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We examine transport properties of superconducting hybrid mesoscopic structures, in both the diffusive and
ballistic regimes. For diffusive structures, analytic results from quasiclassical theory are compared with pre-
dictions from numerical, multiple-scattering calculations performed on small structures. For many structures,
the two methods yield comparable results and in some cases, quantitative agreement is obtained. These results
not only demonstrate that quasiclassical theory can yield the ensemble averaged conductance^G& of small
structures of dimensions of order 10–20 Fermi wavelengths, but also establish that numerical-scattering cal-
culations on such small structures can yield results for^G& which are characteristic of much larger systems.
One exception arises for Andreev interferometers, where quasiclassical theory predicts a vanishing conduc-
tance at a phase differencef5p, whereas our numerical approach yields a finite value. We suggest that this is
a consequence of the one-dimensional nature of the currently available quasiclassical descriptions. Having
compared the two approaches, we extend the multiple-scattering analysis to the ballistic limit, where the
sample dimensions become smaller than the elastic mean free path. In this limit, the numerical results can be
understood in terms of a two-channel model, which emphasizes the role of interchannel scattering.

I. INTRODUCTION

When a normal metal (N) makes contact with a supercon-
ductor (S), classical tunnelling theory predicts that as a con-
sequence of the existence of a superconducting energy gap,
the low-temperature subgap conductance will vanish. An-
dreev scattering1 provides an alternative mechanism for
charge transport through such anN-S junction and for an
ideal interface,2 leads to a zero-voltage conductance which is
almost twice that of the normal state. In the presence of an
insulating layer (I ), Andreev scattering becomes less effec-
tive and in the absence of disorder, the subgap conductance
of anN-I -S junction is predicted to be depressed compared
with that of the normal state. In contrast, at low enough
temperatures, experiments onN-I -S junctions3 reveal the ex-
istence of a zero-voltage conductance peak, with a value
comparable to the conductance in the normal state. This ef-
fect is due to the interplay between tunneling and disorder-
induced scattering and has been observed in experiments in-
volving quantum wells with superconducting electrodes,4

superconductor-normal metal microjunctions,5 and
superconductor–two-dimensional electron gas~2DEG!–
superconductor structures.6 These have been interpreted us-
ing a number of theoretical approaches, including quasiclas-
sical Green-function techniques,7–12 tunneling Hamiltonian
methods,13,14 multiple-scattering techniques,15–17 and
random-matrix theory.18,19

Recently, following a number of theoretical papers on dis-
ordered transport in the presence of two superconducting
contacts,20–22 several experiments aimed at probing the
phase-coherent nature of Andreev scattering have been car-
ried out. These involve a normal metal in contact with super-
conductorsS1 andS2, with order parameter phasesf1, f2,
whose order-parameter phase differencef5f12f2 can be
controlled by external means. For a diffusive system of size
L, with diffusion coefficientD, early theoretical work20,21

predicted that in the high-temperature limitT.T* , where

kBT*5hD/L2, the ensemble averaged conductance^G&
should be a periodic function off, with fundamental period
p, whereas in the low-temperature regimeT,T* , it was
predicted22,23 that the fundamental periodicity of^G& would
be 2p. This prediction of a 2p periodicity is a common fea-
ture of all recent theories of̂G& ~Refs. 13, 14, and 24–26!
and of recent experiments.27–31

Despite much progress, many details of such Andreev in-
terferometers remain to be understood. In particular, there
exists no general theory of the amplitude of oscillation, the
nature of the zero-phase extremum and the harmonic content
of the conductance-phase characteristic. Experiments on
various geometries, in different transport regimes have
yielded amplitudes of oscillation which differ by many or-
ders of magnitude. It has also been questioned whether ana-
lytical theories that mainly apply in the diffusive limit can be
used in the quasiballistic case.30

One difficulty in establishing a general theory is that most
theoretical papers are based on a single technique, with little
detailed comparison with the results of other approaches. For
example, distinct analytical theories exist for the ballistic,
diffusive, and strongly disordered regimes, but there is no
analytical theory capable of describing the crossover be-
tween them. In contrast, exact numerical solutions of the
Bogoliubov-de Gennes equation32 can easily cross from one
regime to another, but are limited to system sizes of order a
hundred Fermi wavelengths.

In this paper, we undertake a detailed comparison be-
tween an exact numerical, multiple-scattering technique and
quasiclassical theory. The former was first used to solve the
Bogoliubov-de Gennes equation for disordered, one-
dimensional systems33 and soon after generalized to higher
dimensions,34 while the latter, developed in the context of
nonequilibrium superconductivity,35–38 when supplemented
by the appropriate boundary conditions,39,40 has recently
yielded a variety of results for ensemble averaged conduc-
tances in the diffusive limit.7–12Once agreement between the
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two approaches is obtained in the diffusive limit, we then use
the numerics to follow the crossover to the ballistic regime,
where the electron mean free path becomes comparable with
the system size.

The comparison will be carried out by examining two
canonical examples of mesoscopic superconducting hybrid
structures, namely anN-I -S junction and an Andreev inter-
ferometer. In Sec. II we briefly recall some results of the
quasiclassical Green-function approach for these structures
and in Sec. III highlight the main features of the numerical-
scattering approach. Whereas a quasiclassical approach
yields a one-dimensional theory whose results depend only
on the topology of the structure, the numerical calculations,
in common with real experiments, require the specification
of a suitable geometry. In Sec. IV we present a detailed dis-
cussion of the geometry and numerical parameters needed to
reproduce the results of quasiclassical theory. Having estab-
lished agreement between the two approaches we then de-
part, in Sec. VI from the diffusive limit and investigate the
crossover to ballistic transport, which is particularly relevant
to the experiments of Ref. 30.

II. RESULTS FROM QUASICLASSICAL THEORY

In this section, we highlight some predictions of the qua-
siclassical approach of Refs. 7–12. These theories focus on
the ensemble averaged conductance^G& and ignore the weak
localization contribution discussed in Refs. 20 and 21. The
latter does not scale with the system size and in systems with
a conductance much larger than 2e2/h, can be neglected. The
results of Refs. 7–12 are obtained by solving the following
equation for the quasiclassical Green functionĝ in the diffu-
sive limit D] r(ĝ] r ĝ)1iE[ t̂z ,ĝ]50, whereE is the quasi-
particle excitation energy.41 In what follows, we shall con-
sider only theE50 limit of this equation, which applies to a
diffusive system, whose lengthL is assumed to satisfy the
inequalitiesL!j, wherej25D/D0 and j25D/E, in the su-
perconducting and normal region, respectively. HereD is the
diffusion coefficient,D0 the energy gap, andE5eV, whereV
is the applied voltage. Furthermore all temperatures and volt-
ages are assumed to be much smaller thanD0. For conve-
nience in what follows, we shall also restrict the analysis to
zero temperature.

In units of 2e2/h, theory predicts11,19 that the total con-
ductanceG of the structure shown in Fig. 1~a! may be com-
puted from the equation

1

G
5

1

Gdiff
1

1

Gtunsinu
, ~1!

whereu is a solution of the transcendental equation

Gdiffu5Gtuncosu ~2!

andGtun, Gdiff are the respective conductances of the tunnel
junction and diffusive region in isolation.

There are two obvious limits to take. The first is where
Gtun/Gdiff→0 for which u'Gtun/Gdiff'sinu and hence
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The second limit isGtun/Gdiff→` in which u→p/2. This
yields
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Equation~3! has been also directly obtained in the tunnel-
ing Hamiltonian limit.13 Furthermore, as emphasized in Ref.
19, the change of the power in the dependence on the tunnel
junction conductanceGtun, as described by Eqs.~3! and~4!,
reflects the combined effect of the Andreev scattering at the
N-S interface and the interference effects in the mesoscopic
phase-coherent disordered normal region. In the regime de-
scribed by Eq.~4! and whenGtun!1, the conductance of the
N-S junction appears to be the same as in the normal state
and the total resistance is obtained by simply adding up in
series the resistances of the diffusive region and tunnel junc-
tion. Equations~1! and ~2! may be solved numerically to
yield the resistanceRtot51/G of the system as a function of
Gdiff andGtun. The result of such an exercise for a fixed
valueGdiff51.6 and a variableGtun is shown by curve~a! of
Fig. 2. Also plotted are the limits given by Eqs.~3! and ~4!
represented by the dashed lines~e! and~d!. Curve~b! shows
the results of the numerical simulation described in Sec. IV.

As a second example, quasiclassical theory predicts11 that
the conductanceG of the structure depicted in Fig. 3~a! may
be computed from the equation

G5
4G1

2G2
2cos2~f/2!

$G1
214G2

2cos2~f/2!%3/2
, ~5!

whereG1 is the conductance of the tunnel junction~1!, G2 is
the conductance of the tunnel junction~2! andf is the phase
difference between the two superconductors. In the limit
G1@G2 , this simplifies to the expression

FIG. 1. ~a! Schematic picture of anN-I -S junction for analysis
using circuit theory.~b! Picture of the tight-binding lattice used to
model a two-dimensionalN-I -S structure.
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whereas ifG2@G1 then
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1

ucos~f/2!u
. ~7!

Figure 4 shows four plots of Eq.~5! for each combination
of G150.2,2.0 andG250.2,2.0. One can see that forG15G2
there is a zero-phase minimum, as there is forG1!G2 .
WhenG1@G2 however, one finds a zero-phase maximum.
In all cases the conductance vanishes when the phase differ-
ence between the superconductors isp. Corresponding ana-

lytical results have been obtained for ballistic interferometers
in one42,43 and two44 dimensions.

III. A SCATTERING APPROACH TO TRANSPORT
IN MESOSCOPIC SUPERCONDUCTORS

During the past six years32–34we have developed numeri-
cal codes capable of yielding exact solutions of the
Bogoliubov-de Gennes equation for disordered structures in
arbitrary dimensions. Currently there are two independent
sets of codes available at Lancaster; one of these is based on
a transfer-matrix approach and the other is based on a recur-
sive Green’s-function method. Typically these are used as
independent crosschecks and therefore there can be no doubt
about the accuracy of the results obtained for a given struc-
ture. For a two-dimensional system of width less than a few
hundred Fermi wavelengths, or for a three-dimensional sys-
tem of width less than a few tens of Fermi wavelengths, the
problem of computing dc transport properties of a phase-
coherent system described by mean-field BCS theory is
therefore no longer an issue. Just as the appearance of pocket
calculators rendered approximate tables for computing el-
ementary functions redundant, the existence of these codes
has, for several years, allowed transport properties of small
structures to be calculated without further approximation.
For larger systems, the key issue is how to extrapolate the
results of such calculations to larger numbers of channels. By
making contact with quasiclassical theory, the results which
follow establish that for many systems, the ensemble aver-
aged conductance obtained from small systems exhibits the
essential features of much larger structures.

The numerical codes yield the quantum-mechanical scat-
tering matrix of a given phase-coherent structure and from
this the matrix elementsai j5]I i /](m j2m), whereI i is the
current supplied by a normal reservoir of chemical potential

FIG. 2. Conductance of theN-I -S structures of Fig. 1, as a
function of the conductanceGtun of the tunnel junction. The various
curves refer to~a! analytic theory;~b! numerical simulation;~c!
resistance of the diffusive region̂Rdiff&50.635^Gdiff&

21; ~d! as-
ymptotics at high transparencyGtun@^Gdiff&; ~e! asymptotics at low
transparencyGtun!^Gdiff&.

FIG. 3. ~a! Schematic picture of an interferometer analyzed us-
ing circuit theory.~b! Picture of an interferometer formed from a
two-dimensional tight-binding lattice.

FIG. 4. Analytic results for the conductance versus phase in the
diffusive limit: ~a! G150.2 andG250.2. ~b! G152.0 andG250.2.
~c! G150.2 andG252.0. ~d! G152.0 andG252.0.
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mi andm is the condensate chemical potential. This approach
has been used to evaluate multichannel scattering formulas
for the dc electrical conductance15,32and more recently ther-
moelectric properties.45 In what follows, we focus on hybrid
structures connected to normal external reservoirs only. For
example for a structure connected to two such reservoirs, the
zero-temperature, zero-bias electrical conductance can be
written15,32 ~in units of 2e2/h!,

G5T01Ta1
2~RaRa82TaTa8!

Ra1Ra81Ta1Ta8
. ~8!

In this expression,R0 ,T0 (Ra ,Ta) are the coefficients for
normal ~Andreev! reflection and transmission for zero-
energy quasiparticles from reservoir 1, while
R08 ,T08 (Ra8 ,Ta8) are the corresponding coefficients for qua-
siparticles from reservoir 2. If each of the external leads
connecting the reservoirs to the scatterer containsN open
channels, these satisfyR01T01Ra1Ta5R081T081Ra81Ta8
5N andT01Ta5T081Ta8 . Furthermore, in the absence of a
magnetic field, all reflection coefficients are even functions
of f, while the transmission coefficients satisfyT08(f)
5T0(2f), Ta8(f)5Ta(2f). Consequently on quite gen-
eral grounds, in the absence of a magnetic field,G is pre-
dicted to be an even function off. In the absence of quasi-
particle transmission between the two external probes, Eq.
~8! reduces to

G215~2Ra!
211~2Ra8!21, ~9!

where 2Ra (2Ra8) are left ~right! boundary conductances,
introduced by Blonder, Tinkham, and Klapwijk~BTK!.2

The numerical codes compute the scattering coefficients
of a tight-binding lattice, described by a Bogoliubov-de
Gennes Hamiltonian of the form

H5S H0

D*
D

2H0*
D . ~10!

If an indexn is used to label sites on the lattice and any
internal spin degrees of freedom, thenH0 is of the form

H05(
n

enun&^nu1 (
~n,m!

Vn,mun&^mu. ~11!

To model a given physical structure, it is necessary to
specify certain phenomenological parameters which capture
the essential physics. As an example, in the absence of spin-
orbit scattering, spin degrees of freedom can be ignored and
in the absence of a magnetic field, one choosesVn,m52g for
nearest-neighbor pairs (n,m). If (n,m) are not nearest neigh-
bors, thenVn,m50. In a region free from disorder, the diag-
onal elementsen are set equal to a constante0, whereas in a
disordered region,en is a random number uniformly distrib-
uted betweene02W ande01W. In the presence of spin sin-
glet, local s-wave pairing,D is a diagonal order-parameter
matrix with elementsDn . In a normal region,Dn50, whereas
in a clean superconducting region,uDnu is set to a constant
value D0. The phase ofDn is chosen to equal a value as-
signed to the superconducting region to which siten belongs.
In what follows, the energy scale will be fixed by making the
choiceg51.

Of course, the above parameters are not directly acces-
sible experimentally and are not an explicit feature of quasi-
classical theory. Therefore when making comparisons, some
effort is needed to map one analysis onto another. Ind di-
mensions, for a clean system on a square or cubic lattice, the
chemical potential relative to the band bottom is
m5e012dg, the band width is 4dg and the effective mass
for excitations near the band bottom ism*5\2/(2ga2),
wherea is the lattice constant. A key parameter in the prob-
lem is the dimensionless ratioD̄5D0/m, which takes a value
1023 for conventional low-Tc superconductors such as nio-
bium, but can be as large as 0.1 for high-temperature super-
conductors, or for a 2DEG in contact with a conventional
superconductor. Andreev’s approximation, which underpins
many analytic theories, including quasiclassical and random-
matrix descriptions, is valid only when this parameter is
much less than unity.

Other parameters which are needed when making com-
parisons are the Thouless energyE* , which for a diffusive
structure of widthM , lengthLdiff and normal-state conduc-
tanceG, is given by

E*5hD/L diff
2 5~h/2e2!G/@n~0!LdiffM

d21#,

wheren~0! is the density of states per site. A second param-
eter is the normal-state, elastic mean free pathl , which for a
diffusive sample connected to external lead withN open
channels, is given byG5(2e2/h)Nl/Ldiff . Within a numeri-
cal simulation on a given geometry, once the model param-
etersW, g, e0, andD0 are chosen, the parametersG, l , n~0!,
andE* are computed explicitly.

IV. NUMERICAL RESULTS FOR A N-I -S STRUCTURE

In this section, we present a comparison between the pre-
dictions of quasiclassical theory and the above numerical-
scattering approach, for anN-I -S structure. Our aim is to
highlight the steps required to obtain a suitable choice of
parameters, from which a meaningful comparison can be
made. In the literature, numerical results in two dimensions
have been obtained by first solving for the scattering matrix
of a normal diffusive structure, with or without a tunnel junc-
tion and then employing Andreev’s approximation to model
the Andreev scattering induced by a nearby
superconductor.17 As noted above, this approximation re-
quires thatD0 be small compared with the Fermi energy and
that there be no disorder in the superconductor. Furthermore
for a clean system, Andreev’s approximation can yield incor-
rect results, because even at a cleanN-S interface, the ap-
proximation breaks down46 when scattering channels are al-
most closed. For these reasons a comparison with an exact
solution of the Bogoliubov-de Gennes equation allows one to
examine changes occurring away from the Andreev limit, in
a region of parameter space which is more relevant to high-
temperature superconductors.

The system to be examined is shown in Fig. 1~b! and
consists of a disordered region in contact with a tunnel junc-
tion, which is in turn adjacent to a superconducting probe.
The simulated structure consists of a two-dimensional tight-
binding lattice of widthM sites. The disordered region is of
lengthLdiff sites, the tunnel junction isL tun sites long and the
superconductor has a lengthLsup. In units of 2e

2/h, the con-
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ductance of a particular realization of the structure will be
denotedG and the ensemble-averaged conductance will be
written ^G&. In order to make a comparison with quasiclas-
sical theory, it is necessary that the properties of the two
resistive components and the superconducting probe be com-
patible with the assumptions made by the theory.

To identify a suitable choice of parameters, consider first
a normal diffusive portion of lengthLdiff and widthM , con-
nected to crystalline leads. In units of 2e2/h, the conduc-
tance of a particular realization of this structure will be de-
notedGdiff and the ensemble-averaged conductance will be
written ^Gdiff&. The conductance of a diffusive material is
inversely proportional to its length and therefore a plot of
^Gdiff&Ldiff as a function ofLdiff will exhibit a plateau in the
diffusive regime, with a mean free path given by
l5^Gdiff&Ldiff /N.

For a sample of widthM510, Fig. 5 shows a plot of
^Gdiff&Ldiff /N versusLdiff . This structure has periodic bound-
ary conditions in the direction tranverse to the current flow
and the choicee050.2 was made, which yieldsN59. Results
are shown for a disorder ofW51. The lengthLdiff of the
disordered region was incremented in steps of two sites from
Ldiff52 to 40. For each value ofLdiff , 2000 realizations of
disorder were chosen and the conductanceGdiff computed for
each. Then the ensemble average^Gdiff& and the standard
deviationdGdiff were calculated.

Figure 5 shows that in the interval 20,Ldiff,40 the sys-
tem exhibits diffusive behavior, with a mean free path of
l'4.6. For smaller values ofLdiff , the system is in the bal-
listic regime and for larger values, the onset of localization
causes the curve to fall. A diffusive system is one for which
l!Ldiff and l!M . Furthermore if weak localization correc-
tions are to be neglected, we requireNl@Ldiff . For these
reasons a judicious choice of length yielding a diffusive sys-
tem whilst minimizing CPU time isLdiff525. Such a system
has an average conductance^Gdiff&51.6.

To compare with quasiclassical theory, a knowledge of the
conductance of the isolated tunnel junctionGtun as a function
of the barrier heighteb is also required. In what follows, we
consider a clean tunnel junction of dimensionsM510 and
L tun51, obtained by setting the diagonal elementsen of all
barrier sitesn equal toe01eb . For an isolated barrier con-
nected to crystalline leads of width 10, Fig. 6 shows a plot of

Gtun as a function ofeb . To obtain this plot, the conductance
Gtun is computed for 1000 successive values of the barrier
height eb in the range 0.0,eb,10.0. This choice of barrier
heights yields a spread of barrier conductances in the conve-
nient range 0.0,Gtun,9.0.

Finally, before a comparison with theory can be made, the
properties of the superconductor must be chosen such that
there be no transmission through the superconducting region
and that Andreev’s approximation of neglecting normal re-
flection at theN-S interface is valid. To avoid quasiparticle
transmission, it is necessary to chooseLsup.j, where
j5m/D0 and to minimize normal reflection it is necessary
that j@1. ForD050.05 ande050.2 the superconducting co-
herence length isj576 and it is found that transmission is
negligible forLsup.100. For the above choice of parameters,
one finds for the normal and Andreev reflection and trans-
mission coefficients: R050.064 85, Ra58.847 62,
T050.087 48, andTa50.000 05.

It should be noted that the conditionj@1 is not sufficient
to completely exclude normal reflection at anN-S interface.
It is also necessary thate0 be chosen such that the number of
open channels in the external leads is not sensitive to small
changes ine0. This feature is illustrated in Fig. 7, which
shows as a function ofe0, the conductance of a clean super-
conducting region of widthM550 and lengthLsup55, at-
tached to crystalline normal leads. Results are shown for five
values ofD0: D050, 1022, 1021, 0.3, and 0.5. ForD050, the
conductance is equal to the number of open channels and
changes by unity whenever an external quasiparticle channel
closes. At these values ofe0, switching on an infinitesimalD0
causes the conductance to decrease by unity. As shown in the
figure, finite values ofD0 smear the conductance steps and

FIG. 5. ^Gdiff&Ldiff /N versusLdiff . The plateau region signifies
the diffusive regime. Here the number of open channels isN59. In
the inset standard deviation is also shown.

FIG. 6. ConductanceGtun of the tunnel junction as a function of
the barrier heighteb .

FIG. 7. The conductanceG~D0! of a clean superconducting re-
gion of lengthLsup55, width M550, plotted as a function of the
site energye0, for 5 different values ofD0.
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suppress the conductance. Both of these features lie outside
Andreev’s approximation.46 To achieve compatibility with
the assumptions of circuit theory, the choicee050.2 was
made, which places a system of width 10 between two con-
ductance steps and avoids the above sensitivity to changes in
D0.

Having identified a choice of parameters which is com-
patible with quasiclassical theory, numerical results for the
combined structure of Fig. 1~b! can now be obtained. To
summarize, this structure has the following properties: width
M510, number of open channelsN59, band filling factor
e050.2 leading to a chemical potentialm53.8, length of tun-
nel junction L tun51, barrier heights 0.0,eb,10.0, barrier
conductances 0.0,Gtun,9.0, length of diffusive region
Ldiff525, diffusive disorder widthW51, conductance of dif-
fusive region ^Gdiff&51.6, length of superconductor
Lsup5100, superconducting coherence lengthj576, super-
conducting order parameterD050.05, elastic mean free path
l'4.5.

First consider the case of no barrier, whereeb50. In this
case, quasiclassical theory insists that the conductance of a
diffusive region in contact with a superconductor should be
identical with the normal-state conductance of the diffusive
region. Figure 8 shows plots of the mean conductance
^G&5N2R0(D0)1Ra(D0) as a function ofD0, for disor-
dered regions of four different lengths. In the normal state
~D050! ^G& reduces toT0(0)5N2R0(0) and in the pres-
ence of a sufficiently long superconductor, to the BTK con-
ductance 2Ra~D0!. The left insert shows the quantity
^g&5^N2R0(D0)1Ra(D0)&/^T0(0)& ~i.e., the conductance
divided by the normal-state conductance!. The right insert
shows the root-mean-square deviations5Š[G(D0)
2^G(D0)&]

2
‹

1/2. These show that in the ballistic limit
Ldiff50, the conductance rises to a value almost double that
of the normal state, before decreasing with increasingD0. In
contrast, the mean conductance of a diffusive normal region
is relatively insensitive to the onset of superconductivity,
with the largest relative change corresponding to the largest
value of Ldiff , ~i.e., the smallest value of the normal-state
conductance!. It should be noted however that even though

the mean is insensitive toD0, the fact that the rms deviation
s is nonzero reveals that for individual samples, large
changes of arbitrary sign can occur.

Having examined a diffusive conductor with no barrier,
we now turn to the case of finiteeb . Curve ~b! of Fig. 2
shows numerical results in the presence of a tunnel barrier.
For 50 equally spaced barrier heights in the range
0.0,eb,10.0, 500 realizations of disorder in the diffusive
region were selected and the total conductanceG computed
for each realization. The ensemble-averaged conductance
^G& was then calculated and finally the total resistance
^Rtot&51/̂ G& plotted against the computed conductanceGtun
of the isolated tunnel junction. Since the average conduc-
tance of the diffusive region̂Gdiff& is also known, Eq.~1!
can be evaluated to yield the corresponding analytical result,
curve ~a! of Fig. 2. This demonstrates that in the range of
validity of quasiclassical theory, quantitative agreement with
the numerical-scattering approach is obtained.

V. NUMERICAL RESULTS FOR ANDREEV
INTERFEROMETERS

Having examined a simpleN-I -S structure, we now com-
pare numerical results for the tight-binding structure of Fig.
3~b!, with the predictions of quasiclassical theory for the
one-dimensional~1D! system of Fig. 3~a!. The latter com-
prises a tunnel junction connected by diffusive 1D wires to a
fork. Each of the two arms of the fork is a diffusive wire,
connected via tunnel junctions to infinitely long supercon-
ductors. The conductance of the diffusive wires is assumed
to be much greater than that of the tunnel junctions.

The two-dimensional tight-binding realization of this
structure is shown in Fig. 3~b!, which consists of a tunnel
junction ~1! lying next to a diffusive region which is in turn
adjacent to two superconductors. The superconductors are
separated from each other by an insulating layer and from the
diffusive region by two identical tunnel junctions~2!. The
superconductorsi51,2 have order parameter phasesfi , but
are identical in every other respect. In order that they may
successfully represent superconducting probes of infinite
length, they are chosen in such a way that quasiparticle trans-
mission through them is negligible.

The diffusive region is of lengthLdiff sites, each tunnel
junction is L tun sites long and the superconductors have a
length Lsup. To model a superconducting reservoir,Lsup is
again chosen sufficiently large such that there is negligible
transmission through the superconductor. The system width
and the width of both the diffusive region and the tunnel
junction ~1! is M sites. On the right of the diffusive region,
the three insulating layers are each one site thick and there-
fore the superconductors are each of widthM 8 ~where
2M 85M23!.

In the simulation, the conductancesG1 and G2 of the
tunnel junctions are fixed at values which replicate the three
situations of Fig. 4, namelyG15G2 , G1!G2, andG1@G2
to enable comparisons to be made with the analytic results.
In each case, the phase difference between the two supercon-
ductors is varied and the total conductanceG plotted as a
function of phase for a particular realization of disorder in
the diffusive region. Ensemble averaging over many disorder
realizations yields the conductance^G& which is independent

FIG. 8. Plots of the mean conductance^G(D0)&5N2R01Ra

as a function ofD0, for a diffusive conductor of widthM510 and
four different lengths. The left inset shows the conductance
^g&5^G(D0)&/^G(0)&, scaled by the normal-state conductance.
The right inset shows the rms deviations5Š„G(D0)
2^G(D0)&…

2
‹

1/2.
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of the microscopic configuration of the system and may be
usefully compared with the results of Eq.~5! ~see below! and
Fig. 4.

In what follows, we examine a sample of widthM515,
with a diagonal matrix elemente050.2 and periodic bound-
ary conditions, for which the number of open channels is
N513. The disorder is chosen to beW51 and again from a
graph of the form of Fig. 5, we obtain a mean free path of
l'4.9. In most cases of experimental interest, the conduc-
tance of the diffusive ‘‘wires’’ may be considered to be much
greater than that of the tunnel junctions. In order to take into
account this situation in our numerical simulations, one has
to put some restrictions on the length of the diffusive region,
since the conductance decreases with length. A compromise
must therefore be found between the desire to increase the
length into the diffusive regime and the wish to decrease it in
order to maintain a high conductance. In what follows a
choiceLdiff510 is made, for whicĥGdiff&'5.1.

To create a tunnel barrier of lengthL tun51 and widthM ,
all diagonal elementsei of sites within the barrier were set to
a valuee i5e01eb . For an isolated tunnel junction~1! of
width M515, the valueseb53.52, 12.27 yield, respectively,
the conductancesG152.0, 0.2 and for an isolated tunnel
junction ~2! of width M 856, the valueseb51.87, 7.75 yield
conductancesG252.0, 0.2. These values ofeb were used in
the simulations of Fig. 9. As in the previous section, the
choicee050.2, D050.05, Lsup5100 was made. For the su-
perconductor alone, connected to crystalline normal leads of
width M 856, the values of the normal and Andreev reflec-
tion and transmission coefficients were found to be:
R050.02155,Ra54.92905,T050.04937,Ta50.00003. For
such a structure, there are five open channels and as a con-
sequence, the sum of these four coefficients is 5. Finally, in
order to model an insulating barrier, the diagonal matrix el-
ementsei referring to a sitei on the barrier between the
superconductors, were each set to the large number
ei5e0150.

By combining the above components to yield the com-
plete structure of Fig. 3~b!, one obtains the structure to be
analyzed numerically, whose parameters are as follows: total
width M515, superconductor widthM 856, number of open
channels in normal leadN513, band fillinge050.2, chemi-
cal potential m53.8, length of tunnel junctionsL tun51,
length of diffusive regionLdiff510, disorder widthW51.0,
conductance of diffusive region̂Gdiff&55.1, length of super-

conductor Lsup5100, superconducting coherence length
j576, superconducting order parameterD050.05.

To carry out the simulation, the conductancesG1 of tun-
nel junction~1! andG2 of tunnel junction~2! were fixed and
a particular realization$ei% of disorder in the diffusive region
was selected. Then the phase differencef5f12f2 between
superconductors 1 and 2 was varied from zero to 2p. This
was done by fixingf150 and choosing 50 evenly spaced
values off2. For each value off, 200 different diffusive
regions were obtained and the conductanceG of the whole
system computed for each. The ensemble-averaged conduc-
tance^G& was then calculated. The graphs of Fig. 9 show
plots of ^G& as a function of the phase differencef for the
following four combinations ofG1 and G2. They are~a!
G150.2G250.2, ~b! G152.0G250.2, ~c! G150.2G252.0,
~d! G152.0G252.0.

Apart from the different vertical scales, the numerical re-
sults of Fig. 9 and the analytic results of Fig. 4 share many
qualitative features and also exhibit some interesting differ-
ences. Figure 9~d! is comparable with 4~d!; each exhibits a
zero-phase minimum and a further minimum atf5p. Simi-
larly 9~b! is comparable with 4~b!; each exhibits a zero-phase
maximum, with a minimum atf5p. The remaining curves
compare less favorably. Whereas the analytic results of Figs.
4~a! and 4~d! are necessarily identical, there is no such re-
striction on the numerics and as shown in Fig. 9~a!, decreas-
ing the conductancesG1 and G2 can produce qualitative
changes. As a consequence, Fig. 9~a! possesses a zero-phase
maximum, whereas Fig. 4~a! possesses a zero-phase mini-
mum.

Figures 4~c! and 9~c! also reveal some differences. Each
possesses a zero-phase minimum, but atf5p, where the
analytic result vanishes, the numerical result is almost maxi-
mal. The inset in Fig. 9~c! shows a ‘‘blow up’’ of the region
p20.15<f<p10.15, withG150.2 andG252.0. The inset
shows three curves, obtained by averaging over different
numbers of samples, namely 200, 1000, and 2000 realiza-
tions of the disorder. These demonstrate that in contrast with
Eq. ~5!, the numerical results 9~c! possess a shallow, local
minimum atf5p. This discrepancy is not just an artifact of
the numerical calculations. We will see below that this is a
consequence of the actual two-dimensional nature in the sys-
tem considered, whereas quasiclassical theory is effectively a
one-dimensional theory.

Finally, we end this discussion by noting that for systems
with a small number of open channels, the behavior of an
individual sample can be very different from that of the
mean. For each of the four cases~a! to ~d!, Fig. 10 shows
each of the 200 plots of conductanceG from which the en-
semble averages of Fig. 9 were calculated. Apart from the
case 10~b!, where individual members of the ensemble be-
have in the same manner as the average, the nature of the
extrema atf50,p depends on the microscopic realization of
the disorder. We also note that by changing the dimensions of
the sample, one can change the details of Fig. 9, but not the
qualitative shape. For example by increasing the lengthLdiff
from 10 to 15, the local minimum atf5p in Fig. 9~c! be-
comes more pronounced, but further increasingLdiff to 20
causes the minimum to become more shallow.

FIG. 9. Numerical results for the conductance versus phase for
Ldiff510: ~a! G150.2 andG250.2. ~b! G152.0 andG250.2. ~c!
G150.2 andG252.0. ~d! G152.0 andG252.0.
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VI. DESCRIPTION OF THE BALLISTIC LIMIT:
TWO-CHANNEL MODEL

Having compared the quasiclassical theory of Refs. 7–12
with the numerical-scattering approach in the diffusive limit,
we now examine the crossover to the ballistic regime, where
the former is inapplicable. This discussion will demonstrate
why a two-dimensional theory predicts a finite conductance
at f5p, whereas a one-dimensional, quasiclassical theory
yieldsG~p!50. We initially focus attention on the interfer-
ometer of Fig. 3~b! and examine the change in behavior as
the lengthLdiff of the diffusive region becomes smaller than
the elastic scattering lengthl . Apart from the change inLdiff ,
all other parameters are fixed to the values used in Fig. 9.
Figure 11 shows results for a diffusive region of length
Ldiff55 and Fig. 12 for a lengthLdiff51. For this geometry,
apart from an increase in the amplitude of oscillation, the
qualitative shape of the curves is unchanged and therefore an
understanding of the ballistic limit will also provide insight

into the behavior of the conductance of the diffusive struc-
ture atf5p.

To obtain such an understanding we now develop an ana-
lytic theory of the ballistic limit, based on a multiple-
scattering description of a cleanN-S interface. Consider, for
example, the structure of Fig. 3~b!. In the absence of disor-
der, and when there is no phase difference between the two
superconductors, translational invariance in the direction
transverse to the current flow allows one to reduce the two-
dimensional system to the sum over many independent one-
dimensional channels. When a phase difference between the
superconductors is imposed, interchannel coupling is intro-
duced, but as shown below this coupling typically involves
only pairs of channels, in such a way that an accurate de-
scription is obtained by summing over independentpairs of
coupled channels. The theory developed below is based on a
two-channel description of the left-hand boundary conduc-
tance@cf. Eq. ~9!#

GB~f!52Ra52 Trr ar a
†5 (

i , j51

N

~Ra! i j , ~12!

where (Ra) i j5u(r a) i j u
2 is the Andreev reflection probability

from channelj to channeli . The Andreev reflection coeffi-
cient is of the form Ra5Rdiag1Roff-diag where
Rdiag5( i51

N (Ra) i i andRoff-diag is the remaining contribution
from interchannel scattering,Roff-diag5( iÞ j51

N (Ra) i j . If
channels only couple in pairs, both the off-diagonal scatter-
ing and the diagonal scattering will scale as the number of
channels.

In the absence of disorder, the structure of Fig. 3~b! may
be reduced to a simpler one in which a normal barrier only is
placed in front of the two superconductors. This is because
the motion between the two barriers of Fig. 3~b! is now
ballistic and can easily be taken into account by trivial phase
factors. The two barriers can then be reduced to one effective
barrier only. Consider now a normal barrier to the left of a
N-S interface. Particles~holes! impinging on the normal
scatterer are described by a scattering matrixspp , (shh), and
those arriving at theN-S interface by a reflection matrixr,
where

spp5S r pptpp

tpp8

r pp8
D , r5S rpp

rhp

rph

rhh
D .

FIG. 10. Numerical results for the conductance versus phase for
individual realizations of the disorder:~a! G150.2 andG250.2. ~b!
G152.0 andG250.2. ~c! G150.2 andG252.0. ~d! G152.0 and
G252.0.

FIG. 11. Numerical results for the conductance versus phase for
Ldiff55: ~a! G150.2 andG250.2. ~b! G152.0 andG250.2. ~c!
G150.2 andG252.0. ~d! G152.0 andG252.0.

FIG. 12. Numerical results for the conductance versus phase for
Ldiff51: ~a! G150.2 andG250.2. ~b! G152.0 andG250.2. ~c!
G150.2 andG252.0. ~d! G152.0 andG252.0.

53 9317DIFFUSIVE AND BALLISTIC MOTION IN . . .



The elements ofs andr are themselves matrices describing
scattering between open channels of the external leads. For
an ideal interface, where Andreev’s approximation is valid,
rpp andrhh are negligible and in what follows will be set to
zero. As a consequence,rhp and rph are unitary and one
obtains16 r a5thh8 Mpp

21tpp , with Mpp512r pp8 rphr hh8 rhp . In
contrast with the analysis of Ref. 16, whererhp is propor-
tional to the unit matrix, the interference effect of interest
here is contained in the fact thatrhp induces off-diagonal
scattering. Substitutingr a into Eq.~12! and taking advantage
of particle-hole symmetry atE50, yields

G52 Tr„TQ21T~Q†!21
… ~13!

whereQ5rph
t 1(r 8)pprph(r 8)pp

† , with T5tpptpp
† the trans-

mission matrix of the normal scattering region. This
multiple-scattering formula for the boundary conductance is
valid in the presence of an arbitrary number of channels and
in any dimension.

Equation~13! is very general and makes no assumption
about the nature of matricesrph andspp . We now introduce
a two-channel model in whichrph is chosen to be an arbi-
trary two-dimensional unitary matrix. In the absence of dis-
order, tpp and r pp are diagonal and therefore the only inter-
channel coupling is provided byrph . Substituting these
matrices into Eq.~13!, yields an expression forr a involving
a single phaseu, whose value is a linear combination of
phase shifts due to normal reflection at the barrier, Andreev
reflection at theN-S interface and the phase accumulated by
an excitation traveling from the barrier to the interface. The
result for the sum of the two diagonal elements is

Rdia~f,u!5~Ra!111~Ra!225
cA

@cC1s~D2E cosu!#2

~14!

and for the sum of the two off-diagonal elements

Roff-diag~f,u!5~Ra!121~Ra!215
sB~D2E cosu!

@cC1s~D2E cosu!#2
,

~15!

where A5T 1
2(11R2)

21T 2
2(11R1)

2, B52T1T2 , C5(1
1R1)(11R2), D511R1R2 , E52AR1R2, R1512T1 ,
R2512T2 , c5cos2f/2, and s5sin2f/2. After averaging
over the rapidly varying phaseu, this yields

Rdia~f!5cA
cC1sD

@~cC1sD!22s2E2#3/2

and

Roff-diag~f!5sB
cCD1s~D22E2!

@~cC1sD!22s2E2#3/2
. ~16!

For a given value off, once the normal barrier transmis-
sion coefficientsT1 andT2 of the two channels are chosen,
the right-hand sides of Eqs.~16! are completely determined.

We now compare the analytic results of Eq.~16! for
Rdia~f! andRoff-diag~f! with numerical results for (Ra) i j , ob-
tained recently44 for the ballistic Andreev interferometer of
Fig. 13. This will show that the two-channel model accu-
rately describes the ballistic limit. To emphasize that the two-

channel model has a rather wide range of applicability, this
interferometer, in contrast with that of Fig. 3~b!, has been
chosen to possess a normal region between the two super-
conductors. As a consequence, charge transport will take
place both through Andreev reflection at theN-S interfaces,
and through quasiparticle transmission.47 Figures 14~a! and
14~b! show numerical results for the diagonal (Ra) i i and off-
diagonal coefficients (Ra) i j ( iÞ j ), respectively. Only of or-
derN off-diagonal coefficients are non-negligible compared
with unity, demonstrating that channels do indeed couple in

FIG. 13. Interferometer structure comprising two superconduct-
ing regions each of widthM 9 and separated by a distanceM . The
scattering region is connected to normal, external current carrying
leads, of widthM12M 9. A normal barrier~shown black! is placed
at theN-S interface. The current flows from left to right between
external reservoirs with potentialsm1 andm2. In the tight-binding
model used in the numerical simulations, the barrier comprises a
line of sites with diagonal elementse i5eb .

FIG. 14. ~a! shows numerical results for the diagonal Andreev
reflection coefficients (Ra) i i of the structure of Fig. 13, with
M545, M 8550, M 9515, N545, and barrier potential,eb52. ~b!
shows corresponding results for the off-diagonal coefficients (Ra) i j
with iÞ j . ~c! and ~d! show analytic results from a two channel
calculation. The insets in the top right-hand corners of~a! and ~c!
show the corresponding conductances. The top left-hand inset of~a!
shows plots of G(f)/G(0) for five values of N535,
40,45,50,55,60.
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pairs. Atf50, there is no coupling between the channels and
the scattering properties are those ofN-independent chan-
nels, each with a barrier transmission coefficientTi . The
spectrum of the coefficients depends in detail on the shape of
the barrier. The top right-hand inset of Fig. 14~a! shows the
boundary conductanceG~f! obtained by summing the
curves in Figs. 14~a! and 14~b!, as well as the contribution
due to normal transmission. Figures 14~c! and 14~d! show
analytic results forRdia~f! andRoff-diag~f! obtained from Eq.
~16! by choosing ten pairs of transmission coefficients
T1 ,T2 , with T250.2T1 . The inset of Fig. 14~c! shows the
corresponding conductance obtained by summing the curves
in Figs. 14~c! and 14~d!.

Clearly the qualitative features of the exact simulation are
reproduced by the two-channel analysis. Since the latter
yields theN-channel conductance by summing overN/2 in-
dependent pairs of channels, the amplitude of oscillation, and
hence the value atf5p, is predicted to scale with the num-
ber of open channels. This is confirmed by the exact numeri-
cal results shown in the top left-hand inset of Fig. 14~a!,
which shows plots ofG(f)/G(0) for five values ofN rang-
ing from N535 toN560.

Figures 11 and 12 demonstrate that when the resistance is
dominated by tunnel barriers, the conductance-phase relation
is insensitive to disorder and therefore a description of the
ballistic limit is relevant. In the absence of tunnel barriers we
now show that this insensitivity is no longer present. Figure
15 shows numerical results for the structure of Fig. 13, with
M545,M 8550,M 9515, but with the barrier replaced by a
disordered normal region of length 30 sites. In the presence
of disorder, the notion of diagonal and off-diagonal scatter-
ing is no longer useful, since channels corresponding to a
given transverse component of the momentum, are no longer
eigenstates. Instead they should be viewed as admixtures of

eigenmodes of the normal-region transmission matrix. Diag-
onal and off-diagonal scattering are no longer distinct pro-
cesses and therefore the scattering coefficients of Figs. 15~a!
and 15~b! simply describe the same generic behavior. The
sum of all the curves of Figs. 15~a! and 15~b! is the total
contribution to the Andreev scattering coefficient, shown in
Fig. 15~c!. In this case, it appears that a theory describing
average properties of a single channel, such as the quasi-one-
dimensional description of quasiclassical theory, is indeed
appropriate. For completeness, Fig. 15~d! shows the behavior
of the quasiparticle transmission, and in Fig. 15~e! the con-
ductance of Eq.~8!. The peak atf5p in the conductance
appears to be due entirely to the normal transmission through
the normal region, while the contribution due to Andreev
scattering processes, atf5p, is completely suppressed. By
reducing the width of the normal region between the two
superconducting regions, as in the structure of Fig. 3~b!, the
contribution from the normal transmission will be elimi-
nated, and the conductance atf5p will vanish.

VII. DISCUSSION

In this paper, a detailed comparison between quasiclassi-
cal theory and numerical multiple-scattering calculations has
been carried out. To ensure that the simulated structures fall
within the parameter range where the approximations of qua-
siclassical Green-function methods hold, we have painstak-
ingly examined each component of a given structure. For the
N-I -S structures of Fig. 1, Fig. 2 shows that there is quanti-
tative agreement between the two methods. For the interfer-
ometers of Fig. 3, there is broad qualitative agreement, al-
though as shown in Figs. 9 and 4, some interesting
differences are present.

In particular, the theory of Refs. 7–12 is a quasi-one-
dimensional theory and for the symmetric structures of Fig.
3, necessarily predicts a vanishing conductance atf5p. This
symmetry is not present at a microscopic level and therefore
there is no such restriction on the results from an exact so-
lution of the Bogoliubov-de Gennes equation. Figures 9~a!,
9~b!, and 9~c! suggest that for certain structures, this micro-
scopic symmetry-breaking may be unimportant, but for other
strengths of the tunnel barriers, Fig. 9~c! suggests that this
artifact of one-dimensional implementations of quasiclassical
theory will not be observed experimentally. In the quasibal-
listic limit, Figs. 11 and 12 show that although the overall
conductance is increased, the qualitative shape of the
conductance-phase curves can be unchanged. The ballistic
limit can be described in terms of a two-channel model,
which emphasizes the role of interchannel scattering as the
origin of the finite value of the conductance atf5p. Accord-
ing to our results, this feature is almost insensitive to disor-
der, provided the resistance is dominated by tunnel barriers,
as it is the case of Fig. 3~b!. As a consequence, as already
noted in Ref. 44, disorder is not a necessary feature of large
amplitude Andreev interferometers. In the absence of tunnel
barriers, this insensitivity to disorder is no longer present,
and Fig. 15 shows that disorder does indeed change substan-
tially the qualitative shape of the phase-dependent conduc-
tance.

Finally the above results demonstrate that quasiclassical
theory yields the correct shape for the ensemble-averaged

FIG. 15. Numerical results obtained from a tight-binding model
of the structure of Fig. 13, but with the barrier replaced by a disor-
dered region of length 30 sites. In these simulations,M545,
M 8550,M 9515, N545, D050.1, and the disorder isW52.8. ~a!
and~b! show results for diagonal and off-diagonal Andreev scatter-
ing coefficients, whose total contribution is shown in~c!. ~d! shows
the behavior of the quasiparticle transmission, and~e! the total elec-
trical conductance.
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conductance even down to extremely small system sizes.
They also demonstrate that even without attempting a sys-
tematic extrapolation to a large number of channels, numeri-
cal multiple-scattering calculations on small structures, can
yield results for ensemble-averaged properties of much
larger systems.
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