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Diffusive and ballistic motion in superconducting hybrid structures
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We examine transport properties of superconducting hybrid mesoscopic structures, in both the diffusive and
ballistic regimes. For diffusive structures, analytic results from quasiclassical theory are compared with pre-
dictions from numerical, multiple-scattering calculations performed on small structures. For many structures,
the two methods yield comparable results and in some cases, quantitative agreement is obtained. These results
not only demonstrate that quasiclassical theory can yield the ensemble averaged cond@}aocemall
structures of dimensions of order 10—20 Fermi wavelengths, but also establish that numerical-scattering cal-
culations on such small structures can yield results/@y which are characteristic of much larger systems.

One exception arises for Andreev interferometers, where quasiclassical theory predicts a vanishing conduc-
tance at a phase differenge=, whereas our numerical approach yields a finite value. We suggest that this is

a consequence of the one-dimensional nature of the currently available quasiclassical descriptions. Having
compared the two approaches, we extend the multiple-scattering analysis to the ballistic limit, where the
sample dimensions become smaller than the elastic mean free path. In this limit, the numerical results can be
understood in terms of a two-channel model, which emphasizes the role of interchannel scattering.

I. INTRODUCTION kgT*=hD/L? the ensemble averaged conductar(®)
should be a periodic function af, with fundamental period

When a normal metal) makes contact with a supercon- m, whereas in the low-temperature reginiecT*, it was
ductor (S), classical tunnelling theory predicts that as a con-predicted®?3that the fundamental periodicity ¢f5) would
sequence of the existence of a superconducting energy galpe 2r. This prediction of a 2z periodicity is a common fea-
the low-temperature subgap conductance will vanish. Anture of all recent theories c(SfG> (Refs. 13, 14, and 24-26
dreev scattering provides an alternative mechanism for and of recent experimenté:3!
charge transport through such &hS junction and for an Despite much progress, many details of such Andreev in-
ideal interfacé, leads to a zero-voltage conductance which isterferometers remain to be understood. In particular, there
almost twice that of the normal state. In the presence of aexists no general theory of the amplitude of oscillation, the
insulating layer (), Andreev scattering becomes less effec-nature of the zero-phase extremum and the harmonic content
tive and in the absence of disorder, the subgap conductancé the conductance-phase characteristic. Experiments on
of anN-1-S junction is predicted to be depressed comparedrarious geometries, in different transport regimes have
with that of the normal state. In contrast, at low enoughyielded amplitudes of oscillation which differ by many or-
temperatures, experiments BRI -S junctions reveal the ex-  ders of magnitude. It has also been questioned whether ana-
istence of a zero-voltage conductance peak, with a valubytical theories that mainly apply in the diffusive limit can be
comparable to the conductance in the normal state. This efised in the quasiballistic cad®.
fect is due to the interplay between tunneling and disorder- One difficulty in establishing a general theory is that most
induced scattering and has been observed in experiments itheoretical papers are based on a single technique, with little
volving quantum wells with superconducting electrofies, detailed comparison with the results of other approaches. For
superconductor-normal  metal  microjunctiohs, and  example, distinct analytical theories exist for the ballistic,
superconductor—two-dimensional electron g&DEG)-— diffusive, and strongly disordered regimes, but there is no
superconductor structurésThese have been interpreted us- analytical theory capable of describing the crossover be-
ing a number of theoretical approaches, including quasiclagween them. In contrast, exact numerical solutions of the
sical Green-function techniqués'? tunneling Hamiltonian Bogoliubov-de Gennes equatitrcan easily cross from one
methods:>'*  multiple-scattering  techniqués;!’ and  regime to another, but are limited to system sizes of order a
random-matrix theory?1® hundred Fermi wavelengths.

Recently, following a number of theoretical papers on dis- In this paper, we undertake a detailed comparison be-
ordered transport in the presence of two superconductingveen an exact numerical, multiple-scattering technique and
contacts’®~?? several experiments aimed at probing thequasiclassical theory. The former was first used to solve the
phase-coherent nature of Andreev scattering have been ca8ogoliubov-de Gennes equation for disordered, one-
ried out. These involve a normal metal in contact with superdimensional system$and soon after generalized to higher
conductorsS; andS,, with order parameter phasés, ¢,,  dimensions’ while the latter, developed in the context of
whose order-parameter phase differemse ¢, —¢, can be  nonequilibrium superconductivify;*® when supplemented
controlled by external means. For a diffusive system of sizéy the appropriate boundary conditioiié® has recently
L, with diffusion coefficientD, early theoretical wo"?*  yielded a variety of results for ensemble averaged conduc-
predicted that in the high-temperature linffit-T*, where  tances in the diffusive limif-1?Once agreement between the
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two approaches is obtained in the diffusive limit, we then use
the numerics to follow the crossover to the ballistic regime,
where the electron mean free path becomes comparable with
the system size.

The comparison will be carried out by examining two
canonical examples of mesoscopic superconducting hybrid (@
structures, namely aN-I-S junction and an Andreev inter-
ferometer. In Sec. Il we briefly recall some results of the
guasiclassical Green-function approach for these structures
and in Sec. lll highlight the main features of the numerical-
scattering approach. Whereas a quasiclassical approach
yields a one-dimensional theory whose results depend only
on the topology of the structure, the numerical calculations,
in common with real experiments, require the specification
of a suitable geometry. In Sec. IV we present a detailed dis-

cussion of the geometry and numerical parameters needed to >

reproduce the results of quasiclassical theory. Having estab- Loy Lin Lo

lished agreement between the two approaches we then de-

part, in Sec. VI from the diffusive limit and investigate the (b)

crossover to ballistic transport, which is particularly relevant

to the experiments of Ref. 30. FIG. 1. (@) Schematic picture of aN-1-S junction for analysis

using circuit theory(b) Picture of the tight-binding lattice used to

Il. RESULTS FROM QUASICLASSICAL THEORY model a two-dimensiondii-1-S structure.

In this section, we highlight some predictions of the qua-  The second limit isG,,/Gg—® in Which 6—m/2. This
siclassical approach of Refs. 7-12. These theories focus Gfje|ds
the ensemble averaged conducta¢@é and ignore the weak
localization contribution discussed in Refs. 20 and 21. The
latter does not scale with the system size and in systems with i ~ i + 1 (4)
a conductance much larger thae??h, can be neglected. The G Gar Gun
results of Refs. 7—12 are obtained by solving the following
equation for the quasiclassical Green functipim the diffu-
sive limit D4,(g4,9) + tE[ 7,,9] =0, whereE is the quasi-
particle excitation enerdtf. In what follows, we shall con-
sider only theE=0 limit of this equation, which applies to a
diffusive system, whose length is assumed to satisfy the
inequalitiesL <¢, where £=D/A, and £=D/E, in the su-

Equation(3) has been also directly obtained in the tunnel-
ing Hamiltonian limit® Furthermore, as emphasized in Ref.
19, the change of the power in the dependence on the tunnel
junction conductanc&,,,, as described by Eqs3) and(4),
reflects the combined effect of the Andreev scattering at the
! : x ; N-S interface and the interference effects in the mesoscopic
perconducting and normal region, respectively. HBris the  p 556 coherent disordered normal region. In the regime de-

diffusion coefficientA, the energy gap, ari=eV, whereV  gqinaq py Eq(4) and whenG,,,<1, the conductance of the
is the applied voltage. Furthermore all temperatures and voltg_g junction appears to be the same as in the normal state
ages are assumed to be much smaller thgnFor conve-  ohq the total resistance is obtained by simply adding up in
nience in what follows, we shall also restrict the analysis t0sgries the resistances of the diffusive region and tunnel junc-
Zero temperaturg. 1110 tion. Equations(1) and (2) may be solved numerically to

In units of 2%/h, theory predicts*° that the total con- yield the resistanc®,,=1/G of the system as a function of
ductanceG of the structure shown in Fig.(d) may be com- G - and G,,,. The result of such an exercise for a fixed
puted from the equation valueGz=1.6 and a variabl&,,, is shown by curvea) of
Fig. 2. Also plotted are the limits given by Eg®) and(4)

iz LJF 1 1) represented by the dashed lifesand(d). Curve(b) shows
G Gy Gursind’ the results of the numerical simulation described in Sec. IV.
) ) ) As a second example, quasiclassical theory preditiat
where @ is a solution of the transcendental equation the conductancé of the structure depicted in Fig(8 may
be computed from the equation
Gt = GO (2
andG,,,, Ggi are the respective conductances of the tunnel 4G2G3c0g( $l2)
junction and diffusive region in isolation. G= {G2+4G5coS(pl2)}% ®)

There are two obvious limits to take. The first is where

Guur/ G —0 for which 6~Gy,/Gqig=sind and hence whereG; is the conductance of the tunnel junctigh), G, is

_ the conductance of the tunnel juncti®) and ¢ is the phase
“~ . (3) difference between the two superconductors. In the limit
tun G,>G,, this simplifies to the expression
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FIG. 2. Conductance of thdl-1-S structures of Fig. 1, as a
function of the conductand8,,,, of the tunnel junction. The various
curves refer to(a) analytic theory;(b) numerical simulationjc)
resistance of the diffusive regiofRy)=0.63=(Gyi)"; (d) as-
ymptotics at high transparen&y,,.>(Gix); (€) asymptotics at low
transparencys,,,<{G it )-

2

G
G=4—2cod($/2), (6)
Gy
whereas ifG,>G; then
1G2 1 @

C=32G, [cos 2"

Figure 4 shows four plots of E@5) for each combination
of G;=0.2,2.0 and5,=0.2,2.0. One can see that 16y =G,
there is a zero-phase minimum, as there is G®<G,.

When G;>G, however, one finds a zero-phase maximum.
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FIG. 4. Analytic results for the conductance versus phase in the
diffusive limit: (a) G;=0.2 andG,=0.2. (b) G;=2.0 andG,=0.2.
(c) G4=0.2 andG,=2.0.(d) G;=2.0 andG,=2.0.

Iytical results have been obtained for ballistic interferometers
in oné>* and twd* dimensions.

Ill. A SCATTERING APPROACH TO TRANSPORT
IN MESOSCOPIC SUPERCONDUCTORS

In all cases the conductance vanishes when the phase differ- During the past six yeat$ >*we have developed numeri-

ence between the superconductorsrisCorresponding ana-

L

Ldiff L

tun

(b)

tun sup

cal codes capable of yielding exact solutions of the
Bogoliubov-de Gennes equation for disordered structures in
arbitrary dimensions. Currently there are two independent
sets of codes available at Lancaster; one of these is based on
a transfer-matrix approach and the other is based on a recur-
sive Green’s-function method. Typically these are used as
independent crosschecks and therefore there can be no doubt
about the accuracy of the results obtained for a given struc-
ture. For a two-dimensional system of width less than a few
hundred Fermi wavelengths, or for a three-dimensional sys-
tem of width less than a few tens of Fermi wavelengths, the
problem of computing dc transport properties of a phase-
coherent system described by mean-field BCS theory is
therefore no longer an issue. Just as the appearance of pocket
calculators rendered approximate tables for computing el-
ementary functions redundant, the existence of these codes
has, for several years, allowed transport properties of small
structures to be calculated without further approximation.
For larger systems, the key issue is how to extrapolate the
results of such calculations to larger numbers of channels. By
making contact with quasiclassical theory, the results which
follow establish that for many systems, the ensemble aver-
aged conductance obtained from small systems exhibits the
essential features of much larger structures.

The numerical codes yield the qguantum-mechanical scat-

FIG. 3. (a) Schematic picture of an interferometer analyzed us-tering matrix of a given phase-coherent structure and from
ing circuit theory.(b) Picture of an interferometer formed from a this the matrix elementa;; = dl;/d(u;— n), wherel; is the

two-dimensional tight-binding lattice.

current supplied by a normal reservoir of chemical potential
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i andu is the condensate chemical potential. This approach Of course, the above parameters are not directly acces-
has been used to evaluate multichannel scattering formulasble experimentally and are not an explicit feature of quasi-
for the dc electrical conductan@e’?and more recently ther- classical theory. Therefore when making comparisons, some
moelectric propertie® In what follows, we focus on hybrid effort is needed to map one analysis onto anothed -
structures connected to normal external reservoirs only. Famensions, for a clean system on a square or cubic lattice, the
example for a structure connected to two such reservoirs, thehemical potential relative to the band bottom is
zero-temperature, zero-bias electrical conductance can he=¢,+2dy, the band width is dy and the effective mass

written'>2 (in units of 2?/h), for excitations near the band bottom is* =%2/(2va?),
, , wherea is the lattice constant. A key parameter in the prob-
Tt T 4 2(RaR;—ToTy) ® lem is the dimensionless ratib=A,/u, which takes a value
0" 'a Ra+ R+ T+ T 102 for conventional lowT . superconductors such as nio-

bium, but can be as large as 0.1 for high-temperature super-
In this expressionR,, Ty (R4, T,) are the coefficients for conductors, or for a 2DEG in contact with a conventional
normal (Andreey reflection and transmission for zero- superconductor. Andreev's approximation, which underpins
energy  quasiparticles from reservoir 1, while many analytic theories, including quasiclassical and random-
Ry, T4 (R4, T2) are the corresponding coefficients for qua- matrix descriptions, is valid only when this parameter is
siparticles from reservoir 2. If each of the external leadsmuch less than unity.
connecting the reservoirs to the scatterer cont&nepen Other parameters which are needed when making com-
channels, these satisRy+ To+ R+ T,=R)+T{+R,+T, parisons are the Thouless eneffg{, which for a diffusive
=N andT,+T,=T,+T,. Furthermore, in the absence of a structure of widthM, lengthL 4 and normal-state conduc-
magnetic field, all reflection coefficients are even functionst@nceG, is given by
of ¢, while the transmission coefficients satisfj(¢) 5 _
=To(— ), Ti($)=Ta(— ¢). Consequently on quite gen- E* =hD/L§x=(h/2e*)G/[n(0)L ggM 1],
eral grounds, in the absence of a magnetic fi@dis pre-  wheren(0) is the density of states per site. A second param-
dicted to be an even function @f. In the absence of quasi- eter is the normal-state, elastic mean free pathhich for a
particle transmission between the two external probes, Edjiffusive sample connected to external lead withopen
(8) reduces to channels, is given b= (2e?/h)NI/L 4 . Within a numeri-
_ _ . cal simulation on a given geometry, once the model param-
G™1=(2R)) T+ (2R T, ©) etersW, v, €, andA, are chosen, tr>1/e parametésl, n(g),
where R, (2R)) are left (right) boundary conductances, ahdE™ are computed explicitly.
introduced by Blonder, Tinkham, and KlapwijBTK).?
The numerical codes compute the scattering coefficients IV. NUMERICAL RESULTS FOR A N-1-S STRUCTURE
of a tight-binding lattice, described by a Bogoliubov-de
Gennes Hamiltonian of the form

H_(HO A
A*  —H}

In this section, we present a comparison between the pre-
dictions of quasiclassical theory and the above numerical-
scattering approach, for aN-1-S structure. Our aim is to
. (10 highlight the steps required to obtain a suitable choice of

parameters, from which a meaningful comparison can be

If an indexn is used to label sites on the lattice and anymade. In the literature, numerical results in two dimensions
internal spin degrees of freedom, thig is of the form have been obtained by first solving for the scattering matrix

of a normal diffusive structure, with or without a tunnel junc-

tion and then employing Andreev’s approximation to model

HO_; en|n><n|+(n2m) Vi,m[n)(ml. (1D the Andreev scattering induced by a nearby
' superconductdr’ As noted above, this approximation re-

To model a given physical structure, it is necessary taquires thatA, be small compared with the Fermi energy and
specify certain phenomenological parameters which capturtihat there be no disorder in the superconductor. Furthermore
the essential physics. As an example, in the absence of spifer a clean system, Andreev’s approximation can yield incor-
orbit scattering, spin degrees of freedom can be ignored angct results, because even at a clé&s interface, the ap-
in the absence of a magnetic field, one choageg=—yfor  proximation breaks dovffi when scattering channels are al-
nearest-neighbor pairsi(m). If (n,m) are not nearest neigh- most closed. For these reasons a comparison with an exact
bors, thenVv, ,=0. In a region free from disorder, the diag- solution of the Bogoliubov-de Gennes equation allows one to
onal elementg, are set equal to a constagt whereas in a examine changes occurring away from the Andreev limit, in
disordered regiong, is a random number uniformly distrib- a region of parameter space which is more relevant to high-
uted betweerg,—W and e,+W. In the presence of spin sin- temperature superconductors.
glet, local s-wave pairing,A is a diagonal order-parameter  The system to be examined is shown in Figb)land
matrix with elements\,, . In a normal regionA,=0, whereas consists of a disordered region in contact with a tunnel junc-
in a clean superconducting regidn,,| is set to a constant tion, which is in turn adjacent to a superconducting probe.
value Ay. The phase of\, is chosen to equal a value as- The simulated structure consists of a two-dimensional tight-
signed to the superconducting region to which siteelongs.  binding lattice of widthM sites. The disordered region is of
In what follows, the energy scale will be fixed by making the lengthL 4 sites, the tunnel junction is,,, sites long and the
choicey=1. superconductor has a lengtl,,. In units of 2?/h, the con-
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FIG. 5. (Ggir)Lgit/N versusL gy . The plateau region signifies
the diffusive regime. Here the number of open channelé=9. In u
the inset standard deviation is also shown.

n as a function of, . To obtain this plot, the conductance
Guun Is computed for 1000 successive values of the barrier
height ¢, in the range 0.€¢,<<10.0. This choice of barrier

ductance of a particular realization of the structure will be"€ights yields a spread of barrier conductances in the conve-

denotedG and the ensemble-averaged conductance will bé“elg.t ra}lngi 2'€(Gtun<9'o' . ith th b de. th
written (G). In order to make a comparison with quasiclas- " 'Na!y, belore.a companson with theory can be made, the

sical theory, it is necessary that the properties of the wroperties of the s_upe_zrconductor must be chosen_such t_hat

resistive components and the superconducting probe be corW—ere be no transmission through the supercqnductlng region

patible with the assumptions made by the theory. and .that Andreev’_s approxmatlop of negIeptmg nprme}l re-
To identify a suitable choice of parameters, consider ﬁrs{lectlon at theN-S interface is valid. To avoid quasiparticle

a normal diffusive portion of length 4 and widthM, con- transmission, it Is necessary to cho_oiigu_p>_§, where
nected to crystalline leads. In units oB%h, the conduc- ¢=ulAo and to minimize normal reflection it is necessary

tance of a particular realization of this structure will be de-that &1 Foerf0.0S andEO.:.O'Z the superconduqtmg co-
noted G4 and the ensemble-averaged conductance will bgere.nge length ig=76 and it is found tha_t transmission is
written (Gg). The conductance of a diffusive material is neghglble forl,;>100. For the above choice O.f parameters,
inversely proportional to its length and therefore a plot of®"€ fmds for thg ’Form?' and Andreev reflection and trans-
(Gair)Lai @S a function oL g will exhibit a plateau in the mission  coefficients: R,=0.06485, R,=8.84762,

T : ; : T,=0.087 48, andr ,=0.000 05.
ff th f th by '0 ' a
?;é;:fil_dr:/%me' WiEh & mean lree pam given by It should be noted that the conditi@gg-1 is not sufficient
I I .

For a sample of widthM =10, Fig. 5 shows a plot of to completely exclude normal reflection at RS interface.

(Gyi)L gi/N VersusL 4 . This structure has periodic bound- It is also necessary thag be chosen such that the number of

ary conditions in the direction tranverse to the current flowPPeN channels in the external leads is not sensitive to small

and the choice,=0.2 was made, which yield$=9. Results changes iney. This feature is illustrated in Fig. 7, which
are shown foroa disorder aV=1. The IengthLd-;f of the Shows as a function o, the conductance of a clean super-
" I

disordered region was incremented in steps of two sites frorﬁOndUCting regio.” of widtiM =50 and lengthls,;=5, at- '

Lys=2 to 40. For each value df g, 2000 realizations of tached to crystalline nozrmal Ileads. Results are shown for five
i . iff » TN - _

disorder were chosen and the conducta@gg computed for values ofAg: Ag=0,10°% 10, 0.3, and 0.5. FoR,=0, the

each. Then the ensemble avera@y) and the standard conductance is equal to the number of open channels and
deviétion&Gd»ﬁ were calculated it changes by unity whenever an external quasiparticle channel
i :

Figure 5 shows that in the interval 2@ 4, <40 the sys- closes. At these values &f, switching on an i_nfinitesimz-‘xk0 .
tem exhibits diffusive behavior, with a mean free path of¢auses th conductance to decrease by unity. As shown in the
|~4.6. For smaller values df g, the system is in the bal- figure, finite values ofA\, smear the conductance steps and

listic regime and for larger values, the onset of localization
causes the curve to fall. A diffusive system is one for which
<Ly andl<<M. Furthermore if weak localization correc-
tions are to be neglected, we requikd>L 4. For these 1
reasons a judicious choice of length yielding a diffusive sys- G (Ao) -
tem whilst minimizing CPU time it 4#=25. Such a system |
has an average conductan€x)=1.6.

To compare with quasiclassical theory, a knowledge of the
conductance of the isolated tunnel juncti®g,, as a function

of the barrier heighg, is also required. In what follows, we &
consider a clean tunnel junction of dimensidis=10 and
Lun=1, obtained by setting the diagonal elemegtf all FIG. 7. The conductanc&(A,) of a clean superconducting re-

barrier sitesn equal toe;+¢,. For an isolated barrier con- gion of lengthLg,=5, width M =50, plotted as a function of the
nected to crystalline leads of width 10, Fig. 6 shows a plot ofsite energye,, for 5 different values ofy,.
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20 . . the mean is insensitive t,, the fact that the rms deviation
o is nonzero reveals that for individual samples, large
changes of arbitrary sign can occur.

Having examined a diffusive conductor with no barrier,
we now turn to the case of finite,. Curve (b) of Fig. 2
shows numerical results in the presence of a tunnel barrier.
For 50 equally spaced barrier heights in the range
0 Ay, 02 0 A, 02 0.0<¢,<<10.0, 500 realizations of disorder in the diffusive
5 pewTsESSsssssssssssemmeeem Lgg=5 region were selected and the total conductaBceomputed
S S ettt L= 10 for each realization. The ensemble-averaged conductance
Las . Lyige = 50 (G) was then calculated and finally the total resistance

0 ' (Riop=1/G) plotted against the computed conductafig,
0 A 0.2 of the isolated tunnel junction. Since the average conduc-
0 tance of the diffusive regiokG) is also known, Eq(1)

FIG. 8. Plots of the mean conductant®(Ag))=N—-R,+R,  Ca" be evalu:_;tted to yielld the corresponding gnalytical result,
as a function of\,, for a diffusive conductor of widttM =10 and ~ CUrve (a) of Fig. 2. This demonstrates that in the range of
four different lengths. The left inset shows the conductancevalidity of quasiclassical theory, quantitative agreement with
(9)=(G(Ap))/(G(0)), scaled by the normal-state conductance.the numerical-scattering approach is obtained.

The right inset shows the rms deviatiorr=((G(A,)
—(G(AgNHY>

Lyigg =0

V. NUMERICAL RESULTS FOR ANDREEV

) . INTERFEROMETERS
suppress the conductance. Both of these features lie outside

Andreev’s approximatioi® To achieve compatibility with Having examined a simpM-1-S structure, we now com-
the assumptions of circuit theory, the choieg=0.2 was pare numerical results for the tight-binding structure of Fig.
made, which places a system of width 10 between two con3(b), with the predictions of quasiclassical theory for the
ductance steps and avoids the above sensitivity to changes éme-dimensiona(1D) system of Fig. 8). The latter com-

Ap. prises a tunnel junction connected by diffusive 1D wires to a
Having identified a choice of parameters which is com-fork. Each of the two arms of the fork is a diffusive wire,
patible with quasiclassical theory, numerical results for theconnected via tunnel junctions to infinitely long supercon-
combined structure of Fig.(lh) can now be obtained. To ductors. The conductance of the diffusive wires is assumed

summarize, this structure has the following properties: widtito be much greater than that of the tunnel junctions.
M =10, number of open channelé=9, band filling factor The two-dimensional tight-binding realization of this
€,=0.2 leading to a chemical potentiak=3.8, length of tun-  structure is shown in Fig. (B), which consists of a tunnel
nel junction L,,=1, barrier heights 08¢,<10.0, barrier junction (1) lying next to a diffusive region which is in turn
conductances 0:0G,,,<9.0, length of diffusive region adjacent to two superconductors. The superconductors are
L 4ir=25, diffusive disorder widtW=1, conductance of dif- separated from each other by an insulating layer and from the
fusive region (Gg)=1.6, length of superconductor diffusive region by two identical tunnel junctior®). The
L,;=100, superconducting coherence length76, super-  superconductors=1,2 have order parameter phasgs but
conducting order parametép=0.05, elastic mean free path are identical in every other respect. In order that they may
|~4.5. successfully represent superconducting probes of infinite
First consider the case of no barrier, whege=0. In this  length, they are chosen in such a way that quasiparticle trans-
case, guasiclassical theory insists that the conductance ofraission through them is negligible.
diffusive region in contact with a superconductor should be The diffusive region is of lengtl 4 Sites, each tunnel
identical with the normal-state conductance of the diffusivejunction is L, sites long and the superconductors have a
region. Figure 8 shows plots of the mean conductancéengthL,,. To model a superconducting reservdi,, is
(G)=N—-Ry(Ag) +R4(Ay) as a function ofA,, for disor-  again chosen sufficiently large such that there is negligible
dered regions of four different lengths. In the normal stateransmission through the superconductor. The system width
(Ap=0) (G) reduces toT,(0)=N—Ry(0) and in the pres- and the width of both the diffusive region and the tunnel
ence of a sufficiently long superconductor, to the BTK con-junction (1) is M sites. On the right of the diffusive region,
ductance R, (Ay). The left insert shows the quantity the three insulating layers are each one site thick and there-
(9)=(N—Ry(Ap) +Ra(Ag))/(To(0)) (i.e., the conductance fore the superconductors are each of wid#' (where
divided by the normal-state conductahc&he right insert 2M'=M-3).
shows the root-mean-square deviatiomr=([G(A,) In the simulation, the conductanc&s, and G, of the
—(G(Ap))1DY2 These show that in the ballistic limit tunnel junctions are fixed at values which replicate the three
L4ix=0, the conductance rises to a value almost double thagituations of Fig. 4, namel,=G,, G;<G,, andG,>G,
of the normal state, before decreasing with increadiggin ~ to enable comparisons to be made with the analytic results.
contrast, the mean conductance of a diffusive normal regioin each case, the phase difference between the two supercon-
is relatively insensitive to the onset of superconductivity,ductors is varied and the total conductar@eplotted as a
with the largest relative change corresponding to the largedtinction of phase for a particular realization of disorder in
value of L, (i.e., the smallest value of the normal-state the diffusive region. Ensemble averaging over many disorder
conductance It should be noted however that even thoughrealizations yields the conductang@) which is independent



9316 N. R. CLAUGHTON, R. RAIMONDI, AND C. J. LAMBERT 53

- conductor Lg,;~100, superconducting coherence length
0.024 0.040 &=76, superconducting order paramefgr=0.05.
<G> <G> To carry out the simulation, the conductane&gsof tun-
] nel junction(1) andG, of tunnel junction(2) were fixed and
0.012 1) 0.010 a particular realizatiofe; } of disorder in the diffusive region
0.019 N 0.35 was selected. Then the phase differegeed,— ¢, between
<G> <G> superconductors 1 and 2 was varied from zero 40 Phis
was done by fixing$;=0 and choosing 50 evenly spaced
0.007 0.30 values of ¢,. For each value ofp, 200 different diffusive
0 o ' o regions were obtained and the conducta@Gcef the whole
¢ ¢ system computed for each. The ensemble-averaged conduc-

tance(G) was then calculated. The graphs of Fig. 9 show
FIG. 9. Numerical results for the conductance versus phase foplots of (G) as a function of the phase differengefor the
Lgir=10: (@) G,=0.2 andG,=0.2. (b) G;=2.0 andG,=0.2.(¢)  following four combinations ofG, and G,. They are(a)
G1=0.2 andG;=2.0. (d) G,=2.0 andG,=2.0. G,=0.2G,=0.2, (b) G,=2.0G,=0.2,(c) G;=0.2G,=2.0,
(d) G;=2.0 G,=2.0.
of the microscopic configuration of the system and may be apart from the different vertical scales, the numerical re-
usefully compared with the results of B§) (see belowand g jis of Fig. 9 and the analytic results of Fig. 4 share many

Figl. 4. hat Toll . le of widi=15 qualitative features and also exhibit some interesting differ-
'thn Wd.at 0 OIWS’ ;/\{e elxamlne_aoszampde 0 .W('j. b_ ’d ences. Figure @) is comparable with @l); each exhibits a
with a diagonal matrix elemerg=0.2 and periodic bound- zero-phase minimum and a further minimumgat 7. Simi-

ary conditions, for which the number of open channels iﬁ . . } o
; : ; arly 9(b) is comparable with é); each exhibits a zero-phase
N=13. The disorder is chosen to b¢=1 and again from a a);(irrgu)m withpa minimum S;:W_ The remaining CIIJOrves

graph of the form of Fig. 5, we obtain a mean free path o . .
|~4.9. In most cases of experimental interest, the conducsompare less favorably. Whereas the analytic results of Figs.

tance of the diffusive “wires” may be considered to be much#@ and 4d) are necessarily identical, there is no such re-
greater than that of the tunnel junctions. In order to take intgtriction on the numerics and as shown in Figa)9decreas-
account this situation in our numerical simulations, one had"d the conductance§, and G, can produce qualitative
to put some restrictions on the length of the diffusive regionchanges. As a consequence, Fig) ossesses a zero-phase
since the conductance decreases with length. A compromidBaximum, whereas Fig.(d) possesses a zero-phase mini-
must therefore be found between the desire to increase tHBuMm.
length into the diffusive regime and the wish to decrease itin Figures 4c) and 9c) also reveal some differences. Each
order to maintain a high conductance. In what follows apossesses a zero-phase minimum, butatw, where the
choicel 4 =10 is made, for whicHG y)~5.1. analytic result vanishes, the numerical result is almost maxi-
To create a tunnel barrier of length,,=1 and widthM,  mal. The inset in Fig. @) shows a “blow up” of the region
all diagonal elementg of sites within the barrier were setto 7—0.15<¢<w+0.15, withG,;=0.2 andG,=2.0. The inset
a valuee; =€+ €,. For an isolated tunnel junctiofl) of  shows three curves, obtained by averaging over different
width M =15, the values;,=3.52, 12.27 yield, respectively, numbers of samples, namely 200, 1000, and 2000 realiza-
the conductance$;=2.0, 0.2 and for an isolated tunnel tions of the disorder. These demonstrate that in contrast with
junction (2) of width M’ =6, the valuess,=1.87, 7.75 yield  Eq. (5), the numerical results(6) possess a shallow, local
conductance§,=2.0, 0.2. These values @f, were used in  minimum at¢=. This discrepancy is not just an artifact of
the simulations of Fig. 9. As in the previous section, theihe numerical calculations. We will see below that this is a
choice =0.2, Ao=0.05, L ;=100 was made. For the su- .,,qequence of the actual two-dimensional nature in the sys-

p’?(;fﬁwftgrtﬂ"”evl conni(::ﬁd to crysitalllgi\nzrmal Iea;lds Ottem considered, whereas quasiclassical theory is effectively a
wi =6, the values of the normal and Andreev reflec- |- 4.0, theory.

tion and transmission coefficients were found to be: Finallv. we end this discussion by noting that for svstems
Ry=0.02155,R,=4.92905, T,=0.04937,T,=0.00003. For . Y. y noting sy
ith a small number of open channels, the behavior of an

such a structure, there are five open channels and as a caff-

sequence, the sum of these four coefficients is 5. Finally, iff'dividual sample can be very different from that of the

order to model an insulating barrier, the diagonal matrix el-mean- For each of the four case to (d), Fig. 10 shows
ementse referring to a sitei on the barrier between the €&ch of the 200 plots of conductan@efrom which the en-

superconductors, were each set to the large numbéemble averages of Fig. 9 were calculated. Apart from the
€=¢€,+50. case 1(b), where individual members of the ensemble be-
By combining the above components to yield the com-have in the same manner as the average, the nature of the
plete structure of Fig. ®), one obtains the structure to be extrema ag=0, = depends on the microscopic realization of
analyzed numerically, whose parameters are as follows: totdhe disorder. We also note that by changing the dimensions of
width M =15, superconductor widthl’=6, number of open the sample, one can change the details of Fig. 9, but not the
channels in normal leal=13, band fillinge;=0.2, chemi-  qualitative shape. For example by increasing the lehgfh
cal potential u=3.8, length of tunnel junctiond ., =1, from 10 to 15, the local minimum ap= in Fig. Ac) be-
length of diffusive regior_ 4#=10, disorder widthW=1.0, comes more pronounced, but further increading to 20
conductance of diffusive regio{G 4i)=5.1, length of super- causes the minimum to become more shallow.
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0.034 F * 0.04
<G> <G>
0.014 H(a) (b) 0.01
(c) 1
0.030 | 0.42
<G> <G>

0.010
() 0.30
0 0 2 0 2n

FIG. 12. Numerical results for the conductance versus phase for
Ldif‘f:l: (a) G]_:OZ andG2=0.2. (b) 61:20 andG2=0.2. (C)
G,=0.2 andG,=2.0. (d) G;=2.0 andG,=2.0.

into the behavior of the conductance of the diffusive struc-

ture atp=m.
, To obtain such an understanding we now develop an ana-
0 o) o1 0 ¢ T lytic theory of the ballistic limit, based on a multiple-

scattering description of a cledh S interface. Consider, for

FIG. 10. Numerical results for the conductance versus phase fdzXample, the structure of Fig(i3. In the absence of disor-

individual realizations of the disordefa) G,=0.2 andG,=0.2.(b)  der, and when there is no phase difference between the two
G,=2.0 andG,=0.2. (c) G;=0.2 andG,=2.0. (d) G,=2.0 and  Superconductors, translational invariance in the direction

G,=2.0. transverse to the current flow allows one to reduce the two-
dimensional system to the sum over many independent one-
VI. DESCRIPTION OF THE BALLISTIC LIMIT: dimensional channels. When a phase difference between the
TWO-CHANNEL MODEL superconductors is imposed, interchannel coupling is intro-

uced, but as shown below this coupling typically involves

. Having compared the q_uasiclassical _theory c.’f Rgfs. .7__lgnly pairs of channels, in such a way that an accurate de-
with the numerical-scattering approach in the diffusive l'm't'scription is obtained by summing over independeairs of

we now ex?m.i”e th? crossover to the bf_i"iStiC. regime, Wher%oupled channels. The theory developed below is based on a
the former is inapplicable. This discussion will demonstratet

' X . L wo-channel description of the left-hand boundary conduc-
why a two-dimensional theory predicts a finite conductance
: . . . ance[cf. Eq. (9)]

at ¢=m, whereas a one-dimensional, quasiclassical theory

yields G(7)=0. We initially focus attention on the interfer- N

ometer of Fig. &) anq exz_amine 'Fhe change in behavior as Ga(¢$)=2R,=2 Trrar;= 2 (Ra)ij (12)

the lengthL 4 of the diffusive region becomes smaller than =

the elastic scattering lengthApart from the change ib g, 5 ) -

all other parameters are fixed to the values used in Fig. 9vhere Rq)ij=|(ra);j|* is the Andreev reflection probability

Figure 11 shows results for a diffusive region of |engthfr-0m Ch.annell to channeli. The Andreev reflection coeffi-

Lg#=5 and Fig. 12 for a length 44=1. For this geometry, cient is  of the form R,=RyagtRofdag Where

apart from an increase in the amplitude of oscillation, theRaiag==i-1(Ra)ii @dRop.giag IS the remaining contribution

qualitative shape of the curves is unchanged and therefore 4FPm interchannel scatteringRor.giag=2i+j-1(Ra)ij - If

understanding of the ballistic limit will also provide insight channels only couple in pairs, both the off-diagonal scatter-
ing and the diagonal scattering will scale as the number of

channels.
0.024 0.04 In the absence of disorder, the structure of Figp) 3nay
) be reduced to a simpler one in which a normal barrier only is
<G> <G> placed in front of the two superconductors. This is because
0.016 [(,) ®) 10.02 the motion between the two barriers of FigbBis now
0.018 [© 0.35 ballistic and can easily be taken into account by trivial phase
factors. The two barriers can then be reduced to one effective
<G> <G> barrier only. Consider now a normal barrier to the left of a
N-S interface. Particlegholes impinging on the normal
0.006 (d) 0-30 scatterer are described by a scattering magjx (sy,), and
0 27 21 those arriving at thé\-S interface by a reflection matrix,
¢ ¢ where
FIG. 11. Numerical results for the conductance versus phase for r t!
Lgix=5: (@ G1=0.2 andG,=0.2. (b) G;=2.0 andG,=0.2. (c) Spp:(tpp gp), :<Ppp Pph)I
G;=0.2 andG,=2.0. (d) G;=2.0 andG,=2.0. pp Tpp Php  Phh
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The elements o§ andp are themselves matrices describing
scattering between open channels of the external leads. For (I) M"
an ideal interface, where Andreev’s approximation is valid,
ppp @ndpy,;, are negligible and in what follows will be set to

zero. As a consequencgy,, and p,, are unitary and one M M Mo
: 6 4! -1 . _ ’ ’
obtains® ra=t7M o tpp, With Mpo=1=rgoppnf fppnp- In )
contrast with the analysis of Ref. 16, whegg, is propor- ¢2 M
tional to the unit matrix, the interference effect of interest
here is contained in the fact thaf, induces off-diagonal M
scattering. Substituting, into Eq.(12) and taking advantage
of particle-hole symmetry & =0, yields FIG. 13. Interferometer structure comprising two superconduct-
G=2TH(TQ" 1-|—(QT)—1) (13) ing regions each of widtiM"” and separated by a distankke The

scattering region is connected to normal, external current carrying
WhereQZptpth (r") ppPpn(r ’);p, with T=tppt;§p the trans- leads, of widthM + 2M". A normal barrier(shown black is placed
mission matrix of the normal scattering region. This at theN-S interface. The current flows from left to right between
multiple-scattering formula for the boundary conductance igxternal reservoirs with potentiajs; and u,. In the tight-binding
valid in the presence of an arbitrary number of channels anfiodel used in the numerical simulations, the barrier comprises a
in any dimension. line of sites with diagonal elements= ¢, .

Equation(13) is very general and makes no assumption

about the nature of matrices, ands,,. We now introduce channel model has a rather wide range of applicability, this
a two-channel model in whicp,, is chosen to be an arbi- interferometer, in contrast with that of Fig(l8, has been
trary two-dimensional unitary matrix. In the absence of dis-chosen to possess a normal region between the two super-
order,t,, andr,, are diagonal and therefore the only inter- conductors. As a consequence, charge transport will take
channel coupling is provided by,,. Substituting these place both through Andreev reflection at tNeS interfaces,
matrices into Eq(13), yields an expression far, involving  and through quasiparticle transmissfrFigures 14a) and
a single phased, whose value is a linear combination of 14(b) show numerical results for the diagon&.];; and off-
phase shifts due to normal reflection at the barrier, Andreediagonal coefficientsR,);; (i#]), respectively. Only of or-
reflection at theN-S interface and the phase accumulated byder N off-diagonal coefficients are non-negligible compared
an excitation traveling from the barrier to the interface. Thewith unity, demonstrating that channels do indeed couple in
result for the sum of the two diagonal elements is

CA
Raia( ¢, 0) = (Ra) 11+ (Ra) 20= [cC+s(D—E cow)]?

14

(b)

and for the sum of the two off-diagonal elements
sB(D —E cos)
Roﬁ-diag(¢a 0) :(Ra)12+(Ra)2l: [CC+ S(D —E COSg)]Z '
(15)

where A=T3(1+R,)?+T3(1+R,)? B=2T,T,, C=(1
+Ry)(1+Ry), D=1+RR,, E=2VRiR,, R;=1-Ty,

R,=1—T,, c=cos¢/2, and s=sir’¢/2. After averaging
over the rapidly varying phasé this yields 0.2
R oA cC+sD
dia(¢)_c [(CC+SD)2_32E2]3/2 01
and
cCD+s(D?—E?) 005 ; 5 ‘
Rofr.diagl @) =SB [(cC+sD)?— B2 (16) I T

. . . FIG. 14. (a) shows numerical results for the diagonal Andreev

. For a given value of, once the normal barrier transmis- reflection coefficients R,);; of the structure of Fig. 13, with
sion coefficientsT, and T, of the two channels are chosen, , =45, M'=50, M"=15, N=45, and barrier potentiak,=2. (b)
the right-hand sides of Eq&l6) are completely determined. ghows corresponding results for the off-diagonal coefficieRtd;(

We now compare the analytic results of EG6) for  jth i#j. (c) and (d) show analytic results from a two channel

Raia(¢) andR giag(¢b) With numerical results forR,);; , 0b-  calculation. The insets in the top right-hand cornergapfand (c)
tained recently" for the ballistic Andreev interferometer of show the corresponding conductances. The top left-hand inga) of
Fig. 13. This will show that the two-channel model accu-shows plots of G(¢)/G(0) for five values of N=35,
rately describes the ballistic limit. To emphasize that the two0-40,45,50,55,60.
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eigenmodes of the normal-region transmission matrix. Diag-
onal and off-diagonal scattering are no longer distinct pro-
cesses and therefore the scattering coefficients of Figa) 15
and 1%b) simply describe the same generic behavior. The
sum of all the curves of Figs. 1& and 1%b) is the total
contribution to the Andreev scattering coefficient, shown in
Fig. 15c). In this case, it appears that a theory describing
average properties of a single channel, such as the quasi-one-
dimensional description of quasiclassical theory, is indeed
appropriate. For completeness, Fig(dshows the behavior
of the quasiparticle transmission, and in Fig(€8he con-
ductance of Eq(8). The peak atp=1 in the conductance
0.4 05 @ 074 appears to be due entirely to the normal transmission through
the normal region, while the contribution due to Andreev
scattering processes, @t=, is completely suppressed. By
ool © : o0 & - 0,670(6) reducing the width of the normal region between the two
" superconducting regions, as in the structure of Fig),3he

) ] ) o contribution from the normal transmission will be elimi-
FIG. 15. Numen(_:al results ob_talned fron_1 a tight-binding mc_)del nated, and the conductancedt m will vanish.
of the structure of Fig. 13, but with the barrier replaced by a disor-

dered region of length 30 sites. In these simulatiohts=45,

M ':50, M”=15, N=45, A0=0.1, and the disorder i¥&/=2.8. (El) VIl. DISCUSSION

and(b) show results for diagonal and off-diagonal Andreev scatter-

ing coefficients, whose total contribution is shown(@. (d) shows In this paper, a detailed comparison between quasiclassi-
the behavior of the quasiparticle transmission, é@dhe total elec-  cal theory and numerical multiple-scattering calculations has
trical conductance. been carried out. To ensure that the simulated structures fall

within the parameter range where the approximations of qua-

siclassical Green-function methods hold, we have painstak-
pairs. At¢=0, there is no coupling between the channels andngly examined each component of a given structure. For the
the scattering properties are those Mfindependent chan- N-I-S structures of Fig. 1, Fig. 2 shows that there is quanti-
nels, each with a barrier transmission coeffici@it The tative agreement between the two methods. For the interfer-
spectrum of the coefficients depends in detail on the shape afmeters of Fig. 3, there is broad qualitative agreement, al-
the barrier. The top right-hand inset of Fig.(&4shows the though as shown in Figs. 9 and 4, some interesting
boundary conductancés(¢) obtained by summing the differences are present.
curves in Figs. 1) and 14b), as well as the contribution In particular, the theory of Refs. 7-12 is a quasi-one-
due to normal transmission. Figures(@d4and 14d) show dimensional theory and for the symmetric structures of Fig.
analytic results foRi,(¢) andR . giag(¢b) Obtained from Eq. 3, necessarily predicts a vanishing conductaneg=atr. This
(16) by choosing ten pairs of transmission coefficientssymmetry is not present at a microscopic level and therefore
T,,T,, with T,=0.2T,. The inset of Fig. 1&) shows the there is no such restriction on the results from an exact so-
corresponding conductance obtained by summing the curvdstion of the Bogoliubov-de Gennes equation. Figurés,9
in Figs. 14c) and 14d). 9(b), and 9c) suggest that for certain structures, this micro-

Clearly the qualitative features of the exact simulation arescopic symmetry-breaking may be unimportant, but for other
reproduced by the two-channel analysis. Since the lattestrengths of the tunnel barriers, FigicPsuggests that this
yields theN-channel conductance by summing oW in-  artifact of one-dimensional implementations of quasiclassical
dependent pairs of channels, the amplitude of oscillation, antheory will not be observed experimentally. In the quasibal-
hence the value ap=r, is predicted to scale with the num- listic limit, Figs. 11 and 12 show that although the overall
ber of open channels. This is confirmed by the exact numerieonductance is increased, the qualitative shape of the
cal results shown in the top left-hand inset of Fig(&4 conductance-phase curves can be unchanged. The ballistic
which shows plots o&5(#)/G(0) for five values olN rang-  limit can be described in terms of a two-channel model,
ing from N=35 to N=60. which emphasizes the role of interchannel scattering as the
Figures 11 and 12 demonstrate that when the resistance @sigin of the finite value of the conductancedat 7. Accord-

dominated by tunnel barriers, the conductance-phase relatiang to our results, this feature is almost insensitive to disor-
is insensitive to disorder and therefore a description of thaler, provided the resistance is dominated by tunnel barriers,
ballistic limit is relevant. In the absence of tunnel barriers weas it is the case of Fig.(B). As a consequence, as already
now show that this insensitivity is no longer present. Figurenoted in Ref. 44, disorder is not a necessary feature of large
15 shows numerical results for the structure of Fig. 13, withamplitude Andreev interferometers. In the absence of tunnel
M =45, M'=50, M"=15, but with the barrier replaced by a barriers, this insensitivity to disorder is no longer present,
disordered normal region of length 30 sites. In the presencand Fig. 15 shows that disorder does indeed change substan-
of disorder, the notion of diagonal and off-diagonal scatterdially the qualitative shape of the phase-dependent conduc-
ing is no longer useful, since channels corresponding to #&nce.
given transverse component of the momentum, are no longer Finally the above results demonstrate that quasiclassical
eigenstates. Instead they should be viewed as admixtures tifeory yields the correct shape for the ensemble-averaged
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