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The effective response is calculated in nonlinear composite wires and strips which are modeled as two-
dimensional random conductance networks with lateral sizeL and widthd!L. We consider a two-component
nonlinear conductance network which consists of two types of conductors. The first component is assumed to
be nonlinear and obeys a current-voltage (I -V) characteristic of the formI5s1V1x1V

3, while the second
component is linear withI5s2V, wheres1 and s2 are the linear conductances andx1 is the nonlinear
conductance. We invoke a renormalization-group~RG! analysis to rescale the strip repeatedly by small-cell
transformations to obtain a chain of nonlinear conductors, for whichexact formulas of the effective linear
responsese and nonlinear responsexe are available. We calculatese and xe as a function of the volume
fraction for various conductance ratios and examine the dependence ond. We observe large enhancements in
the nonlinear response under appropriate conditions, as well as interesting crossover from one- to two-
dimensional behaviors asd increases. Numerical simulations are performed to verify the RG calculations.
Scaling exponents are determined in the RG and compared with available estimates; good agreements are
found. Possible generalizations of the present investigation are discussed.

I. INTRODUCTION

The physics of nonlinear inhomogeneous media has been
a subject of considerable current interest because of their
potential applications in engineering and science.1–6 In par-
ticular, much effort has been centered around the calculations
of the effective response in nonlinear composite systems
consisting of two or more materials of different dielectric
functions or conductivities.1,7–13 In the weakly nonlinear re-
gime in which the nonlinearity can be treated as a small
perturbation, various methods have been established.7–9 Re-
cently much effort has been devoted to strongly nonlinear
composites.10–13

It is observed that the effective response of composite
media can differ to a large extent from that of their
constituents.1 The widely varying constitutive properties lead
to large variations in the local electric fields and currents
and, hence, to large enhancements or decreases in the effec-
tive properties. Such an enhancement effect may be more
pronounced in nonlinear composites.14 It has been shown
that the effective nonlinear response can be enormously en-
hanced near the percolation threshold under appropriate
conditions.15 Recently, large enhancements in the effective
nonlinear response have also been found in fractal clustering
in nonlinear composites.16 It is therefore believed, from the
above considerations, that the effective nonlinear response
may depend strongly on geometry-controlled properties, e.g.,
the dimensionality of the composite systems.

Recently, significant advances have been made in materi-
als fabrication techniques. By means of molecular-beam ep-
itaxial techniques, samples of various materials with desired
geometry, size, interface, and surface conditions are available
and they show profound potential in applications. Hence
geometry-controlled properties have become one of the im-
portant areas to explore, both theoretically and practically.
We have also seen the technological importance of compos-
ite thin films and nanowires. In this work, we use a simple

nonlinear conductance network model to study the effective
nonlinear responses of composite wires and strips, in which
the lateral size is much larger than the width. We shall use a
renormalization-group~RG! analysis to calculate the effec-
tive linear and nonlinear responses. We find large enhance-
ments in the effective nonlinear response under certain con-
ditions, and more interestingly, we find a crossover from
one- to two-dimensional behaviors as the width increases.
Numerical simulations are performed to verify the RG cal-
culations.

The paper is organized as follows. In the next section, we
present a formalism for weakly nonlinear composites and
reiterate the established formulas for the effective linear and
nonlinear responses. In Sec. III, we derive exact formulas for
the effective linear and nonlinear responses of composite
wires. In Sec. IV, we use the RG analysis to deal with com-
posite strips of finite width. We shall perform numerical
simulation to verify the RG calculations. In Sec. V, we dis-
cuss the scaling behaviors of the effective responses and de-
termine the scaling exponents in the RG and compared with
available estimates. Possible generalizations of the present
work will be discussed.

II. FORMALISM

Consider ad-dimensional (dD!, two-component hypercu-
bic nonlinear conductance network which consists of two
types of conductors. The first component is assumed to be
nonlinear and obeys a current-voltage (I -V) characteristic of
the form

I5s1V1x1V
3, ~1!

wheres1 andx1 are the linear and nonlinear conductance,
respectively. Throughout this work, the nonlinearity is as-
sumed to be weak so thatx1V

2/s1!1 and we restrict our-
selves to cubic nonlinearity. This form of nonlinearity, usu-
ally called ‘‘Kerr-like,’’ is common in materials with
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inversion symmetry and has received extensive study. The
second component is assumed linear with

I5s2V, ~2!

wheres2 is the linear conductance. The volume fractions of
the first and second components arep and q, respectively,
and p1q51. We are interested in calculating the effective
linear and nonlinear responses of the network, represented by
a homogeneous network of identical conductors, each of
which has anI -V characteristic of the form

I5seV1xeV
3, ~3!

wherese and xe are the effective linear and nonlinear re-
sponses, respectively, and are given by the voltage-
summation formulas8,9,15

se5
1

V (
a

saVa
2 , ~4!

xe5
1

V (
a

xaVa
4 , ~5!

wheresa andxa are the linear and nonlinear responses of
the ath conductor;V5) i51

d Li , whereLi is the lateral size
along thei th Cartesian coordinate. Without loss of general-
ity, we apply a voltage along thex1 direction and open
boundary conditions in the remaining (d21) directions. We
have also adopted the convention that the voltage across the
two opposite (d21)-dimensional hyperplanes isL1 . In Eqs.
~4! and~5!, Va is the voltage difference across theath con-
ductor in thelinear random problem~i.e., obtained by solv-
ing the same random network problem with allxa50). The
summation is performed over all conductors in the network.

In what follows, we shall consider a two-dimensional
~2D! rectangular strip of lengthL15L and width L25d,
with d!L. We shall calculatese andxe and examine their
dependence on widthd. Interesting crossover from one- to
two-dimensional behaviors will be observed.

III. LINEAR AND NONLINEAR RESPONSES
OF COMPOSITE WIRES

We first examine thed51 case; i.e., we have a chain of
nonlinear conductors. Consider a chain ofL conductors,k of
which are of type 1 (s1 ,x1), while the remaining (L2k) of
which are of type 2 (s2 ,x2), subject to an applied voltage
V5L along the chain. For convenience, we denote the con-
ductance ratioh5s2 /s1 . By using the circuit formula for
series combination of linear conductances, we obtain the
voltages V15hL/(L2k1hk) and V25L/(L2k1hk)
across type 1 and 2 conductors, respectively. By using the
voltage-summation formulas~4! and ~5!, together with
simple combinatorial considerations, we arrive at theexact
formulas for the effective linear and nonlinear responses of a
composite wire:

se5 (
k50

L S Lk D pkqL2k
Ls1s2

~L2k!s11ks2
~6!

and

xe5 (
k50

L S Lk D pkqL2k
L3@x1kh

41x2~L2k!#

~L2k1hk!4
. ~7!

Two important limits are worth studying:~1! the normal
conductor-insulator (N/I ) case in which the second compo-
nent is poorer conducting (h!1) and ~2! the
superconductor–normal-conductor (S/N) case in which the
second component is better conducting (h@1). For simplic-
ity and without loss of generality, we takex250; i.e., the
second component is always linear. The wire formulas can be
used to calculatese andxe for both cases. For theN/I case,
we find a large decrease in the effective nonlinear response
while a large enhancement occurs for theS/N case. We shall
present results for theS/N case~Fig. 1! for illustration. The
length of wireL532. In Fig. 1, we plot the normalized ef-
fective linear response (se /s1) and nonlinear response
(xe /x1) as a function of the volume fractionp for various
conductance ratioh.1. We observe a large enhancement in
the effective nonlinear responsexe . The enhancement in-
creases with the conductance ratio while the locations of
maximum response ofxe occur atp*'1/L, a result inde-
pendent ofh. The location of peakp* can be calculated
numerically from Eq.~7! in the limit of largeh. We find
p*50.268, 0.135, 0.067, 0.034, and 0.017 forL54, 8, 16,
32, and 64, respectively. The result is in reasonable agree-
ment with the numerical calculations presented in Fig. 1 for
L532. For clarity, in the insets of Fig. 1, we also show the
normalized linear and nonlinear responses in a semilogarith-
mic plot.

We are now in a position to extract the critical behavior of
the effective linear and nonlinear responses of a chain near
percolation. In the limitL→`, we findV15h/(q1ph) and
V251/(q1ph) across type 1 and 2 conductors, respectively.
Again, by using the voltage-summation formulas, we find
se5s1h/(q1ph) and xe5x1ph

4/(q1ph)4, respectively.
In theS/N limit, i.e., h→`, we findse→s1(12q)21 and
xe→x1(12q)23. If we write se's1(qc2q)2s and
xe'x1(qc2q)2w, we identify the superconducting expo-
nent s51 and the nonlinear exponentw53. Hence we
should observe a large enhancement in the effective nonlin-
ear response near the percolation threshold of the second
component; we findqc51.

Moreover, for a large but finite ratioh, and near
percolation, we find se5s1(qc2q)21F(z)and xe
5x1(qc2q)23G(z), where F(z)5(11z)21 and G(z)
5(11z)24 are scaling functions of the variablez
5h21(qc2q)21. Hence we identify the crossover exponent
f51. If we write f5s1t, we find the conductivity expo-
nent t50 in one dimension.17 For a large but finiteL, we
expect the percolation correlation length diverges as
jp'L'1/p5(qc2q)21. Hence we identify the percolation
correlation length exponentn51 in one dimension.17 In this
regard, we may propose finite-size scaling forms forse and
xe : se5s1L f (h

21L) andxe5x1L
3g(h21L), where f and

g are finite-size scaling functions.

IV. LINEAR AND NONLINEAR RESPONSES
OF COMPOSITE STRIPS

When interwire couplings are present, we may model the
system by a nonlinear composite strip of a finite widthd. For
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d52, we have a ladder network. Exact analytic results can
only be obtained forh5s2 /s150.17 Unfortunately, for a
finite conductance ratioh, we are unable to solve the com-
posite strip problem exactly. We resort to a renormalization-
group ~RG! analysis18–20 because we believe that the RG
approximation is able to capture local field fluctuations better
than the effective medium approximation. The idea of RG is
to rescale the strip repeatedly by a simple small-cell trans-

formation, to obtain a wire of a shorter length. In this way,
we obtain a set of renormalized parameters
p8, q8, s18 , s28 , x18 , andx28 ; h85s28/s18 . The RG analysis
goes with the following steps. We start out with a strip of
dimensionL3d, at a conductance ratioh5s2 /s1 and prob-
ability p. The nonlinear bonds have a finitex1 andx250.
However, one should note that although we start out with a
linear second component, the renormalized one will gener-

FIG. 1. For L532 composite
wires, the normalized effective~a!
linear response (se /s1) and ~b!
nonlinear response (xe /x1) are
plotted as a function of the vol-
ume fractionp for various con-
ductance ratioh in theS/N limit.
We observe a large enhancement
in the effective nonlinear response
xe , which increases withh while
the location of maximum nonlin-
ear response occurs atp*'1/L,
roughly independent ofh. For
clarity, in the insets, we show
se /s1 and xe /x1 in a semiloga-
rithmic plot. From bottom to top
in order of increasing conductance
ratio, h52, 5, 10, 20, 50, 100,
200, 500, and 1000.
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ally be nonlinear, i.e.,x28Þ0. We perform an approximate
232 cell RG calculation to reduce the dimension of the strip
to (L/2)3(d/2).

Consider a 232 cell, identical with aL52, d52 ladder
with five conductors, each of which is of type 1 (s1 ,x1) and
type 2 (s2 ,x2) with probability p andq, respectively. It is
easy to see that there is only one configuration with all five
bonds superconducting~probability q5), five superconduct-
ing configurations with four bonds superconducting and one
bond normal conducting~probability 5pq4), eight supercon-
ducting configurations with three bonds superconducting and
two bonds normal conducting~probability 8p2q3), and two
superconducting configurations with two bonds supercon-
ducting and three bonds normal conducting~probability
2p3q2). Hence the entire 232 cell is superconducting with a
probabilityq8 given by18–20

q85R2~q!52p3q218p2q315pq41q5. ~8!

A similar analysis can be performed for the nonsupercon-
ducting configurations; we findp8512q8.

Accordingly, we divide the 25532 possible configura-
tions into two sets, one of which is superconducting~i.e., the
second component is spanning the cell!, while the other of
which is nonspanning. If we apply a voltageV52 across the
cell, we can calculate the linear voltages across the 5 bonds
of each of the 32 configurations. The voltage-summation for-
mulas can be used to evaluate the effective linear and non-
linear response of a given configuration. We then perform
certain averages over the 16 spanning configurations to ob-
tain s28 and x28 , while over the remaining 16 nonspanning
configurations to obtains18 andx18 . We obtain the following
results:

s185F1~s1 ,s2 ,p!

5expF 1

R2~p! S p5lns11p4qlns112p3q2ln
2s1s2

s11s2
12p2q3ln

2s1s2

s11s2
12p3q2ln

s1~s113s2!

3s11s2

14p4qln
s1~3s115s2!

5s113s2
14p3q2ln

s1~s1
215s1s212s2

2!

2s1
215s1s21s2

2 D G , ~9!

s285F2~s1 ,s2 ,p!

5expF 1

R2~q! S pq4lns21q5lns212p3q2ln
s11s2

2
12p2q3ln

s11s2

2
12p2q3ln

s2~3s11s2!

s113s2

14pq4ln
s2~5s113s2!

3s115s2
14p2q3ln

s2~2s1
215s1s21s2

2!

s1
215s1s212s2

2 D G , ~10!

x185C1~x1 ,x2 ,h,p!

54expF 1

R2~p! S p5lnx1

4
1p4qln

x1

4
12p3q2ln

2~x21x1h
4!

~11h!4
12p2q3ln

2~x21x1h
4!

~11h!4

12p3q2ln
3x1132x214x1h118x1h

214x1h
313x1h

4

~31h!4

14p4qln
99x11256x21180x1h1210x1h

21180x1h
3199x1h

4

~513h!4

14p3q2ln
2x1117x2120x1h1•••182x1h

6120x1h
712x1h

8

~215h1h2!4 D G , ~11!

x285C2~x1 ,x2 ,h,p!

54expF 1

R2~q! S pq4lnx2

4
1q5ln

x2

4
12p3q2ln

x11x2

8
12p2q3ln

x11x2

8

12p2q3ln
3x214x2h118x2h

214x2h
3132x1h

413x2h
4

~113h!4

14pq4ln
99x21180x2h1210x2h

21180x2h
31256x1h

4199x2h
4

~315h!4

14p2q3ln
2x2120x2h182x2h

21•••120x2h
7117x1h

812x2h
8

~115h12h2!4 D G , ~12!
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and h85F(h,p)5F2(1,h,p)/F1(1,h,p), where F, F1 ,
F2 , C1 , andC2 are transformations of their arguments. In
obtaining Eqs.~9!–~12!, we have invoked a geometrical
mean over spanning and nonspanning configurations19 while
Eqs. ~11! and ~12! represent a generalization of the estab-
lished RG analysis18–20 to the nonlinear response. We prefer
the geometric mean because it gives results better compared
with simulation data to be considered in the following. More
importantly, the geometric mean is able to satisfy duality
symmetry in 2D random conductance networks.19 We then
repeat the RG several times untild851. Of course, for a
d52 ladder, one RG has already done so, while for ad54
strip, two consecutive RG’s are needed. We end up with a
composite wire of a shorter lengthL8, with renormalized
quantitiesp8, s18 , s28 , h8, x18 , andx28 . The wire formulas
@Eqs.~6! and ~7!# can therefore be used to obtain the effec-
tive linear and nonlinear responses of composite strips.

It is instructive to obtain the critical behavior of the RG
transformations near percolation. Equation~8! possesses

three fixed pointsq*50, 12 , and 1, withq*5qc5
1
2 being an

unstable fixed point, to be identified with the percolation
threshold of the second component. From the fixed-point
analysis atqc , we find the inverse of the percolation corre-
lation length exponent 1/n5 log2(13/8)'0.70, to be com-
pared with theexact value 1/n50.75 in two dimensions.
Right at the percolation thresholdq5qc ~or p5pc) and in
the limit h→`, one finds s18'1.843s1 , while
x18'5.738x1 . Hence we find the superconducting exponent
s'1.26, to be compared withs51.297 from numerical
simulation.17 We also find the nonlinear exponentw53.60,
to be compared withw53.71 from available estimates on
noise exponents.21 Moreover, right atqc and in the limit of
large h5s2 /s1 , we find h85s28/s18'0.2943h from Eqs.
~9! and ~10!. Hence we determine the crossover exponent
f/n5 log2(1/0.2943)'1.76, to be compared with the estab-
lished valuef/n51.949 from numerical simulation.17 We
also find thats/n'0.88, to be compared withs/n50.9745
from numerical simulation,17 while w/n'2.52, to be com-
pared withw/n52.79 from available estimates.21 Again, if
we write f5s1t, we find the conductivity exponent
t/n'0.88. Hence the RG analysis explicitly satisfies duality
symmetry in two dimensions.

In what follows, we restrict ourselves to theS/N case
only and present RG results ford52 ladders and ford54
strips. Again, we takeL532 andx250 for comparison with
the wire results in the previous section. We first present nu-
merical RG results for ad52 ladder. In Fig. 2, we plot
se /s1 andxe /x1 as a function of the volume fractionp for
various conductance ratiosh. Again, we observe a large en-
hancement in the effective nonlinear response. The enhance-
ment increases with the conductance ratio while the location
of maximum response ofxe has shifted to a largerp* , an
estimate of which will be discussed below. However, it is
also noted that the strength of enhancement has decreased
slightly.

We then present numerical RG results for ad54 strip. In
Fig. 3, we plotse /s1 andxe /x1 as a function of the volume
fraction p for various conductance ratiosh. Similarly, we

observe a large enhancement in the effective nonlinear re-
sponse. The enhancement increases with the conductance ra-
tio while the location of maximum response ofxe has now
shifted to an even largerp* , indicating a crossover from 1D
to 2D behaviors. It is also noted that the strength of enhance-
ment has decreased substantially as compared to the small-
d cases. This is attributed to the large fluctuations of local
electric fields present at smalld, leading to a large enhance-
ment in the nonlinear response.

To establish a result for the location of peak, we invoke
the RG analysis. The shift ofp* towards the 2D value asd
increases is attributed to the fact that the renormalized wire
length decreases withd. By using Eq.~8!, we obtain for
323d strips,p*50.034, 0.175, 0.336, and 0.443 ford51,
2, 4, and 8, respectively, values that are in good agreement
with the numerical calculations presented in Figs. 2 and 3.
These values can be interpreted as the effective percolation
threshold of a strip of finite width.20,21 It is evident that the
peak of response shifts towards the 2D percolation threshold
pc50.5 asd increases. Incidentally, the present RG analysis
gives the exactpc in 2D. Hence a clear crossover from 1D to
2D behavior has been observed.

To confirm the RG result, we perform numerical simula-
tions in nonlinear conductance networks. We have done
simulations for 3232 and 3234 networks. Details of the
numerical simulations can be found in Ref. 15. We present
results for theS/N case only. In the insets of Figs. 2 and 3,
we also show the normalized effective linear and nonlinear
responses of numerical simulation in a semilogarithmic plot
for comparison. As evident from the figures, a reasonable
agreement between the RG and simulation data is obtained.
The agreement is even better for large ratios. In this connec-
tion, it is tempting to fit the simulation data by a simple
effective medium approximation7 ~EMA! but parametrized
by pc'p* . It has been found that while the EMA fits the
simulation data ofse reasonably well, strongly deviations
are nevertheless observed for the effective nonlinear re-
sponsexe . This is attributed to the fact that the EMA ignores
local field fluctuations explicitly.

V. SCALING BEHAVIORS

In this section, we shall study the scaling behaviors of the
effective linear and nonlinear responses of composite strips
of arbitrary lengths and widths. For strips of infinite length
L→`, we may apply the scaling theory of Neimark22 to
obtain the effective percolation thresholdqc(d) of a finite
width d,

qc~d!5qc
2D1~qc

1D2qc
2D!d21/n2D, ~13!

whereqc
1D51 andqc

2D51/2 are the percolation thresholds in
one and two dimensions, respectively, andn2D is the perco-
lation correlation length exponent in 2D. By using the exact
values for n2D54/3, we can calculateqc(d) and hence
pc(d). We find pc(d)50.203, 0.323, 0.395, and 0.438 for
d52, 4, 8, and 16, respectively. If we use the RG estimate
for n51/0.70, we find pc(d)50.192, 0.311, 0.383, and
0.428 for d52, 4, 8, and 16, respectively, values that are
slightly smaller. However, these values are in qualitative
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agreement with the RG estimates ofp* for strips ofL532,
presented in the previous section.

For strips of finite length, however, there are three vari-
ables to be considered, namely, the finite lengthL, width
d, and ratioh of conductances. Forming scaling variables

among these three variables, we construct universal scaling
functions of two variables.17 By rescaling our RG and nu-
merical data appropriately, it may be possible to collapse
data onto one single universal curve. In what follows, we
shall limit ourselves toq5q* ~or p5p* ), h5`, and

FIG. 2. For d52 ladder and
L532, the ~a! linear response
se /s1 and ~b! nonlinear response
xe /x1 are plotted as a function of
the volume fractionp for various
h. Again, we observe a large en-
hancement inxe . The location of
maximum nonlinear response has
shifted to a largerp* , the value of
which coincides with the estimate
of RG analysis. It is also noted
that the strength of enhancement
has decreased slightly. In the in-
sets, we show the numerical simu-
lation ~symbols! in a semilogarith-
mic plot. From bottom to top in
order of increasing conductance
ratio, h52, 5, 10, 20, 50, 100,
200, 500, and 1000. As evident
from the figures, a reasonable
agreement between the RG and
simulation data is obtained. The
agreement is even better for large
h.
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d!L. For strips of finite lengthL, we propose the following
scaling forms forse and xe in analogy with the scaling
theory of Neimark,22 pertaining to a two- to three-
dimensional crossover:

se's1d
2~s1D /n1D2s 2D /n2D!Ls1D /n1D, ~14!

xe'x1d
2~w1D /n1D2w 2D /n2D!Lw1D /n1D, ~15!

where we have explicitly distinguished exponents in one and
two dimensions. One can readily show that for a fixed width
d and L→`, se's1L

s1D /n1D, and one recovers the one-
dimensional behavior, while ford→L, se's1L

s2D /n2D, and

FIG. 3. Similar to Fig. 2, but
for a d54 strip. We observe a
large enhancement inxe . The lo-
cation of maximum response of
xe has now shifted to an even
larger p* , indicating a crossover
from 1D to 2D behaviors. It is
also noted that the strength of en-
hancement has decreased substan-
tially. In the insets, we also show
the simulation data~symbols!. As
evident from the figures, a reason-
able agreement between the RG
and simulation data is obtained.
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one recovers the two-dimensional behavior. The same con-
clusions can be drawn forxe . Using the numerical values of
the critical exponents from Secs. III and IV, we find gener-
ally s1D /n1D.s2D /n2D andw1D /n1D.w2D /n2D , valid both
for the RG analysis and available estimates. Hence a gradual
decrease in the enhanced nonlinear response is evident as the
width d becomes large. We finds1D /n1D2s2D /n2D'0.12 in
RG and 0.026 in numerical simulations, respectively, while
w1D /n1D2w2D /n2D'0.48 in RG and 0.21 in numerical
simulations, respectively.

To verify the scaling relations, we plot in Fig. 4 the res-
caled effective linear and nonlinear responsesse /s1L and
xe /x1L

3 as a function of the widthd in a log-log plot for
various ratios and for various length and width of strips. The
data are displaced into three separate groups along thed
axis: left (L516), middle (L532), and right (L564). For
the effective linear response, we observe a gradual decrease
of the rescaled responsese /s1L asd increases, in qualita-
tive agreement with the asymptotic scaling relation@Eq.
~14!#. Moreover, the results agree among the three sets of
L values. For the effective nonlinear response, it is evident

from the plots that ash increases, the rescaled nonlinear
responsesxe /x1L

3 converge rapidly to theh5` limits. In
this regard, if one had used only nonspanning configurations
to calculatese , the effective linear response would have
shown saturation too. The gradual decrease of the rescaled
nonlinear response with increasingd is evident from the plot,
in qualitative agreement with the asymptotic scaling relations
@Eq. ~15!#. Hence the scaling forms are verified.

VI. DISCUSSIONS AND CONCLUSIONS

Here a few comments on the results are in order. Although
the discussion has been limited to couplings within the plane
only, an extension can be readily made to realistic composite
systems in three dimensions~3D!. We expect that similar
results can be obtained, namely, a large enhancement of the
effective nonlinear response under appropriate conditions
and a crossover from 1D to 3D behaviors can be observed.
The enhancement as well as dimensionality crossover effects
may possibly be observed in experiments on electrorheologi-
cal ~ER! systems where an inherent nonlinear characteristic

FIG. 4. For various length of strips, the res-
caled effective linear and nonlinear responses~a!
se /s1L and ~b! xe /x1L

3 are plotted as a func-
tion of the widthd for various ratioh in a log-log
plot. The data are displaced into three separate
groups: left (L516), middle (L532), and right
(L564). The widthd ranges from 1 to 8. From
bottom to top in order of increasing ratios,
h510, 102, 103, 104, 105, and 106. The lines are
only guides to the eyes. It is evident from the plot
that ash increases, the rescaled nonlinear re-
sponse converges rapidly to theh5` limit. The
gradual decrease of the rescaled responsese and
xe with increasingd is evident from the plots, in
qualitative agreement with the asymptotic scaling
relations.

9284 53WING-HON SIU AND K.W. YU



occurs due to the formation of columnar structures in the ER
systems under the application of intense electric fields.23

Moreover, generalization can also be made to thin com-
posite films24 of metallic particles embedded in dielectric
host, in which cased plays the role of the thickness of the
film and a crossover from 2D to 3D behaviors can be ob-
served. Possible experiments may also be done on the optical
properties of nonlinear composite thin films. In this connec-
tion, a simple EMA is shown to give a reasonable fit of the
simulation data24 in linear composite thin films. However, we
believe that the present RG analysis may fit the effective
nonlinear response better. In order to test the asymptotic
scaling theory,22 pertaining to the 2D to 3D dimensionality
crossover, extensive simulation as well as RG analysis
should be performed. Relevant studies include the extraction
of the effective percolation threshold, critical exponents, and
universal scaling functions.15 The work should be left for
future studies.25,26

In summary, the effective response has been calculated in
nonlinear composite wires and strips with lateral sizeL much
larger than the widthd. We have used the renormalization-
group analysis to calculate the effective linear and nonlinear
responses as a function of the volume fractionp for various
conductance ratioh and examine their dependence ond. We
observe large enhancements in the nonlinear response under
appropriate conditions, as well as interesting crossover from
1D to 2D behaviors asd increases. Numerical simulations
are performed and compared well with the RG calculations.
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