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Conserving and gapless approximations for an inhomogeneous Bose gas at finite temperatures
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We derive and discuss the equations of motion for the condensate and its fluctuations for a dilute, weakly
interacting Bose gas in an external potential within the self-consistent Hartree-Fock-BogalliBBY ap-
proximation. Account is taken of the depletion of the condensate and the anomalous Bose correlations, which
are important at finite temperatures. We give a critical analysis of the self-consistent HFB approximation in
terms of the Hohenberg-Martin classification of approximati@mnserving vs gaplesand point out that the
Popov approximation to the full HFB gives a gapless single-particle spectrum at all temperatures. The Beliaev
second-order approximation is discussed as the spectrum generated by functional differentiation of the HFB
single-particle Green’s function. We emphasize that the problem of determining the excitation spectrum of a
Bose-condensed ga®omogeneous or inhomogenepus difficult because of the need to satisfy several
different constraints.

[. INTRODUCTION be shown to be identical to Beliaev's second-order approxi-
mation for the single-particle spectrdrat all temperatures.
The recent observatiorof Bose condensation in atomic ~ The emphasis in this paper is on the formal structure of
gases trapped in an external potential well has focused atteMarious kinds of approximations and how to assess their va-
tion on the excitation spectrum of an inhomogeneous weaklidity, using the HFB approximation as a specific example.
interacting Bose-condensed gas at finite temperatures. Unfpur results in(8) and (23) should provide a platform for
very recenﬂy, this excitation Spectrum was 0n|y addresseéuture numerical calculations of the HFB excitation spectrum
indirectly in the course of calculatiig the local density ©f an inhomogeneous Bose gasTat 0, of the kind recently
n(r) and local condensate densty(r). discussed by Edwardst all® and Fettel* using the Bogo-
The excitation spectrum of a Bose system is very depeniiubov approximation aff =0.” However, as we emphasize
dent on the subtle dynamical correlations induced by thén the final section, the question of what are the “correct”
Bose condensafe.In particular, one must calculate the excitations in a dilute weakly interacting Bose gas at finite
single-particle and density-fluctuation spectrum in a consistemperatures is not a simple one. It requires the full appara-
tent manner to ensure that they are identical, as they must s of many-body theory.
in a Bose-condensed system. In general, self-energy energy
approximations which _Iead to a single-particl_e SPectrum |, A pTREE-FOCK-BOGOLIUBOV APPROXIMATION
without an energy gap in the long-wavelength limit are not
consistent with a density-fluctuation spectrum which satisfies Our starting point is the exact Heisenberg equation of

conservation lawsor the corresponding sum rujes motion‘>*3for the Bose field operatof(r)
A major purpose of this paper is to point out that a useful
way of understanding various approximations for the excita- afp(r t) v2 R
tions in a spatially nonuniform Bose gas is provided by the i = = o=+ U (D) — | g(r 1)
kind of analysis developed in the early 1960’s for a spatially Jt 2m
uniform Bose gas and codified in the well-known paper by it (r B B b, 1)

Hohenberg and Martifi It is based on distinguishing “con-
serving® vs “gapless™ approximations and the key role where we have assumed a short-range interaction

played by the Hugenholtz-Pines theorem. v(r—r')=gé(r—r') between the atomgln the s-wave ap-

o e O Morximaton, whih s adecuat for the very e gases of
Ihterest, one hag=4ma/m.) We assume the atoms are

finite-temperature Hartree-Fock-BogoliubtFB) approxi- trapped in a static external potentldl,(r). Separating out

mation, as well as S|rr_1pler approximations discussed in th(tahe condensate part in the usual fashidhwe have
literature. An approximate version of the HFB due to

Popov® gives a simple gapless approximation for the single- - .

particle spectrum below the transitiowe do not discuss the P(r, ) =d(r)+(r,t), ()
critical region very neaffgg) but also reduces to thE=0 . .

Bogoliubov approximation discussed by Fettier a nonuni- ~ where® (r)={(y(r,t))=(y(r)) plays the role of a spatially
form gas. We also sketch the procediftéor using the HFB  varying macroscopic Bose field. The thermal averagé&jn
approximation for the single-particle self-energies to generand elsewhere is the usual anomalous average appropriate to
ate by functional differentiation a density-fluctuation spec-a Bose broken symmetfyUsing (2), the interaction term in
trum which is gapless in the long-wavelength limit. This can(1) can be written out in the form

0163-1829/96/534)/9341(7)/$10.00 53 9341 © 1996 The American Physical Society



9342
U h=| D20 + 2| |2+ DY+ O g+ 20§y
+ gty 3

We treat the last term i(B) in the self-consistent mean-field

approximation, namely

GO PO, =2(g (1) b(r)) g(r )

HPO PN, @

and then(3) reduces to

PO P =] D(r)[2d(r)
+2[|d(r) |2+<¢ﬁ<r (N)19(r 1)
+[D2(r) +((r) (r) ] (r 1)
+20(n) T (r,H)d(r,t)
+O* (1) (D (r 1), (5)

For the zero-range interaction we are considering, the Har-
tree and Fock(exchangg terms are identical. This is the
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ap(r t v? -
[ I/,((gt ) ~om T YedD = |g(r,0)

gl TGO H(r,0) — () G(r) g(r)].
(10)

This follows from subtractind6) from (1). Consistent with
our mean-field derivation of8), the quadratic terms in the
last line of (5) are treated in a mean-field approximation, i.e.,
we use

PO P =(g (),
(11)

P(r 0 P(r, ) =(g(r)g(r)).

With (11), the last term in(10) is given by

$H (0P, e(r,) = (FT P ()
=2(T (PGB PO P (Y. (12

origin of the factor of 2 in(4), (5) and subsequent equations. Using (12), (10) reduces to
The time independent, spatially inhomogeneous Bose or-

der parameterb(r) is given directly by taking an average

over (1),

V2 . .
S+ U1 = | D) +g( (N () g(r))=0.  (6)

- 2m

The time dependence cancels out in the last term using the
cyclic invariance of the trace. Taking the anomalous average
in (r,t) vanish since

of (5), the linear terms
(¢(r,t))=(y(r))=0 and we are left with

(1))y=|D(r) 2D (r)+2B (1) (r)ih(r))
+O* (1) (h(r) (). (7)
Using this in(6), we find

aGYGY

2

2m+Uex(r) w|®(r)+gng(r)+2n((r)]d(r)

+gm(r)®*(r)=0, tS)
where we have introduced the local densities:
ne(r)=[®(r)/?,
AN =(4"(0(n), (9)
()= (1) i(r)).

g(r,b) V2
: _

= —%-I—Ue)g(r)_ﬂ fp(r,t)+29n(r)l:/f(f,t)

+gm(n)gi(r,b), (13)

where the self-consistent densities are definefiseg(9)]

n(r)=(¢(r)g(r) >=|®(r>|2+<&f(r>ia<r>>znc(r>+ﬁ<(r1>4)

2(r)+m(r).
(15

M) =) P(r))=DAr) +{(P(r) h(r))y=

One can easily derive the analogous equation of motion for
yr(r 1),

The coupled equations of motions given (8) and (13)
correspond to the Hartree-Fock-Bogoliub@¥-B) approxi-
mation. One can derive the same or similar resuiftg a
variety of ways but the above approach has the advantage
when one is interested in the excitations since it is easy to
relate these equations of motion to a more general Green’s
functiong®° formulation discussed in Sec. Ill.

The preceding derivation dB) and (13) is equivalent to
the grand canonical Hamiltonian

A A N N V2 -
KEH—MNZJ' dr'[/T(r)[_ﬁ_FUex(r)_M p(r)

We note that(8) only reduces to a closeghonlineaj equa-
tion for ®(r) when bothn(r) andm(r) are neglected.e., in
the Bogoliubov approximatiof). In the case of a spatially
uniform Bose gagU,,(r)—0], all the functions in(9) be-

+2f wdOF 00N e

come constant, independent of position.

being treated using a self-consistent quadratic approxima-

The excitations of the condensate are described byion. Expanding the field operators in this expression using
#(r,t) in (2) and are given by the exact equation of motion (2), one finds after a little algebta
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o) ‘,%’uj(r)—gm(r)vj(r)=EjUj(r),

A 1
TN+ 59ne(n)

RHFB:J' drd*(r) (23)

Foj(r)—gm* (r)u;(r) = —Ejo;(r).

~ ~ o~ g ~ ~ R
+f dr " (r) Zy(r) + EJ drm(r) ¢ (r) ¢ (r) Here the operatof/ is defined beforé18) andm(r) is de-
fined in (15). One can also derive the same results working

g T directly with the equation of motiofil3) and its Hermitian
+ EJ drm* (r) ¢ (r) g(r), (17 conjugate. In particular, one may easily verify that
where Z=T(r) +2gn(r), with :/r(r,t)zz [uj(r)&je*iEi‘—v}"(r)&}reiEJt],
J
R VZ (24)
T(r)E—ﬁ-f—Uex(r)—/.L. (19 &T(nt):; [uik(r)&jTeiEjt_vj(r)a,je—iEjt],

The coefficients of the linear terms i, 4" in (17) can be  solves(13) (and its adjoint if u;, v;, and E; satisfy the
shown to vanish by using the fact th&i(r) is given by the generalized “Bogoliubov” equations given i23). The re-
solution of(8). In going from(16) to (17), theonly approxi-  Sults in(22) and(23) effectively reduce the problem to a gas
mation involves how we treat the terms cubic and quartic inof noninteracting Bose quasiparticles with an energy spec-
¢ and ¢!, namely(all quantities depend or) trum given byE;.
We note that with(21), one easily can derive expressions
for n(r) andm(r) in (9) in terms of the self-consistent solu-

ksng dr[@* ¢t g+ gty tions of the coupled equatiori&3), namely
:gf dr[ZﬁCD*'f'ﬁ]*CD]l?/ ﬁ(r)zg {[|U|(r)|2+|U1(r)|2]N0(EJ)+|Ul(r)|2},
(29
+gJ dr[ 2R® +md* 4", (19) (r)=— 2 u;(No’(N[2Ne(E;)+1],
]

where Ng(E) is the Bose distribution for the quasiparticle
Kom3 | Qi | drtahi i gty xetatons
20 Afn 1
(20 <a;aj>HFB:mENO(Ej)- (26)
That is, within the HFB mean-field gpproximatiof(,s is
linear in ¢, " while K, is quadratic ing, . We note that
the coefficients in(19) and(20) involve eithern(r) or m(r).
One can easily diagonaliZ&7) by using the linear trans-
formation

One must solve the coupled HFB equatio23) and the
condensate equatid8) using self-consistent values ofr)
andm(r), given by(25), andn.(r)=|®(r)|?. Computation-
ally, solving this set of coupled equations is similar to solv-
ing the simplerT=0 Bogoliubov approximatiofr1®!! The
major difference is thai8) is no longer a closed equation for
Sy Akt ®(r) but involves the self-consistent diagonal and off-
w(r)_zj" (Uj(Ne—of(rap), diagonal densitied)(r) andm(r). The latter depend on the
(21)  excited states given by the solutions of the self-consistent
coupled equations if23).
pnH=> (uf‘(r)&;r—vj(r)&j), It is useful to summarize how one would solve the HFB
] equations given by8) and(23), for a given anisotropic para-
bolic potential-well trap and temperature:
where&j and &JT are annihilation and creation operators sat—( )
isfying the usual Bose commutation relations. One can show
that (17) reduces t&

First calculateng(r) =|®(r)|? andf(r) for a noninter-
acting gas §=0). In this case, the off-diagonal corre-
lation functionm(r)=0.

(b) Use these noninteracting gas result$48) to solve for

- R 1 i )
Koo d* (O T+ =ald )12 d uj, vj, and E;. With these excited states, one can
HFB f dr (r)[ " 2gl () } " calculaten(r) andm(r) from (25) and use these i(B)
to find ®(r).

> Ejf drlvj(r)|2+2 Ej&jTgyj , (220 (c) lterate the above procedure to self-consistency.
i i

Before discussing the implications and validity(8j and
if the c-number functionsu;(r) andv;(r) are given by the (13), it is useful to relate these results to simpler approxima-
solutions of the coupled HFB eigenvalue equations tions given in the literature on inhomogeneous dilute Bose
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gases. We recall thdtl3) and its adjoint are equivalent to i<-|-:p(1);//‘r(1r)> i(Tf//(l)fp(l’))
(23) and (24). If we set bothin(r) and m(r) to zero, (8) Gup(Ll)=—| _~p o~ RPN )
reduces to the well-known Gross-Pitaevskii approximation, KTy (Dy'(1)) KTy'(DHw(l)

where ®(r) is given by a closed nonlinear Scklinger (29
equation:® Neglectingfi(r) and(r) in (13) or (23) leads to  Separating out the Bose condensate part of the field operator
the standard Bogoliubov approximation. This simplified ver-as in(2), (29) naturally splits into two parts
sion of Egs.(8) and (13) has been derived and discussed in .
detail by Fettef (see also Refs. 1~0 and )11Since one is Gaﬁ(l,l’)=Gaﬁ(l,l')+G(l,z)a(l)G;rl,z)B(l’), (30
ignoring the noncondensate atons=(0), this approxima-
tion is only appropriate af=0, where most of the atoms are o(1)
in the condensaten(=n). Note that in the Bogoliubov ap- - N _
proximation, the cubic termsK(z) and quartic termsK_,) in G 1)=V=i(¥(1) \/_I( db*(l)) S
(19 and(20) are omitted completely. R R
The next level of approximatingd) and(23) would be to Gl (1)=V=i(¥'(1))=V=i(@*(1),®(1)), (32
keepn(r) but neglect the anomalous densifr) as being ~ . . .
small compared to both(r) andny(r). This approximation 21dG.s(1,1') is identical to(29) except that it involves the
has been used by Popofin a homogeneous ga® discuss noncondensate part of the field operatogsdnd ¢"). The
the finite-temperature region close to the Bose-Einstein trarSignature of a Bose-condensed interacting system is the ap-
sition. This Popov approximatirformally reduces to the Pearance of anomalous correlation functions such as
Bogoliubov approximation aT=0, wheref also becomes ®(1)=((1)) andGx(1,1')=—i(T#(1)y(1")).
negligible. As we shall see in Sec. lll, it leads to a gapless A very convenient way of generating the equations of
spectrum, in contrast with the full HFB. Thus omitting motion for G1(1,1") andGy(1) is to use functional differ-
m(r) but calculatingn(r) in a self-consistent way seems to entiation with respect to external fielig=or homogeneous
give a reasonable first approximation for the excitation specsystems in thermal equilibrium, it is customary to set these
trum in Bose gases al temperatures. generating fields to zero at the end of the calculation. How-
The calculation offi(r) and n.(r) given by Goldman ever, in the context of the newly observed Bose-condensed
et al? involved equations equivalent t8) with m(r)=0  gases, these external fields are of direct physical relevance,
and to(23) with m(r)=0. This somewhatd hocapproxi- playing the role of the static external trapping potential as
mation is equivalent to putting;(r)=0 in (23). This sim-  well as time-dependent external perturbatiths.In this re-
plified version of(23) has been justified in Refs. 2 and 3 as gard, the general formalism developed in Ref. 4 is particu-
being adequate for the purpose of calculatingr) and larly useful. The general equations of motion 165(1,1')
no(r) at temperatures just beloWge, even if it does not andG,,(1) are given by(2.6) and(2.7) of Ref. 8. If we only
lead to a very good approximation for the excitation specinclude astatic external potential, the equation of motion for
trum. G.(1,1) is

where the condensate Green’s function is described by

CTRAE A '
i1 Tap=—T(r)0,5|Gpqr(1,1)

IIl. CONSERVING VS GAPLESS APPROXIMATIONS @B ot

We now turn to a discussion of the HFB equations given _ , o~ 51
by (8) and (13). The general problem of finding the excita- =011 Suar + 2 ap(1,2Cpar(2.17), 33
tion frequencies in a homogeneous weakly interacting Boseyhere (3= (} _?) and the single-particle operaté'l(r) is
condensed gas was exhaustively studied and various approjefined in(18). Here, repeated Greek indices are summed
mations were classified in a famous paper by Hohenberg anghd a bar represents the usual integration aver This
Martin (see, in particular, Sec. VI of Ref)4Any approxi-  Dyson-Beliaev equations ir(33) for the single-particle
mation put forward in the study of an inhomogeneous Bosesreen’s functions in a Bose-condensed system depends on
gas can be usefully analyzed by examining its implications ifthe 2x2 matrix self-energy> ,4(1,1') in addition to the
the corresponding homogeneous case. chemical potentiak.. The analogous equation of motion for

For interacting _Bose-_conglensed systems, it is co_nvenieqhe two components db,, is given by(for a static external
to formulate the discussion in terms of Green’s functibffs. field)

A key role is played by the 2 matrix single-particle A o
Green’s function, defined as ~T(NGira(1) = V=i 74(1). (39

Here we have introduced the condensate “source function”

A T Tt ' ~ ~
G1(1,1)==K(T¥(1)¥'(1"), (27) 1,(r), which itself is a functional of5,, and G,. Writing
(34) more explicitly, it corresponds to
where V2
. — o tUeD—p|®(N=-m(). (39
@(1>=( o ) Y= (1),0(1) (29 )
f//T(l) ’ ' One can now define what a “conserving” approximation

is, namely that there exists qfunctionh[él,z,él] of the
and 1 represents,t. Writing out the 2<2 matrix in (27)  correlation functionsG4,, and G; such that the self-energy
explicitly, we have and the condensate source functions are given by
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SD[Gyp,Gq] - Here 7(1) is an explicit functional ofG,, and implicitly
~—,=2(1,1'), through the dependence 6f;, on G,;,. Approximations for
9G1(1,1") the self-energy consistent witd1) are referred to as “gap-
~ o~ (36) less” approximations. The HFB approximation fp(1) and
1 5(13[?1’2’61] =5(1). 3(1,1') do not satisfy (41), and as a consequence the HFB
2\—i  6GI1) spectrum 0fG,(1,1') has a quasiparticle spectrum with a
gap in the limit of long wavelengttsin contrast, the simple
0Bogoliubov approximatioff is a gapless approximation, as

Martin and De Dominici¥” have proven that if such a func-

tional @ exists, the two-particle Green’s functions generate ls the Beliaev second-order approximatibRigures 4 and 5

by functional differentiation ofG(1,1') [given by (29) — . : ; )
(32)] with respect to a time-dependent, spatially varying exOf Ref. 4 give a convenient summary of conserving and gap
less approximation for uniform Bose gases.

ternal field areguaranteedo satisfy the usual conservation . . .
€ fy We can illustrate the above somewhat formal discussion

laws:" The HFB approximation discussed n Sec. Il can .beby considering the HFB approximation for a uniform system
shown to be an example of such a conserving apprommaﬂortU {1)—0]. Using (38) in (35), or equivalently(8), we

Using Eq.(6.42 of Ref. 4, one can easily verify that have[sinced(r)= consi

2n(r)  m(r)

Y —ud n)®+md* =0, 42
M) 2n(r) s(1-1") (37 pP+g(n+tn)®+m (42

iHFB(]-,l'):Q(
and hence the HFB gives the following result for the chemi-
and cal potentiaf

n(r)+n(r), m(r) )( d(r) ) @9 w=g(n+n+m). (43

m(r),  n(r)+n(r)) | e*(r)
For a homogeneous system, where we have
When substituted int(B3) and(34), one finds results equiva- G,p(1,1)=G,p(1—-1'), one can solve(39) by Fourier

lent to (23) and(8), respectively. This HFB approximation is iransformatiort? The poles 0fG,,4(k, ) are easily found to
often called the Girardeau-Arnowitt approximation in the pe given by

Bose gas Iiteratur‘éSquing(33) using(37), we arrive at the
coupled equations foG,; and G,

AnHFB(l):g(

2
—(gm)%. (44)

k2
EE:(%—M‘FZQH

G11(1,1)—gm(r)Gz(1,1) Making use of the HFB chemical potential given by (43),

one sees that there is a finite energy gag=a0,

. d -
|E—T(r)—29n(r)

=8(1-1"),
EZ_o=0g%[n.—M]?—g?[n.+m]?=4g?Mmn., (45

Goi(1,1)—gm*(r)G14(1,1)=0.  where we recall thafh is negative[see (25)]. Clearly the
(39) HFB does not satisfy the HP theorei@0), since the latter

relation gives
This is the HFB generalization of the Bogoliubov approxi-

mation, the latter being given b$5.22 and(55.24 of Fet- w=2gn—gm=g(n+n—m), (46)

ter and Waleck¥ for inhomogeneous systems. As expected, . . . . . .
the structure of39) is identic%l t0(23). y P which differs from the HFB result if43). Using (46) in (44)

The problem with a conserving approximation is that9!Ves @ gapless spectrum but this proceduagiifioc One is

while the two-particle Green’s functiofisuch as the density- using a chemical potential which is not consistent with the
response functioy,,(1,1')] are guaranteed to have a spec-€duation of motion foiGy,(1) or, equivalently®(r).

trum consistent with conservation laws such as the equation At the end of Sec. Il, we introduced several approximate
1 = versions of the HFB results. We can now discuss these ap-

of continuity’® the single-particle spectrum o6,(1,1) o . e
which one starts with may have unphysical featulres. In par_prOX|mat|ons in terms of the excitation spectrum they lead to

ticular, one is not ensured of a gapless spectrum for Iong'—n the homogeneous case:
wavelength excitations. In homogeneous systems, such @) “Bogoliubov” corresponds to settingn=n=0. Both

N
—|E—T(r)—29n(r)

gapless spectrum oél(l,l’) is guaranteed if the self- (43) and (46) reduce to the same resyli=gn. and
energies satisfy the Hugenholtz-Pine@iP) theorem, hence the single-particle excitations are gapless. This is
namely1® valid at zero temperature.

() “Popov” corresponds to settingn=0 but keepingn

#=211(9=00=0)~21(q=00=0). (40 finite. Both (43) and (46) reduce tou=2gn—gn, and

More generally, it can be proven that this theorem will be hence the excitations are gapless. As discussed at the
satisfied if the self-energies can be generated from the con-  end of Sec. Il, this gives a good approximation at all
densate source function according to temperatures, with a phonon velocityn,(T)/m)*/2.
R (©) In Goldmanet al.? the off-diagonal self-energies in
J=i 67(1) =3(1,1) (41) (37) involving m(r) are neglected but onlyn(r) is

I_,—
8G (1) neglected in the source ter(88). The result is that44)
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reduces tdE, = k2/2m— .+ 2gn, while (43) reduces to IV. CONCLUSIONS

M=gr;+gn=29n—'gnc. Thus one obtains a Spectrum  \yiyhin the full Hartree-Fock-Bogoliubov approximation,
Ex=k*/2m+gn. with an energy gap. This approxima- \ye have given a simple derivation of the coupled equations
tion can be used for calculatingand other thermody-  of motion for the condensat®(r) and its excited states, as
namic quantities nedfigg, where the thermally signifi-  given by(8) and(23), respectively. In contrast with previous
cant excitations have a large enough momentum thajvork which was variational in naturfe, our derivation in
the spectrunE,=k?/2m+gn is adequaté’ Sec. Il works directly with a mean-field approximation for
the equation of motion for the condensate)(and noncon-
densate §) parts of the quantum field operator. This brings
In the Popov approximation to the HFBn which the  out the physics involved most clearly and has the advantage
anomalous densityn(r) is omitted, there is a special solu- that one can make contact with the more general Green’s
tion of the generalized Bogoliubov equatio(@3) corre-  function formulatiod® discussed in Sec. lll. The self-
sponding taug(r) =vo(r)=d(r) with E;=0, whered®(r) is  consistent HFB has, of course, the advantage of being deriv-
a solution of(8) with m(r)=0. As with the simpler Bogo- able variationally and thus the total energy is minimized
liubov approximation discussed by Fetfét,one sees in this even if the HFB excitations have certain deficiencies.
case that the condensate wave funcidefr) plays the role Because of the dynamical correlations induced by the
of the zero-energy single-particle mode and the fluctuation8ose-broken symmetry, a consistent theory of excitations is
of the condensate associated withare described by all the surprisingly difficult to formulate even in a dilute Bose gas.
higher energy modesE{>0). In contrast, within the full ~This is already shown when one tries to improve the “gap-
HFB, there is no zero energy solution @3) corresponding ess” Bogoliubov approximation by working with the “con-
to the solutiond(r) of (8). serving” Hartree-Fock-Bogoliubov(HFB) approximation
As we have noted above, conserving approximations fowhich is not “gapless.” Hohenberg and MartitHM) givea
G,(1,1') andGy(1) such as the HFB can be used to gen-Systematic discussion of this problem, introducing a classifi-
erate two-particle Green's functions which are guaranteed t§ation of different approximations. In the present paper, we
satisfy conservation laws and related sum dtéd®and thus  have emphasized the usefulness of the HM classification
will lead to a gapless density-fluctuation spectrum. In addiwhen dealing with inhomogeneous atomic Bose gases in an
tion, we recall that in the presence of a Bose broken symmegxternal potential weft. We have used it to examine the
try, the single-particle and density-fluctuation correlationSingle-particle spectrum predicted by the full HEBS well
functions exhibit the same poléThis fundamental feature as various simplifications of it which have been used in the
holds for both uniform and nonuniform Bose systems, as cafiterature=™"In addition, the HFB has a special significance
be seen, for example, from E@6.38 of Hohenberg and Since it can be used to generate a density-response function
Martin® Thus by using the HFB single-particle matrix Py functional differentiation which turns out to have the
Green’s functionG, to generate the density-response func-Same spectrum as the Beliaev second-order approxintation
tion by functional differentiation, one is effectively generat- for the single-particle Green's functions at all temperatures
ing an “improved” single-particle spectrum which will be PelowTge. o o
gapless. In particular, as discussed on pp. 350-351 of Ref. 4, The reason that finding the “correct” excitation spectrum
the HFB G, generates a density-response function which if @ Bose-condensed gas is complicated is because it is dif-
found to be identical to Beliaev's second-order single-ficult to simultaneously satisfy different requirements within
particle spectrunf.in the uniform case, this equivalence has  given approximation. The Hohenberg-Martin classification
been formally proven atall temperatures in a Bose- Scheme we have used in Sec. Il of this paper does not solve
condensed gas by Cheung and Griffiee Sec. IV of Ref. )8 the problem of finding an approximation which is manifestly
The fact that this new spectrum is gapless follows from the?0thgapless and consistent with conservation laws. An alter-
fact that the Beliaev self-energies satisfy the HP relation if'ative approach which addresses this problem is based on the
(40), with x being given by the HFB result it43). dielectric formalism(for a review, see Sec. 5.1 of Ref.)19
The above procedure shows that the excitations given byis is @ diagrammatic procedure which builds in the close
the Beliaev second-order approximation is the correct genefOnnection between the single-particle and density-response
alization on the HFB excitation spectra. Such calculationdunctions so that their excitation spectra are identical, with
involve evaluating the various bubble or polarization dia-the conservation laws being incorporated through general-
grams[see Eq.(2.30 of Ref. § which involve products of 1zed Ward identities. This formalist cuts across the HM
two HFB single-particle propagatoél. However, at tem- classification and gives a procedure for choosing approxima-

peratures close enough Mg, it is adequate to evaluate 1ONS Which yield both a gapless elementary-excitation spec-

these polarization bubble diagrams using a simple particle;[—rum and relspor|15e ]futrlct|onsblc;ont§|stent Vr\:'th ctong_ervanon
like spectrum such as used in Refs. 2 and 20. aws (sum rules. In a future publication, we hope to discuss

Within a variational calculation, Bijlsma and Stbhave inhomogeneous Bose gases using this dielectric formalism

recently obtainedfor a uniform systemthe equivalent of approactt>*®
the Popov approximation as defined above, but wgithe-

placed by the many-body matrix calculated at finite tem-

perature in the ladder diagram approximation. This extension | would like to thank Hua Shi for discussion as well as
and its relation to the full Beliaev second-order approxima-collaboration on parts of Sec. Il. This work was supported by
tion will be discussed elsewhefe. a research grant from NSERC.
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