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Deviations from Fermi-liquid behavior in (2+1)-dimensional quantum electrodynamics
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We argue that the gauge-fermion interaction in multiflavor quantum electrodynanis In dimensions is
responsible for non-Fermi-liquid behavior in the infrared, in the sense of leading to the existence of a nontrivial
(quasjfixed point that lies between the trivial fixed poiiait infinite momentaand the region where dynamical
symmetry breaking and mass generation occurs. This quasifixed-point structure implies slowly varying, rather
than fixed, couplings in the intermediate regime of momenta, a situation which resembles {fiatrof
dimensional “walking technicolor” models of particle physics. The inclusion of wave-function renormaliza-
tion yields marginalO(1/N) corrections to the “bulk” non-Fermi-liquid behavior caused by the gauge inter-
action in the limit of infinite flavor number. Such corrections lead to the appearance of modified critical
exponents. In particular, at low temperatures there appear to be logarithmic scaling violations of the linear
resistivity of the system of ordé€d(1/N). The connection with the anomalous normal-state properties of certain
condensed-matter systems relevant for high-temperature superconductivity is briefly discussed. The relevance
of the large(flavor) N expansion to the Fermi-liquid problem is emphasized. As a partial result of our analysis,
we point out the absence of charge-density-wave instabilities from the effective low-energy theory, as a
consequence of gauge invariance.

I. INTRODUCTION In the case of the higfi;, materials, the physically inter-
esting question is whether one model theory can be found
One of the most striking phenomena associated with th&vith a structure rich enough to describeththe non-Fermi-
high-temperature superconductors is tlenormalnormal-  liquid behavior of the normal phasadthe transition tqand
state properties. In particular, these substances are known phhenomenology ofthe superconducting phase. In this article
exhibit deviations from the known Fermi-liquid behavior, we shall put forward a candidate model which, as we shall
which are remarkably stable with respect to variations in theargue, seems to us to fulfill this role.
relevant parametefs.Recently, Shankarand Polchinski It is known that possibility(i) above can be caused by
have presented an intuitively appealing idea of using theelevant interactions of superconductifigCS) or charge-
renormalization-grougRG) approach, so powerful in par- density-wave(CDW) type, both of which are accompanied
ticle and statistical physics, to systems of interacting elecby the formation of fermion condensates. Possibility has
trons with a Fermi surface in order to understand, at leasonly rather recently begun to be seriously explatetit has
qualitatively, how deviations from Fermi-liquid behavior can been known for a long time that the electromagnetic interac-
appeamaturally (as opposed to being fine-tuneérom this  tion of the vector potential can cause deviation from Fermi-
point of view Landau’s Fermi liquid is nothing else but a liquid behavio? but its effects are suppressed by terms of
system of free electrons, which has no relevant perturbation®[(v/c)?], with v the Fermi velocity and the light ve-
in the RG sense, which can drive it away from its trivial locity. Its effects occur only at much lower energies than
infrared fixed point. In general, however, as we integrate outhose relevant to the high: materials. Nevertheless, the
certain modes of our original theory, some interactions maelectromagnetic example is suggestive enough, perhaps, to
become relevant in the RG sense; i.e., their effective coumotivate a search for othénonelectromagneticgauge in-
pling may grow as one lowers the momentum scale. Thereractions in which the effective signal velocity would be of
two interesting possibilities arise(i) Fermion bound states order v and which might be responsible for a nontrivial
are formed, symmetries are spontaneously broken, and tHixed-point behavior. It was precisely this sort @tatisti-
low-energy spectrum bears little resemblance to that of theal”) gauge-fermion interaction that was studieddifferent
original theory. In such a case one has to rewrite the effectivéorms) in Refs. 3 and 4, and which led to nontrivial fixed-
theory in terms of the new degrees of freedom: For in-point structure in the infrared.
stance, in the superconducting case this is the Landau- Returning now to possibilityi), we recall that it has been
Ginzburg effective action expressed in terms of the fermiorshowr? that a variant of QED i2+1) dimensiong QED,)
condensate(ii) Alternatively, the growth of the coupling is leads to superconductivity, characterized, as appropriate to
cut off by quantum effects at a certain low-energy scale, andéwo space dimensions, by the absence of a local order pa-
in this way anontrivial fixed-point structure emerges. The rameten(Kosterlitz-Thouless modeThus the exciting possi-
low-energy fluctuations still correspond to fields of the origi- bility arises that a single fermion-gauge theory could de-
nal theory despite their nontrivial interactions. This casescribe both non-Fermi-liquid behavior in the normal phase
leads to observable deviations from the Fermi-liquid behavand the transition to the superconducting phase.
ior. Formulated in terms oN species of electromagnetically
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charged fermions, the model of Ref.(® which we shall generatioh regime of the theory and extend the RG-type
return in Sec. IV consists of &CPN"! ¢ model coupled to  analysis of KN to this normal regime. We shall argue that
the fermions via the gauge field of tlkemodel representing there exists a nontrivial fixed point of the effective dimen-
magnetic spin-spin interactions. The main purpose of the&ionless coupling, which governs the dynamics for a range of
present article is to present an(approximat¢ intermediatemomentap=eq, lying between the trivial fixed
renormalization-group analysis of a simplified version of thispoint at p>a and the regiorp<<a of dynamical mass gen-
model, namely, QERitself, which indicates that QEPex-  eration. Important to this analysis will be the introduction
hibits two quite different behaviors depending on the mo-(following KN) of an infrared cutoffe, which serves to de-
mentum scale. At very low momenta QEBnters a regime lineate the different momentum regimes.
of dynamical mass generatiofDMG), which in the full The analysis of Sec. Il is performed at zero temperature,
theory leads to superconductivity, but at “intermediate” mo-and in Sec. Ill we shall try to connect this to finite-
menta(see below DMG does not occur and the dynamics is temperature calculations by interpreting the temperature as
controlled by a nontrivial fixed point, leading to non-Fermi- an effective infrared cutoff. We present an approximate com-
liquid behavior. Thus we have the possibility of one theoryputation, at finite temperature, of the electrical resistipityf
encompassing both the normal and superconducting phastse fermionic system. We argue that it is the existence of the
of the highT . cuprates. nontrivial RG fixed point which is responsible for the fact
We postpone until Sec. IV a fuller account of the realisticthat the non-Fermi-liquid behavidp approximately propor-
model we are advocating. Before that, in Secs. Il and Ill, wetional to the temperatur€) is observed over so large a tem-
shall consider for clarity the simpler case of Qgvhich as  perature range. Wave-function renormalization effects, im-
we shall see already exhibits the crucial dynamical featureportant atO(1/N), lead to calculable logarithmic deviations
(however, as we shall see in Sec. IV, QEescribes only a  from the linear-inT behavior.
part of the realistic model believed to simulate the physics of Before proceeding further, it is useful to compare and
the highT . cuprates From this we conclude that the essen-contrast our approach with two other recent explorations of
tial dynamical ingredient in our model is simply that it is a gauge theories ii2+1) dimensions in a similar context, by
U(1) gauge theory in two space dimensions Polchinskf and by Nayak and Wilczek.Both works deal
At this point the reader might worry that applying with fermions interacting with a statistical gauge field, the
renormalization-group techniques to a superrenormalizabli&tter representing magnetic spin-spin interacti@sin our
theory like QEL is redundant, since the theory has no ultra-CPN~! sector; see Sec. IVIn both, the fermions represent
violet divergences. However, this is a mistaken view. In thespin quasiparticle excitationgspinons, and they should
modern approach to the RG and effective-field theories, ontherefore not be identified with the carriers of ordinary elec-
considers quite generally how a theory evolves as one interic charge(holes or electrons This is to be sharply con-
grates out degrees of freedom above a certain momentutrasted with our own model of Sec. IV, in which the spin-
scale, moving progressively down in scale. From this poinicharge separation is done differently, leading to the fermions
of view an effective-field-theory description is equally appli- in our model carrying both statistical and ordinary charge.
cable to nonrenormalizable, renormalizable, and superrenor- The model of Ref. 4 consists of a gauge-fermion interac-
malizable theories. However, there are some crucial featuragon, in the presence of a modified four-fermion interaction
in the case of a superrenormalizable theory. First, the ggEDof a long-range ¥ form, with k the momentum. An impor-
coupling e introduces an intrinsicdntermediate scale e tant role is also played by B- and T-violating term in the
which has the dimension of mass, this being directly relatedorm of a Chern-Simons interaction for the gauge field. The
to the superrenormalizability of the theory. The physical ef-latter is responsible for enslaving gauge-field fluctuations to
fect of this will be the existence of an intrinsic mass scaledensity fluctuations. In the cage<1 this results in a relevant
and we can expect different physics in different regimes ofyauge-fermion interaction. Nayak and WilcZélave shown,
momenta relative to this mass scépe>e?, p=e?, p<e?). by employing a systematic expansion in powers ofx]the
The second distinctive feature of our RG analysis ofexistence of a nontrivial infrared fixed point responsible for
QED;, concerns the way in which we introduce a runningdeviations from Fermi-liquid behavior. The importance of
coupling. Conventionally, such running couplings are dimenthe Chern-Simons interaction lies in the fact that it allows,
sionless, and so, once again, the dimensionfulnesé pfe-  through the constraint implied by integrating out the tempo-
sents a distinctive feature. The way in which an effectiveral component of the statistical gauge field, a rewriting of the
dimensionless running coupling can be introduced into QED nonlocal 1k*—four-Fermi interaction as a Maxwell-like term
has been shown by Kondo and NakatéfiN),” building on  for the gauge field but with modified &/ momentum behav-
work by Higashijim& for QCD,. The crucial step is to con- ior. The ordinary Maxwell term corresponds xe=0, while
sider the effect of wave-function renormalization in thethe Coulomb interaction correspondsxe 1. Up to its non-
Schwinger-Dysor{SD) equations, as controlled by a larye-  relativistic form, which is a consequence of the nonrelativis-
approximation. In this case, one considers the theory at largéc character of the fermion-gauge system with a Fermi sur-
N with «=e?N held fixed and the dimensionless coupling face, this situation is qualitatively similar to the dimensional
that runs is essentially N/ reduction of the ordinary Maxwell term from four to three
KN actually considered only the regime in which dynami- space-time dimensiofis.Indeed, in that case, a three-
cal mass generatiofchiral symmetry breakingoccurs, and dimensional Maxwell term for the electromagnetic fidlg ,
of course here the gauge coupling is becoming strong and thd =1,2,3, corresponding to the projection of a four-
use of a largeN expansion is unavoidable. What we shall dodimensional theory onto the spatial plane, results in a
(in Sec. |) is to identify the “normal” (no dynamical mass Coulomb-like form for the gauge field kinetic term
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1 physics. The first pertains to nested Fermi surfaces, at which
f d® Fun(A) == FMN(A). (1)  the points with momentl, and —k, have parallel tangents.
VV? This is the situation relevant to BCS or CDW interactions.
This result is due to the fact that in three space-time dimen] N€ other situation, which is the bulk of Polchinski's work

sions the Green’s functions for the dimensionally reducednd Will be of interest to us as well, is the case where the
Maxwell field are modified appropriately to yield the above férmions are close to a single point on the Fermi surface.
“square-root-ofvz” behavior (1). It is natural, therefore, to This means that the most important fermion interactions are
imagine that a behaviorﬁrHe may be attributed to those which are local on the Fermi surface, and hence quali-

guasiplanar geometries or to deviations from three spac%gt'vely this situation can be extended to relativigfitirac
time dimensions as in dimensional regularizatidr=3+ e ermions as well, since the dispersion relations become ef-

with e=1 corresponding to théMaxwell) four-dimensional fectively "”?‘a’? . . .
kinetic term Another important point, which was recently pointed out

From this analogy one can understand that the parametgly Shanka?rln_connectlon with the R.G approach to Interact-
1-x of Ref. 4 plays a role similar to that of theparameter Ing fermions, is the use Qf an effective Iargleexpgnsmn n
of Wilson or of dimensional regularization. This is the ad- cases where the effective momentum cutdffis much

vantage of the method of Ref. 4, in the sense of providing gmgller.tha.n the size of thg Fermi surfdgs A/.k':._>0' Such
controlled expansion in powers of-k, which can lead to a a situation is enco_untered inaRG study(ui_léw_atmns from .
nontrivial fixed point for the gauge-fermion interaction at Fer_ml-llqmd the_o_rles_, the Lan_dau Fefm'i"q“'d theory being
weak coupling. defined as a trivial infrared fixed point in a RG sense. To

The above work makes explicit use of parity-) and understand the connection of a lafyeexpansion with infra-
time-reversal- T-) breaking effects of the ground state red behavior of excitations, one should recall the work of
which, however, is difficult to reconcile with experiment at Ref. 9 where the RG approach to the theory of the Fermi

present. To avoid this difficulty, Polchinskexamined the surface has been s_tudied in a mgthematical_ly rigorous way.
possibility of a nontrivial infrared fixed point in &- and The basic observation of Ref. 9 is that, unlike the case of

T-conserving situation in which the only nontrivial interac- relativistic field theories, in systems with an extended Fermi
tion in the effective Lagrangian of spinons is that with thesurface, the fermionic excitation fields exhibiting the correct

statistical gauge field without any Chern-Simons term. ThisScallng are not the original equtathnf& (X a c'onflgura.tlon
is formally the same as the essential fermion-gauge sector gpace variable but ratherquasiparticleexcitations defined

our own model, but with the crucial physical difference—to S
repeat—that our fermions wil{in Secs. Ill and I\ carry
electric charge, whereas Polchinski's cannot. To have a con- ke x _ i(KeQ—K) X7
trollable expansion Polchinskemployed a largéN analysis Py= fmldﬂ eF Xy 0= \leldﬂ ek Y
in the fermionic flavors by extending the &) spin group to 2
SU(N), N—x, He presented a Schwinger-Dyson analysis for

the propagators of the fermion and gauge fields, which hgyhere for the sake of simplicity we assumed that the Fermi
solved in a closed form to Ieading order in thNﬂXpansion surface is Spherica| with radidﬁz, Q is a set of angu|ar
by invoking a tree-leveRnsatzfor the gauge-fermion vertex yariables defining the orientation of the momentum vector of
at largeN at low energies. Renormalization, then, impliesthe excitation at a point on the Fermi surface, and the tilde
that the gauge-fermion interaction is promoted from irrel-genotes ordinary Fourier transform in a momentum sgace
evant tomarginal thereby sowing the possibility of a non- These quasiparticle fields have propagators with the correct
trivial fixed pOint of this model in the infrared and, hence, its Sca"ng? which allows ordinary RG techniquesl familiar
non-Fermi-liquid behavior. Because the kinetic term for thefrom relativistic field theories, to be applied, such as the
gauge field assumes the normal Maxwell form, the results Oéppearance of renormalized Coup"ng ConstantS, Sca"ng
Polchinski can probably be classified as belonging to theje|ds, etc. Indeed, it is not hard to understand why this is so.
x=0 universality class in the language of Nayak andpor this purpose it is sufficient to observe that for lakge
Wilczek.4 The criticism that one may make of Polchinski's the exponent of the exponentia| (ﬁ) is nothing other than
approach is the fact that he neglects renormalization effecige |inearization k=K —k-£, about a point on the Fermi
on the vertex, which can lead to a nonconsistent expansion igyrface, which makes these quasiparticle excitations identifi-
1/N. Such effects were crucial in the work of Nayak and aple with ordinary field variables of the low-energy limit of
Wilczek in order to get a controllable expansion in the ferm-these condensed-matter systems. The latter is a well-defined
ion self-energy calculation gtesummegione loop. field theory® The crucial point in this interpretation is that
The important observation in Polchinski's work, which now the field variables will depend on “internal degrees of
will be directly relevant for our purposes here, is that kine-freedom” €, which denote angular orientation of the mo-
matics implies that the most important interactions amongnentum vectors on the Fermi surface. In two spatial dimen-
fermions are those which pertain to fermionic excitationsgjons, which is the case of intere§, is just the polar angle
whose momentum components tangent to the Fermi surfacg Following Ref. 2, we discretize this angular space into

are parallel. This is the only way that the gauge-field mo-small cells of extenf(A/kg)<1, e.g.,f=A/kg:
mentum transfer can still be relatively large as compared to

the distance of the fermion momenta from the Fermi surface,
as required by special kinematic conditichiShere are two
cases where such conditions are met in condensed-matter

d2k A dk (fake)  d6
| 2==] @3

47° J_\ 27 F(A/Kg) Fom’
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wherek denotes a linearizing momentum about a point onwhere a=e’N is the dimensionful coupling constant of
the Fermi surface. Doing so, we obsértieat when looking  QED;, which is kept fixed adl—. It is clear from(4) that,
at interaction terms involving fermionic particle-antiparticle although at energiep=« the wave function is of order 1
pairs ¢y the leading interactions are among those fermion-however at low momentp<<a relevant for dynamical gen-
antifermion pairs for which the creation and anihilation op-eration of mass, the wave-function renormalization yields
erators lie within the same angular cell. This is for purelylogarithmic scaling violations which could affétthe exist-
kinematic reasons in the infrared regime<kg, similar to  ence of a critical humber of flavor$J., below which, as
those mentioned previouslywhich implied that the most argued in Ref. 10, dynamical mass generation occurs. How-
important fermion interactions on the Fermi surface must bever, this result was not free of ambiguities either, given that
among excitations which have their tangents to the Fermihe inclusion of wave-function renormalization necessitates
surface parallel. It is, then, straightforward to see that interthe introduction of a nontrivial vertex function. The exact
action terms involving either gauge excitations or just fermi-expression for the latter is not tractable, even to order
ons resemble those in lardérelativistic field theories, given O(1/N), and one has to assume variohssaze that can
that the onlyA dependence appears through proportionalitybe questioned. The situation became clearer after the work of
factorsf(A/kg)<<1 in front of the interactions, in the infra- Ref. 7, which showed that the introduction of an infrared
red. One, then, identifies /with f(A/kg)<<1, and the only cutoff affects the results severely, depending on the various
difference from ordinary particle-physics larjeexpansions Ansaze used for the vertex function. In particular, as the
is the dependence of this effectidkeon the cutoffA: that  authors of Ref. 7 showed, there are extra logarithmic scaling
is to say, IN runs. violations in the expression f&t., depending on the form of
As we shall show in the next section, however, lakge- the vertex function assumed, which render the limit where
expansions in three-dimensional QED can exhibit such &he infrared cutoff is removed not well defined.
scale dependence. Wave-function renormalization leads to a For our present purposes, however, we are not so much
renormalized “running” 1N. Instead of finding a nontrivial interested in whether the inclusion of wave-function renor-
infrared fixed point, we shall demonstrate the existence of amalization leads to a critic@ or not, as in the more general
(intermediate regime of momenta, where the effective run- point that, as noted by Kondo and NakatégN),’ following
ning of the gauge coupling, which is essentialiNtimes a  Higashijima® the vacuum polarization contribution #pro-
spontaneously appearing scale, is slowed down considerablguces effectively a running coupling, even in the case of the
so that one encounters a quasifixed-point situation. As wsuperrenormalizable theory of QED KN's analysis was
shall argue, this quasifixed-point structure is sufficient torestricted to the regime of dynamical mass generation, and
cause(margina) deviations from the Fermi-liquid picture. In our main purpose in this section is to extend that to the
view of the above, this makes such theories plausible candinormal” regime where mass is not dynamically generated.
dates for a correct qualitative description of deviations fromWe emphasize now, however, thatifis set equal to unity at
Landau Fermi-liquid theory. This has obvious relevance tadhe outset, the power of the running coupling concept to
the normal-phase properties @kalistio condensed-matter unify both regimes is completely lost.
systemg, advocated in Sec. IV, which are believed to simu- We therefore continue with a brief review of the analysis

late the physics of the highz cuprates. of Ref. 7. Their vertexAnsatzwas assumed to be
Il. QED3: SUPERRENORMALIZABILITY, RUNNING I,(0,p)=7,A(p)"=7,G(p?), 5)
COUPLINGS, AND NONTRIVIAL (QUASI)FIXED-POINT
STRUCTURE where p denotes the momentum of the photon. The

Pennington-Webt Ansatzcorresponds ta=1, where chiral

A. Wave-function renormalization and running flavor number symmetry breaking occurs for arbitrarily |arge20 It is this

Three-dimensional quantum electrodynaniQE€D;) has  case that was argued to be consistent with the Ward identities
recently received a great deal of attentfori®not only as a  that follow from gauge invariancé. In this paper we shall
result of its potential application to the study of planar high-concentrate on the generalizadsatz with n#1, and in par-
temperature Superconductiv&y,nentioned in the Introduc- ticular we shall discuss its finite-temperature behavior. We
tion, but also because of its use as a prototype for studies deep the exponent arbitrary and discuss qualitatively the
chiral symmetry breaking in higher-dimensionghon-  implications of the verteAnsatzfor various ranges of the
Abelian) gauge theorie® parameten. As we shall argue below, this is crucial for the

However, despite the theory’s apparent simplicity, thelow-energy renormalization-group structure of the model.
situation is not at all clear at present. A great deal of contro- Using theAnsatz(5), Kondo and Nakatahiproceeded to
versy has arisen in connection with the role of wave-functioranalyze the Schwinger-DysdS8D) equations, in the regime
renormalization. In the early papétsthe wave-function Of dynamical mass generation, in terms of a running cou-
renormalizatiomA(p) was argued to be 1 in Landau gauge toPling as follows. Theirapproximatg SD equation forA(p)
leading order in M, whereN is the number of fermion is (in the Landau gauge
flavors, and thus was ignored. More detailed studies, how-

ever, showetf that the precise form, within the resummed Jo (@ kKA(K)G(k?)
1/N graphs, ofA(p) is Alp)=1-=% L dk iza (k) +B(k?)
P 8/3N 72 K\3
A(p)=(5) , 4 X 5) 6(p—k)+ 9(k—p)], (6)
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whereg,=8/7°N, N is the number of fermion flavors, ard  this end we use the results of Ref. 21 employing a quenched
is an infrared cutoff. In the low-momentum region relevantfermion approximation in largét QED. The result of such
for dynamical mass generatigos<a and the first term in the an investigation is that once fermion loops are ignored, and
right-hand side of6), cubic ink/p, may be ignored. Then, hence only tree-level grapliadde) are taken into account,
taking into account thaG(k?)=A(k)" and using the bifur- the wave-function renormalization is rigorously proved to be
cation method in which one ignores the gap functik) in trivial in the Landau gauge:

the denominators of the SD equations, one obtains easily

g 0 A( p)quenched__ 1. (12)
A)=1— §° f ds A" L(s), @)
t This result is a consequence of special mathematical rela-
which has the solution tions of resummed ladder graphs in Schwinger-Dyson equa-
tions. Now, in our case, one observes that in the high-energy
regimep— the (1/N)-resummed gauge-boson polarization
, t=In(p/a). )  tensor vanishes a (p—o)=a/8p—0. Thus the situation
is similar to the quenched approximation, which implies the
Substituting to the SD equation for the gap, one then Obtainébsence of any wave-function renorma“zaticm) and’

2-n 1/(2—n)

At)=| 1+ —— gat

a running couplingin the low-momentum region, therefore, the vanishingriviality) of the effective(running
coupling constang in the ultraviolet regime of momenta.
gt= Y% ' (9) This is in qualitative agreement with the naive estimate made
1+ 2—_n ¢ above, based on the formulé® and (10).
3 % The situation is, therefore, as follows. The coupling grows

. ) ) . from the trivial fixed point(ultraviolet regime, where there
which, we note, is actually independent ©fThe existence 5 no mass generation to stronger values as the momenta

of the dimension less paramet in QED; may be associ-  phacome lower. According to the naive formyl0), this cou-
ated with the ratio of the gauge co_uplne@_’a, given thatin  jing grows indefinitely for low momenta and the perturba-
the largeN analysis the natural dimensionful scalehas o, expansion breaks down. But—to reped®-was de-
been introduced. Thus a renormalized runriiigt might be rived for the regimep<a, and the question now arises

thought of expressing “charge” scaling in this Superrenor-yhather nothing new happens from this regime all the way
malizable theory. In particula(9) implies that theg function 5 15 ., or whether there is interesting structure at inter-

corresponding t@" is of “marginal” form, mediate scales. In particular, we might envisage a
dg- 2-n “quasifixed-point” situation, in whichg remains more or
b= — =— (g")2 (10) less stationary around the valg¢0) for a wide range ot
dt 3 belowt=0, before commencing to grow rapidly at very low

Thus, depending of the sign of-2, one might havenar- ~ momenta.
ginally relevant or irrelevant couplingg-=e?/a. The first

derivative of theg function with respect to the couplirg is B. Nontrivial (quasifixed-point structure at intermediate
d o momenta
dg- (,BL)=ZT a", (11) The answer to the above question turns out to reside, es-

sentially, in the infrared cutofé [which, as we noted above,
and sincegg- >0 by construction, its sign depends on the signactually disappeared frort9)]. The coupling of(9) is “as-
of n—2. Forn<2 (the marginally relevant cagethe gauge ymptotically free”(i.e., grows rapidly in the far infrargdor
interaction decreases rapidly as one moves away from low<2, providedthat the ratioa/e is large enough, and in this
momenta, and the theory is “asymptotically freélf n>2  case dynamical mass generati@®MG) occurs. To get to the
(marginally irrelevant, on the other hand, thegt(t) tendsto  region where DMG does not occur, we must consider smaller
zero in the low-momentum region, while for=2 the cou- values ofa/e, tending ultimately to unity. This is the region
pling is exactly marginal and one recovers the results othat will yield the effective nontrivial fixed-point structure.
Refs. 10 and 15 about the existence of a critical flavor numin this casep=«a and hence the only allowed region for the
ber. Gauge invariance, in the sense of the Ward-Takahashiomentumk in (6) is k<p, which now eliminates theec-
identity, seems to impl/*> n<2, and this is the range we ondterm in(6). Solving then(6) in this approximatior{and
shall explore in this article. taking B=0 since DMG does not occymwith the vertex(5),

Our problem now is to exten@®) beyond the regiop<a. one obtains

Consider first the true ultraviolet regign—o. Assuming for

the moment tha(9) were correct fop>a, one finds a zero 9o (P dk (k|3

of the B function at the point—co, the trivial fixed point Alp)=1-= f — (—) A" 1(k)

g* =0, which is an ultraviolet fixed point. Howevei9) or 3 k ip

(10) is not reliable for the range of momentps«a. Both 9o [0

formulas have been derived in the regime of momenta rel- —1-20 f ds €A L(s), (13
evant to the dynamical mass generatiprga. 3 Jio-t

This being so, do we have an alternative argument for a
trivial ultraviolet fixed point? The answer is affirmative. To which can be easily solved with the result
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-n S 1(2-n) The new fixed point occurs at weak coupling for laige

A(t) =| constr —5— goe™° : (14 This is consistent with the interpretation that such a fixed

point should characterize a regime of the theory, as deter-

where the “const” is a positive one and can be found frommined by the ratioa/e, where dynamical mass generation
the value of the wave-function renormalization atdoes not occur.

t=In(e/a)=ty, namely,A(ty) =1. From(13) this yields the In summary, then, our analysis suggests a significant
value modification of the picture presented by Kondo and
’—n Nakatani’ Whereas those authors only considerede,
const= 1 — Jo. which is the regime of “asymptotic freedom” and DMG, we
9 have explored also the region of smaller valuesxtf and

Substituting (14) back to the gap equation, one obtains a_h_ave cor_lclud_ed that here quantum cor_rections create a quas-
running coupling constant in this new intermediate regime, [1xed point with weak couplingBothregions ofa/e will be

important in our application of these results to the cuprates,

| goe™ as we discuss in Sec. lll, where we shall try to relateeloé
g= > 51 this QED,; with the temperatur@ of QED; at finite tempera-
( 1— Jo e3t+ —_— goe3t0 ture.
9 9 At this stage, it is worth pointing out the similarity of the
% above-demonstrated “slow running” of the effective gauge
= - 5= ) (15) coupling g at intermediate scales witffour-dimensional

5)3 particle physics models of “walking technicolor” tyFé.
p Such models pertain to gauge theories with asymptotic free-
We note that just as the “lower scale? disappeared from d_om and_involve r_egions of momentum sca_lle at which effec-
(9). so the “intermediate scale is absent from(15) tive running coupl!ngs move very slowly with the scale, ex-
i_et us study the fixed-point structure .of this actly as happens in odasymptotically freg QED; case[A
> X X similarity of QED; with walking technicolor had also been
renormalization-group flow. To this end, consider thiinc- . iousiZ but from a different point of view
tion obtained from(15): pointed out previously; but from a erent point of view.
In Ref. 23, a formal analogy of QEDwith walking techni-
3 2-n color models was noted, based on the role of fermion loops
B'=- d—:—39'+ — (1— —_— go)(g')z_ (16) in softening the logarithmic confining gauge potential to a
t Y0 9 Coulombic 1f type, in the infrared regime of momenta. This
Taking into account thatj,=8/m°N, we observe that the 1/r behavior of the potential, and its relevance to dynamical
vanishing of 8 occurs not only aig'=0, but also at the Cchiral symmetry breaking, is common in both theories. The
nontrivial point, formal analogy between QERnd walking technicolor theo-
ries is achievet® by replacing the coupling? of the four-
-1 dimensional theory by N of QED;. However,N of Ref. 23
) 17 does not vary with the energy scale, since wave-function
renormalization effects have not been discussed in their case.
which indicates the existence of a fixed point lying at a dis-This is the crucial difference in our case, where there is more
tance ofO(1/N), for N—o, from the trivial one. precise analogy with walking technicolor theories, due to the
For what momenta is this fixed point reached? Acceptingslowing down of the variation of the “effectiveN (15) with
(15) at face value, the answer would be that it is reached fothe (intermediatelenergy scalé.This slow running of the
p—c. But of course(15) is not valid forp>a, being appro- coupling results in such theories in a significant enhancement
priate fore<p<a, where the ratia/« is smaller than unity, of the size of the fermion condensate. In our case, such con-
though not so very small thatcan enter the region of DMG. densates are responsible for an opening of a superconducting
Referring then to the right-hand side of the second equalitgap, and therefore one could associate the slow running of
in (15), we see that whep=a the quantityg' will be very  the coupling at intermediate scales with the suppression of

1- "5 o+ g %o

L 8 2-n 8
g*_ﬂ'zN 9 2N

close togl,, differing from it by terms of order the coherence length of the supercondudioverse of the
fermion condensajen the phase where dynamical mass gen-
e\®1 eration occurs. Such a suppression, as compared to the pho-
(;) N2' non(BCS) type of superconductivity, which is an experimen-

tally observed and quite distinctive feature of the high-
which is negligible. Indeed, as moves down top=e, ¢' cuprate$* appears then, in the context of the above gauge
arrives atg,, which is still within (1/N?) of g! . Thus the theory modef, as a natural consequence of the nontrivial
crucial point is that there is, on the basis of this admittedlyquasifixed-point renormalization-group structure. Note that
approximate analysis, a significant momentum region ovein Ref. 6 the enhancement of the superconducting-gap—to—
which the couplingg' varies very slowly, and we are in a critical-temperature ratio, as compared to the standard BCS
“quasifixed-point” situation. In a sense, this slow variation case, had been attributed to the superrenormalizability of the
of g' in the rangee<p<a (for not too smalle) provides a theory and thel independence of quantum corrections, fea-
reconciliation between the normalizations adopted in the twdures which are both associated with the above quasifixed-
different approximations(9) and (15), namely, between point (slow running situation as discussed above. It is un-
g-(p=a)=gy andg'(p=¢€)=go. derstood, of course, that before we arrive at definite



53 DEVIATIONS FROM FERMI-LIQUID BEHAVIOR IN (2+1)-. .. 9327
conclusions about the actual size of the coherence length iof flavors has been shown to exist, albeit depending &rit.
the model, we should be able to perform exact calculationThe issue of gauge invariance of the result is still unresolved.
by resumming the higher orders inNLto see whether these The complexity of the situation can be understood probably
features persist. At present this is impossible analytically, bupetter if we draw an analogy of théinite) infrared cutoff
one could hope foknonperturbative lattice simulations of  with the temperature scale. In such a case, there are Kfown

the above systenfs® unresolved ambiguities appearing in the low-momentum re-
gime of the theory, due to nonanalyticities of the effective
C. Effect of wave-function renormalization on the effective action.
fermion-fermion interactions and nontrivial (quasifixed Below we would like first to compare the results of Ref. 7
points to those of Refs. 26 and 27. In Ref. 26, it has been argued, on

Despite the important physical differences between thdh€ basis of a power-counting analysis, which did not make
models, it is worth comparing the above results with the@ny use of the Ward-Takahashi identities, that there is no

model of Ref. 4, where a nontrivial infrared fixed point in the "énormalization ofN to any order in 1M, in the infrared
running of the effective gauge-fermion coupling was associf€9ime of the model. The arguments were based on the soft-
ated with the presence of a modified fermion-fermion inter-ened Coulombic form of the gauge-boson propagator in the
action, of long-range p* type, with p the momentum. As infrared, as a result of fer2m|0n vacuum polarization:
mentioned in the Introduction, the model made explicit use® x»=(1/A)[9,,~(1-£)q,0,/q], in an arbitrary¢ gauge,
of a P- and T-violating Chern-Simons interaction for the for small momentum transfegp<a. It is worth noticing that
statistical gauge field. The nonrelativistic nature of the sysSUch arguments appear to apply equally well to Abelian as
tem of Ref. 4 was not important. What was important wagwell as non-Abelian theories, since in the latter case non-
the deviation from pure Coulombic behaviae=1, which  Abelian three or four-gluon interactions could not contribute
itself leads only to marginal deviations from Fermi-liquid t© the potential scaling-violating interactions. This analysis
behavior. In our case, as we shall argue below, the rojeiof has been performed without implementing an infrared cutoff,
played by +-O(1/N). The deviation from the Coulombic dué to the infrared finiteness of theero-temperatuje
interactions among fermions is caused by the nontriviality of"€0ry. In the work of Ref. 7, which is applied to the infrared
1/N, and the(margina) Coulomb interaction would be re- €gime, an infrared cutoff is introduced, which changes the
covered in the infinite fermion flavor limit. scaling properties of the gauge-boson propagator. In this
To make formal contact with the results of Ref. 4. it is €aS€, the scale-invariant situation seems to occur only for the

essential to compute thgero-temperatujesffective poten- valuen=2 in the vertexAnsatz.\{\géich notably does not sat-
tial among our fermions, with wave-function renormalization iSfy the Ward-Takahashi identiti€SAs we have seen, gauge

included. This is straightforward and we present the resultvariance requirea=1, and in that case there exists a run-
below. The zero-temperature static potential among fermion8ing N, at infrared momentum scales, as well as a finite
is given by theu=0, »=0 form of the gauge-boson propa- critical flavor nu_mber, whlch, ho_wgver, is infrared cutof_“f de-
gator. In Ref. 6 the effects of wave-function renormalizationP€ndent and diverges in the limit where the cutoff is re-
were ignored, which is an accurate result only in Mescc ~ Moved. , ,

limit, where the “mean-field” theory is recovered. This is the ~ We can also compare this result with that of Ref. 27,
Landau Fermi-liquid fixed point. The N/corrections yield a Which claims to have proven the gauge invariance of the
nontrivial wave-function renormalization effect. Resumming critical number of flavors in QER There, a nonlocal gauge
the 1N corrections, in an improved renormalization-group iXing was used; this mixes orders inNLexpansion, in the
framework, and using thansatz(5) for the effective vertex, S€NSe that the gap function in the SD equations contains now

we can compute the effective static potential in a straightfor9raphs ofO(1/N%), while the wave-function renormalization
ward manner with the result still remains ofO(1/N). In contrast, the analysis of Ref. 7

remains consistently at leading order imN1and in the Lan-
a ) dau gauge. The meaning of the nonlocal gauge fixing is not
V(p)=g plénsmNp—1 (18)  clear if one stays consistently within an order-by-ordex 1/
expansion. Nor does gauge invariance make complete sense
which makes contact with the effective potential of Ref. 4 if in the presence of an infrared cutoff. _
one identifiesc=1— 16n/x23N<1. Thus the key to a possible explanation of the discrepancy
between the works of Refs. 26 and 27 and Ref. 7 seems to be
hidden in the higher orders in the lartjeexpansion, as well
the presence of the infrared cutoff. Notice that a naive re-
Before closing this section it would be useful to comparemoval of the infrared cutoff might lead to ambiguities, as
our results with the works of Refs. 26 and 27, concerningpecomes clear from the work of Ref. 17, for finite-
existence, as well as gauge invariance, of a critical number demperature field theories, provided that one mkéise
flavors. As we have mentioned above, our work does notphysically sensibleidentification and/or analogy of the in-
deal directly with this issue, which pertains to the infraredfrared cutoff with the temperature scale, at least within a
momentum regime, but rather with the effects of the wave-condensed-matter effective-theory framework.
function renormalization at intermediate momenta, in the Now we come to our case. As we shall argue, our results
presence of an infrared cutoff, which, as we shall argue becan offer a way out of the above-mentioned discrepancy. For
low, could be interpreted as expressing finite-temperature efis, the momentum regime of interest is not the infrared one,
fects. In the presence of an infrared cutoff, a critical numbewhere dynamical mass generation occurs, but the intermedi-

D. Comments and comparison with other works
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In the work of KN Ref. 7 and ours, all these issues could
S be confirmed only if a more complete analysis of the SD
i\ equations, including higher-order NL/corrections, is per-
i formed. Whether resummation to all orders ilN1lWwashes
i \ out completely the wave-function renormalization effects at
|
|
|
]

Z—

intermediate momenta, leading to exactly marginalscale-

—'T ----------- ; invariany situation or keeps this effect at a RG marginal
— . } 0 (F) level remains an unresolved issue at present. On the basis of

the above discussion, one would expect that marginal devia-

]
]
_E tions from scale-invariant behavior at intermediate momenta,
Normal phase E such as the ones studied in the present work, survive higher-

|
i
1
]
1

{Chiral
|symm.
Ibreaking
1(supercon
:ducuvnyﬂ
i 1
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1 1
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?:‘j;g'gn'ylmﬁed order anglyses, but the_:y also I_ead to a _critical number of
flavors, since the latter is an entity pertaining to the infrared
regime of the theory. Moreover, for us, who are interested in
performing the analysis in a condensed-matter rather than
particle-theory framework, there is the issue of the ambigu-
ous infrared limit of the theory at finite temperatures, which
FIG. 1. Running flavor number in QED The coupling is  is by no means a trivial mattéf.lt seems to us that all these
asymptotically free upon the Pennington-Webb choice for the Velimportant questions can only be answered if proper lattice
tex function(5), corresponding ta=1, as dictated by gauge invari- gjmulations of the pertinent systems are performed. At
ance. The increase of the coupling is cut off at the infrared, as dresent, the existing computer facilities might not be suffi-
result of the Coulombic form of the gauge-boson propagator due t@ant for such an analysis.
fermion vacuum polarization. Above a certain infrared sealthe However, as we shall argue below, the slow running of the
coupling starts running slowly, a situation resembling that of walk-Coupling constant of the model at intermediate-momentum
ing technicolor. This kind of behavior is argued to be responsiblescaIes if true. is a desirable effect from a condensed-matter
for (margina) deviations from the Fermi-liquid picture in a point 6f view,’ where both infrared and ultraviolet cutoffs
condensed-matter framework. should be kept. The wave-function renormalization effects,
discussed above, prove sufficient in leading tareargina)
ate scale. In this regime, the power-counting arguments dfieviation of the theory from the Fermi-liquid fixed point. At
Ref. 26 do not apply, since the gauge-boson propagator dogigite temperatures, this effect can have observable conse-
not have a simple Coulombic behavior. Thus the wave-quences and might be responsible for the experimentally ob-
function renormalization effects, which appear to exist inserved abnormal normal-state properties of the fAigleu-
our, admittedly rough, truncation of the SD equations, mightprates, the physics of which the above gauge theories are
not be incompatible with the results of Ref. 26, pertaining tobelieved to simulate. We stress once again that such effects
the existence of a critical flavor number. From our point ofwould be absent in an exactly marginal situation, like the one
view, this would mean that, although there i§stow) run- ~ suggested in Ref. 26.
ning of an effectiveN and thus scale invariance is marginally
broken, however, the running of the coupling is even more Ill. LINEAR BEHAVIOR OF THE RESISTIVITY IN QED 5
suppressed in the infrared, where strong quantum effects cut WITH THE TEMPERATURE SCALE
,Oﬁ the increase of théasymptotically freg coupling. The In this section we want to connect the above picture of the
infrared cutoff then, appears as tiigpontaneous?scale,  panavior of QER at zero temperature to that of the same
above which a slow running of tHesymptotically freecou-  heory at finite temperaturd, In the absence, again, of any-
pling becomes appreciable. In a condensed-matter-inspirggling Jike an exact solution in th€+0 case, approximations
framework, such a spontaneously appearing scale makes ey ite possibly severe onewill have to be made. However,
fect sense, if %ne associates the infrared cutoff with the temg,o physical aim is clear: We want to connect the experi-
perature scalé_. For momenta sightly above the infrared cut- enta) observation that the electrical resistivity in the normal
off, then, the situation of KNRef. 7) seems to be valid. This phage of the high, superconductors varies linearly with
regime may be viewed as the boundary regime for whichyyer 5 wide range i from low temperatures up to a scale
dynamical mass generation still can happen. Below the infraat gog K, to the existence of the nontrivial quasifixed-point
red scale, which is a regime that makes perfect sence in grycture of QER found in the previous section. Qualita-
infrared-finite theory such as QEDdynamical mass genera- yely, the way we shall make the connection is to interpret
tion certainly occurs, and the arguments of Ref. 26 applyihe temperature in finitd- QED; as (related to an effective
leading to an effective cutoff of the increase of the couplinginfrared cutoff. This will follow from the form of the gauge-

constant. In this regime, the gauge-bo_son propagator agjyson propagator foF>0, to which we now turn.
sumes a softened Coulombicr form, which has been ar-

gued to be important for ésuperconductingpairing attrac-
tion among fermiongholeg in the model of Ref. 6. Such a
situation, which is depicted in Fig. 1, was envisaged in Ref. The gauge-boson propagaty,, is given by the expres-
8 for the case of chiral symmetry breaking in four- sion

dimensional QCD, which in this way was deassociated from _, 0)-1

the confining properties of the theory. A (Po.P.B)=A "(Po.P.B)+11,,(P,po.B), (19

U P
’

- (n[p,./0] (nfe/o] 0=lnfo/a] fn(p/ot)

A. Gauge-boson propagator at finiteT>0
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where the vacuum polarization is given by wherell is given by (24). In the limit p—0, which is rel-
evant for the definition of resistivitysee below, one may

I, =TI+(P,po, B)P 1y T IIL(P,P0. B)Qus- (200 then replacdl by 202, with the same qualitative association

The transvers®,,, and longitudinalQ,,, tensors are given, €~va/B as before. The net effect of retardation on the

respectively, by gauge-boson propagator, in the lafgeapproximation, is
summarized by the forn25).

PiP;
P uv= =6, dij— p2 Sjvs B. Wave-function renormalization and vertex function
at finite T>0
2 . - . -
Q,,= _( _ M) P ( _ %) In view of the importance of wave-function renormaliza-
my wOop2 P2 E0r p? ) tion in theT=0 case, as stressed in Sec. Il, it is clear that we
must include it also af #0. We shall findsee belowthat its
P.Py effect is to provide logarithmi¢in T) corrections to the lin-
Quut Prv=0— 7" (21) P garithmiéin T)

p earT dependence of the resistivity which is characteri&fic
Th ¢ t larization t fh b of the gauge interactions.
€ zero-lemperature polarization tensor of In€ gauge boson \yaye_fynction renormalization effects in QE@lt T>0

s H(p,!BﬁOO)Zaplg_ Thus, for_lzow-energies, relevant for were studied in Ref. 16, using the Pennington-Webb vertex
the definition of resistivity, thep_l behavior of the gauge- Ansatz[n=1 in the notation of(5)] and making the instan-
boson propagator is softenedfo”. For finite temperatures, taneous approximation, at least initially. The approximate SD

on the other hand, this_ beh.avior is so_fteneci even mpre.ﬂln th(gquation forA(P, B8) then becomefnoting that theA of Ref.
instantaneous approximation, one fittds “longitudinal

. 16 is ourA—1)
gauge-boson mass term proportional to

a2 @
2aln2 A(P, z1+—J dK I(P,K,

Moy P—0,03=0,8)= py =202, (22 (P.A) 16N72 Jo (P.K.A)
whereP is the magnitude of the spatial momentum. Thus we tanhé K2+ (K, B)
see that, in this approximation, the temperature has intro- « 2 . ' -
duced an effective infrared cutoff \a/B. Interpreting this K2+ Z(K,B) (26)
as thee of the previous section, we find that the role of the o . _
all-important ratio ale is played by vBa. The where.7 is the modified mass functioB/A and
“intermediate”-momentum region is they/Ba=1, while K [2n (P2—K?)2—Q*
the DMG regionyBa>1 (or T<a). I(P,K,B)= > fo d¢ P07 0% gy 0.5)7]" (27)

In the instantaneous approximation the transverse gauge
bosons remain massle§sHowever, beyond the instanta- with Q=|P—K|.
neous approximatiotf, one obtains temperature-dependent However, it was fountf that the use of(26) led to a
corrections also to the transverse parts. The low-momenturplainly unphysical result; vizA>1. The trouble was traced
behavior of these polarization tensors is not smédtfiand  to the use of the instantaneous approximation, which turns
in particular one has the following ambiguities, depending orout to make a dramatic impact @&, essentially because of

the order of the various limits: the effective reduction in the dimensionality of the integra-
5 tion in (26) from three to two dimensions.
1, (P—0,p3=0,8)—2w7, An exact treatment is very difficult, but it was argued in
5 Ref. 16 that a plausible improvement {6), taking nonin-
I (P=0,p3—0,8)— w7, stantaneous terms into account in an approximate way, is

obtained by replacindly, by a Q-independent constant?
which is of ordera? and at the same time setting the factor
) (K/a) in (27) equal to unity. Certainly, the numerical results
[I+(P=0,p3—0,8)— w7, 23 then obtained, in the region of dynamical mass generation,
where, in Euclidean formalisnpy is replaced byip,. For ~ Seémed physically sensible: In particular, Bs-0, they
our purposes, however, an approximate form given in RefVere in good qualitative agreement with previous zero-

[+(P—0,ps=0,8)—0,

18 will be sufficient: temperature results amdl was less than unity. In this case,
the kernell is replaced by the temperature-independent
2 1/2 i
quantity
HLzHTz(%+4wj‘T : (24)
27 |P2—K?|
wherep?=p3+ P2, In this approximation the gauge-boson hh=—pz 113
propagator reads
[P?—K?+A%|[P?—K?-A?]
_ PuPy +— — —. (29
Quv p? AZJ[(P=K)?+AZ[(P+K)*+A%]

Aul(P)= p*+II(P,ps,8)’ @9 Although originally discussed, in Ref. 16, within a con-
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text of dynamical mass generation, the above approximatiires above the critical temperature of dynamical mass
formula for A can just as well be considered in the regimegeneratiorf, due to specific featuréSof (24).
2=0. It is for this regime that we now estimate the resis- However, things are not so simple. As shown by

tivity, introducing the effects oA. Landau®! the analytic structure of the vacuum polarization
graphs entering the effective acti@@p) is such that there are
C. Resistivity of QED; in the normal phase imaginary parts in a real-time formalisth These imaginary

S L - ..., parts are associated with dissipation caused by physical pro-
Our aim in this subsection is to exhibit non-Fermi-liquid oqqag involving (on-shel) processes of the type

beha_\;_lordof the resistivity and a(;s_somatel it with ltge_fermiowfermiomgauge boson. It turns out that these con-
qhuaS| IXEX -point str'uctur.e athmterm? |a_te scales re.vehae 'Btitute  the major contributions to thgmicroscopi¢
the previous section via the qualitative connectiane  rqqjgiivity332829 | this picture, the latter is determined by

”_\/ﬁ- The resistivity of the model is found by first cou- yjrtye of the Green-Kubo formutain the theory of linear
pling the system to an external electromagnetic fkldnd  response, and it turns out to be inversely proportional to the
then computing the response of the effective action of ther‘maginary part of the two-point function of the “electric”
system, obtained after integrating out iistatistical gauge-  cuyrrent;j ¥= yy,y, evaluated at zero spatial momentum. In
boson and fermion quanta, to a changeAin our case, in the leading Nfresummed framework, the two-
In the case at hand, in the model of Reft76—QED) the  hoint function of the electric current is given by the graph of

effective action of the electromagnetic field, after integratingrig. 1. Adopting theAnsatz(5) for the vertex function, the
out hole and statistical gauge fields, assumes the form  (asuit for the current-current correlator is

P.Py

1 _ I n n
T (Ju(P) (=P = [AP)]"A L(PIAP]". (31

P (299  To compute the imaginary parts (1) would require a real-
time formalism, taking into account the processes of Landau

in a resummed N framework, withII the one-loop polar-  gamping!” which are not an easy matter to compute in a
ization tensor due to fermionBecause of ther structure,  resummed-M approximation, especial in the limit of zero-
as a result of the bipartite lattice structdrthere are no cross momentum transfer, relevant for the definition of resistivity.
terms between the statistical and the electromagnetic gauggdeed, as shown in Ref. 17 and mentioned briefly above,
fields to lowest nontrivial order of a derivative expansion inthere is a nonanalytic structure of the imaginary parts of the
the effective action. This implies that in this model the resis-one_|00p polarization tensors appearing in the quantum cor-
tivity _is determined by the polarization tensor of the holeections of the gauge-boson propagator. Such nonanalytici-
(fermion) loop. On the other hand, in models where only aties result in a nonlocal effective action. This nonlocality
Single Sublattice iS US&&;BO SUCh Ccross terms arise, Wh|Ch persists upon Coup"ng the System tomerna|e|ectromag_
are responsible, after the statistical gauge-field integratiorhetic fieldA. Since the resistivity of the system is defined as
for the appearance of a conductivity tensor proportional tahe response of the system to a variatiomAothen the Lan-
Hellg/(Ilg+11g), with Il ¢ denoting(respectively polar-  gay processes, which constitute the major contribution to the
ization tensors for the boson fields of 84! model and for (microscopi¢ resistivity, complicate the situation enor-

the fermiong(holes in a resummed N framework. In such  mously. At present, only a numerical treatment of these
a case, the conductivity is determined by the lowest CondUCnonanalyticities is possibfe:®

tivity among the subsysteni$.in condensed-matter systems  \we can circumvent this difficulty and use only the real
of this type, relevant for the physics of the normal state ofyarts of the gauge-boson polarization tensor and the approxi-
the highT cuprates, it is the bosonic contribution that de-mate expressiof24) to estimate the temperature dependence
termines the total electrical resistivit§j The functional  of the resistivity by making use of the fact that in “realistic”
variation of the effective action with respect Aoyields the many-body system%?%2° believed to be relevant for a de-
electric currenf. From (29) this is proportional to the elec- scription of the physics of the cuprates, there is the phenom-
tric field E(w) =wA, in, say, theA;=0 gauge, withw the  enon of spin-charge separation of the relevant excitations,
energy. In the normal phase of the electron system, the prafiscussed briefly in Sec. IV. According to this picture, the
portionality tensor, evaluated at zero spatial momentum, igtatistical currentresponsible for spin transpdiis opposite

o X w, with O the CondUCtiVity’g.o From (29), then, we have to the hole Curren(e]ectric Charge transpon

Seff: f A'u(p)A,uVAV(_p)’ AMV:

gf:pz%ﬂ | (30 B 1m0, Ji=gy 1B=220,2, (32
=0 and this constraint is implemented by the statistical gauge

whereP denotes spatial components of the momentum.  field a, that plays the role of a Lagrange multiplf@rThe

If the effective action were real, then the temperatdrg ( gauge field, on the other hand, is identified for physioal-
dependence of the resistivity of the model would be given byshell processes, with the currejt (of the CP* mode), and
the T dependence of the finite-temperature vacuum polarizathus, on account of32), the electric charge is transported in
tion of the gauge boson. Thus, following the approximationsuch systems with a velocity which equals the propagation
(24) for the polarization tensor in the resummedil/ velocity ve of the statistical gauge fields,. [Again, the
framework!® we would have immediately obtained a linear model of Ref. 6 is different from those of Refs. 28 and 29 in
T dependence for the resistivity. Such a temperature depethat the (independent statistical gauge fieldh, is related
dence would actually be valid for a wide range of tempera<{through its equations of motigrio the sum of the currents
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jyti,. To apply our arguments in this model one has to 1 @ K
assume that for the electric resistivity the boson part plays no Ap=0p8)=1,5— | __dKi- tanl’( B E)

role, which is justified by the formul&30) above. This al- I alp

lows one to consider only static configurations for the 1 apl2 dx

fields, thereby justifying the assumption that the electric =l—m Ja_mTtanhx. (36)

charge in the model propagates with tyegauge-boson ve-
locity.] In nontrivial vacua, such as the one pertaining to our |f Ba were>1 (the very-low-temperature limitwe could
system, the velocity receives quantum correctiofisrom  replace the “tanh” function in(36) by unity and deduce
vacuum polarization effects. In a thermal vacuum such cor-
rections are temperaturd’) dependent. 1

If we represent theobservablg average of the electric A(p=08)=1-5— In(af). (37)
current asj,=charge<vg, and use Ohm’s law to relate it o ] o ] ]
with an (T-independentexternally applied electric fiel§, ~ Then the resistivity, which formally is given by the imagi-
j,=0.E, then one observes that in this picture the migin nary part of the inverse of31) asp—0, would exhibit the
dependence of the resistivity * comes fromug, as a result ~ temperature dependenfresummed up t@(1/N)]
of (therma) vacuum polarization effect.[Of course, it is 1— 1UaNm
understood that the above argument is only heuristic and a pO(T ), (38)
proper (microscopi¢ computation of the resistivity, using \where we have taken=1 as in Ref. 14. We cannot, in any
real-time Green function CaICUIUS, combined with kinetic case, take the precise value of the exponemgaj Serious'y
transport theory, appears necessary in order to arrive at rign view of the rough approximations made along the way.
orous result$™*® However, the heuristic picture above cap-  However, the regiomBe=1 is, in fact, that of dynamical
tures the particular characteristics of the gauge interactiongnass generation, rather than the intermediate regier1
responsible for yielding a lineaF dependence, as we show jn which we expect the quasifixed-point structure to play a
below, and for our purposes it will be sufficieht. role. ForBa=1 the integral of the right-hand side (g6) has

To computevg(T) we shall use its definition in the case to pe evaluated numerically. One finds that f8&=5 the
of an (on-shel) relativistic massless particfe(in this case  result is within 10% 0f(37) and that(37) is virtually exact

the gauge bosgn for Ba=10. Thus we can conclude that for a wide range of
IE temperature belowy, but not so low that the symmetry-
_9= 2_2_(2 breaking phase is entered, the resistivity should have the
UF Q’ E*=0o=Q +11(Q. ). (33 form (38), where the precise coefficient of theNLpower is

o not known accurately from the above analysis.
Only the real parts of the gauge-boson polarization tensor are The main point, then, is the “stability” of thi§ depen-

relevant for the computation ¢83).% Using (24), it is then  dence, which correlates remarkably with the quasifixed-point
straightforward to evaluat@3) in the limit of vanishing mo-  structure of Sec. L.

mentum transfer, appropriate for the definition of resistivity.

The result is IV. BRIEF COMMENTS ON REALISTIC MODELS OF

HOLONS AND SPINONS FOR PLANAR-DOPED

vex T Qe (34) ANTIFERROMAGNETS

A. Microscopic models and their (naive) continuum limit

Using the association of the momentum infrared cu@ff e Above, we have argued that the gauge-fermion interac-
with \/—?/ «(T, one gets from34) a linearT dependence tions in planar QED are responsible for non-Fermi-liquid
for v g~ and, thus, for the resistivity. Such a lineafl de-  pehavior in the sense of exhibiting a nontrivial fixed-point
pendence is a characteristic feature of the gauge interactioRgructure of the RG at relatively low energies, below the
and, as we shall discuss below, is valid for a wide rang.of scale set by the dimensionful coupling constant in three

Above, we have ignored wave-function renormalizationspace-time dimensions.
effects. We now proceed to include them explicitly and dem- ~ The scope of this section is to connect the above results to
onstrate the existence dlbgarithmiq deviations from this  realistic models of holons and spinons interacting magneti-
linear T behavior. This part of the analysis does not requireca|ly via spin-spin interactions in models believed to simu-
an explicit computation of the imaginary part of the correla-|ate the physics of the recently discovered highmaterials.
tor (31). It only requiresA evaluated ap=0. So we can e shall be brief and concentrate only on some heuristic

examine it directly. In this limit, we have argumentation. Details can be found in the literafiré®?
s s First, we shall identify the roles of the various excitations
| (p=0K)= — 4m(A°—K?) (35  Of these materials in connection with the various fields ap-
A ’ (A2+K?)? - pearing in QER models described above. To this end, we

note that in condensed-matter systems, relevant for hjgh-
The maximunK in (35) runs from~ \a/B, to ~a, whichin  superconductivity, the basic excitations are electron fields
the “intermediate” regimea/e~ \/ﬁzl means thaK is  with momenta lying close to the Fermi surface. Optical ex-
constrained to lie within an order of magnitudesmfind that  periments have shown the existence of a large Fermi surface
.7 in (26) will be zero. Recalling thaA? is also of order?,  in these materials. At first sight, this implies that our model
a rough estimate foA(p=0, B) is provided by of Sec. I, based on Dirac fermions, is inadequate. However,
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as we remarked earlier, the most important interactions foneighbor sites if42) lie on this sublattice and from the point
fermions, in both the superconducting and normal phase&f view of the bipartite lattice are next-to-nearest neighbors.
are those which are local on the Fermi surface, and as sucfhe advantage of introducing this bipartite lattice structure
an expansion of the effective theory about a single point orlies in the fact that the dynamically generated gap through
this surface would be adequate. This has been done in Ref. he gauge interactiong?) is parity conserving, due to ener-
with the result that under thassumptionof spin-charge getics in the case of even-flavor fermion numb@fs3t10
separation one arrives at an effective low-energy theoryrhus one seems to have a natural explanation of the absence
which resembles a variant of QgPwith the Dirac fermions of P, T violation in these materials, despite the fact that the
playing the role of holon excitations. superconductindbinding forces are unconventionaimag-
To understand this point, which is our crucial differencenetic) in origin.
from the approach of Refs. 4 and 3 using spinons only, we The temporal component of the gauge field can be in-
remark that the basic fields are electrons with both spin anderted by invoking the Gutzwyler projection operator ensur-
charge described by a creation operddy, with i a spatial  ing the absence of double occupancy in these materials. This
lattice index andv=1, ... M a spin SUM) index. Realistic imposes the restriction oAt most one electron per sjte
models haveM =2. Spin-charge separation can be imple-which formally can be expressed via
mented by making thAnsatz®® S
_ _ Ty +2:772 =1 no sum overi. (43)
cl=yt2,, (39 . .

_ In a path-integral approach to quantum-doped antiferromag-

where "' is a Grassmann field that represents the creatiomets, the above constraif#3) may be implemented by a

of a holon andz, is a CPM~! multiplet, representing a Lagrange multiplier fieldyy, playing the role of the temporal
spinon excitationmagnon. component of the gauge field. Alternatively, one may work in
At this point we note that in condensed-matter physicshe a,=0 axial gauge, appropriately for a Hamiltonian
one use$” an alternativeAnsatz formulation® in which case one has to use the constraint
D iy explicitly to arrive at an effective Lagrangian with the cor-
C.=fabi, (400 rect number of independent degrees of freedom.

In both formulations, the presence of the gauge field in-

where the fermion fieldd carry the spin index and thus éjicates the existence of redundant degrees of freedom which

represent the spinon excitations, carrying no electric charge, hvsical
while the Bose fieldsb" are spinless and are electrically are unpnysical.

charged. This is the description followed by Refs. 3 and 4, The effective Lagrangian, de_scribing the physically_ rel-
evant degrees of freedom that lie close to a single point on

which treats the spin excitations as fermion fields in the ef—h Fermi surf then. be sh ! ire the T ¢
fective Lagrangian approach. This description is related tg"e Fermi surface, can, then, be shown to acquire the form o

the previous oné39) by bosonization techniques and may beaCPl o model, describing the spin excitations of the system,

viewed as a “gauge’-fixing choicé’ coupled via a statistical Abelian gauge field to a system of
The gauge symmetry in both descriptions can be found b Iectrlctalg/ ch_arged tD|rac fermions in a spin-charge-

performinglocal phase rotations of the constituents(BB) eparated environment,

and (40). Since for our purposes we shall follow thasatz 1 N

(39), we concentrate on it from now on._The_AbeIian_ gauge il f d3x|(aﬂ—aﬂ)z|2+ E j d3x ‘17(x)

symmetry that leaves the electron field invariant36) is Yo i=1

Yloeltiyl 2 etz (41) X[id+ar;—(elc)A]V'(x), (44)

. . T .
and is valid beyond halffiling. This gauge symmetry refersWhere the constrair(3) becomes effectivej z'z~1. The

to spatial indices only and can be expressed in an effectiv8Uantity % is the antiferromagnetic interaction coupling con-
theory formalism via link variables in a Hartree-Fock Stant of thea model,” ¢ is the light velocity in units of the
approximatior?®- Fermi velocity of holesa,, is the statistical gauge field, rep-

resenting magnetic interactions, aAq is the electromag-

o _ o netic field.[For simplicity we assumed that the Fermi veloc-
Z ¢"T¢'<ZETZQ'J>EZ Ay Ty, (42) ity of holes is approximately equal to the velocity of
(i () magnonw g occurring in theC P sector. The realistic case is
where the sums extend over appropriately defined nearestthen the two velocities are different, which spoils the rela-
neighbor sites to be specified below. The gauge symmetry itvistic form of (44). However, this will not be important for
discovered by freezing the amplitude of the Hartree-Foclour qualitative treatment in this article. For more comments
field |A;[=const, while letting its phase fluctuate on this point, see Ref. pThe fermion fields¥ are color
exp(/la dl) with a; the spatial components of an Abelian doublets with respect to the sublattice degree of freedom; the
[U(1)] gauge field. 73 Structure, which acts in this color space, indicates the op-

In large-spin approximationsof doped antiferromagnets posite spin of the antiferromagnetibipartite) lattice struc-

with a bipartite lattice structure, intrasublattice hopping isture of the underlying lattice. This doublet structure should
suppressed by terms @i(1/S), whereS>1 is the effective  not be confused with the=1,2,...N flavor degree of free-
spin of the excitations. In this case, the fermion field&39), dom of the fields¥. As we have mentioned in the Introduc-
¢/, may be assigned an internal “color” quantum number,tion, this “flavor number” represents internal degrees of
labeling the sublattice they lie on. In such a case the nearesfreedom, associated with the orientation of the momentum
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vectors of the quasiparticle excitatidria expansions about stand this point it is sufficient to remark that integrating out
a certain point of a finite-size Fermi surface. For large Fermthe magnon degrees of freedom, which are massive of mass
surfaces and low-lyinginfrared excitations, where the cut- m, in the phase where long-range antiferromagnetic order
off A effectively collapses to zero, as compared with thehas been destroyed, one obtains at low enelgiesh lower
radiuske of the Fermi surface, a controlled larjgA) ex-  than the massn, scalg a Maxwell-like term for the gauge
pansion is then applicable. field a in (44), which thus becomes dynami¢di** In this

In condensed-matter-inspired mod®ls,one may argue sense, the situation for the statistical gauge interaction be-
that the spontaneous scale above which nothing interest- comes similar to the QEpPcase discussed previously.
ing happens in QER' plays the role of the ultraviolet cut-
off A of Ref. 2. Hence, after cell division of angular space, B. Absence of charge- or antiferromagnetic-density-wave
we have effectivel§ N~ a/ke [see(3) and following re- instabilities
markg. In this interpretation of the flavor number, which in
fact is essential for a consistent RG approach to the theory %
the Fermi surfacé@ one has an effective running of the ferm-
ion flavor number with the RG scale, which is precisely the
case of our running<1/N discussed in Sec. II.

To form an estimate of this effectivid, we use the phe-

An interesting question that arises in connection with the
w-energy behavior of such systems concerns the existence
of other type of instabilities which, from the point of view of
an effective Lagrangian, would manifest themselves as mar-
ginal or relevant operators. The obvious class of candidate

logical f B13.42 interactions, which in fact is the only one in these models by
homenological formu simple power counting in largl-treatments, would be four-
a=tvel(@7ma) ~t' (7)Y Do (45) fermion operators. Since our effective Lagrangidd) has

only trilinear gauge-fermion couplings, such effective opera-

wherea is the lattice spacingyr is the Fermi velocity of tors could be shown to arise as a result of lad@ercross
holes,t’ is a hoping parameter for holésn the same sub- ladde) graphs involving the exchange of gauge partictfs
lattice), and 7 (7m0 denotes the averageaximum for su-  Fig. 2). If an operator of this sort iexactly marginalthen its
perconductivity number density of holegloping concentra- scaling would be the same as the tree-level scaling of the
tion). In realistic models the various parameters entef@#ty  effective gauge-fermion vertex. Exactly marginal deforma-
depend on temperatuiile For our angular cell division, how- tions do not cause the appearance of a gap in the fermion
ever, we shall use th&: of a zero-temperature theory. A spectrum. We shall argue below that this is what happens in
typical scale for the Fermi surface radius, which is a typicalour case in the infrared regime of momenta.
energy of electronic excitations, is thus ©f1 eV]. For the Interesting effects can be examined in this framework in
values of temperature and doping concentration relevant fagissociation with the electromagnetic or statistical gauge in-
superconductivity, a typical value of is of order of 1 eM®  teraction that could lead to antiferromagnetic instabilities in
As argued in Sec. llI, in the normal phase-T,~O[100 K],  the normal phase, associated with the formation of electri-
one may replace the Fermi velocity by an effective onecally neutral spin- or charge-density wavéSDW'’s or
vexT71, and hence the correspondingT) gets consider- CDW's), which could be described by fermion-antifermion
ably smaller, as compared tq , thereby shifting the effec- condensates. In our formalism, since the Grassman variables
tive scales towards the infrared or, equivalently, pushing the/ in (39) are spinless, the formation of fermion condensates
infrared cutoff to higher values. It is therefore not unreason-on a single sublattice would then be appropriate for a de-
able to argue that the conditions for larleck:/a(T)>1  scription of CDW instabilities. What we shall show below is
may be satisfied for the range of temperatures dadje that in our model such CDW instabilities cannot occur as a
Fermi momenta characterizing the normal phase of these maesult of the electromagnetic interaction. Notice that because
terials. Of course, it is understood that all such estimates aref the =; structure of our mode{44), the fermion lines in
only qualitative. Any attempt to present quantitatively mean-these graphs can all lie on the same sublattice only if the
ingful considerations would require working directly with exchanged gauge particle is the electromagnetic photon.
microscopic models, which falls beyond the scope of theGraphs in which the exchanged particle is the statistical
present work. gauge boson, and hence the fermion lines necessarily belong

Note that for the superconducting phase of the model théo different sublatices, are kno¥to lead at low momenta to
sublattice structure is important in that the fermion condensuperconducting mass generation and will not be of interest
sate responsible for the spontaneous breaking of the electrte us here. In the normal phase, such instabilities are absent.
magnetic gauge invariancel,,, associated with thA field Following Ref. 3, we consider the ladder and cross-ladder
in (44) occurs between fermionoles of opposite sublat- graphs of Fig. 2, where the external legs are set to zero
tice each of electric charge For the normal-phase analysis, momentum and the propagators of the electromagnetic
however, which we are interested in for the purposes of thégaugé and fermion fields are dressed in a Schwinger-Dyson
present work, the sublattice structure is irrelevant. From nowashion. The important point for the electromagnetic photon
on, therefore, we concentrate on a single sublattice, ignoring that in three dimensions its kinetic term acquires the modi-
the =; color structure of the fermions. Whenever the latterfied Coulomb form(1), in all ranges of momenta; this form
becomes important, it will be stated explicitly. implies that the relevant propagator scales likg, Whereq

From this point of view, the statistical gauge interaction inis the momentum transfer circulating around the loop of Fig.
(44) plays exactly the role of the fermion-gauge interaction2, for zero external momenta of the fermion legs. In the
of Sec. Il, which leads to a nontrivial fixed-point structure atphase where there is no gap for the fermion propagators, the
momentap=<O[«], wherea is the dimensionful scale set by latter scales with momenta like B{p)/p], where A(p) is
the statistical gauge-interaction coupling constant. To undetthe wave-function renormalization. This is also the same
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self was a result of the fermion vacuum polarization(ior

the case electromagnetic interactipribe projection from
four to three dimension$The fact that the gauge invariance
dictates the valuem=1 in the Ansatz (5) of the gauge-
fermion vertex, leading to the above marginal behavior of the
gauge interaction in the ladder graphs of Fig. 2, implies that
the absence of charge-density waves in the present model, or
antiferromagnetic instabilities in the case of spinon systems,
can be considered as a clear-cut prediction of the gauge na-
ture of the interactions among the fermionic quasiparticle

FIG. 2. Ladder and cross-laddegesummegione-loop graphs in o
excitations.

QEDs. The soft Coulombic form of the infrared gauge-boson
propagator results in the exactly marginal character of tlese- _
fermion) interactions: The scaling is that of tree level. This leads C. Electromagnetic effects

to the absence of the respective instabilities. A final comment concerns the effects of the

. ) ) electromagnetic-field—fermion coupling on the deviation
scaling as the one in the region of momeMa<p<c«,  from Fermi-liquid behavior in the infrared. The effect is
where dynamical gap generation could occur. Hence for ougnown to occur in four space-time dimensichsjith the
purposes we shall adopt this Feynman rule for theegylt that the presence of the vector potential in nonrelativ-
momentum-space scaling of the dressed fermion propagatqgtic condensed-matter systems causes deviations from the
The vertex function is assumed to scale k)" y, accord-  Fermi-liquid behavior at low temperatures, which, however,
ing to the Ansatz(5) even for the case of electromagnetic 5p0 suppressed by terms ©fv 2/c?].
interactions. The result of the one-loop integral of the ladder |, three space-time dimensions, in the presence of statis-
and cross-ladder graphs, then, scales like tical interactions, the situation is quite different if one re-
stricts one’s attention in a given sublattice in these antiferro-
magnetic oxides. As we shall show below, the
electromagnetic-field—fermion interactions become irrel-
evant in the presence of the electron-electron interactions
Thus, by choosing the Pennington-Webb verl@satz =1,  caused by the statistical gauge field. This is easily demon-
dictated by gauge invariancé,we observe that the gauge strated by first integrating out the auxiliary gauge fiajgin
interaction becomesxactly marginal since the scaling be- (44). We concentrate on the effects of fermions within each
havior of the ladder and cross-ladder graphs of Fig. 2, Egsublattice. In the normal phase, where no mass is generated,
(46), is similar to the tree-level scaling, at least in the regionintegrating out the fermions of the other sublattice just pro-
of momenta where dynamical gap generation could occur. duces Maxwell terms for the statistical gauge field, which

This implies the absence of charge-density waves of thesgue to the vacuum polarization acquire the form

systems caused by the electromagnetic interactions, in agree-
ment with more rigorous condensed-matter modéldt 1 1
should be remarked that the above marginal character of the u%km:? 2,41, \/——2 LK SRR (47)
interaction refers to four-fermion graphs, which from an ef- J
fective Lagrangian point of view simply denotes the absence&uch terms are irrelevant operators in the infrared, as com-
of the pertinent instability caused by such four fermion in-pared with the nonderivativa terms in theCPN"?! part of
teractions. It should not be confused with the fermion-gaugehe action(44). Indeed, aftem-field integration in the sub-
trilinear interaction causing a mass gap, which exists anyhowattice, one would get current-current terms multiplying the

f d’q ﬁ AZ(Q)AZT D), (4

at low momenta as a result of the gauge interactidfis. inverse of the operator

An additional type of instability of such systems is that of
an antiferromagnetic spin-density wave. To study SDW'’s in ) (926,”—5#(9,,
the present formalism one should examine@ part of the uv= Ouy J7 .

effective action(44). An easier way, which is closer to the

present context, would be to pass to the alternative spinappearing in(47). Only the nonderivative part of such an
charge separatioAnsatz(40), by fermionizing the spin ex- inverse is relevant in the infrared. Thus reconstructing the
citations. In such a case, the sublattice structure would belectron operatorg out of the spin-charge constituent$as
totally irrelevant, and one should consider the spin degrees

of freedom as fermions interacting with a statistical gauge Xa=Zhth (48

field of QED, type. The I_ow-energy b_e_hawor of the system and integrating out tha field in (44) yields a Thirring inter-
would be described again by a modified photon propagatof .. : h
i P Iboy  action between the electrically charged electron fiélds,

of 1/p form, as a result of fermion vacuum polarizatitrf:

which would yield exactly marginal four-fermion interac- _ Yo _ e

tions as in(_46). Hen_ce one finds_again th_at such gauge sys- Seﬁzf d3x|ix dx— T ()('yﬂx)z-i- p Aﬂ)(y/‘+---}.

tems exhibit no antiferromagnetic instability. (49)
The masslessness of the gauge particle was important for

the above marginal scaling behavior, as was the modifijgd 1/1n the infrared, the electron kinetic terms become irrelevant

scaling behavior of the dressed gauge propagator, which iBperators, as compared with the Thirring contact interac-
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tions, and from now on we shall omit them. Assuming con-Thus we observe that in the infrared the fermion-current term
servation of the fermion number in each sublattice, as a re,\_/yﬂ)( is marginal in the sense that it does not scale with
sult of the assumed suppression of intrasublattice andhomenta. On the other hand, the electromagnetic gauge field
interplanar hopping, we may represent in three dimensionscales likep %2, implying the RG irrelevant nature of the
the conserved sublattice fermion current as a curl of a vectoelectromagnetic-field—fermion vertex.

field V,,, This means that, in the models examined above, with sup-
pressed intrasublattice hopping, in each sublattice the only
dominant deviations from the Fermi-liquid behavior can be
induced by the statistical gauge interactions at energy scales

(Spontaneous breaking of the fermion number occurs in th€l0Se toa. This result might be subject to experimental test,
superconducting phase, as a result of one-loop anomalies df&vided that accurate enough experiments can be made so
to gap generatioh.n the normal phase, which we are inter- @S t0 obtain data within one sublattice only. It goes without
ested in, such phenomena are absent and the fermion curréitYing that intrasublattice hopping, which increases with in-
is assumed to be conserved at a quantum Iplethis case  €réasing doping concentrati8haffects the above result.

the effective low-energy actiofd9) can be written in the

form

)?'V/.LX: Guvpavvp . (50)

V. CONCLUSIONS AND OUTLOOK

e
s*f= f d®x c AN, ? F (V)2 In this article we have examined certain interesting effects
of the wave-function renormalization {@a variant of QED;,
Yo 5 which is believed to be a qualitatively correct continuum
— 7 (V) (51 limit of semirealistic condensed-matter systems simulating
(planaj high-temperature superconducting cuprates.

where the ellipsis indicates terms that are more irrelevant, in Base(f_ on ar(approxmalltgz.Schww;]ger-Dyson—érr;prO\r/]ed
a RG sense, in the infrared, than the terms kept. The last terffn°'Malization-group analysis, we have argued for the ex-
in (51) is viewed as a gauge-fixing term. Our aim is to ex- istence of an(intermediate regime of momenta, where the

amine whether the electromagnetic field interactions are ca[fl]flnnmg of the fiﬂogma"zehq d|mehn3|0r?lesshco_upllng offmhul-
pable of driving the theory to a nontrivial fixed point, away tflavor QED;, which is nothing other than the inverse of the

from the free-electroriLandau fixed point. We are thus in- flavor number, is considerably slowed down, exhibiting a

terested in the behavior of the mixed Chern-Simons tempehavior similar to that of “walking technicolor” models of
A dV in the presence of a weak Thirring interactifire., particle physics. This slow running, dquasjfixed-point

close to the free-electrafbare interactiond. This is equiva- structure, has been argued to be responsible for an increase

lent to a strong-coupling problem for the gauge fiald of the chiral-symmetry-breakin¢superconductingfermion

which allows a heuristic proof of the irrelevant character of¢ondensate of the model, as well as fofmeargina) devia-

the A dV interaction, as follows: First, we represent the tion from the Landau Fermi-liquid fixed point. In connection
mixed Chern-Simons term, in the infrared, as a heavyWith the latter property, we have argued that the laxge-
fermion-gauge interaction, expansion is fully justified from a rather rigorous
renormalization-group approach to low-energy interacting
fermionic systems with large Fermi surfaces. Some experi-
\IH—M\?XI/, M—. (52) mentally observable consequences of tfrigargina) non-
Fermi-liquid behavior, including logarithmic temperature-
dependent corrections to the linear resistivity, have been
This yields the following two-point function for the field pointed out, which could be relevant for an explanation of
V=e€,,,0,V,: the abnormal normal-state properties of the higleuprates.
The above RG-SD analysis was, however, only approxi-
mately performed at present. To fully justify the above con-

e
A dVoc\IT( 10475+ — A

K;wo‘f d3xePX(TV(X)V(0)) sideration and to make sure that the above-mentioned effects
are not washed out in an exact treatment, one has to perform
PP, p? lattice simulations of the above models. Given that this
=| 6= == 2. 22 ) (53 might not be feasible yet, due to the restricted capacities of
# o p? | pP+e’p’l(p) 9 yet, P

the existing computer devices, an intermediate step would be
to perform a more complete analytic RG treatment of the
relevant largeN SD equations at finite temperatures. Such a
AM2) V2 treatment is not easy, however, d_ue to the mathgmatic_al_ com-
1 (_2_) , (54) plexity of thg mvolved_ equations. In_ fidd|t|on, finite-
p temperature field theory is known to exhibit unresolved am-
biguities concerning the low-momentum limit, which
with M —eo the auxiliary(massive fermion mass. complicates the situation. Some of these issues constitute the
The scaling of the electromagnetic photon two-point func-object of intensive research effort of our group at present,
tion is not affected by th& fermions in this limit, and hence and we hope to be able to reach some useful conclusions
it is given by 1p, due to(1) in three space-time dimensions. soon.

where

1/2
tan™

1 2
I(p)e= E<_pr
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