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We derive and discuss the equations of motion for the condensate and its fluctuations for a dilute, weakly
interacting Bose gas in an external potential within the self-consistent Hartree-Fock-Bogoliubov~HFB! ap-
proximation. Account is taken of the depletion of the condensate and the anomalous Bose correlations, which
are important at finite temperatures. We give a critical analysis of the self-consistent HFB approximation in
terms of the Hohenberg-Martin classification of approximations~conserving vs gapless! and point out that the
Popov approximation to the full HFB gives a gapless single-particle spectrum at all temperatures. The Beliaev
second-order approximation is discussed as the spectrum generated by functional differentiation of the HFB
single-particle Green’s function. We emphasize that the problem of determining the excitation spectrum of a
Bose-condensed gas~homogeneous or inhomogeneous! is difficult because of the need to satisfy several
different constraints.

I. INTRODUCTION

The recent observation1 of Bose condensation in atomic
gases trapped in an external potential well has focused atten-
tion on the excitation spectrum of an inhomogeneous weakly
interacting Bose-condensed gas at finite temperatures. Until
very recently, this excitation spectrum was only addressed
indirectly in the course of calculating2,3 the local density
n(r ) and local condensate densitync(r ).

The excitation spectrum of a Bose system is very depen-
dent on the subtle dynamical correlations induced by the
Bose condensate.4 In particular, one must calculate the
single-particle and density-fluctuation spectrum in a consis-
tent manner to ensure that they are identical, as they must be
in a Bose-condensed system. In general, self-energy energy
approximations which lead to a single-particle spectrum
without an energy gap in the long-wavelength limit are not
consistent with a density-fluctuation spectrum which satisfies
conservation laws~or the corresponding sum rules!.

A major purpose of this paper is to point out that a useful
way of understanding various approximations for the excita-
tions in a spatially nonuniform Bose gas is provided by the
kind of analysis developed in the early 1960’s for a spatially
uniform Bose gas and codified in the well-known paper by
Hohenberg and Martin.4 It is based on distinguishing ‘‘con-
serving’’ vs ‘‘gapless’’ approximations and the key role
played by the Hugenholtz-Pines theorem.

We use this classification to examine the equations of mo-
tion for a nonuniform condensate and its excited states in the
finite-temperature Hartree-Fock-Bogoliubov~HFB! approxi-
mation, as well as simpler approximations discussed in the
literature. An approximate version of the HFB due to
Popov5,6 gives a simple gapless approximation for the single-
particle spectrum below the transition~we do not discuss the
critical region very nearTBE) but also reduces to theT50
Bogoliubov approximation discussed by Fetter7 for a nonuni-
form gas. We also sketch the procedure4,8 for using the HFB
approximation for the single-particle self-energies to gener-
ate by functional differentiation a density-fluctuation spec-
trum which is gapless in the long-wavelength limit. This can

be shown to be identical to Beliaev’s second-order approxi-
mation for the single-particle spectrum9 at all temperatures.

The emphasis in this paper is on the formal structure of
various kinds of approximations and how to assess their va-
lidity, using the HFB approximation as a specific example.
Our results in~8! and ~23! should provide a platform for
future numerical calculations of the HFB excitation spectrum
of an inhomogeneous Bose gas atTÞ0, of the kind recently
discussed by Edwardset al.10 and Fetter11 using the Bogo-
liubov approximation atT50.7 However, as we emphasize
in the final section, the question of what are the ‘‘correct’’
excitations in a dilute weakly interacting Bose gas at finite
temperatures is not a simple one. It requires the full appara-
tus of many-body theory.

II. HARTREE-FOCK-BOGOLIUBOV APPROXIMATION

Our starting point is the exact Heisenberg equation of
motion12,13 for the Bose field operatorĉ(r )

i
]ĉ~r ,t !

]t
5S 2

¹2

2m
1Uex~r !2m D ĉ~r ,t !

1gĉ†~r ,t !ĉ~r ,t !ĉ~r ,t !, ~1!

where we have assumed a short-range interaction
v(r2r 8)5gd(r2r 8) between the atoms.~In thes-wave ap-
proximation, which is adequate for the very dilute gases of
interest, one hasg54pa/m.! We assume the atoms are
trapped in a static external potentialUex(r ). Separating out
the condensate part in the usual fashion,9,12 we have

ĉ~r ,t !5F~r !1c̃~r ,t !, ~2!

whereF(r )[^ĉ(r ,t)&5^ĉ(r )& plays the role of a spatially
varying macroscopic Bose field. The thermal average in~2!
and elsewhere is the usual anomalous average appropriate to
a Bose broken symmetry.4 Using ~2!, the interaction term in
~1! can be written out in the form
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ĉ†ĉĉ5uFu2F12uFu2c̃1F2c̃†1F* c̃c̃12Fc̃†c̃

1c̃†c̃c̃. ~3!

We treat the last term in~3! in the self-consistent mean-field
approximation, namely

c̃†~r ,t !c̃~r ,t !c̃~r ,t !.2^c̃†~r !c̃~r !&c̃~r ,t !

1^c̃~r !c̃~r !&c̃†~r ,t !, ~4!

and then~3! reduces to

ĉ†~r ,t !ĉ~r ,t !ĉ~r ,t !5uF~r !u2F~r !

12@ uF~r !u21^c̃†~r !c̃~r !&#c̃~r ,t !

1@F2~r !1^c̃~r !c̃~r &#c̃†~r ,t !

12F~r !c̃†~r ,t !c̃~r ,t !

1F* ~r !c̃~r ,t !c̃~r ,t !. ~5!

For the zero-range interaction we are considering, the Har-
tree and Fock~exchange! terms are identical. This is the
origin of the factor of 2 in~4!, ~5! and subsequent equations.

The time independent, spatially inhomogeneous Bose or-
der parameterF(r ) is given directly by taking an average
over ~1!,

S 2
¹2

2m
1Uex~r !2m DF~r !1g^ĉ†~r !ĉ~r !ĉ~r !&50. ~6!

The time dependence cancels out in the last term using the
cyclic invariance of the trace. Taking the anomalous average
of ~5!, the linear terms in c̃(r ,t) vanish since
^c̃(r ,t)&5^c̃(r )&50 and we are left with

^ĉ†~r !ĉ~r !ĉ~r !&5uF~r !u2F~r !12F~r !^c̃†~r !c̃~r !&

1F* ~r !^c̃~r !c̃~r !&. ~7!

Using this in~6!, we find

S 2
¹2

2m
1Uex~r !2m DF~r !1g@nc~r !12ñ~r !#F~r !

1gm̃~r !F* ~r !50, ~8!

where we have introduced the local densities:

nc~r ![uF~r !u2,

ñ~r ![^c̃†~r !c̃~r !&, ~9!

m̃~r ![^c̃~r !c̃~r !&.

We note that~8! only reduces to a closed~nonlinear! equa-
tion forF(r ) when bothñ(r ) andm̃(r ) are neglected~i.e., in
the Bogoliubov approximation.7! In the case of a spatially
uniform Bose gas@Uex(r )→0#, all the functions in~9! be-
come constant, independent of position.

The excitations of the condensate are described by
c̃(r ,t) in ~2! and are given by the exact equation of motion

i
]c̃~r ,t !

]t
5F2

¹2

2m
1Uex~r !2mG c̃~r ,t !

1g@ĉ†~r ,t !ĉ~r ,t !ĉ~r ,t !2^ĉ†~r !ĉ~r !ĉ~r !&#.

~10!

This follows from subtracting~6! from ~1!. Consistent with
our mean-field derivation of~8!, the quadratic terms in the
last line of~5! are treated in a mean-field approximation, i.e.,
we use

c̃†~r ,t !c̃~r ,t !.^c̃†~r !c̃~r !&,
~11!

c̃~r ,t !c̃~r ,t !.^c̃~r !c̃~r !&.

With ~11!, the last term in~10! is given by

ĉ†~r ,t !ĉ~r ,t !ĉ~r ,t !2^ĉ†~r !ĉ~r !ĉ~r !&

.2^ĉ†~r !ĉ~r !&c̃~r ,t !1^ĉ~r !ĉ~r !&c̃†~r ,t !. ~12!

Using ~12!, ~10! reduces to

i
]c̃~r ,t !

]t
5S 2

¹2

2m
1Uex~r !2m D c̃~r ,t !12gn~r !c̃~r ,t !

1gm~r !c̃†~r ,t !, ~13!

where the self-consistent densities are defined by@see~9!#

n~r ![^ĉ†~r !ĉ~r !&5uF~r !u21^c̃†~r !c̃~r !&[nc~r !1ñ~r !,
~14!

m~r ![^ĉ~r !ĉ~r !&5F2~r !1^c̃~r !c̃~r !&[F2~r !1m̃~r !.
~15!

One can easily derive the analogous equation of motion for
c̃†(r ,t).

The coupled equations of motions given by~8! and ~13!
correspond to the Hartree-Fock-Bogoliubov~HFB! approxi-
mation. One can derive the same or similar results3 by a
variety of ways but the above approach has the advantage
when one is interested in the excitations since it is easy to
relate these equations of motion to a more general Green’s
functions4,8,9 formulation discussed in Sec. III.

The preceding derivation of~8! and ~13! is equivalent to
the grand canonical Hamiltonian

K̂[Ĥ2mN̂5E dr ĉ†~r !F2
¹2

2m
1Uex~r !2m G ĉ~r !

1
g

2E dr ĉ†~r !ĉ†~r !ĉ~r !ĉ~r ! ~16!

being treated using a self-consistent quadratic approxima-
tion. Expanding the field operators in this expression using
~2!, one finds after a little algebra14
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K̂HFB5E drF* ~r !F T̂~r !1
1

2
gnc~r !GF~r !

1E dr c̃†~r !L̂c̃~r !1
g

2E drm~r !c̃†~r !c̃†~r !

1
g

2E drm* ~r !c̃~r !c̃~r !, ~17!

whereL̂[T̂(r )12gn(r ), with

T̂~r ![2
¹2

2m
1Uex~r !2m. ~18!

The coefficients of the linear terms inc̃,c̃† in ~17! can be
shown to vanish by using the fact thatF(r ) is given by the
solution of~8!. In going from~16! to ~17!, theonly approxi-
mation involves how we treat the terms cubic and quartic in
c̃ and c̃†, namely~all quantities depend onr )

K̂3[gE dr @F* c̃†c̃c̃1Fc̃†c̃†c̃#

.gE dr @2ñF*1m̃*F#c̃

1gE dr @2ñF1m̃F* #c̃†, ~19!

K̂4[
g

2E dr c̃†c̃†c̃c̃.
g

2E dr @4ñc̃†c̃1m̃* c̃c̃1m̃c̃†c̃†#.

~20!

That is, within the HFB mean-field approximation,K̂3 is
linear in c̃,c̃† while K̂4 is quadratic inc̃,c̃

†. We note that
the coefficients in~19! and~20! involve eitherñ(r ) or m̃~ r !.

One can easily diagonalize~17! by using the linear trans-
formation

c̃~r !5(
j

~uj~r !â j2v j* ~r !â j
†!,

~21!

c̃†~r !5(
j

~uj* ~r !â j
†2v j~r !â j !,

whereâ j andâ j
† are annihilation and creation operators sat-

isfying the usual Bose commutation relations. One can show
that ~17! reduces to15

K̂HFB5E drF* ~r !F T̂~r !1
1

2
guF~r !u2GF~r !

2(
j
EjE dr uv j~r !u21(

j
Ej â j

†â j , ~22!

if the c-number functionsuj (r ) andv j (r ) are given by the
solutions of the coupled HFB eigenvalue equations

L̂uj~r !2gm~r !v j~r !5Ejuj~r !,
~23!

L̂v j~r !2gm* ~r !uj~r !52Ejv j~r !.

Here the operatorL̂ is defined before~18! andm(r ) is de-
fined in ~15!. One can also derive the same results working
directly with the equation of motion~13! and its Hermitian
conjugate. In particular, one may easily verify that

c̃~r ,t !5(
j

@uj~r !â je
2 iE j t2v j* ~r !â j

†eiE j t#,

~24!

c̃†~r ,t !5(
j

@uj* ~r !â j
†eiE j t2v j~r !â je

2 iE j t#,

solves ~13! ~and its adjoint! if uj , v j , and Ej satisfy the
generalized ‘‘Bogoliubov’’ equations given in~23!. The re-
sults in~22! and~23! effectively reduce the problem to a gas
of noninteracting Bose quasiparticles with an energy spec-
trum given byEj .

We note that with~21!, one easily can derive expressions
for ñ(r ) andm̃(r ) in ~9! in terms of the self-consistent solu-
tions of the coupled equations~23!, namely

ñ~r !5(
j

$@ uui~r !u21uv j~r !u2#N0~Ej !1uv j~r !u2%,

~25!

m̃~r !52(
j
uj~r !v j* ~r !@2N0~Ej !11#,

whereN0(E) is the Bose distribution for the quasiparticle
excitations

^â j
†â j&HFB5

1

ebEj21
[N0~Ej !. ~26!

One must solve the coupled HFB equations~23! and the
condensate equation~8! using self-consistent values ofñ(r )
andm̃(r ), given by~25!, andnc(r )[uF(r )u2. Computation-
ally, solving this set of coupled equations is similar to solv-
ing the simplerT50 Bogoliubov approximation.7,10,11 The
major difference is that~8! is no longer a closed equation for
F(r ) but involves the self-consistent diagonal and off-
diagonal densities,ñ(r ) andm̃(r ). The latter depend on the
excited states given by the solutions of the self-consistent
coupled equations in~23!.

It is useful to summarize how one would solve the HFB
equations given by~8! and~23!, for a given anisotropic para-
bolic potential-well trap and temperature:

~a! First calculaten0(r )5uF(r )u2 andñ(r ) for a noninter-
acting gas (g50). In this case, the off-diagonal corre-
lation functionm̃(r )50.

~b! Use these noninteracting gas results in~23! to solve for
uj , v j , and Ej . With these excited states, one can
calculateñ(r ) andm̃(r ) from ~25! and use these in~8!
to find F(r ).

~c! Iterate the above procedure to self-consistency.

Before discussing the implications and validity of~8! and
~13!, it is useful to relate these results to simpler approxima-
tions given in the literature on inhomogeneous dilute Bose
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gases. We recall that~13! and its adjoint are equivalent to
~23! and ~24!. If we set bothñ(r ) and m̃(r ) to zero, ~8!
reduces to the well-known Gross-Pitaevskii approximation,
where F(r ) is given by a closed nonlinear Schro¨dinger
equation.16 Neglectingñ(r ) andm̃(r ) in ~13! or ~23! leads to
the standard Bogoliubov approximation. This simplified ver-
sion of Eqs.~8! and ~13! has been derived and discussed in
detail by Fetter7 ~see also Refs. 10 and 11!. Since one is
ignoring the noncondensate atoms (ñ50), this approxima-
tion is only appropriate atT.0, where most of the atoms are
in the condensate (nc.n). Note that in the Bogoliubov ap-
proximation, the cubic terms (K̂3) and quartic terms (K̂4) in
~19! and ~20! are omitted completely.

The next level of approximating~8! and~23! would be to
keepñ(r ) but neglect the anomalous densitym̃(r ) as being
small compared to bothñ(r ) andn0(r ). This approximation
has been used by Popov5 ~in a homogeneous gas! to discuss
the finite-temperature region close to the Bose-Einstein tran-
sition. This Popov approximation6 formally reduces to the
Bogoliubov approximation atT50, whereñ also becomes
negligible. As we shall see in Sec. III, it leads to a gapless
spectrum, in contrast with the full HFB. Thus omitting
m̃(r ) but calculatingñ(r ) in a self-consistent way seems to
give a reasonable first approximation for the excitation spec-
trum in Bose gases atall temperatures.

The calculation ofñ(r ) and nc(r ) given by Goldman
et al.2 involved equations equivalent to~8! with m̃(r )50
and to ~23! with m(r )50. This somewhatad hocapproxi-
mation is equivalent to puttingv j (r )50 in ~23!. This sim-
plified version of~23! has been justified in Refs. 2 and 3 as
being adequate for the purpose of calculatingñ(r ) and
n0(r ) at temperatures just belowTBE, even if it does not
lead to a very good approximation for the excitation spec-
trum.

III. CONSERVING VS GAPLESS APPROXIMATIONS

We now turn to a discussion of the HFB equations given
by ~8! and ~13!. The general problem of finding the excita-
tion frequencies in a homogeneous weakly interacting Bose-
condensed gas was exhaustively studied and various approxi-
mations were classified in a famous paper by Hohenberg and
Martin ~see, in particular, Sec. VI of Ref. 4!. Any approxi-
mation put forward in the study of an inhomogeneous Bose
gas can be usefully analyzed by examining its implications in
the corresponding homogeneous case.

For interacting Bose-condensed systems, it is convenient
to formulate the discussion in terms of Green’s functions.4,12

A key role is played by the 232 matrix single-particle
Green’s function, defined as

G1~1,18!52 i ^TĈ~1!Ĉ†~18!&, ~27!

where

Ĉ~1![S ĉ~1!

ĉ†~1!
D ; C†~1![„ĉ†~1!,c~1!… ~28!

and 1 representsr ,t. Writing out the 232 matrix in ~27!
explicitly, we have

Gab~1,18!52S i ^Tĉ~1!ĉ†~18!& i ^Tĉ~1!ĉ~18!&

i ^Tĉ†~1!ĉ†~18!& i ^Tĉ†~1!ĉ~18!&
D .
~29!

Separating out the Bose condensate part of the field operator
as in ~2!, ~29! naturally splits into two parts

Gab~1,18!5G̃ab~1,18!1G~1/2!a~1!G~1/2!b
† ~18!, ~30!

where the condensate Green’s function is described by

Ĝ1/2~1![A2 i ^Ĉ~1!&5A2 i S F~1!

F* ~1!
D ~31!

Ĝ1/2
† ~1![A2 i ^Ĉ†~1!&5A2 i „F* ~1!,F~1!…, ~32!

andG̃ab(1,18) is identical to~29! except that it involves the
noncondensate part of the field operators (c̃ and c̃†). The
signature of a Bose-condensed interacting system is the ap-
pearance of anomalous correlation functions such as
F(1)5^ĉ(1)& andG̃12(1,18)52 i ^Tc̃(1)c̃(18)&.

A very convenient way of generating the equations of
motion for G̃1(1,18) andĜ1/2(1) is to use functional differ-
entiation with respect to external fields.4 For homogeneous
systems in thermal equilibrium, it is customary to set these
generating fields to zero at the end of the calculation. How-
ever, in the context of the newly observed Bose-condensed
gases,1 these external fields are of direct physical relevance,
playing the role of the static external trapping potential as
well as time-dependent external perturbations.10,11 In this re-
gard, the general formalism developed in Ref. 4 is particu-
larly useful. The general equations of motion forG̃1(1,18)
andĜ1/2(1) are given by~2.6! and~2.7! of Ref. 8. If we only
include astaticexternal potential, the equation of motion for
G̃1(1,18) is

F i tab
~3!

]

]t
2T̂~r !dabGG̃ba8~1,18!

5d~1218!daa81Sab~1,2̄!G̃ba8~ 2̄,18!, ~33!

where t (3)5(0
1

21
0) and the single-particle operatorT̂(r ) is

defined in ~18!. Here, repeated Greek indices are summed
and a bar represents the usual integration overr ,t. This
Dyson-Beliaev equations in~33! for the single-particle
Green’s functions in a Bose-condensed system depends on
the 232 matrix self-energySab(1,18) in addition to the
chemical potentialm. The analogous equation of motion for
the two components ofĜ1/2 is given by~for a static external
field!

2T̂~r !G1/2a~r !5A2 iha~r !. ~34!

Here we have introduced the condensate ‘‘source function’’
ha(r ), which itself is a functional ofĜ1/2 and G̃1 . Writing
~34! more explicitly, it corresponds to

F2
¹2

2m
1Uex~r !2m GF~r !52h1~r !. ~35!

One can now define what a ‘‘conserving’’ approximation
is, namely that there exists a functionalF@Ĝ1/2,G̃1# of the
correlation functionsĜ1/2 and G̃1 such that the self-energy
and the condensate source functions are given by
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dF@Ĝ1/2,G̃1#

dG̃1~1,18!
5Ŝ~1,18!,

~36!
1

2A2 i

dF@Ĝ1/2,G̃1#

dĜ1/2
† ~1!

5ĥ~1!.

Martin and De Dominicis17 have proven that if such a func-
tionalF exists, the two-particle Green’s functions generated
by functional differentiation ofG1(1,18) @given by ~29! –
~32!# with respect to a time-dependent, spatially varying ex-
ternal field areguaranteedto satisfy the usual conservation
laws.18 The HFB approximation discussed in Sec. II can be
shown to be an example of such a conserving approximation.
Using Eq.~6.42! of Ref. 4, one can easily verify that

ŜHFB~1,18!5gS 2n~r ! m~r !

m* ~r ! 2n~r ! D d~1218! ~37!

and

ĥHFB~1!5gS n~r !1ñ~r !, m̃~r !

m̃* ~r !, n~r !1ñ~r ! D S F~r !

F* ~r ! D . ~38!

When substituted into~33! and~34!, one finds results equiva-
lent to ~23! and~8!, respectively. This HFB approximation is
often called the Girardeau-Arnowitt approximation in the
Bose gas literature.4 Solving ~33! using~37!, we arrive at the
coupled equations forG̃11 andG̃21,

F i ]

]t
2T̂~r !22gn~r !GG̃11~1,18!2gm~r !G̃21~1,18!

5d~1218!,

F2 i
]

]t
2T̂~r !22gn~r !GG̃21~1,18!2gm* ~r !G̃11~1,18!50.

~39!

This is the HFB generalization of the Bogoliubov approxi-
mation, the latter being given by~55.22! and~55.24! of Fet-
ter and Walecka12 for inhomogeneous systems. As expected,
the structure of~39! is identical to~23!.

The problem with a conserving approximation is that
while the two-particle Green’s functions@such as the density-
response functionxnn(1,18)# are guaranteed to have a spec-
trum consistent with conservation laws such as the equation
of continuity,18 the single-particle spectrum ofG̃1(1,18)
which one starts with may have unphysical features. In par-
ticular, one is not ensured of a gapless spectrum for long-
wavelength excitations. In homogeneous systems, such a
gapless spectrum ofG̃1(1,18) is guaranteed if the self-
energies satisfy the Hugenholtz-Pines~HP! theorem,
namely4,19

m5S11~q50,v50!2S12~q50,v50!. ~40!

More generally, it can be proven that this theorem will be
satisfied if the self-energies can be generated from the con-
densate source function according to4

A2 i
dĥ~1!

dĜ1/2~18!
5Ŝ~1,18!. ~41!

Here ĥ(1) is an explicit functional ofĜ1/2 and implicitly
through the dependence ofG̃1 on Ĝ1/2. Approximations for
the self-energy consistent with~41! are referred to as ‘‘gap-
less’’ approximations. The HFB approximation forĥ(1) and
Ŝ(1,18) do not satisfy ~41!, and as a consequence the HFB
spectrum ofG̃1(1,18) has a quasiparticle spectrum with a
gap in the limit of long wavelengths.4 In contrast, the simple
Bogoliubov approximation12 is a gapless approximation, as
is the Beliaev second-order approximation.9 Figures 4 and 5
of Ref. 4 give a convenient summary of conserving and gap-
less approximation for uniform Bose gases.

We can illustrate the above somewhat formal discussion
by considering the HFB approximation for a uniform system
@Uex(r )→0#. Using ~38! in ~35!, or equivalently~8!, we
have@sinceF(r )5 const#

2mF1g~n1ñ!F1m̃F*50, ~42!

and hence the HFB gives the following result for the chemi-
cal potential:8

m5g~n1ñ1m̃!. ~43!

For a homogeneous system, where we have
G̃ab(1,18)5G̃ab(1218), one can solve~39! by Fourier
transformation.14 The poles ofG̃ab(k,v) are easily found to
be given by

Ek
25S k22m2m12gnD 22~gm!2. ~44!

Making use of the HFB chemical potentialm given by~43!,
one sees that there is a finite energy gap atk50,

Ek50
2 5g2@nc2m̃#22g2@nc1m̃#254g2um̃unc , ~45!

where we recall thatm̃ is negative@see ~25!#. Clearly the
HFB does not satisfy the HP theorem~40!, since the latter
relation gives

m52gn2gm5g~n1ñ2m̃!, ~46!

which differs from the HFB result in~43!. Using~46! in ~44!
gives a gapless spectrum but this procedure isad hoc. One is
using a chemical potential which is not consistent with the
equation of motion forĜ1/2(1) or, equivalently,F(r ).

At the end of Sec. II, we introduced several approximate
versions of the HFB results. We can now discuss these ap-
proximations in terms of the excitation spectrum they lead to
in the homogeneous case:

~a! ‘‘Bogoliubov’’ corresponds to settingm̃5ñ50. Both
~43! and ~46! reduce to the same resultm5gnc and
hence the single-particle excitations are gapless. This is
valid at zero temperature.

~b! ‘‘Popov’’ corresponds to settingm̃50 but keepingñ
finite. Both ~43! and~46! reduce tom52gn2gnc and
hence the excitations are gapless. As discussed at the
end of Sec. II, this gives a good approximation at all
temperatures, with a phonon velocity„gnc(T)/m…

1/2.
~c! In Goldman et al.,2 the off-diagonal self-energies in

~37! involving m(r ) are neglected but onlym̃(r ) is
neglected in the source term~38!. The result is that~44!

53 9345CONSERVING AND GAPLESS APPROXIMATIONS FOR AN . . .



reduces toEk5k2/2m2m12gn, while ~43! reduces to
m5gn1gñ52gn2gnc . Thus one obtains a spectrum
Ek5k2/2m1gnc with an energy gap. This approxima-
tion can be used for calculatingñ and other thermody-
namic quantities nearTBE, where the thermally signifi-
cant excitations have a large enough momentum that
the spectrumEk5k2/2m1gnc is adequate.

20

In the Popov approximation to the HFB@in which the
anomalous densitym̃(r ) is omitted#, there is a special solu-
tion of the generalized Bogoliubov equations~23! corre-
sponding tou0(r )5v0(r )5F(r ) with E050, whereF(r ) is
a solution of~8! with m̃(r )50. As with the simpler Bogo-
liubov approximation discussed by Fetter,7,11 one sees in this
case that the condensate wave functionF(r ) plays the role
of the zero-energy single-particle mode and the fluctuations
of the condensate associated withc̃ are described by all the
higher energy modes (Ei.0). In contrast, within the full
HFB, there is no zero energy solution of~23! corresponding
to the solutionF(r ) of ~8!.

As we have noted above, conserving approximations for
G̃1(1,18) and Ĝ1/2(1) such as the HFB can be used to gen-
erate two-particle Green’s functions which are guaranteed to
satisfy conservation laws and related sum rules4,17,18and thus
will lead to a gapless density-fluctuation spectrum. In addi-
tion, we recall that in the presence of a Bose broken symme-
try, the single-particle and density-fluctuation correlation
functions exhibit the same poles.19 This fundamental feature
holds for both uniform and nonuniform Bose systems, as can
be seen, for example, from Eq.~6.38! of Hohenberg and
Martin.4 Thus by using the HFB single-particle matrix
Green’s functionG1 to generate the density-response func-
tion by functional differentiation, one is effectively generat-
ing an ‘‘improved’’ single-particle spectrum which will be
gapless. In particular, as discussed on pp. 350–351 of Ref. 4,
the HFBG1 generates a density-response function which is
found to be identical to Beliaev’s second-order single-
particle spectrum.9 In the uniform case, this equivalence has
been formally proven atall temperatures in a Bose-
condensed gas by Cheung and Griffin~see Sec. IV of Ref. 8!.
The fact that this new spectrum is gapless follows from the
fact that the Beliaev self-energies satisfy the HP relation in
~40!, with m being given by the HFB result in~43!.

The above procedure shows that the excitations given by
the Beliaev second-order approximation is the correct gener-
alization on the HFB excitation spectra. Such calculations
involve evaluating the various bubble or polarization dia-
grams@see Eq.~2.30! of Ref. 8# which involve products of
two HFB single-particle propagatorsG̃1 . However, at tem-
peratures close enough toTBE, it is adequate to evaluate
these polarization bubble diagrams using a simple particle-
like spectrum such as used in Refs. 2 and 20.

Within a variational calculation, Bijlsma and Stoof21 have
recently obtained~for a uniform system! the equivalent of
the Popov approximation as defined above, but withg re-
placed by the many-bodyt matrix calculated at finite tem-
perature in the ladder diagram approximation. This extension
and its relation to the full Beliaev second-order approxima-
tion will be discussed elsewhere.22

IV. CONCLUSIONS

Within the full Hartree-Fock-Bogoliubov approximation,
we have given a simple derivation of the coupled equations
of motion for the condensateF(r ) and its excited states, as
given by~8! and~23!, respectively. In contrast with previous
work which was variational in nature,2,3 our derivation in
Sec. II works directly with a mean-field approximation for
the equation of motion for the condensate (F) and noncon-
densate (c̃) parts of the quantum field operator. This brings
out the physics involved most clearly and has the advantage
that one can make contact with the more general Green’s
function formulation4,8 discussed in Sec. III. The self-
consistent HFB has, of course, the advantage of being deriv-
able variationally and thus the total energy is minimized
even if the HFB excitations have certain deficiencies.

Because of the dynamical correlations induced by the
Bose-broken symmetry, a consistent theory of excitations is
surprisingly difficult to formulate even in a dilute Bose gas.
This is already shown when one tries to improve the ‘‘gap-
less’’ Bogoliubov approximation by working with the ‘‘con-
serving’’ Hartree-Fock-Bogoliubov~HFB! approximation
which is not ‘‘gapless.’’ Hohenberg and Martin4 ~HM! give a
systematic discussion of this problem, introducing a classifi-
cation of different approximations. In the present paper, we
have emphasized the usefulness of the HM classification
when dealing with inhomogeneous atomic Bose gases in an
external potential well.1 We have used it to examine the
single-particle spectrum predicted by the full HFB,3 as well
as various simplifications of it which have been used in the
literature.2,5,7 In addition, the HFB has a special significance
since it can be used to generate a density-response function
by functional differentiation which turns out to have the
same spectrum as the Beliaev second-order approximation9

for the single-particle Green’s functions at all temperatures
belowTBE.

8

The reason that finding the ‘‘correct’’ excitation spectrum
of a Bose-condensed gas is complicated is because it is dif-
ficult to simultaneously satisfy different requirements within
a given approximation. The Hohenberg-Martin classification
scheme we have used in Sec. III of this paper does not solve
the problem of finding an approximation which is manifestly
bothgapless and consistent with conservation laws. An alter-
native approach which addresses this problem is based on the
dielectric formalism~for a review, see Sec. 5.1 of Ref. 19!.
This is a diagrammatic procedure which builds in the close
connection between the single-particle and density-response
functions so that their excitation spectra are identical, with
the conservation laws being incorporated through general-
ized Ward identities. This formalism23 cuts across the HM
classification and gives a procedure for choosing approxima-
tions which yield both a gapless elementary-excitation spec-
trum and response functions consistent with conservation
laws ~sum rules!. In a future publication, we hope to discuss
inhomogeneous Bose gases using this dielectric formalism
approach.23,19
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