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We argue that the gauge-fermion interaction in multiflavor quantum electrodynamics in~211! dimensions is
responsible for non-Fermi-liquid behavior in the infrared, in the sense of leading to the existence of a nontrivial
~quasi!fixed point that lies between the trivial fixed point~at infinite momenta! and the region where dynamical
symmetry breaking and mass generation occurs. This quasifixed-point structure implies slowly varying, rather
than fixed, couplings in the intermediate regime of momenta, a situation which resembles that of~four-
dimensional! ‘‘walking technicolor’’ models of particle physics. The inclusion of wave-function renormaliza-
tion yields marginalO(1/N) corrections to the ‘‘bulk’’ non-Fermi-liquid behavior caused by the gauge inter-
action in the limit of infinite flavor number. Such corrections lead to the appearance of modified critical
exponents. In particular, at low temperatures there appear to be logarithmic scaling violations of the linear
resistivity of the system of orderO(1/N). The connection with the anomalous normal-state properties of certain
condensed-matter systems relevant for high-temperature superconductivity is briefly discussed. The relevance
of the large~flavor! N expansion to the Fermi-liquid problem is emphasized. As a partial result of our analysis,
we point out the absence of charge-density-wave instabilities from the effective low-energy theory, as a
consequence of gauge invariance.

I. INTRODUCTION

One of the most striking phenomena associated with the
high-temperature superconductors is theirabnormalnormal-
state properties. In particular, these substances are known to
exhibit deviations from the known Fermi-liquid behavior,
which are remarkably stable with respect to variations in the
relevant parameters.1 Recently, Shankar2 and Polchinski3

have presented an intuitively appealing idea of using the
renormalization-group~RG! approach, so powerful in par-
ticle and statistical physics, to systems of interacting elec-
trons with a Fermi surface in order to understand, at least
qualitatively, how deviations from Fermi-liquid behavior can
appearnaturally ~as opposed to being fine-tuned!. From this
point of view Landau’s Fermi liquid is nothing else but a
system of free electrons, which has no relevant perturbations,
in the RG sense, which can drive it away from its trivial
infrared fixed point. In general, however, as we integrate out
certain modes of our original theory, some interactions may
become relevant in the RG sense; i.e., their effective cou-
pling may grow as one lowers the momentum scale. Then
two interesting possibilities arise.3 ~i! Fermion bound states
are formed, symmetries are spontaneously broken, and the
low-energy spectrum bears little resemblance to that of the
original theory. In such a case one has to rewrite the effective
theory in terms of the new degrees of freedom: For in-
stance, in the superconducting case this is the Landau-
Ginzburg effective action expressed in terms of the fermion
condensate.~ii ! Alternatively, the growth of the coupling is
cut off by quantum effects at a certain low-energy scale, and
in this way anontrivial fixed-point structure emerges. The
low-energy fluctuations still correspond to fields of the origi-
nal theory despite their nontrivial interactions. This case
leads to observable deviations from the Fermi-liquid behav-
ior.

In the case of the high-Tc materials, the physically inter-
esting question is whether one model theory can be found
with a structure rich enough to describeboth the non-Fermi-
liquid behavior of the normal phaseand the transition to~and
phenomenology of! the superconducting phase. In this article
we shall put forward a candidate model which, as we shall
argue, seems to us to fulfill this role.

It is known that possibility~i! above can be caused by
relevant interactions of superconducting~BCS! or charge-
density-wave~CDW! type, both of which are accompanied
by the formation of fermion condensates. Possibility~ii ! has
only rather recently begun to be seriously explored.2–4 It has
been known for a long time that the electromagnetic interac-
tion of the vector potential can cause deviation from Fermi-
liquid behavior5 but its effects are suppressed by terms of
O[(vF/c)

2], with vF the Fermi velocity andc the light ve-
locity. Its effects occur only at much lower energies than
those relevant to the high-Tc materials. Nevertheless, the
electromagnetic example is suggestive enough, perhaps, to
motivate a search for other~nonelectromagnetic! gauge in-
teractions in which the effective signal velocity would be of
order vF and which might be responsible for a nontrivial
fixed-point behavior. It was precisely this sort of~‘‘statisti-
cal’’ ! gauge-fermion interaction that was studied~in different
forms! in Refs. 3 and 4, and which led to nontrivial fixed-
point structure in the infrared.

Returning now to possibility~i!, we recall that it has been
shown6 that a variant of QED in~211! dimensions~QED3!
leads to superconductivity, characterized, as appropriate to
two space dimensions, by the absence of a local order pa-
rameter~Kosterlitz-Thouless mode!. Thus the exciting possi-
bility arises that a single fermion-gauge theory could de-
scribe both non-Fermi-liquid behavior in the normal phase
and the transition to the superconducting phase.

Formulated in terms ofN species of electromagnetically
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charged fermions, the model of Ref. 6~to which we shall
return in Sec. IV! consists of aCPN21 s model coupled to
the fermions via the gauge field of thes model representing
magnetic spin-spin interactions. The main purpose of the
present article is to present an~approximate!
renormalization-group analysis of a simplified version of this
model, namely, QED3 itself, which indicates that QED3 ex-
hibits two quite different behaviors depending on the mo-
mentum scale. At very low momenta QED3 enters a regime
of dynamical mass generation~DMG!, which in the full
theory leads to superconductivity, but at ‘‘intermediate’’ mo-
menta~see below! DMG does not occur and the dynamics is
controlled by a nontrivial fixed point, leading to non-Fermi-
liquid behavior. Thus we have the possibility of one theory
encompassing both the normal and superconducting phases
of the high-Tc cuprates.

We postpone until Sec. IV a fuller account of the realistic
model we are advocating. Before that, in Secs. II and III, we
shall consider for clarity the simpler case of QED3, which as
we shall see already exhibits the crucial dynamical features
~however, as we shall see in Sec. IV, QED3 describes only a
part of the realistic model believed to simulate the physics of
the high-Tc cuprates!. From this we conclude that the essen-
tial dynamical ingredient in our model is simply that it is a
U~1! gauge theory in two space dimensions.

At this point the reader might worry that applying
renormalization-group techniques to a superrenormalizable
theory like QED3 is redundant, since the theory has no ultra-
violet divergences. However, this is a mistaken view. In the
modern approach to the RG and effective-field theories, one
considers quite generally how a theory evolves as one inte-
grates out degrees of freedom above a certain momentum
scale, moving progressively down in scale. From this point
of view an effective-field-theory description is equally appli-
cable to nonrenormalizable, renormalizable, and superrenor-
malizable theories. However, there are some crucial features
in the case of a superrenormalizable theory. First, the QED3
coupling e introduces an intrinsicintermediate scale e2

which has the dimension of mass, this being directly related
to the superrenormalizability of the theory. The physical ef-
fect of this will be the existence of an intrinsic mass scale,
and we can expect different physics in different regimes of
momenta relative to this mass scale~p@e2, p.e2, p!e2!.

The second distinctive feature of our RG analysis of
QED3, concerns the way in which we introduce a running
coupling. Conventionally, such running couplings are dimen-
sionless, and so, once again, the dimensionfulness ofe2 pre-
sents a distinctive feature. The way in which an effective
dimensionless running coupling can be introduced into QED3
has been shown by Kondo and Nakatani~KN!,7 building on
work by Higashijima8 for QCD4. The crucial step is to con-
sider the effect of wave-function renormalization in the
Schwinger-Dyson~SD! equations, as controlled by a large-N
approximation. In this case, one considers the theory at large
N with a5e2N held fixed and the dimensionless coupling
that runs is essentially 1/N.

KN actually considered only the regime in which dynami-
cal mass generation~chiral symmetry breaking! occurs, and
of course here the gauge coupling is becoming strong and the
use of a large-N expansion is unavoidable. What we shall do
~in Sec. II! is to identify the ‘‘normal’’ ~no dynamical mass

generation! regime of the theory and extend the RG-type
analysis of KN to this normal regime. We shall argue that
there exists a nontrivial fixed point of the effective dimen-
sionless coupling, which governs the dynamics for a range of
intermediatemomentap.a, lying between the trivial fixed
point at p@a and the regionp!a of dynamical mass gen-
eration. Important to this analysis will be the introduction
~following KN! of an infrared cutoffe, which serves to de-
lineate the different momentum regimes.

The analysis of Sec. II is performed at zero temperature,
and in Sec. III we shall try to connect this to finite-
temperature calculations by interpreting the temperature as
an effective infrared cutoff. We present an approximate com-
putation, at finite temperature, of the electrical resistivityr of
the fermionic system. We argue that it is the existence of the
nontrivial RG fixed point which is responsible for the fact
that the non-Fermi-liquid behavior~r approximately propor-
tional to the temperatureT! is observed over so large a tem-
perature range. Wave-function renormalization effects, im-
portant atO(1/N), lead to calculable logarithmic deviations
from the linear-in-T behavior.

Before proceeding further, it is useful to compare and
contrast our approach with two other recent explorations of
gauge theories in~211! dimensions in a similar context, by
Polchinski3 and by Nayak and Wilczek.4 Both works deal
with fermions interacting with a statistical gauge field, the
latter representing magnetic spin-spin interactions~as in our
CPN21 sector; see Sec. IV!. In both, the fermions represent
spin quasiparticle excitations~spinons!, and they should
therefore not be identified with the carriers of ordinary elec-
tric charge~holes or electrons!. This is to be sharply con-
trasted with our own model of Sec. IV, in which the spin-
charge separation is done differently, leading to the fermions
in our model carrying both statistical and ordinary charge.

The model of Ref. 4 consists of a gauge-fermion interac-
tion, in the presence of a modified four-fermion interaction
of a long-range 1/kx form, with k the momentum. An impor-
tant role is also played by aP- andT-violating term in the
form of a Chern-Simons interaction for the gauge field. The
latter is responsible for enslaving gauge-field fluctuations to
density fluctuations. In the casex,1 this results in a relevant
gauge-fermion interaction. Nayak and Wilczek4 have shown,
by employing a systematic expansion in powers of 12x, the
existence of a nontrivial infrared fixed point responsible for
deviations from Fermi-liquid behavior. The importance of
the Chern-Simons interaction lies in the fact that it allows,
through the constraint implied by integrating out the tempo-
ral component of the statistical gauge field, a rewriting of the
nonlocal 1/kx–four-Fermi interaction as a Maxwell-like term
for the gauge field but with modified 1/kx momentum behav-
ior. The ordinary Maxwell term corresponds tox50, while
the Coulomb interaction corresponds tox51. Up to its non-
relativistic form, which is a consequence of the nonrelativis-
tic character of the fermion-gauge system with a Fermi sur-
face, this situation is qualitatively similar to the dimensional
reduction of the ordinary Maxwell term from four to three
space-time dimensions.6 Indeed, in that case, a three-
dimensional Maxwell term for the electromagnetic fieldAM ,
M51,2,3, corresponding to the projection of a four-
dimensional theory onto the spatial plane, results in a
Coulomb-like form for the gauge field kinetic term
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E d3x FMN~A!
1

A¹2
FMN~A!. ~1!

This result is due to the fact that in three space-time dimen-
sions the Green’s functions for the dimensionally reduced
Maxwell field are modified appropriately to yield the above
‘‘square-root-of-¹2’’ behavior ~1!. It is natural, therefore, to
imagine that a behavior (A¹2)211e may be attributed to
quasiplanar geometries or to deviations from three space-
time dimensions as in dimensional regularizationD531e
with e51 corresponding to the~Maxwell! four-dimensional
kinetic term.

From this analogy one can understand that the parameter
12x of Ref. 4 plays a role similar to that of thee parameter
of Wilson or of dimensional regularization. This is the ad-
vantage of the method of Ref. 4, in the sense of providing a
controlled expansion in powers of 12x, which can lead to a
nontrivial fixed point for the gauge-fermion interaction at
weak coupling.

The above work makes explicit use of parity- (P-) and
time-reversal- (T-) breaking effects of the ground state,
which, however, is difficult to reconcile with experiment at
present. To avoid this difficulty, Polchinski3 examined the
possibility of a nontrivial infrared fixed point in aP- and
T-conserving situation in which the only nontrivial interac-
tion in the effective Lagrangian of spinons is that with the
statistical gauge field without any Chern-Simons term. This
is formally the same as the essential fermion-gauge sector of
our own model, but with the crucial physical difference—to
repeat—that our fermions will~in Secs. III and IV! carry
electric charge, whereas Polchinski’s cannot. To have a con-
trollable expansion Polchinski3 employed a large-N analysis
in the fermionic flavors by extending the SU~2! spin group to
SU(N), N→`. He presented a Schwinger-Dyson analysis for
the propagators of the fermion and gauge fields, which he
solved in a closed form to leading order in the 1/N expansion
by invoking a tree-levelAnsatzfor the gauge-fermion vertex
at largeN at low energies. Renormalization, then, implies
that the gauge-fermion interaction is promoted from irrel-
evant tomarginal, thereby sowing the possibility of a non-
trivial fixed point of this model in the infrared and, hence, its
non-Fermi-liquid behavior. Because the kinetic term for the
gauge field assumes the normal Maxwell form, the results of
Polchinski can probably be classified as belonging to the
x50 universality class in the language of Nayak and
Wilczek.4 The criticism that one may make of Polchinski’s
approach is the fact that he neglects renormalization effects
on the vertex, which can lead to a nonconsistent expansion in
1/N. Such effects were crucial in the work of Nayak and
Wilczek in order to get a controllable expansion in the ferm-
ion self-energy calculation at~resummed! one loop.

The important observation in Polchinski’s work, which
will be directly relevant for our purposes here, is that kine-
matics implies that the most important interactions among
fermions are those which pertain to fermionic excitations
whose momentum components tangent to the Fermi surface
are parallel. This is the only way that the gauge-field mo-
mentum transfer can still be relatively large as compared to
the distance of the fermion momenta from the Fermi surface,
as required by special kinematic conditions.3 There are two
cases where such conditions are met in condensed-matter

physics. The first pertains to nested Fermi surfaces, at which
the points with momentak0 and2k0 have parallel tangents.
This is the situation relevant to BCS or CDW interactions.
The other situation, which is the bulk of Polchinski’s work
and will be of interest to us as well, is the case where the
fermions are close to a single point on the Fermi surface.
This means that the most important fermion interactions are
those which are local on the Fermi surface, and hence quali-
tatively this situation can be extended to relativistic~Dirac!
fermions as well, since the dispersion relations become ef-
fectively linear.6

Another important point, which was recently pointed out
by Shankar2 in connection with the RG approach to interact-
ing fermions, is the use of an effective large-N expansion in
cases where the effective momentum cutoffL is much
smaller than the size of the Fermi surfacekF , L/kF→0. Such
a situation is encountered in a RG study of~deviations from!
Fermi-liquid theories, the Landau Fermi-liquid theory being
defined as a trivial infrared fixed point in a RG sense. To
understand the connection of a large-N expansion with infra-
red behavior of excitations, one should recall the work of
Ref. 9 where the RG approach to the theory of the Fermi
surface has been studied in a mathematically rigorous way.
The basic observation of Ref. 9 is that, unlike the case of
relativistic field theories, in systems with an extended Fermi
surface, the fermionic excitation fields exhibiting the correct
scaling are not the original excitations,cx ~x a configuration
space variable!, but ratherquasiparticleexcitations defined
as

cx5E
uVu51

dV eikFV•xcx,V5E
uVu51

dV ei ~kFV2K !•xc̃K ,V ,

~2!

where for the sake of simplicity we assumed that the Fermi
surface is spherical with radiuskF , V is a set of angular
variables defining the orientation of the momentum vector of
the excitation at a point on the Fermi surface, and the tilde
denotes ordinary Fourier transform in a momentum spaceK .
These quasiparticle fields have propagators with the correct
scaling,9 which allows ordinary RG techniques, familiar
from relativistic field theories, to be applied, such as the
appearance of renormalized coupling constants, scaling
fields, etc. Indeed, it is not hard to understand why this is so.
For this purpose it is sufficient to observe that for largekF
the exponent of the exponential in~2! is nothing other than
the linearization, k[K2kFV, about a point on the Fermi
surface, which makes these quasiparticle excitations identifi-
able with ordinary field variables of the low-energy limit of
these condensed-matter systems. The latter is a well-defined
field theory.6 The crucial point in this interpretation is that
now the field variables will depend on ‘‘internal degrees of
freedom’’ V, which denote angular orientation of the mo-
mentum vectors on the Fermi surface. In two spatial dimen-
sions, which is the case of interest,V is just the polar angle
u. Following Ref. 2, we discretize this angular space into
small cells of extentf (L/kF)!1, e.g.,f5L/kF :

E d2k

4p2[E
2L

L dk

2p E
f ~L/kF!

f ~L/kF!

kF
du

2p
, ~3!
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wherek denotes a linearizing momentum about a point on
the Fermi surface. Doing so, we observe2 that when looking
at interaction terms involving fermionic particle-antiparticle
pairs c̄c the leading interactions are among those fermion-
antifermion pairs for which the creation and anihilation op-
erators lie within the same angular cell. This is for purely
kinematic reasons in the infrared regimeL!kF , similar to
those mentioned previously,3 which implied that the most
important fermion interactions on the Fermi surface must be
among excitations which have their tangents to the Fermi
surface parallel. It is, then, straightforward to see that inter-
action terms involving either gauge excitations or just fermi-
ons resemble those in large-N relativistic field theories, given
that the onlyL dependence appears through proportionality
factors f (L/kF)!1 in front of the interactions, in the infra-
red. One, then, identifies 1/N with f (L/kF)!1, and the only
difference from ordinary particle-physics large-N expansions
is the dependence of this effectiveN on the cutoffL: that
is to say, 1/N runs.

As we shall show in the next section, however, large-N
expansions in three-dimensional QED can exhibit such a
scale dependence. Wave-function renormalization leads to a
renormalized ‘‘running’’ 1/N. Instead of finding a nontrivial
infrared fixed point, we shall demonstrate the existence of an
~intermediate! regime of momenta, where the effective run-
ning of the gauge coupling, which is essentially 1/N times a
spontaneously appearing scale, is slowed down considerably,
so that one encounters a quasifixed-point situation. As we
shall argue, this quasifixed-point structure is sufficient to
cause~marginal! deviations from the Fermi-liquid picture. In
view of the above, this makes such theories plausible candi-
dates for a correct qualitative description of deviations from
Landau Fermi-liquid theory. This has obvious relevance to
the normal-phase properties of~realistic! condensed-matter
systems,6 advocated in Sec. IV, which are believed to simu-
late the physics of the high-Tc cuprates.

II. QED 3: SUPERRENORMALIZABILITY, RUNNING
COUPLINGS, AND NONTRIVIAL „QUASI…FIXED-POINT

STRUCTURE

A. Wave-function renormalization and running flavor number

Three-dimensional quantum electrodynamics~QED3! has
recently received a great deal of attention10–18not only as a
result of its potential application to the study of planar high-
temperature superconductivity,6 mentioned in the Introduc-
tion, but also because of its use as a prototype for studies of
chiral symmetry breaking in higher-dimensional~non-
Abelian! gauge theories.19

However, despite the theory’s apparent simplicity, the
situation is not at all clear at present. A great deal of contro-
versy has arisen in connection with the role of wave-function
renormalization. In the early papers10 the wave-function
renormalizationA(p) was argued to be 1 in Landau gauge to
leading order in 1/N, whereN is the number of fermion
flavors, and thus was ignored. More detailed studies, how-
ever, showed14 that the precise form, within the resummed
1/N graphs, ofA(p) is

A~p!5S pa D 8/3Np2

, ~4!

where a5e2N is the dimensionful coupling constant of
QED3, which is kept fixed asN→`. It is clear from~4! that,
although at energiesp.a the wave function is of order 1
however at low momentap!a relevant for dynamical gen-
eration of mass, the wave-function renormalization yields
logarithmic scaling violations which could affect14 the exist-
ence of a critical number of flavors,Nc , below which, as
argued in Ref. 10, dynamical mass generation occurs. How-
ever, this result was not free of ambiguities either, given that
the inclusion of wave-function renormalization necessitates
the introduction of a nontrivial vertex function. The exact
expression for the latter is not tractable, even to order
O(1/N), and one has to assume variousAnsätze14 that can
be questioned. The situation became clearer after the work of
Ref. 7, which showed that the introduction of an infrared
cutoff affects the results severely, depending on the various
Ansätze used for the vertex function. In particular, as the
authors of Ref. 7 showed, there are extra logarithmic scaling
violations in the expression forNc , depending on the form of
the vertex function assumed, which render the limit where
the infrared cutoff is removed not well defined.

For our present purposes, however, we are not so much
interested in whether the inclusion of wave-function renor-
malization leads to a criticalNc or not, as in the more general
point that, as noted by Kondo and Nakatani~KN!,7 following
Higashijima,8 the vacuum polarization contribution toA pro-
duces effectively a running coupling, even in the case of the
superrenormalizable theory of QED3. KN’s analysis was
restricted to the regime of dynamical mass generation, and
our main purpose in this section is to extend that to the
‘‘normal’’ regime where mass is not dynamically generated.
We emphasize now, however, that ifA is set equal to unity at
the outset, the power of the running coupling concept to
unify both regimes is completely lost.

We therefore continue with a brief review of the analysis
of Ref. 7. Their vertexAnsatzwas assumed to be

Gm~q,p!5gmA~p!n[gmG~p2!, ~5!

where p denotes the momentum of the photon. The
Pennington-Webb14Ansatzcorresponds ton51, where chiral
symmetry breaking occurs for arbitrarily largeN.20 It is this
case that was argued to be consistent with the Ward identities
that follow from gauge invariance.14 In this paper we shall
concentrate on the generalizedAnsatz, with nÞ1, and in par-
ticular we shall discuss its finite-temperature behavior. We
keep the exponentn arbitrary7 and discuss qualitatively the
implications of the vertexAnsatzfor various ranges of the
parametern. As we shall argue below, this is crucial for the
low-energy renormalization-group structure of the model.

Using theAnsatz~5!, Kondo and Nakatani7 proceeded to
analyze the Schwinger-Dyson~SD! equations, in the regime
of dynamical mass generation, in terms of a running cou-
pling as follows. Their~approximate! SD equation forA(p)
is ~in the Landau gauge!

A~p!512
g0
3 E

e

a

dk
kA~k!G~k2!

k2A2~k!1B~k2!

3H S kpD 3u~p2k!1u~k2p!J , ~6!
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whereg058/p2N, N is the number of fermion flavors, ande
is an infrared cutoff. In the low-momentum region relevant
for dynamical mass generation,p!a and the first term in the
right-hand side of~6!, cubic in k/p, may be ignored. Then,
taking into account thatG(k2)5A(k)n and using the bifur-
cation method in which one ignores the gap functionB(k) in
the denominators of the SD equations, one obtains easily

A~ t !512
g0
3 E

t

0

ds An21~s!, ~7!

which has the solution

A~ t !5S 11
22n

3
g0t D 1/~22n!

, t[ ln~p/a!. ~8!

Substituting to the SD equation for the gap, one then obtains
a running coupling7 in the low-momentum region,

gL5
g0

11
22n

3
g0t

, ~9!

which, we note, is actually independent ofe. The existence
of the dimension less parametergL in QED3 may be associ-
ated with the ratio of the gauge couplinge2/a, given that in
the large-N analysis the natural dimensionful scalea has
been introduced. Thus a renormalized runningN21 might be
thought of expressing ‘‘charge’’ scaling in this superrenor-
malizable theory. In particular,~9! implies that theb function
corresponding togL is of ‘‘marginal’’ form,

bL[2
dgL

dt
5
22n

3
~gL!2. ~10!

Thus, depending of the sign of 22n, one might havemar-
ginally relevant or irrelevant couplingsgL}e2/a. The first
derivative of theb function with respect to the couplinggL is

d

dgL
~bL!52

22n

3
gL, ~11!

and sincegL.0 by construction, its sign depends on the sign
of n22. For n,2 ~the marginally relevant case!, the gauge
interaction decreases rapidly as one moves away from low
momenta, and the theory is ‘‘asymptotically free.’’7 If n.2
~marginally irrelevant!, on the other hand, thengL(t) tends to
zero in the low-momentum region, while forn52 the cou-
pling is exactly marginal and one recovers the results of
Refs. 10 and 15 about the existence of a critical flavor num-
ber. Gauge invariance, in the sense of the Ward-Takahashi
identity, seems to imply14,15 n<2, and this is the range we
shall explore in this article.

Our problem now is to extend~9! beyond the regionp!a.
Consider first the true ultraviolet regionp→`. Assuming for
the moment that~9! were correct forp@a, one finds a zero
of the b function at the pointt→`, the trivial fixed point
g*50, which is an ultraviolet fixed point. However,~9! or
~10! is not reliable for the range of momenta,p@a. Both
formulas have been derived in the regime of momenta rel-
evant to the dynamical mass generation,p!a.

This being so, do we have an alternative argument for a
trivial ultraviolet fixed point? The answer is affirmative. To

this end we use the results of Ref. 21 employing a quenched
fermion approximation in large-N QED. The result of such
an investigation is that once fermion loops are ignored, and
hence only tree-level graphs~ladder! are taken into account,
the wave-function renormalization is rigorously proved to be
trivial in the Landau gauge:

A~p!quenched51. ~12!

This result is a consequence of special mathematical rela-
tions of resummed ladder graphs in Schwinger-Dyson equa-
tions. Now, in our case, one observes that in the high-energy
regimep→` the ~1/N!-resummed gauge-boson polarization
tensor vanishes asP(p→`).a/8p→0. Thus the situation
is similar to the quenched approximation, which implies the
absence of any wave-function renormalization~12! and,
therefore, the vanishing~triviality ! of the effective~running!
coupling constantg in the ultraviolet regime of momenta.
This is in qualitative agreement with the naive estimate made
above, based on the formulas~9! and ~10!.

The situation is, therefore, as follows. The coupling grows
from the trivial fixed point~ultraviolet regime!, where there
is no mass generation to stronger values as the momenta
become lower. According to the naive formula~10!, this cou-
pling grows indefinitely for low momenta and the perturba-
tion expansion breaks down. But—to repeat—~9! was de-
rived for the regimep!a, and the question now arises
whether nothing new happens from this regime all the way
up top→`, or whether there is interesting structure at inter-
mediate scales. In particular, we might envisage a
‘‘quasifixed-point’’ situation, in whichg remains more or
less stationary around the valueg~0! for a wide range oft
below t50, before commencing to grow rapidly at very low
momenta.

B. Nontrivial „quasi…fixed-point structure at intermediate
momenta

The answer to the above question turns out to reside, es-
sentially, in the infrared cutoffe @which, as we noted above,
actually disappeared from~9!#. The coupling of~9! is ‘‘as-
ymptotically free’’ ~i.e., grows rapidly in the far infrared! for
n,2, providedthat the ratioa/e is large enough, and in this
case dynamical mass generation~DMG! occurs. To get to the
region where DMG does not occur, we must consider smaller
values ofa/e, tending ultimately to unity. This is the region
that will yield the effective nontrivial fixed-point structure.
In this case,p.a and hence the only allowed region for the
momentumk in ~6! is k<p, which now eliminates thesec-
ond term in ~6!. Solving then~6! in this approximation~and
takingB50 since DMG does not occur!, with the vertex~5!,
one obtains

A~p!512
g0
3 E

e

p dk

k S kpD
3

An21~k!

512
g0
3 E

t02t

0

ds e3sAn21~s!, ~13!

which can be easily solved with the result

53 9325DEVIATIONS FROM FERMI-LIQUID BEHAVIOR IN ~211!- . . .



A~ t !5S const1 22n

9
g0e

3t023tD 1/~22n!

, ~14!

where the ‘‘const’’ is a positive one and can be found from
the value of the wave-function renormalization at
t5ln~e/a![t0, namely,A(t0)51. From ~13! this yields the
value

const512
22n

9
g0 .

Substituting~14! back to the gap equation, one obtains a
running coupling constant in this new intermediate regime,

gI[
g0e

3t

S 12
22n

9
g0De3t1 22n

9
g0e

3t0

5
g0

12
22n

9
g01

22n

9
g0S e

pD
3 . ~15!

We note that just as the ‘‘lower scale’’e disappeared from
~9!, so the ‘‘intermediate scale’’a is absent from~15!.

Let us study the fixed-point structure of this
renormalization-group flow. To this end, consider theb func-
tion obtained from~15!:

b I52
dgI

dt
523gI1

3

g0
S 12

22n

9
g0D ~gI !2. ~16!

Taking into account thatg058/p2N, we observe that the
vanishing ofbI occurs not only atgI50, but also at the
nontrivial point,

g
*
I 5

8

p2N S 12
22n

9

8

p2ND 21

, ~17!

which indicates the existence of a fixed point lying at a dis-
tance ofO(1/N), for N→`, from the trivial one.

For what momenta is this fixed point reached? Accepting
~15! at face value, the answer would be that it is reached for
p→`. But of course~15! is not valid forp@a, being appro-
priate fore,p,a, where the ratioe/a is smaller than unity,
though not so very small thatp can enter the region of DMG.
Referring then to the right-hand side of the second equality
in ~15!, we see that whenp.a the quantitygI will be very
close tog

*
I , differing from it by terms of order

S e

a D 3 1

N2 ,

which is negligible. Indeed, asp moves down top.e, gI

arrives atg0, which is still within ~1/N2! of g
*
I . Thus the

crucial point is that there is, on the basis of this admittedly
approximate analysis, a significant momentum region over
which the couplinggI varies very slowly, and we are in a
‘‘quasifixed-point’’ situation. In a sense, this slow variation
of gI in the rangee,p,a ~for not too smalle! provides a
reconciliation between the normalizations adopted in the two
different approximations~9! and ~15!, namely, between
gL(p5a)5g0 andg

I(p5e)5g0 .

The new fixed point occurs at weak coupling for largeN.
This is consistent with the interpretation that such a fixed
point should characterize a regime of the theory, as deter-
mined by the ratioa/e, where dynamical mass generation
does not occur.

In summary, then, our analysis suggests a significant
modification of the picture presented by Kondo and
Nakatani.7 Whereas those authors only considerede!a,
which is the regime of ‘‘asymptotic freedom’’ and DMG, we
have explored also the region of smaller values ofa/e and
have concluded that here quantum corrections create a quas-
ifixed point with weak coupling.Both regions ofa/e will be
important in our application of these results to the cuprates,
as we discuss in Sec. III, where we shall try to relate thee of
this QED3 with the temperatureT of QED3 at finite tempera-
ture.

At this stage, it is worth pointing out the similarity of the
above-demonstrated ‘‘slow running’’ of the effective gauge
coupling g at intermediate scales with~four-dimensional!
particle physics models of ‘‘walking technicolor’’ type.22

Such models pertain to gauge theories with asymptotic free-
dom and involve regions of momentum scale at which effec-
tive running couplings move very slowly with the scale, ex-
actly as happens in our~asymptotically free! QED3 case.@A
similarity of QED3 with walking technicolor had also been
pointed out previously,23 but from a different point of view.
In Ref. 23, a formal analogy of QED3 with walking techni-
color models was noted, based on the role of fermion loops
in softening the logarithmic confining gauge potential to a
Coulombic 1/r type, in the infrared regime of momenta. This
1/r behavior of the potential, and its relevance to dynamical
chiral symmetry breaking, is common in both theories. The
formal analogy between QED3 and walking technicolor theo-
ries is achieved23 by replacing the couplingg2 of the four-
dimensional theory by 1/N of QED3. However,N of Ref. 23
does not vary with the energy scale, since wave-function
renormalization effects have not been discussed in their case.
This is the crucial difference in our case, where there is more
precise analogy with walking technicolor theories, due to the
slowing down of the variation of the ‘‘effective’’N ~15! with
the ~intermediate-!energy scale.# This slow running of the
coupling results in such theories in a significant enhancement
of the size of the fermion condensate. In our case, such con-
densates are responsible for an opening of a superconducting
gap, and therefore one could associate the slow running of
the coupling at intermediate scales with the suppression of
the coherence length of the superconductor~inverse of the
fermion condensate! in the phase where dynamical mass gen-
eration occurs. Such a suppression, as compared to the pho-
non~BCS! type of superconductivity, which is an experimen-
tally observed and quite distinctive feature of the high-Tc
cuprates,24 appears then, in the context of the above gauge
theory model,6 as a natural consequence of the nontrivial
quasifixed-point renormalization-group structure. Note that
in Ref. 6 the enhancement of the superconducting-gap–to–
critical-temperature ratio, as compared to the standard BCS
case, had been attributed to the superrenormalizability of the
theory and theT independence of quantum corrections, fea-
tures which are both associated with the above quasifixed-
point ~slow running! situation as discussed above. It is un-
derstood, of course, that before we arrive at definite
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conclusions about the actual size of the coherence length in
the model, we should be able to perform exact calculations
by resumming the higher orders in 1/N to see whether these
features persist. At present this is impossible analytically, but
one could hope for~nonperturbative! lattice simulations of
the above systems.6,25

C. Effect of wave-function renormalization on the effective
fermion-fermion interactions and nontrivial „quasi…fixed

points

Despite the important physical differences between the
models, it is worth comparing the above results with the
model of Ref. 4, where a nontrivial infrared fixed point in the
running of the effective gauge-fermion coupling was associ-
ated with the presence of a modified fermion-fermion inter-
action, of long-range 1/px type, with p the momentum. As
mentioned in the Introduction, the model made explicit use
of a P- and T-violating Chern-Simons interaction for the
statistical gauge field. The nonrelativistic nature of the sys-
tem of Ref. 4 was not important. What was important was
the deviation from pure Coulombic behaviorx51, which
itself leads only to marginal deviations from Fermi-liquid
behavior. In our case, as we shall argue below, the role ofx is
played by 12O(1/N). The deviation from the Coulombic
interactions among fermions is caused by the nontriviality of
1/N, and the~marginal! Coulomb interaction would be re-
covered in the infinite fermion flavor limit.

To make formal contact with the results of Ref. 4, it is
essential to compute the~zero-temperature! effective poten-
tial among our fermions, with wave-function renormalization
included. This is straightforward and we present the result
below. The zero-temperature static potential among fermions
is given by them50, n50 form of the gauge-boson propa-
gator. In Ref. 6 the effects of wave-function renormalization
were ignored, which is an accurate result only in theN→`
limit, where the ‘‘mean-field’’ theory is recovered. This is the
Landau Fermi-liquid fixed point. The 1/N corrections yield a
nontrivial wave-function renormalization effect. Resumming
the 1/N corrections, in an improved renormalization-group
framework, and using theAnsatz~5! for the effective vertex,
we can compute the effective static potential in a straightfor-
ward manner with the result

V~p!}
a

8
p16n/3p2Np21, ~18!

which makes contact with the effective potential of Ref. 4 if
one identifiesx51216n/x23N,1.

D. Comments and comparison with other works

Before closing this section it would be useful to compare
our results with the works of Refs. 26 and 27, concerning
existence, as well as gauge invariance, of a critical number of
flavors. As we have mentioned above, our work does not
deal directly with this issue, which pertains to the infrared
momentum regime, but rather with the effects of the wave-
function renormalization at intermediate momenta, in the
presence of an infrared cutoff, which, as we shall argue be-
low, could be interpreted as expressing finite-temperature ef-
fects. In the presence of an infrared cutoff, a critical number

of flavors has been shown to exist, albeit depending on it.7,16

The issue of gauge invariance of the result is still unresolved.
The complexity of the situation can be understood probably
better if we draw an analogy of the~finite! infrared cutoff
with the temperature scale. In such a case, there are known17

unresolved ambiguities appearing in the low-momentum re-
gime of the theory, due to nonanalyticities of the effective
action.

Below we would like first to compare the results of Ref. 7
to those of Refs. 26 and 27. In Ref. 26, it has been argued, on
the basis of a power-counting analysis, which did not make
any use of the Ward-Takahashi identities, that there is no
renormalization ofN to any order in 1/N, in the infrared
regime of the model. The arguments were based on the soft-
ened Coulombic form of the gauge-boson propagator in the
infrared, as a result of fermion vacuum polarization:
Dmn.(1/q)[gmn2(12j)qmqn/q

2], in an arbitraryj gauge,
for small momentum transfersq!a. It is worth noticing that
such arguments appear to apply equally well to Abelian as
well as non-Abelian theories, since in the latter case non-
Abelian three or four-gluon interactions could not contribute
to the potential scaling-violating interactions. This analysis
has been performed without implementing an infrared cutoff,
due to the infrared finiteness of the~zero-temperature!
theory. In the work of Ref. 7, which is applied to the infrared
regime, an infrared cutoff is introduced, which changes the
scaling properties of the gauge-boson propagator. In this
case, the scale-invariant situation seems to occur only for the
valuen52 in the vertexAnsatz, which notably does not sat-
isfy the Ward-Takahashi identities.14As we have seen, gauge
invariance requiresn51, and in that case there exists a run-
ning N, at infrared momentum scales, as well as a finite
critical flavor number, which, however, is infrared cutoff de-
pendent and diverges in the limit where the cutoff is re-
moved.

We can also compare this result with that of Ref. 27,
which claims to have proven the gauge invariance of the
critical number of flavors in QED3. There, a nonlocal gauge
fixing was used; this mixes orders in 1/N expansion, in the
sense that the gap function in the SD equations contains now
graphs ofO(1/N2), while the wave-function renormalization
still remains ofO(1/N). In contrast, the analysis of Ref. 7
remains consistently at leading order in 1/N and in the Lan-
dau gauge. The meaning of the nonlocal gauge fixing is not
clear if one stays consistently within an order-by-order 1/N
expansion. Nor does gauge invariance make complete sense
in the presence of an infrared cutoff.

Thus the key to a possible explanation of the discrepancy
between the works of Refs. 26 and 27 and Ref. 7 seems to be
hidden in the higher orders in the large-N expansion, as well
the presence of the infrared cutoff. Notice that a naive re-
moval of the infrared cutoff might lead to ambiguities, as
becomes clear from the work of Ref. 17, for finite-
temperature field theories, provided that one makes16 the
~physically sensible! identification and/or analogy of the in-
frared cutoff with the temperature scale, at least within a
condensed-matter effective-theory framework.

Now we come to our case. As we shall argue, our results
can offer a way out of the above-mentioned discrepancy. For
us, the momentum regime of interest is not the infrared one,
where dynamical mass generation occurs, but the intermedi-
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ate scale. In this regime, the power-counting arguments of
Ref. 26 do not apply, since the gauge-boson propagator does
not have a simple Coulombic behavior. Thus the wave-
function renormalization effects, which appear to exist in
our, admittedly rough, truncation of the SD equations, might
not be incompatible with the results of Ref. 26, pertaining to
the existence of a critical flavor number. From our point of
view, this would mean that, although there is a~slow! run-
ning of an effectiveN and thus scale invariance is marginally
broken, however, the running of the coupling is even more
suppressed in the infrared, where strong quantum effects cut
off the increase of the~asymptotically free! coupling. The
infrared cutoff then, appears as the~spontaneous?! scale,
above which a slow running of the~asymptotically free! cou-
pling becomes appreciable. In a condensed-matter-inspired
framework, such a spontaneously appearing scale makes per-
fect sense, if one associates the infrared cutoff with the tem-
perature scale.16 For momenta sightly above the infrared cut-
off, then, the situation of KN~Ref. 7! seems to be valid. This
regime may be viewed as the boundary regime for which
dynamical mass generation still can happen. Below the infra-
red scale, which is a regime that makes perfect sence in a
infrared-finite theory such as QED3, dynamical mass genera-
tion certainly occurs, and the arguments of Ref. 26 apply,
leading to an effective cutoff of the increase of the coupling
constant. In this regime, the gauge-boson propagator as-
sumes a softened Coulombic 1/r form, which has been ar-
gued to be important for a~superconducting! pairing attrac-
tion among fermions~holes! in the model of Ref. 6. Such a
situation, which is depicted in Fig. 1, was envisaged in Ref.
8 for the case of chiral symmetry breaking in four-
dimensional QCD, which in this way was deassociated from
the confining properties of the theory.

In the work of KN Ref. 7 and ours, all these issues could
be confirmed only if a more complete analysis of the SD
equations, including higher-order 1/N corrections, is per-
formed. Whether resummation to all orders in 1/N washes
out completely the wave-function renormalization effects at
intermediate momenta, leading to anexactly marginal~scale-
invariant! situation or keeps this effect at a RG marginal
level remains an unresolved issue at present. On the basis of
the above discussion, one would expect that marginal devia-
tions from scale-invariant behavior at intermediate momenta,
such as the ones studied in the present work, survive higher-
order analyses, but they also lead to a critical number of
flavors, since the latter is an entity pertaining to the infrared
regime of the theory. Moreover, for us, who are interested in
performing the analysis in a condensed-matter rather than
particle-theory framework, there is the issue of the ambigu-
ous infrared limit of the theory at finite temperatures, which
is by no means a trivial matter.17 It seems to us that all these
important questions can only be answered if proper lattice
simulations of the pertinent systems are performed. At
present, the existing computer facilities might not be suffi-
cient for such an analysis.

However, as we shall argue below, the slow running of the
coupling constant of the model at intermediate-momentum
scales, if true, is a desirable effect from a condensed-matter
point of view, where both infrared and ultraviolet cutoffs
should be kept. The wave-function renormalization effects,
discussed above, prove sufficient in leading to a~marginal!
deviation of the theory from the Fermi-liquid fixed point. At
finite temperatures, this effect can have observable conse-
quences and might be responsible for the experimentally ob-
served abnormal normal-state properties of the high-Tc cu-
prates, the physics of which the above gauge theories are
believed to simulate. We stress once again that such effects
would be absent in an exactly marginal situation, like the one
suggested in Ref. 26.

III. LINEAR BEHAVIOR OF THE RESISTIVITY IN QED 3

WITH THE TEMPERATURE SCALE

In this section we want to connect the above picture of the
behavior of QED3 at zero temperature to that of the same
theory at finite temperature,T. In the absence, again, of any-
thing like an exact solution in theTÞ0 case, approximations
~quite possibly severe ones! will have to be made. However,
the physical aim is clear: We want to connect the experi-
mental observation that the electrical resistivity in the normal
phase of the high-Tc superconductors varies linearly withT
over a wide range inT from low temperatures up to a scale
of 600 K, to the existence of the nontrivial quasifixed-point
structure of QED3 found in the previous section. Qualita-
tively, the way we shall make the connection is to interpret
the temperature in finite-T QED3 as ~related to! an effective
infrared cutoff. This will follow from the form of the gauge-
boson propagator forT.0, to which we now turn.

A. Gauge-boson propagator at finiteT>0

The gauge-boson propagatorDmn is given by the expres-
sion

Dmn
21~p0 ,P,b!5Dmn

~0!21~p0 ,P,b!1Pmn~P,p0 ,b!, ~19!

FIG. 1. Running flavor number in QED3. The coupling is
asymptotically free upon the Pennington-Webb choice for the ver-
tex function~5!, corresponding ton51, as dictated by gauge invari-
ance. The increase of the coupling is cut off at the infrared, as a
result of the Coulombic form of the gauge-boson propagator due to
fermion vacuum polarization. Above a certain infrared scalee, the
coupling starts running slowly, a situation resembling that of walk-
ing technicolor. This kind of behavior is argued to be responsible
for ~marginal! deviations from the Fermi-liquid picture in a
condensed-matter framework.
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where the vacuum polarization is given by

Pmn5PT~P,p0 ,b!Pmn1PL~P,p0 ,b!Qmn . ~20!

The transversePmn and longitudinalQmn tensors are given,
respectively, by

Pmn52dm i S d i j2
PiPj

P2 D d jn ,

Qmn52S gm02
pmp0
p2 D p2

P2 S g0n2
p0pn

p2 D ,
Qmn1Pmn5gmn2

pmpn

p2
. ~21!

The zero-temperature polarization tensor of the gauge boson
is P(p,b→`)5ap/8. Thus, for low-energies, relevant for
the definition of resistivity, thep22 behavior of the gauge-
boson propagator is softened top21. For finite temperatures,
on the other hand, this behavior is softened even more. In the
instantaneous approximation, one finds12 a ‘‘longitudinal’’
gauge-boson mass term proportional to

P00~P→0,p350,b!5
2a ln 2

pb
[2vp

2 , ~22!

whereP is the magnitude of the spatial momentum. Thus we
see that, in this approximation, the temperature has intro-
duced an effective infrared cutoff;Aa/b. Interpreting this
as thee of the previous section, we find that the role of the
all-important ratio a/e is played by Aba. The
‘‘intermediate’’-momentum region is thenAba*1, while
the DMG regionAba@1 ~or T!a!.

In the instantaneous approximation the transverse gauge
bosons remain massless.12 However, beyond the instanta-
neous approximation,18 one obtains temperature-dependent
corrections also to the transverse parts. The low-momentum
behavior of these polarization tensors is not smooth,18,17and
in particular one has the following ambiguities, depending on
the order of the various limits:

PL~P→0,p350,b!→2vp
2 ,

PL~P50,p3→0,b!→vp
2 ,

PT~P→0,p350,b!→0,

PT~P50,p3→0,b!→vp
2 , ~23!

where, in Euclidean formalism,p0 is replaced byip3. For
our purposes, however, an approximate form given in Ref.
18 will be sufficient:

PL.PT.S ap2

64
14vp

4 D 1/2, ~24!

wherep25p 3
21P2. In this approximation the gauge-boson

propagator reads

Dmn~p!5

gmn2
pmpn

p2

p21P~P,p3 ,b!
, ~25!

whereP is given by ~24!. In the limit p→0, which is rel-
evant for the definition of resistivity~see below!, one may
then replaceP by 2vp

2 , with the same qualitative association
e;Aa/b as before. The net effect of retardation on the
gauge-boson propagator, in the large-N approximation, is
summarized by the form~25!.

B. Wave-function renormalization and vertex function
at finite T>0

In view of the importance of wave-function renormaliza-
tion in theT50 case, as stressed in Sec. II, it is clear that we
must include it also atTÞ0. We shall find~see below! that its
effect is to provide logarithmic~in T! corrections to the lin-
earT dependence of the resistivity which is characteristic28,29

of the gauge interactions.
Wave-function renormalization effects in QED3 at T.0

were studied in Ref. 16, using the Pennington-Webb vertex
Ansatz@n51 in the notation of~5!# and making the instan-
taneous approximation, at least initially. The approximate SD
equation forA(P,b) then becomes~noting that theA of Ref.
16 is ourA21!

A~P,b!.11
a2

16Np2 E
0

a

dK I~P,K,b!

3

tanh
b

2
AK21M~K,b!2

AK21M~K,b!2
, ~26!

whereM is the modified mass functionB/A and

I ~P,K,b!5
K

a E
0

2p

df
~P22K2!22Q4

P2Q2@Q21P00~Q,b!2#
, ~27!

with Q5uP2Ku.
However, it was found16 that the use of~26! led to a

plainly unphysical result; viz,A.1. The trouble was traced
to the use of the instantaneous approximation, which turns
out to make a dramatic impact onA, essentially because of
the effective reduction in the dimensionality of the integra-
tion in ~26! from three to two dimensions.

An exact treatment is very difficult, but it was argued in
Ref. 16 that a plausible improvement to~26!, taking nonin-
stantaneous terms into account in an approximate way, is
obtained by replacingP00 by aQ-independent constantD2

which is of ordera2 and at the same time setting the factor
~K/a! in ~27! equal to unity. Certainly, the numerical results
then obtained, in the region of dynamical mass generation,
seemed physically sensible: In particular, asT→0, they
were in good qualitative agreement with previous zero-
temperature results andA was less than unity. In this case,
the kernel I is replaced by the temperature-independent
quantity

ID52
2p

P2 H 12
uP22K2u

D2

1
@P22K21D2#@P22K22D2#

D2A@~P2K !21D2#@~P1K !21D2#
J . ~28!

Although originally discussed, in Ref. 16, within a con-
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text of dynamical mass generation, the above approximate
formula for A can just as well be considered in the regime
M50. It is for this regime that we now estimate the resis-
tivity, introducing the effects ofA.

C. Resistivity of QED3 in the normal phase

Our aim in this subsection is to exhibit non-Fermi-liquid
behavior of the resistivity and associate it with the
quasifixed-point structure at intermediate scales revealed in
the previous section via the qualitative connectiona/e
;Aba. The resistivity of the model is found by first cou-
pling the system to an external electromagnetic fieldA and
then computing the response of the effective action of the
system, obtained after integrating out the~statistical! gauge-
boson and fermion quanta, to a change inA.

In the case at hand, in the model of Ref. 6~t32QED! the
effective action of the electromagnetic field, after integrating
out hole and statistical gauge fields, assumes the form

Seff5E Am~p!DmnA
n~2p!, Dmn5S dmn2

pmpn

p2 D 1

p21P
~29!

in a resummed 1/N framework, withP the one-loop polar-
ization tensor due to fermions.@Because of thet3 structure,
as a result of the bipartite lattice structure,6 there are no cross
terms between the statistical and the electromagnetic gauge
fields to lowest nontrivial order of a derivative expansion in
the effective action. This implies that in this model the resis-
tivity is determined by the polarization tensor of the hole
~fermion! loop. On the other hand, in models where only a
single sublattice is used,29,30 such cross terms arise, which
are responsible, after the statistical gauge-field integration,
for the appearance of a conductivity tensor proportional to
PFPB/(PB1PF), with PB,F denoting~respectively! polar-
ization tensors for the boson fields of theCP1 model and for
the fermions~holes! in a resummed 1/N framework. In such
a case, the conductivity is determined by the lowest conduc-
tivity among the subsystems.30 In condensed-matter systems
of this type, relevant for the physics of the normal state of
the high-Tc cuprates, it is the bosonic contribution that de-
termines the total electrical resistivity.29# The functional
variation of the effective action with respect toA yields the
electric currentj . From ~29! this is proportional to the elec-
tric field E(v)5vA, in, say, theA050 gauge, withv the
energy. In the normal phase of the electron system, the pro-
portionality tensor, evaluated at zero spatial momentum, is
sf3v, with sf the conductivity.30 From ~29!, then, we have

s f5
1

p21PU
PI 50

, ~30!

wherePI denotes spatial components of the momentum.
If the effective action were real, then the temperature (T)

dependence of the resistivity of the model would be given by
theT dependence of the finite-temperature vacuum polariza-
tion of the gauge boson. Thus, following the approximation
~24! for the polarization tensor in the resummed-1/N
framework,18 we would have immediately obtained a linear
T dependence for the resistivity. Such a temperature depen-
dence would actually be valid for a wide range of tempera-

tures above the critical temperature of dynamical mass
generation,6 due to specific features18 of ~24!.

However, things are not so simple. As shown by
Landau,31 the analytic structure of the vacuum polarization
graphs entering the effective action~29! is such that there are
imaginary parts in a real-time formalism.32 These imaginary
parts are associated with dissipation caused by physical pro-
cesses involving ~on-shell! processes of the type
fermion→fermion1gauge boson. It turns out that these con-
stitute the major contributions to the~microscopic!
resistivity.33,28,29 In this picture, the latter is determined by
virtue of the Green-Kubo formula34 in the theory of linear
response, and it turns out to be inversely proportional to the
imaginary part of the two-point function of the ‘‘electric’’
current j m

c5c̄gmc, evaluated at zero spatial momentum. In
our case, in the leading 1/N-resummed framework, the two-
point function of the electric current is given by the graph of
Fig. 1. Adopting theAnsatz~5! for the vertex function, the
result for the current-current correlator is

^Jm~p!Jn~2p!&}@A~p!#nDmn~p!@A~p!#n. ~31!

To compute the imaginary parts of~31! would require a real-
time formalism, taking into account the processes of Landau
damping,17 which are not an easy matter to compute in a
resummed-1/N approximation, especial in the limit of zero-
momentum transfer, relevant for the definition of resistivity.
Indeed, as shown in Ref. 17 and mentioned briefly above,
there is a nonanalytic structure of the imaginary parts of the
one-loop polarization tensors appearing in the quantum cor-
rections of the gauge-boson propagator. Such nonanalytici-
ties result in a nonlocal effective action. This nonlocality
persists upon coupling the system to anexternalelectromag-
netic fieldA. Since the resistivity of the system is defined as
the response of the system to a variation ofA, then the Lan-
dau processes, which constitute the major contribution to the
~microscopic! resistivity, complicate the situation enor-
mously. At present, only a numerical treatment of these
nonanalyticities is possible.17,18

We can circumvent this difficulty and use only the real
parts of the gauge-boson polarization tensor and the approxi-
mate expression~24! to estimate the temperature dependence
of the resistivity by making use of the fact that in ‘‘realistic’’
many-body systems,6,28,29 believed to be relevant for a de-
scription of the physics of the cuprates, there is the phenom-
enon of spin-charge separation of the relevant excitations,
discussed briefly in Sec. IV. According to this picture, the
statistical current~responsible for spin transport! is opposite
to the hole current~electric charge transport!,

j c1 j z50, j m
c5c̄gmc, j m

z 52z* ]mz, ~32!

and this constraint is implemented by the statistical gauge
field am that plays the role of a Lagrange multiplier.29 The
gauge field, on the other hand, is identified for physical~on-
shell! processes, with the currentj z ~of theCP1 model!, and
thus, on account of~32!, the electric charge is transported in
such systems with a velocity which equals the propagation
velocity vF of the statistical gauge fieldsam . @Again, the
model of Ref. 6 is different from those of Refs. 28 and 29 in
that the ~independent! statistical gauge fieldam is related
~through its equations of motion! to the sum of the currents
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j c1 j z . To apply our arguments in this model one has to
assume that for the electric resistivity the boson part plays no
role, which is justified by the formula~30! above. This al-
lows one to consider only static configurations for thez
fields, thereby justifying the assumption that the electric
charge in the model propagates with thea0 gauge-boson ve-
locity.# In nontrivial vacua, such as the one pertaining to our
system, the velocityvF receives quantum corrections35 from
vacuum polarization effects. In a thermal vacuum such cor-
rections are temperature (T) dependent.

If we represent the~observable! average of the electric
current asj c5charge3vF , and use Ohm’s law to relate it
with an ~T-independent! externally applied electric fieldE,
j c5s.E, then one observes that in this picture the mainT
dependence of the resistivitys21 comes fromvF , as a result
of ~thermal! vacuum polarization effects.35 @Of course, it is
understood that the above argument is only heuristic and a
proper ~microscopic! computation of the resistivity, using
real-time Green function calculus, combined with kinetic
transport theory, appears necessary in order to arrive at rig-
orous results.28,29 However, the heuristic picture above cap-
tures the particular characteristics of the gauge interactions,
responsible for yielding a linearT dependence, as we show
below, and for our purposes it will be sufficient.#

To computevF(T) we shall use its definition in the case
of an ~on-shell! relativistic massless particle35 ~in this case
the gauge boson!,

vF5
]E

]Q
, E2[q0

25Q21P~Q,b!. ~33!

Only the real parts of the gauge-boson polarization tensor are
relevant for the computation of~33!.35 Using ~24!, it is then
straightforward to evaluate~33! in the limit of vanishing mo-
mentum transfer, appropriate for the definition of resistivity.
The result is

vF}
Q

T3/2
, Q→e. ~34!

Using the association of the momentum infrared cutoffQ.e
with Aa/b}AT, one gets from~34! a linearT dependence
for v F

21 and, thus, for the resistivityr. Such a linearT de-
pendence is a characteristic feature of the gauge interactions
and, as we shall discuss below, is valid for a wide range ofT.

Above, we have ignored wave-function renormalization
effects. We now proceed to include them explicitly and dem-
onstrate the existence of~logarithmic! deviations from this
linearT behavior. This part of the analysis does not require
an explicit computation of the imaginary part of the correla-
tor ~31!. It only requiresA evaluated atp50. So we can
examine it directly. In this limit, we have

ID~p50,K !52
4p~D22K2!

~D21K2!2
. ~35!

The maximumK in ~35! runs from;Aa/b, to;a, which in
the ‘‘intermediate’’ regimea/e;Aba*1 means thatK is
constrained to lie within an order of magnitude ofa and that
M in ~26! will be zero. Recalling thatD2 is also of ordera2,
a rough estimate forA~p50, b! is provided by

A~p50,b!.1
1

4Np E
Aa/b

a

dK
1

K
tanhS b

K

2 D
512

1

4Np E
Aab/2

ab/2 dx

x
tanhx. ~36!

If ba were@1 ~the very-low-temperature limit!, we could
replace the ‘‘tanh’’ function in~36! by unity and deduce

A~p50,b!.12
1

8Np
ln~ab!. ~37!

Then the resistivity, which formally is given by the imagi-
nary part of the inverse of~31! as p→0, would exhibit the
temperature dependence@resummed up toO(1/N)#

r}O~T121/4Np!, ~38!

where we have takenn51 as in Ref. 14. We cannot, in any
case, take the precise value of the exponent in~38! seriously
in view of the rough approximations made along the way.

However, the regionba@1 is, in fact, that of dynamical
mass generation, rather than the intermediate regionba*1
in which we expect the quasifixed-point structure to play a
role. Forba*1 the integral of the right-hand side of~36! has
to be evaluated numerically. One finds that forba*5 the
result is within 10% of~37! and that~37! is virtually exact
for ba*10. Thus we can conclude that for a wide range of
temperature belowa, but not so low that the symmetry-
breaking phase is entered, the resistivity should have the
form ~38!, where the precise coefficient of the 1/N power is
not known accurately from the above analysis.

The main point, then, is the ‘‘stability’’ of thisT depen-
dence, which correlates remarkably with the quasifixed-point
structure of Sec. II.

IV. BRIEF COMMENTS ON REALISTIC MODELS OF
HOLONS AND SPINONS FOR PLANAR-DOPED

ANTIFERROMAGNETS

A. Microscopic models and their „naive… continuum limit

Above, we have argued that the gauge-fermion interac-
tions in planar QED3 are responsible for non-Fermi-liquid
behavior in the sense of exhibiting a nontrivial fixed-point
structure of the RG at relatively low energies, below the
scale set by the dimensionful coupling constant in three
space-time dimensions.

The scope of this section is to connect the above results to
realistic models of holons and spinons interacting magneti-
cally via spin-spin interactions in models believed to simu-
late the physics of the recently discovered high-Tc materials.
We shall be brief and concentrate only on some heuristic
argumentation. Details can be found in the literature.36–38,3

First, we shall identify the roles of the various excitations
of these materials in connection with the various fields ap-
pearing in QED3 models described above. To this end, we
note that in condensed-matter systems, relevant for high-Tc
superconductivity, the basic excitations are electron fields
with momenta lying close to the Fermi surface. Optical ex-
periments have shown the existence of a large Fermi surface
in these materials. At first sight, this implies that our model
of Sec. II, based on Dirac fermions, is inadequate. However,
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as we remarked earlier, the most important interactions for
fermions, in both the superconducting and normal phases,
are those which are local on the Fermi surface, and as such
an expansion of the effective theory about a single point on
this surface would be adequate. This has been done in Ref. 6,
with the result that under theassumptionof spin-charge
separation one arrives at an effective low-energy theory
which resembles a variant of QED3, with the Dirac fermions
playing the role of holon excitations.

To understand this point, which is our crucial difference
from the approach of Refs. 4 and 3 using spinons only, we
remark that the basic fields are electrons with both spin and
charge described by a creation operatorC a

i , with i a spatial
lattice index anda51, . . . ,M a spin SU(M ) index. Realistic
models haveM52. Spin-charge separation can be imple-
mented by making theAnsatz29,6

Ca
i 5c†,iza

i , ~39!

wherec†,i is a Grassmann field that represents the creation
of a holon andza is a CPM21 multiplet, representing a
spinon excitation~magnon!.

At this point we note that in condensed-matter physics
one uses3,4 an alternativeAnsatz

Ca
i 5 f a

i bi
† , ~40!

where the fermion fieldsf carry the spin index and thus
represent the spinon excitations, carrying no electric charge,
while the Bose fieldsb† are spinless and are electrically
charged. This is the description followed by Refs. 3 and 4,
which treats the spin excitations as fermion fields in the ef-
fective Lagrangian approach. This description is related to
the previous one~39! by bosonization techniques and may be
viewed as a ‘‘gauge’’-fixing choice.39

The gauge symmetry in both descriptions can be found by
performing local phase rotations of the constituents in~39!
and ~40!. Since for our purposes we shall follow theAnsatz
~39!, we concentrate on it from now on. The Abelian gauge
symmetry that leaves the electron field invariant in~39! is

c j→eiu~ j !c j , za
j→eiu~ j !za

j ~41!

and is valid beyond half-filling. This gauge symmetry refers
to spatial indices only and can be expressed in an effective
theory formalism via link variables in a Hartree-Fock
approximation,36,6

(̂
i j &

c i ,†c j^za
i ,†za, j&[(̂

i j &
D i jc

i ,†c j , ~42!

where the sums extend over appropriately defined nearest-
neighbor sites to be specified below. The gauge symmetry is
discovered by freezing the amplitude of the Hartree-Fock
field uDi j u.const, while letting its phase fluctuate
exp(* i

ja dl) with ai the spatial components of an Abelian
@U~1!# gauge field.

In large-spin approximations37 of doped antiferromagnets
with a bipartite lattice structure, intrasublattice hopping is
suppressed by terms ofO(1/S), whereS@1 is the effective
spin of the excitations. In this case, the fermion fields in~39!,
ci , may be assigned an internal ‘‘color’’ quantum number,
labeling the sublattice they lie on. In such a case the nearest-

neighbor sites in~42! lie on this sublattice and from the point
of view of the bipartite lattice are next-to-nearest neighbors.
The advantage of introducing this bipartite lattice structure
lies in the fact that the dynamically generated gap through
the gauge interactions~42! is parity conserving, due to ener-
getics in the case of even-flavor fermion numbers.40,6,41,10

Thus one seems to have a natural explanation of the absence
of P,T violation in these materials, despite the fact that the
superconducting~binding! forces are unconventional~mag-
netic! in origin.

The temporal component of the gauge field can be in-
serted by invoking the Gutzwyler projection operator ensur-
ing the absence of double occupancy in these materials. This
imposes the restriction ofat most one electron per site,
which formally can be expressed via

c i ,†c i1za
i ,†za

i 51 no sum overi . ~43!

In a path-integral approach to quantum-doped antiferromag-
nets, the above constraint~43! may be implemented by a
Lagrange multiplier fielda0, playing the role of the temporal
component of the gauge field. Alternatively, one may work in
the a050 axial gauge, appropriately for a Hamiltonian
formulation,6 in which case one has to use the constraint
explicitly to arrive at an effective Lagrangian with the cor-
rect number of independent degrees of freedom.

In both formulations, the presence of the gauge field in-
dicates the existence of redundant degrees of freedom which
are unphysical.

The effective Lagrangian, describing the physically rel-
evant degrees of freedom that lie close to a single point on
the Fermi surface, can, then, be shown to acquire the form of
aCP1 s model, describing the spin excitations of the system,
coupled via a statistical Abelian gauge field to a system of
electrically charged Dirac fermions in a spin-charge-
separated environment,

1

g0
E d3xu~]m2am!zu21(

i51

N E d3x C̄i~x!

3@ i ]”1a” t32~e/c!A” #C i~x!, ~44!

where the constraint~43! becomes effectively38 z†z.1. The
quantityg0 is the antiferromagnetic interaction coupling con-
stant of thes model,6 c is the light velocity in units of the
Fermi velocity of holes,am is the statistical gauge field, rep-
resenting magnetic interactions, andAm is the electromag-
netic field.@For simplicity we assumed that the Fermi veloc-
ity of holes is approximately equal to the velocity of
magnonsvS occurring in theCP

1 sector. The realistic case is
when the two velocities are different, which spoils the rela-
tivistic form of ~44!. However, this will not be important for
our qualitative treatment in this article. For more comments
on this point, see Ref. 6.# The fermion fieldsC are color
doublets with respect to the sublattice degree of freedom; the
t3 structure, which acts in this color space, indicates the op-
posite spin of the antiferromagnetic~bipartite! lattice struc-
ture of the underlying lattice. This doublet structure should
not be confused with thei51,2,...,N flavor degree of free-
dom of the fieldsC. As we have mentioned in the Introduc-
tion, this ‘‘flavor number’’ represents internal degrees of
freedom, associated with the orientation of the momentum
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vectors of the quasiparticle excitations9 in expansions about
a certain point of a finite-size Fermi surface. For large Fermi
surfaces and low-lying~infrared! excitations, where the cut-
off L effectively collapses to zero, as compared with the
radiuskF of the Fermi surface, a controlled large-N~L! ex-
pansion is then applicable.

In condensed-matter-inspired models,6,13 one may argue
that the spontaneous scalea, above which nothing interest-
ing happens in QED3,

10 plays the role of the ultraviolet cut-
off L of Ref. 2. Hence, after cell division of angular space,
we have effectively2 N;a/kF @see ~3! and following re-
marks#. In this interpretation of the flavor number, which in
fact is essential for a consistent RG approach to the theory of
the Fermi surface,9 one has an effective running of the ferm-
ion flavor number with the RG scale, which is precisely the
case of our runningg}1/N discussed in Sec. II.

To form an estimate of this effectiveN, we use the phe-
nomenological formula6,13,42

a5\vF /~ahmax!;t8~h!1/2/hmax, ~45!

wherea is the lattice spacing,vF is the Fermi velocity of
holes,t8 is a hoping parameter for holes~on the same sub-
lattice!, andh ~hmax! denotes the average~maximum for su-
perconductivity! number density of holes~doping concentra-
tion!. In realistic models the various parameters entering~45!
depend on temperatureT. For our angular cell division, how-
ever, we shall use thekF of a zero-temperature theory. A
typical scale for the Fermi surface radius, which is a typical
energy of electronic excitations, is thus ofO@1 eV#. For the
values of temperature and doping concentration relevant for
superconductivity, a typical value ofa is of order of 1 eV.13

As argued in Sec. III, in the normal phaseT.Tc;O@100 K#,
one may replace the Fermi velocity by an effective one
vF}T21, and hence the correspondinga(T) gets consider-
ably smaller, as compared tokF , thereby shifting the effec-
tive scales towards the infrared or, equivalently, pushing the
infrared cutoff to higher values. It is therefore not unreason-
able to argue that the conditions for largeN}kF/a(T)@1
may be satisfied for the range of temperatures and~large!
Fermi momenta characterizing the normal phase of these ma-
terials. Of course, it is understood that all such estimates are
only qualitative. Any attempt to present quantitatively mean-
ingful considerations would require working directly with
microscopic models, which falls beyond the scope of the
present work.

Note that for the superconducting phase of the model the
sublattice structure is important in that the fermion conden-
sate responsible for the spontaneous breaking of the electro-
magnetic gauge invariance U~1!emassociated with theA field
in ~44! occurs between fermions~holes! of opposite sublat-
tice each of electric chargee. For the normal-phase analysis,
however, which we are interested in for the purposes of the
present work, the sublattice structure is irrelevant. From now
on, therefore, we concentrate on a single sublattice, ignoring
the t3 color structure of the fermions. Whenever the latter
becomes important, it will be stated explicitly.

From this point of view, the statistical gauge interaction in
~44! plays exactly the role of the fermion-gauge interaction
of Sec. II, which leads to a nontrivial fixed-point structure at
momentap&O@a#, wherea is the dimensionful scale set by
the statistical gauge-interaction coupling constant. To under-

stand this point it is sufficient to remark that integrating out
the magnon degrees of freedom, which are massive of mass
mz in the phase where long-range antiferromagnetic order
has been destroyed, one obtains at low energies~much lower
than the massmz scale! a Maxwell-like term for the gauge
field a in ~44!, which thus becomes dynamical.43,44 In this
sense, the situation for the statistical gauge interaction be-
comes similar to the QED3 case discussed previously.

B. Absence of charge- or antiferromagnetic-density-wave
instabilities

An interesting question that arises in connection with the
low-energy behavior of such systems concerns the existence
of other type of instabilities which, from the point of view of
an effective Lagrangian, would manifest themselves as mar-
ginal or relevant operators. The obvious class of candidate
interactions, which in fact is the only one in these models by
simple power counting in large-N treatments, would be four-
fermion operators. Since our effective Lagrangian~44! has
only trilinear gauge-fermion couplings, such effective opera-
tors could be shown to arise as a result of ladder~or cross
ladder! graphs involving the exchange of gauge particles~cf.
Fig. 2!. If an operator of this sort isexactly marginal, then its
scaling would be the same as the tree-level scaling of the
effective gauge-fermion vertex. Exactly marginal deforma-
tions do not cause the appearance of a gap in the fermion
spectrum. We shall argue below that this is what happens in
our case in the infrared regime of momenta.

Interesting effects can be examined in this framework in
association with the electromagnetic or statistical gauge in-
teraction that could lead to antiferromagnetic instabilities in
the normal phase, associated with the formation of electri-
cally neutral spin- or charge-density waves~SDW’s or
CDW’s!, which could be described by fermion-antifermion
condensates. In our formalism, since the Grassman variables
ci in ~39! are spinless, the formation of fermion condensates
on a single sublattice would then be appropriate for a de-
scription of CDW instabilities. What we shall show below is
that in our model such CDW instabilities cannot occur as a
result of the electromagnetic interaction. Notice that because
of the t3 structure of our model~44!, the fermion lines in
these graphs can all lie on the same sublattice only if the
exchanged gauge particle is the electromagnetic photon.
Graphs in which the exchanged particle is the statistical
gauge boson, and hence the fermion lines necessarily belong
to different sublatices, are known6 to lead at low momenta to
superconducting mass generation and will not be of interest
to us here. In the normal phase, such instabilities are absent.

Following Ref. 3, we consider the ladder and cross-ladder
graphs of Fig. 2, where the external legs are set to zero
momentum and the propagators of the electromagnetic
~gauge! and fermion fields are dressed in a Schwinger-Dyson
fashion. The important point for the electromagnetic photon
is that in three dimensions its kinetic term acquires the modi-
fied Coulomb form~1!, in all ranges of momenta; this form
implies that the relevant propagator scales like 1/q, whereq
is the momentum transfer circulating around the loop of Fig.
2, for zero external momenta of the fermion legs. In the
phase where there is no gap for the fermion propagators, the
latter scales with momenta like 1/[A(p)/p” ], whereA(p) is
the wave-function renormalization. This is also the same
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scaling as the one in the region of momentaM!p!a,
where dynamical gap generation could occur. Hence for our
purposes we shall adopt this Feynman rule for the
momentum-space scaling of the dressed fermion propagator.
The vertex function is assumed to scale likeA(p)ngm accord-
ing to theAnsatz~5! even for the case of electromagnetic
interactions. The result of the one-loop integral of the ladder
and cross-ladder graphs, then, scales like

E d3q
1

@q#4
A2n~q!A2~n21!. ~46!

Thus, by choosing the Pennington-Webb vertexAnsatz n51,
dictated by gauge invariance,14 we observe that the gauge
interaction becomesexactly marginal, since the scaling be-
havior of the ladder and cross-ladder graphs of Fig. 2, Eq.
~46!, is similar to the tree-level scaling, at least in the region
of momenta where dynamical gap generation could occur.

This implies the absence of charge-density waves of these
systems caused by the electromagnetic interactions, in agree-
ment with more rigorous condensed-matter models.1,3 It
should be remarked that the above marginal character of the
interaction refers to four-fermion graphs, which from an ef-
fective Lagrangian point of view simply denotes the absence
of the pertinent instability caused by such four fermion in-
teractions. It should not be confused with the fermion-gauge
trilinear interaction causing a mass gap, which exists anyhow
at low momenta as a result of the gauge interactions.10,6

An additional type of instability of such systems is that of
an antiferromagnetic spin-density wave. To study SDW’s in
the present formalism one should examine theCP part of the
effective action~44!. An easier way, which is closer to the
present context, would be to pass to the alternative spin-
charge separationAnsatz~40!, by fermionizing the spin ex-
citations. In such a case, the sublattice structure would be
totally irrelevant, and one should consider the spin degrees
of freedom as fermions interacting with a statistical gauge
field of QED3 type. The low-energy behavior of the system
would be described again by a modified photon propagator
of 1/p form, as a result of fermion vacuum polarization,10,20

which would yield exactly marginal four-fermion interac-
tions as in~46!. Hence one finds again that such gauge sys-
tems exhibit no antiferromagnetic instability.3

The masslessness of the gauge particle was important for
the above marginal scaling behavior, as was the modified 1/p
scaling behavior of the dressed gauge propagator, which it-

self was a result of the fermion vacuum polarization or~in
the case electromagnetic interactions! the projection from
four to three dimensions.6 The fact that the gauge invariance
dictates the valuen51 in the Ansatz ~5! of the gauge-
fermion vertex, leading to the above marginal behavior of the
gauge interaction in the ladder graphs of Fig. 2, implies that
the absence of charge-density waves in the present model, or
antiferromagnetic instabilities in the case of spinon systems,
can be considered as a clear-cut prediction of the gauge na-
ture of the interactions among the fermionic quasiparticle
excitations.

C. Electromagnetic effects

A final comment concerns the effects of the
electromagnetic-field–fermion coupling on the deviation
from Fermi-liquid behavior in the infrared. The effect is
known to occur in four space-time dimensions,5 with the
result that the presence of the vector potential in nonrelativ-
istic condensed-matter systems causes deviations from the
Fermi-liquid behavior at low temperatures, which, however,
are suppressed by terms ofO[v F

2/c2].
In three space-time dimensions, in the presence of statis-

tical interactions, the situation is quite different if one re-
stricts one’s attention in a given sublattice in these antiferro-
magnetic oxides. As we shall show below, the
electromagnetic-field–fermion interactions become irrel-
evant in the presence of the electron-electron interactions
caused by the statistical gauge field. This is easily demon-
strated by first integrating out the auxiliary gauge fieldam in
~44!. We concentrate on the effects of fermions within each
sublattice. In the normal phase, where no mass is generated,
integrating out the fermions of the other sublattice just pro-
duces Maxwell terms for the statistical gauge field, which
due to the vacuum polarization acquire the form

Lkin5
1

g2
f mn
2 1 f mn

1

A]2
f mn1••• . ~47!

Such terms are irrelevant operators in the infrared, as com-
pared with the nonderivativea terms in theCPN21 part of
the action~44!. Indeed, aftera-field integration in the sub-
lattice, one would get current-current terms multiplying the
inverse of the operator

Dmn5dmn2
]2dmn2]m]n

A]2
,

appearing in~47!. Only the nonderivative part of such an
inverse is relevant in the infrared. Thus reconstructing the
electron operatorsx out of the spin-charge constituents as45

xa5za
†c ~48!

and integrating out thea field in ~44! yields a Thirring inter-
action between the electrically charged electron fields,45

Seff5E d3xF i x̄ ]”x2
g0

4
~ x̄gmx!21

e

c
Amx̄gm1••• G .

~49!

In the infrared, the electron kinetic terms become irrelevant
operators, as compared with the Thirring contact interac-

FIG. 2. Ladder and cross-ladder~resummed! one-loop graphs in
QED3. The soft Coulombic form of the infrared gauge-boson
propagator results in the exactly marginal character of these~four-
fermion! interactions: The scaling is that of tree level. This leads
to the absence of the respective instabilities.

9334 53I. J. R. AITCHISON AND N. E. MAVROMATOS



tions, and from now on we shall omit them. Assuming con-
servation of the fermion number in each sublattice, as a re-
sult of the assumed suppression of intrasublattice and
interplanar hopping, we may represent in three dimensions
the conserved sublattice fermion current as a curl of a vector
field Vm ,

x̄gmx5emnr]nVr . ~50!

~Spontaneous breaking of the fermion number occurs in the
superconducting phase, as a result of one-loop anomalies due
to gap generation.6 In the normal phase, which we are inter-
ested in, such phenomena are absent and the fermion current
is assumed to be conserved at a quantum level.! In this case
the effective low-energy action~49! can be written in the
form

Seff5E d3x
e

c
Amemnr]nVr2

g0

4
Fmn~V!2

2
g0

4
~]mVm!21••• , ~51!

where the ellipsis indicates terms that are more irrelevant, in
a RG sense, in the infrared, than the terms kept. The last term
in ~51! is viewed as a gauge-fixing term. Our aim is to ex-
amine whether the electromagnetic field interactions are ca-
pable of driving the theory to a nontrivial fixed point, away
from the free-electron~Landau! fixed point. We are thus in-
terested in the behavior of the mixed Chern-Simons term
A dV in the presence of a weak Thirring interaction@i.e.,
close to the free-electron~bare! interactions#. This is equiva-
lent to a strong-coupling problem for the gauge fieldV,
which allows a heuristic proof of the irrelevant character of
the A dV interaction, as follows: First, we represent the
mixed Chern-Simons term, in the infrared, as a heavy-
fermion-gauge interaction,

A dV}C̄S i ]”1V” t31
e

c
A” DC1MC̄C, M→`. ~52!

This yields the following two-point function for the field
Ṽ[emnr]nVr :

Kmn}E d3xeip.x^TṼ~x!Ṽ~0!&

5S dmn2
pmpn

p2 D p2

p21e2p2I ~p!
, ~53!

where

I ~p!}
1

4p S 4M2

p2 D 1/2 tan21F S 4M2

p2 D 1/2G , ~54!

with M→` the auxiliary~massive! fermion mass.
The scaling of the electromagnetic photon two-point func-

tion is not affected by theC fermions in this limit, and hence
it is given by 1/p, due to~1! in three space-time dimensions.

Thus we observe that in the infrared the fermion-current term
x̄gmx is marginal in the sense that it does not scale with
momenta. On the other hand, the electromagnetic gauge field
scales likep21/2, implying the RG irrelevant nature of the
electromagnetic-field–fermion vertex.

This means that, in the models examined above, with sup-
pressed intrasublattice hopping, in each sublattice the only
dominant deviations from the Fermi-liquid behavior can be
induced by the statistical gauge interactions at energy scales
close toa. This result might be subject to experimental test,
provided that accurate enough experiments can be made so
as to obtain data within one sublattice only. It goes without
saying that intrasublattice hopping, which increases with in-
creasing doping concentration,46 affects the above result.

V. CONCLUSIONS AND OUTLOOK

In this article we have examined certain interesting effects
of the wave-function renormalization in~a variant of! QED3,
which is believed to be a qualitatively correct continuum
limit of semirealistic condensed-matter systems simulating
~planar! high-temperature superconducting cuprates.

Based on an~approximate! Schwinger-Dyson-improved
renormalization-group analysis, we have argued for the ex-
istence of an~intermediate! regime of momenta, where the
running of the renormalized dimensionless coupling of mul-
tiflavor QED3, which is nothing other than the inverse of the
flavor number, is considerably slowed down, exhibiting a
behavior similar to that of ‘‘walking technicolor’’ models of
particle physics. This slow running, or~quasi!fixed-point
structure, has been argued to be responsible for an increase
of the chiral-symmetry-breaking~superconducting! fermion
condensate of the model, as well as for a~marginal! devia-
tion from the Landau Fermi-liquid fixed point. In connection
with the latter property, we have argued that the large-N
expansion is fully justified from a rather rigorous
renormalization-group approach to low-energy interacting
fermionic systems with large Fermi surfaces. Some experi-
mentally observable consequences of this~marginal! non-
Fermi-liquid behavior, including logarithmic temperature-
dependent corrections to the linear resistivity, have been
pointed out, which could be relevant for an explanation of
the abnormal normal-state properties of the high-Tc cuprates.

The above RG-SD analysis was, however, only approxi-
mately performed at present. To fully justify the above con-
sideration and to make sure that the above-mentioned effects
are not washed out in an exact treatment, one has to perform
lattice simulations of the above models. Given that this
might not be feasible yet, due to the restricted capacities of
the existing computer devices, an intermediate step would be
to perform a more complete analytic RG treatment of the
relevant large-N SD equations at finite temperatures. Such a
treatment is not easy, however, due to the mathematical com-
plexity of the involved equations. In addition, finite-
temperature field theory is known to exhibit unresolved am-
biguities concerning the low-momentum limit, which
complicates the situation. Some of these issues constitute the
object of intensive research effort of our group at present,
and we hope to be able to reach some useful conclusions
soon.
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39J. Fröhlich and P. A. Marchetti, Phys. Rev. B46, 6535~1992!; J.
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