types of
states in inhomogeneous anisotropic singlet superconductob®undary conditions shown in Fig. 1. Four types of wave
can be described by the Bogoliubov—de GennedunctionsW,(r), 1=1,4, which satisfy Eq(1) can be written
equation&>3° as
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W\ (x)=explikey siny)¥(x,y), (I=1,4) (6)

¢a,L(X!7)+al¢LX_,L(X!7)+bl¢B,L(X17)! (X<0)
WX, y)=1 ¥1,(X,7), (0<x<d) (7
91%4,r(X,Y) thidg r(X,y), (x>d),

YL (X, y)Hagis (X, y) + Doty (X, ), (X<0)
“Pz(x,’)’): wZ,I(X!y)v (O<X<d) (8)
ngE,R(X!7)+h2¢a,R(X!7)! (X>d),

OathpL (X, ¥) +hahz (X, y), (X<0),
Wa(x,y)=1 ¥ai(X,y), (0<x<d) 9)
U r(X,Y)FasPhg r(X,y) +b3th, (X, y), (X>d),

Qatha L (X, y) +hatpg (X, y), (x<0)
WX, y)=1 $ai(X,y), (0<x<d) (10
Var(X,Y)F s, r(X,y) +0athg r(X,y), (X>d),

wherej expresses the indicds andR, and wave functions

lﬂa,j(X!Y)r ‘ﬁ&,j(xiy)l lpﬁ,j(xa’)’)! lﬂ;%,j(xiy)! and lﬂl,l(xa')’)
satisfy the following equations:

Ho |Aj<y+>|exm¢,->>
(|Aj(7+)|exp(—i¢j) —H, Wa,i(X,7)
:El//a,j(XlY)! (11)
Ho |A;<7+>|exm¢j>) i
(|Aj(7+)|exp(—i¢,-) —Hp ‘pa,j(xﬁ’)
:E‘r/fE,j(X")’)a (12)
Ho |Aj(y-)|exp(i ;)
(|Aj(7—)|eXF(—i<~z>j) —|]-|o J )’/’ﬁ,j(xﬁ)
:Ewﬁ,j(X,’y), (13
Ho |Aj(y-)lexpic)) _
(|Aj(7—)|exp(—ic~ﬁ,-) —Il—lO : )'/’B,j(xﬂ)
:E¢B,j(X!7)i (14)
and
Ho+U(X) 0
(OO ) —Hy—U(x) U1 (XY)=Eiy (X, y),
(15
with
%2 d? 2
Ho=— 5 42 Ercos'y, (16)
and Ao
N A .
eXFXI(i)J) |AJ(')’+_)| eXF(IgDJ),
o~ Ay(yo) .
exp(l¢j)——|Aj(y_)| expli;). (17)

By solving the above equations, Eq$1)—(15), five kinds of
wave functions are explicitly expressed as

uiexp(i ¢;/2)
Pa,j(X%y)= ( vj(JEX[Z(— [ <;5]/2)

ex;{ i ( kecosy

n mQj'_F
h%kecosy

x} , (18

, /2
Uai(X,y)= ( ulj’éi;;“_l ?Ql[)j/)z)) ex;{ i ( kecosy

mQ; )
h2kecosy (19
U, exp(i /2
b= AT e i kccooy
LT ) 20
+ﬁ2kFCOSy Xl (20)
~. .~'/2
lpl;,j(x,y):(a’:éi’;(q_'?béj/;))ex;{—i(kFcosy
mQj’_ )
_m X1, (21)
ciexp(—AX) +dexp(AX)
Yrax.y)= e|exp(—)\x)+f,exp()\x))’ (1=1.9),
(22
with
1 Q. 1 Q.
uj= E 1+ E vj= E 1— E
~ 1 ij7 ~ 1 Qj,*
Uj_ E 1+? V= E 1—? (23)
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and LS | RS LS [RS kg

~>~._ | HLO big e | T -
Qj,+:’/E2_|AJ(7+)|2, ij:‘/Ez_|AJ‘(’)’f)|2, hlq\* ‘‘‘‘‘‘ . A/HLQ

2mu é ELQ
A=\ 72 0 K2cody. (24) " e

Here, we have as’sumed' the.rglat|bla,,EF>|Qj,i|. To cal- Ls | RS LS RS MO
culate the Green’s function, it is necessary to obtain another - o ~. e

. . - hig ..., hlg ™.
wave function®(x) which satisfes, T P 4 \
elg v ~ ELQ
- - - ~ CI(XZ) ‘‘‘‘‘‘‘‘‘‘‘‘‘ \ il?/ .
dxy WX )H(X1,%X2) =Wi(Xo), W(Xp)= 5(Xy) hiq e HLQ
'(25) FIG. 2. Schematic illustration of the four types of reflection and

transmission processes at the interface of wave functiy(),
(1=1,4. (@ W1(x), (b) Wy(x), (c) W5(x), and (d) W,(x). In this

Eﬁ(x2)=hoﬂ(x2)+f dx; A*(s,r)0(xy), figure, LS(RS), elqg (ELQ), and Ijlq(l—_|LQ). express leftright) su-
perconductor, electronlike quasiparticle in l&fght) superconduc-
tor and holelike quasiparticle in leftight) superconductor.

Eb(xp)=— hoﬁ(x2)+j dxy A(sNI0x). (26) The‘iﬁ(x,y) are obtained from th#,(x, y) in Egs.(7)—(10)

- by replacing all of thay (x,y) for é6=a,a,B,8,¢; (X,v),
W (x) also satisfies the boundary conditions given by E8s. aly,bj p B ,gj%and h beffﬁé azll?':llogoué/&j(x{gyl)g, gi:gx 8
and (4). For an energy E>{max[Ar(y.),Ar(y-), &, etc. Theys,;(x,) andy; (x,y) are obtained from Egs.
A (y+),AL(y-)]}, there are four independent eigenfunc- (11)-(15) by replacing theys (X, ), #j (X, 7) by 5 ;(X,7)
tions corresponding to four types of boundary conditionsand; (x,), and by interchanging.. with v+ and ¢;(¢;)
shown in Fig. 2. Four types of wave functionB(x) (I with —¢;(— ¢;). The explicit forms for they; ;(X,y) carlbe
=1,4), which satisfy Eq(25) can be written as obtained from Eqs(18)—(21) by interchangingu; with u;,
vj withv;, andQ); , with Q; . ¢ ,(X,y) may be written
~ ~ analogously to Eq.22), by replacing the coefficients, etc.,
W (x)=exp(—ikgy siny)¥i(x,y), (I=1,4). (27 by ¢,, etc. We can make the Green’s function as follows:

W5, WX )+ @ P5(%, 1) T5(X, ) + azW 4%, 1) TLX ) + ag W 4(x, ) Wh(x,y)  x<x'

G"(x,x’,ky,E)= AL, oo St Tty /
( BV W (WX 9)+ BoW (%, )T )+ BaW 1 (3, )T 9+ BaW (%, )T (X ) X>? 3
28
|
Using the above functions, we can construct the Green’s g J
function as follows: x G"(x,x",ky,E) ~x G"(x,x’,ky,E)
X x=x'+0 X x=x'-0
E_ﬁ " Kk (x" x' k. E ” 2m [ 1 0
f[ (XX, Ky) JGT(X", X"k, E)dX _emil 0y (31)
A% \0 1
s} 9 oo
=0x=x")g 4] (29 G7(x,x+ 0K, ,E)=G7(x,x— 0K, E). (32)
f G"(x,x" .k, ,E)[E— |'|6(X",X’,ky)]dx" The LDOS of the quasiparticle can be obtained as
(1 0 -1
=3(x=x"){ o 4] (30 p(E,X)ZKE 7Im[GI]_(X1X1kny)]1 (33
Y

where H(x,x",k,) is the Fourier transform with respect to

y—y" of H(x,x"). The quantitiesy; and 8; (i=1,4) in Eq. ~ where G {,(x,x,k,,E) are the 11 component of ax2 re-
(28) are determined so th&"(x,x’,k, ,E) satisfy following  tarded Green’s function. In the following, we calculate the
equations: LDOS for several cases.



Ill. LDOS OF NORMAL-METAL —INSULATOR —d-WAVE-
SUPERCONDUCTOR JUNCTIONS

In this section, we calculate the LDOS of normal-metal—
insulator-d-wave-superconductoiN/1/d) junctions for sev-
eral cases, where Hartree potential is expressed as a square
as discussed in Sec. Il. The LDOS of the quasiparticle which
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is normalized by those in the normal state is explicitly given

as

1 2
P(E,X)=Re|%f_wlzdv[m(E.X,va(E,X.)/)] ,
(34
with

1 . (x—d)
Pr(E*X'V):QTIU[E+|AR(7:)|F:9XF{2I i ”

h2kecosy
=m0 39
In the aboveF. is given as
_ (1-onTrzexli(dr—dr)]-Tr: -
T 1-(1-oTr Tr=exdi(dr— ¢r)]’
using
_|AR(7i)|
IrRe==ro—
’ E+QR’;
472
INT(1-2%)%sini(xd) + 4Z2cosR(Nd) *
A=(1—k%cogy)Y\,, (37
with

~ K COSy \ [2mU, Ke 38)
i — = 77 K= —.
4 \/1—KZCO§)/ 0 h? Ao

In the above gy expresses the tunneling conductance of th
N/I/d junction in the normal states which was defined in our

previous paperé>?’ The pair potentials\z(y,) and Ag(v_)
in Egs.(17) and(24) are expressed as

Ag(y4)=Acco82(y—B)],

Ar(y-)=Aqc082(y+p)], (39

(@)
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FIG. 3. Normalized local density of statgéE,x) with =0 is
plotted for(a) Agd=0, (b) A\gd=3, xk=0.1, and(c) A\gd=3, k=0.9.
A: x=d, B: x=d+0.54,, C: x=d+2.5&,.

1 independent oE, which is the value of the normal state.
However asx increases,p(E,x) approaches that of bulk
DOS of thed-wave superconductor. The characteristic length
of the spatial dependence p{E,x) is &=7hvg/Ay. In the
case of(b) and(c), p(E,x) qualitatively coincides with the
bulk DOS of thed-wave superconductor independenkofn

(b) and(c), since the magnitude of the height and the thick-
ness of the barrier is sufficiently largey~0), quasiparticles

in the superconductor are not influenced by the adjacent nor-
mal metal. In Fig. 4p(E,x) with 8=/4 is plotted for vari-
ous\g and . In the case ofa), p(E,x) atx=d becomes 1
independent oE, and it approaches that of the bulk DOS of

She d-wave superconductor with the increasexoés in the

case of Fig. 8&). However, if\qd becomes finite, as shown
in Figs. 4b) and 4c), qualitative features gé(E,x) are sig-
nificantly changed. In both curveth) and (c), p(E,x) at
E=0 is drastically enhanced. As comparedA®) of Fig. 2
in, 22 when the insulating barrier is sufficiently higk, de-
pendence op(E,d) is similar to that ofo(E). It has been
clarified recently, foroy—0, o(E) can be expressed by
p(E,d).%2 In the limit of \jd—o (oy—0), the denominator
of F.. vanishes folE=0 and bound states are formed at this

where 3 stands for the angle between the crystalline axis ofnergy near the interfacé-°
the right superconductor and the normal to the interface. In Let us see how the width of this peak changes as the

Egs. (34) and (35), the atomic scale oscillations @fE,x)
are averaged out. Within this approximatigifE,x) in the

normal metal becomes 1 for amy The drastic effect occurs

when the signs ofAg(y,) andAg(y_) are different from each
other as we will see below.

In Fig. 3, p(E,x) with 8=0 is plotted for various\; and
. In the case ofa), sinced is zero,p(E,x) does not depend
on g and . As shown by curve Ap(E,x) atx=d becomes

function of\od andx. In Fig. 5,p(E,d) is plotted for various

N\od with a fixed value ofx. The width of the peak becomes
narrower as\qd increases. On the other hand, the width of
the peak becomes narrower amgecreases as seen in the plot
of p(E,d) for various « with a fixed value ofAyd (see Fig.

6). Taking into account the fact that the quantityglecreases
with the increase of the barrier height, it can be summarized
that the width of the peak decreases with the increase of the
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dr————T i

- (a) 5 I

- - E,_:‘/ H
L Q

—~~

8 21 II\\ T %]
Eq'\ I I\ : %
~—— A // =N e ®
< B...»" 3
L B2 >
0 .+~ .C. M| g
L (b) 8
®
- — Q
Q
-

Local density of states

and C:x=0.9.

FIG. 4. Normalized local density of state§E,x) with f=u/4

is plotted for(a) \gd=0, (b) A\gd=3, x=0.1,
A: x=d, B: x=d+0.5&, C: x=d+2.5¢,.

of p(0,d) is plotted. As a referenceg(E=0.01A,, d) and

Eq. (40) by
E/A

and(c) A\pd=3, k=0.9.

_ 4code .
INT 4 co20+22" T ke

Normalized Energy

2
B/,

A

FIG. 6. Normalized local density of states at the interface
p(E,d) with B=m/4 with \qd=1 is plotted for A:x=0.1, B: k=0.5,

For B=m4, Ag(y+)Ar(y-)<0 and exp[(¢r— ¢r)]=—1
are satisfied for any. In such a case, the integrand of Eq.
(40) becomes (2 o)/ oy and diverges forry—0 (Agd—,
x—0). If we use &function barrier model, the integral with
the variabley can be performed rigorously. Replacing in

(41)

we can reproduce théfunction barrier model as discussed
in our previous pape¥?’We can rigorously obtaip(0,d) as
thickness and the height of the barrier. For the next step, we
will discuss the magnitude ¢f(0,x). In Fig. 7, 8 dependence

p(E=0.02A,,d) are also plotted. As seen from Fig.o(E,d)

is drastically suppressed &sdeviates from zero ana(E,d)
is strongly enhanced negr=#/4. The quantityp(0,d) can be

written as

—tan !

q 1 J‘ﬂ'/Z
0d)=Reg —
p(0d) pull

1—<1—oN)exm<<?>R—¢R>]Jd }
1+(1-oyexdi(dr— ¢r)] . with

P(E, d)

Local density of states

p(0d)=[1-F(2)]+

2F(2Z) .
p [tan
T Z?
F(Z)taf(z—ﬁ + ?

o]

- a
(Z)tar(z +ﬁ)

w305

(42

Loguolp(E, d)]

Normalized Energy

FIG. 5. Normalized local density of states at the interface

p(E,d) with B=n/4 and «=0.1 is plotte
)\0d:1, and C)\Od=2

Localized density of states

2

E/A,

d for A:\gd=0.5, B:

02 0.4

Normalized Angle

E=0, B: E=0.01Ay, and C:E=0.02A,.

B/=

FIG. 7. Normalized local density of states at the interface
p(E,d) with \gd=1 and«=0.1 is plotted as a function @8 for A:
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where
dxz_yz-wave superconductor dxz_yz-wave superconductor
bt
) g a-axis 6,=arctari\|A (6. )]>—EYE),
a-axis =
o k=

% 6,=arctari\/|A (0_)|°—E?/E),

6;=arctari\/|Ar(6,)|°—E%E),
ALexp(J'(al) cosf2(6 + 0] ARCXP(i(pR) cos[2(8- P)]

lectron-like
s Lo 64=arctant V|Ag(6-)[~ EV/E). (47
quasiparticle The quantitiesy; (i=1,4) are expressed as
q::?i;f:iile T, hole-like
A ......--...,,mgisiparﬁcle . AL(6) _ |A L(6-) | _ | Ar(6,) |
s ' MTAel T A T ARG
Ag(6-)
FIG. 8. Schematic illustration of the reflection and transmission Ya= |AR( 0_)| : (48)

processes at the interface. In this figure, the quantftiasd a(B) ) ] ) ) .
express the injection angle of the electron and the angle between tfiequation (46) is the generalized version of the quantized
normal vector of the interface and the axis of the left(righty ~ condition of bound states of quasiparticles ®&/l/s

dy2_y2-wave superconductor, respectivelyg=A =A,. junctions®! In the case ofo =0, bound states are deter-

mined independently in the left and the right superconduc-

Z tors, and this condition corresponds to that of the semi-
F(2)= 2 (43 infinite superconductor®.?8-31n the other limiting case,
on=1, only Andreev reflection exists artl and _ can be

The divergence op(0,d) at B=7/4 is obtained foiZ+#0. treated separately. In the following, we will pay attention to
the # dependence of the energy level of bound stdg) (

IV. LDOS OF d-WAVE SUPERCONDUCTOR — whose energy is positive. We can expect the same magnitude

INSULATOR —d-WAVE-SUPERCONDUCTOR JUNCTIONS  Of E;, in the negative energy region since time-reversal sym-
_ _ metry is not broken. In the case of tisél/s junction, the
In this section, the LDOS of theé-wave superconductor— zhove bound-states condition is reducetPto?

insulator-d-wave-superconductord(l/d) junction is dis-
cussed for various crystal angle rotationsnd 8. The mac-

roscopic phase differencg=¢pr— ¢, is measured along the =4y \/005'2
a axis as shown in Fig. 8. If the electronlike quasiparticle is

injected from the left superconductor, the incidental electronin the case oh,d=0, i.e., on=1, E}, depends orp signifi-

like quasiparticle and the reflected electronlike quasiparticl€antly, while for\od—, i.e., oy—0, Ep, converges toA,
feel different effective pair potentials fer#0. As in the left ~ independent ofp. The existence of the normal reflection re-
superconductor, the transmitted electronlike quasiparticléucesoy and strongly influences the energy levEisn the
and the holelike quasiparticle feel the different pair potentialsase ofd/I/d junctions, we can express the energy levels of
for B#0. In general, there are four kinds of effective pair bound states simply for several cases. ketrB=0, Ej, is
potentials of quasiparticles for fixel The bound states are eXxpressed as
formed near the interface when the energy of the quasiparti-

% +(1—oy)SifP(el2). (49

cle E satisfiesE<min[A, (6,),A,(6_),Ar(6,),AR(6)], Ep=A0|cog26)| Veos(¢/2) +(1- o) sin(¢/2).
where the effective pair potentials in the left superconductor (50)
A (6,) and A (6_) are expressed as In this case, sinca  (6,)=A,(6_) andAg(6,.)=AR(6_)
are satisfied, the effective pair potentials for the quasiparticle
A(64)=A40c042(0—a)], AL(0-)=Acco§2(6+a)],  do notchange at the normal reflection process at the interface

(44) in each superconductor. This is the reason why [&@) is
and those of in the right superconducti(6,) andAg(6_)  similar to Eq.(49) except for the factor c¢86). The ¢ de-

are expressed as pendence of, is plotted in Figs. 88) and 9b). The zero-
energy state§ZES) for o= in (a) disappear ir(b) as in the
Ar(6.)=Aqcog§2(60—B)], case ofs-wave superconductor. In the casewtB=/4, 6
dependence dE, is expressed as
AR(6_)=Aycog§2(6+p8)]. (45 _
Ep=A,| sin(26)|coq ¢/2) Vo, (51)

The energy levels of the bound states are written as ) o
and is plotted in Figs. 1@) and 1@b). When normal reflec-

(I—on){yiy—exdi( 01+ 62) 1H ysya—exdi(6z+ 64)]} tion is absentoy=1) as in(a), E, is obtained by substituting
sin(26)| for |cog26)| in Eq. (50). While in the case ofb)
+on{yiya—exfli(01+ 03+ o) 1 vova—exdi( 6, (on#1), the effective pair potentials for quasiparticles
change their sign at the normal reflection at the interface. In
+60,—¢)]}=0, (46)  this case, foroy—0, E,, approaches zero for evey. The
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FIG. 9. The bound state ener@y, is plotted as a function of
for ad/1/d junction for a=0 andB=0 with A: ¢=0, B: ¢=7/2 and
C: o=m. (8 \gd=0, (b) \gd=1, xk=0.1.

FIG. 11. Normalized local density of statp&E,0) is calculated
for =0 and 8=0, with A: ¢=0, B: ¢=7/2 and C: p=m. (a)
)\0d:O, (b) }\0d:1, xk=0.1.

origin of the ZES is similar to that of the ZES at the interface - - -~
of theN/1/d junction or surface of thd-wave superconduc- . al'g(1— o)+ onl'cl'p
tor as discussed in the previous sectibrt® In general,d TATe(1— o)+ onlels
dependence dE, becomes very complex.

Applying the Green’s-function method discussed in Sec.
I, the LDOS can be expressed as

XE)=R 1 fw/z E +F|A,_,+| 2x
X,E)=Re -— exp —
P 27 J_ap QL,+ QL,+ £+

with

Fa= 1_FR,+FR,—73741 FB:FL,+_FL,—7172’

Fe=1-T TI'r_y2vsexplie),

o B plAd p(zx> d} (x<0) (54
_— ——exp — . (X . .
Q- Q- e |7 Ip=T + —Tr+y173€Xp—ig),
(52)
Fe=1-T It —v172,
In the abovel” andI” are expressed as
Fe=1-T T+ y17:8Xp(—i9),
I'Al'g(1—oy) + oIl
r=__A a( n)Tonlc D’ (53 and
Pal'e(1=on) +onl'cl'e
Pa=Ta, Is=TL =T s7v172, Tc=T%,
(55)

fD:FL,—_FR,—YzﬂeXm(P), fE:FEn fF:FC-

5 In the abovel’| . andI'r .. are given as

5

g [AL(ys)] | AR(y2)]

N AV E: _I2R Y+

T MeTgva. "™TEra..  ©®
o

p=4

The denominators df andI" vanish wherE coincides with

E,, for given y. Equation(52) is the generalized expressions
of the LDOS of thed/l/d junction. Foroy=0, we can re-
produce the previous results of the LDOS in the semi-infinite

Norma?iégd Angle superconductd®>°In the following, to see the feature of the
bound states, the quasiparticle eneifyis substituted for

FIG. 10. The bound-state enerfy is plotted as a functionof ~ E+iJ, wheredis chosen as 0.&,. However the essence of
for ad/l/d junction fora=m/4 andB=m/4 with A: =0, B: o=m/2  the physics is not changed by the introductionsofn Figs.
and C:e=. (a) A\gd=0, (b) A\gd=1, k=0.1. 11 and 12, the LDOS at=0 is plotted for variousy, 8, and
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FIG. 12. Normalized local density of statpE,0) is calculated
for a=n/4 and B=u/4 with A: ¢=0, B: ¢=7/2 and C:¢p=1. (a)
)\0d:O, (b) )\0d:1, x=0.1.

¢. In the case ofa), \yd is chosen as Quy=1) and only the

Andreev reflection occurs. On the other hand, in the case of
(b), both the Andreev and the normal reflections occur, since

1
E/AO
Normalized energy

FIG. 13. Normalized local density of statp&E,0) is calculated
for a=7/4 and =0, with A: ¢=0, B: ¢=7/2 and C.p=. (a)
)\0d:0, (b) )\Odzl, xk=0.1.

pol@,a+ml2,B)=po(@+m e, B),pol¢,a B+ m2)
=p0((p+7'r,a,,8). (60)

Nd=1 andx=0.1 (o #1) are satisfied. In Fig. 11, several In Fig. 14a), py(¢,.p) is plotted for thes/I/s junction as a
parameters are chosen as the same as those of Fig. 9. fference. In this casey(¢,a,B) is independent of and g,
every curve of the LDOS the position of peaks correspond@nd is a monotonically increasing function wig0<e<).

to the energy wher&, has maxima as a function of This

If Agd becomes finite, the enhancementat is drastically

fact also holds in Fig. 12, where the same parameters af&duced andp(¢,a,8) vanishes. In the case of thw/l/d

chosen as those in Fig. 10. Under the existencgef0 for
any vy, p(E,0) has maximum aE=0. In the following, let us

junction, po(¢,a,B) has two maxima at=0 and o= for
0<¢<r as shown in Figs. 1#) and 14c). This property is

very different from that of the/l/s junction. Whena and 8
have the same sigpy(0,a,8)<py(m,a,B) is satisfied. On the
other hand, when they have different signg(0,«,8)
> po(m,a,B) is expected.

discuss the zero-energy level of bound states@fA). For
E=0, Eq.(46) is transformed into

(L+y172)(L+ y3y4)(1—on) +onl yivstexpie)]
V. DISCUSSIONS AND CONCLUSIONS

X[y2yvatexp—ig)]=0. (57)

In this paper, the basic properties of the local density of

) ) ) states(LDOS) of d-wave superconductors near the interface
In d-wave superconductors, singe=*1 (i=1,4) are satis-

fied in general, bound states are formed only wigerD or
o=m. Foroy=1, Eq.(57) is more simplified as

4IIIII||II
(@)

pole, e, )

[y1vstexpio)][yoyatexp—ig)]=0. (59

In the cases of Figs. 11 and 1,y;= y,y,=1 is satisfied for
any vy, and the ZES are only expected fpr= . However as
shown in Fig. 183), where a=#/4 and 8=0 are satisfied,
v1ys and vy, have different signs and the ZES are also
expected foreg=0. While in the limit of A\(d— or «—0,
(on—0), Eq. (46) can be transformed into

(y1v2+1)(y3y4+1)=0.

Local density of states

(59

As seen from this equation, the condition whether the ZES
are formed or not does not depend grat all. We can also
see this tendency fary~0 shown in Figs. 1(b), 12(b), and FIG. 14. py(@,a,p) is plotted as the function ap for variousa
13(b), where thep dependence 95(0,0) is weak. and g. As a referenceg(e,a,8) in as/I/s junction is plotted in(a).

In the following, we will see how the ZES are influenced (a) A: \d=0, B: \(d=1, k=0.5. In (b) and (c), py(¢,a,B) of a
by ¢ for various o and B. Hereafter, we will define d/i/d junction is plotted for various cases wilgd=1, =0.5. (b)
pol@,a,B)=p(0,00 with w/4>ae,B>—nl4. The quantity A: «=0.057, B=0.1m, B: a=0.057, B=0.27. (c) A: a=0.05m,
pole,a,B)=p(0,0) satisfies B=-0.1m, B: @=0.05r, B=—0.27.

Normalized phase
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is investigated based on the Green’s-function method. Th&aking into account the roughness at the interface, the mag-
LDOS in N/I/d junctions is investigated for various heights nitude of the zero-energy peak can be as large as in the
and widths of the insulating barrier with changiBgwhich  experiments. Another possible explanation of zero-energy
expresses the angle between the normal to the interface apeaks is due to the role of surface or interface states which
the crystal axis of thed,2_,>-wave superconductor. The originate from the layered structute.

LDOS has a peak &=0 when the angle between the nor-  There are several open problems. In this paper, to see the
mal to the interface and the crystal axis of thg_,>-wave  essence of the anisotropy afwave superconductors, we
superconductor becomes finite, where the transmitted ele@ssumed a two-dimensional model. Since actual Rigbu-
tronlike quasiparticle and holelike quasiparticles from theprates are regarded as two-dimensional superconductors, our
normal metal feel different signs of the pair potentials. Thetwo-dimensional model will be valid. In general, we can
peak height becomes larger when the magnitude of thstraightforwardly extend the present theory to three-
height or the width of the barrier increases, and the width otlimensional cases. In such cases, the detailed features of
this peak becomes narrower at the same time. The enhandebOS is changed. However the essence of physics is not
ment of the LDOS aE=0 is reflected on the tunneling con- changed, and we can also expect the ZES for several cases.
ductances which have been discussed in our preViOUﬁS regards dxziyz_wa\/e SuperconductorS, the ZES are
papers’*?’Furthermore, for an infinite thickness or height of formed at the interface foN/1/d or d/1/d junctions with

the barrier, the LDOS coincides with the previous results ofyy pjane contact. On the other hand, we cannot expect the
those of semi-infinited-wave superconductors by Matsu- zgg for N/1/d and d/I/d junctions for finite width of the

ih 28
moto and Shiba: insulator withc-axis orientation. The essential point for the

The LDOS at the interface of thd/l/d junction is also ; - -
. i , formation of ZES at the interface of superconductor is that a
investigated. It is revealed that the LDOS strongly deF)endﬁansmitted and a reflected electtbale) like quasiparticle

on the anglesa(/3) which expresses the angle between the, = " wee signs of the pair potentidtsee Fig. 8. It

normal to the interface and the crystalline axis of @iht) should be emphasized that ZES are generally expected for

superconductors ang, which expresses the macroscopic di ional anisotropi duct S
phase difference between two superconductors. We have Omree- Imensional aniSotropic SUPErconauctors. 5o we can

tained generalized expressions of the energy levels of bourfeP€ct ZES in heavy fermion supercondqcl?(?rs.
states and the LDOS which include several limiting cases. With regarollg to tunneling along theaxis, Katzet a
The po(¢,a,8), which expresses the, a, and3 dependences and S_unet_ al=® observed Josephson current in Y-Ba-Cu-
of LDOS at zero energy, shows peculiar behaviors. The im©/Pb junctions. If we assume the symmetry of the pair po-
portant point is thapy(¢,a,B) is not always a monotonically tential of Y-Ba-Cu-O isd,2_,2 wave, the obtained Josephson
increasing function of for fixed @ and 8. This fact is very ~ current is proportional to si@¢),*® and the magnitude of
different from that of conventionab/l/s junctions. It is Josephson current is drastically reduced which contradicts
known from the previous investigations of the Josephson efwith observed value. Sigrigt al. proposed that one of the
fect ins/l/s junctions, that the ZES influence crucially tipe  time-reversal symmetry-breaking states, i.e4 id-wave
dependence of the Josephson curféhSince thep depen-  state, is induced at the twin boundary in Y-Ba-Cu-O. In such
dence of ZES ird/I/d junctions is much more complex as cases, Josephson coupling is much more enhafidedw-
compared with that of the/l/s junctions, we can expect an ever, thes+id-wave state at twin boundaries as proposed by
unconventionalp dependence of the Josephson effect. In theSigristet al. would likely lead to overdamped Fiscke modes
Josephson junction including drwave superconductor, the in highly twinned Y-Ba-Cu-O/Plz-axis junctions, contrary
Josephson current strongly depends on the direction of th® experiments.
junction. We have clarified is/l/d junctions, even when the In the present paper, the spatial dependence of the pair
ZES do not exist, the dependence of Josephson current ispotentials are assumed to be constant. It has been revealed
different from that of the conventional Josephson effééf.  very recently by Nagato and Nagddithat the spatial depen-
Under the existence of ZES, there may be phenomena whiotlence of the pair potentials near the interface depends on the
cannot be expected in the conventional Josephson effect. Fangle between the crystalline axis and the normal to the in-
example, there is a possibility that Josephson current is notterface. However, the qualitative features of ZES are not
monotonically increasing function with the decrease ofchanged seriously. In their theory, a model of finite thickness
temperaturé® The detailed results will be published else- superconductor is employed. We are planning to calculate the
where. pair potentials self-consistently in more general cases, e.g.,
There are several experiments which report ZES. Edwarddl/1/d or d/I/d junctions, extending our previous numerical
et al,*® showed that tunneling into freshly cleavedaxis calculations in thes-wave superconductoPsFurthermore,
surfaces of Y-Ba-Cu-O via scanning tunnel microscopythe coexistence of another kind of symmetry of pair poten-
(STM) gave different results for the density of states, de-tials near the interface is also expecfédf the time-reversal
pending on whether the oxygen content in the chain wasymmetry is broken at the interface, the promising states are
locally stoichiometric or not. At the sites of oxygen vacan-s+id,z_,2-wave states ot,,+id,2_,2-wave state§?~*In
cies, the density of states was apparently normal, with such a case, the LDOS near the interface is changed, since
broad zero-energy peak. Hence one might imagine that turZES are not formed at the interface. It is interesting to know
neling into theab plane would give different results, depend- how the tunneling conductance and LDOS are influenced by
ing on the local oxygen stoichiometry at the STM Sftdhe  the coexistence of two kinds of pair potentials. It is necessary
magnitude of zero-energy peak is not large as that of in outo solve this problem to clarify several tunneling experiments
theories. However, by choosing parameters of barrier anchore quantitatively.

|39
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