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The effective response is calculated in nonlinear composite wires and strips which are modeled as two-
dimensional random conductance networks with lateral lsiaed width6<L. We consider a two-component
nonlinear conductance network which consists of two types of conductors. The first component is assumed to
be nonlinear and obeys a current-voltageM) characteristic of the formh=o;V+ x,V3, while the second
component is linear with =0,V, whereo; and o, are the linear conductances agd is the nonlinear
conductance. We invoke a renormalization-gr¢Rg) analysis to rescale the strip repeatedly by small-cell
transformations to obtain a chain of nonlinear conductors, for whidictformulas of the effective linear
responser, and nonlinear responsg, are available. We calculate, and y., as a function of the volume
fraction for various conductance ratios and examine the dependengeWa observe large enhancements in
the nonlinear response under appropriate conditions, as well as interesting crossover from one- to two-
dimensional behaviors a8 increases. Numerical simulations are performed to verify the RG calculations.
Scaling exponents are determined in the RG and compared with available estimates; good agreements are
found. Possible generalizations of the present investigation are discussed.

I. INTRODUCTION nonlinear conductance network model to study the effective
nonlinear responses of composite wires and strips, in which
The physics of nonlinear inhomogeneous media has bedhe lateral size is much larger than the width. We shall use a
a subject of considerable current interest because of thefenormalization-grougRG) analysis to calculate the effec-
potential applications in engineering and sciehidaln par- tive linear and nonlinear responses. We find large enhance-
ticular, much effort has been centered around the calculation®€ents in the effective nonlinear response under certain con-
of the effective response in nonlinear composite systemditions, and more interestingly, we find a crossover from
consisting of two or more materials of different dielectric one- to two-dimensional behaviors as the width increases.
functions or conductivitie$”~*3In the weakly nonlinear re- Numerical simulations are performed to verify the RG cal-
gime in which the nonlinearity can be treated as a smalfulations.

perturbation, various methods have been establistice- The paper is organized as follows. In the next section, we
cently much effort has been devoted to strongly nonlineaPresent a formalism for weakly nonlinear composites and
composites?13 reiterate the established formulas for the effective linear and

It is observed that the effective response of Composit@onlinear responses. In Sec. lll, we derive exact formulas for
media can differ to a large extent from that of their the effective linear and nonlinear responses of composite
constituents. The widely varying constitutive properties lead Wires. In Sec. IV, we use the RG analysis to deal with com-
to large variations in the local electric fields and currentsPosite strips of finite width. We shall perform numerical
and, hence, to large enhancements or decreases in the effétmulation to verify the RG calculations. In Sec. V, we dis-
tive properties. Such an enhancement effect may be mor@lss the scaling behaviors of the effective responses and de-
pronounced in nonlinear compositésit has been shown termine the scaling exponents in the RG and compared with
that the effective nonlinear response can be enormously efvailable estimates. Possible generalizations of the present
hanced near the percolation threshold under appropriat@ork will be discussed.
conditions® Recently, large enhancements in the effective
nonlinear response have also been found in fractal clustering Il. FORMALISM
in nonlinear composite’se. It is therefore believed, from the Consider ad-di . LdD). t th
above considerations, that the effective nonlinear responge onsider ai-dimensional dD), two-component hypercu-

: ic nonlinear conductance network which consists of two
may erenq strc_)ngly on geometry-controlled properties, e'gtypes of conductors. The first component is assumed to be
the dimensionality of the composite systems. '

Recently, significant advances have been made in mate 1onlinear and obeys a current-voltade\() characteristic of
als fabrication techniques. By means of molecular-beam ep-he form
itaxial techqiqugs, samples of various mate_r_ials with de;ired | =0, V+ x V3, (1)
geometry, size, interface, and surface conditions are available

and they show profound potential in applications. Hencewhereo; and y; are the linear and nonlinear conductance,
geometry-controlled properties have become one of the imrespectively. Throughout this work, the nonlinearity is as-
portant areas to explore, both theoretically and practicallysumed to be weak so thgtV?/ o<1 and we restrict our-
We have also seen the technological importance of composelves to cubic nonlinearity. This form of nonlinearity, usu-

ite thin films and nanowires. In this work, we use a simpleally called “Kerr-like,” is common in materials with
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inversion symmetry and has received extensive study. The Lo/ L3[ x.kh*+ yo(L—K)]
second component is assumed linear with Xe= E ( k) pkgt (L=K+hK)? . (7)
k=0 -

I=035V, @ Two important limits are worth studyingtl) the normal

whereo, is the linear conductance. The volume fractions of¢onductor-insulatorN/1) case in which the second compo-
the first and second components grandq, respectively, Nent is poorer conducting ht<1) and (2) the
and p+q=1. We are interested in calculating the effective Superconductor—normal-conductd#/l) case in which the
linear and nonlinear responses of the network, represented [§cond component is better conductimg=1). For simplic-

a homogeneous network of identical conductors, each ofy and without loss of generality, we take,=0; i.e., the

which has arn -V characteristic of the form second component is always linear. The wire formulas can be
used to calculate, andy, for both cases. For thid/1 case,
=0 V+ xoVe, (3) we find a large decrease in the effective nonlinear response

o , while a large enhancement occurs for 8i&l case. We shall
where o and y. are the effective linear and nonlinear re- , osant results for the/N case(Fig. 1) for illustration. The
Sponses, respecnvellyé and are given by the voltagerngih of wireL =32. In Fig. 1, we plot the normalized ef-
summation formulgs™ fective linear responseo(./cy) and nonlinear response

1 (xe/x1) as a function of the volume fractiop for various
Te=g > UaVi, (4) conductance ratib>1. We observe a large enhancement in
a the effective nonlinear respongg.. The enhancement in-
creases with the conductance ratio while the locations of
5) maximum response gf. occur atp*~1/L, a result inde-
pendent ofh. The location of peakp* can be calculated
) ) numerically from Eq.(7) in the limit of largeh. We find
whereo, and y, are the linear and nonlinear responses ofp* =0.268, 0.135, 0.067, 0.034, and 0.017 for 4, 8, 16,
the ath conductor;0=I1{_,L;, whereL; is the lateral size 32, and 64, respectively. The result is in reasonable agree-
along theith Cartesian coordinate. Without loss of general-ment with the numerical calculations presented in Fig. 1 for
ity, we apply a voltage along th&; direction and open | =32, For clarity, in the insets of Fig. 1, we also show the
boundary conditions in the remaining{ 1) directions. We  normalized linear and nonlinear responses in a semilogarith-
have also adopted the convention that the voltage across thgic plot.
two opposite  —1)-dimensional hyperplanesls . In Egs. We are now in a position to extract the critical behavior of
(4) and(5), V,, is the voltage difference across th¢h con-  the effective linear and nonlinear responses of a chain near
ductor in thelinear random problendi.e., obtained by solv- percolation. In the limit.—o, we findV;=h/(gq+ ph) and
ing the same random network problem with gll=0). The  v,=1/(q+ ph) across type 1 and 2 conductors, respectively.
summation is performed over all conductors in the networkAgain, by using the voltage-summation formulas, we find
In what follows, we shall consider a two-dimensional o .= ¢;h/(q+ph) and x.=x1ph*(q+ph)?, respectively.
(2D) rectangular strip of length,=L and widthL,=48,  In the S/N limit, i.e., h—o, we findo,— o, (1—q) ! and
with §<L. We shall calculater, and . and examine their y_—y;(1—q)"3. If we write oe.~0(g.—q) ° and
dependence on width. Interesting crossover from one- to y ~y,(q.—q) "%, we identify the superconducting expo-

1
Xe=q ; XaVa,

two-dimensional behaviors will be observed. nent s=1 and the nonlinear exponemt=3. Hence we
should observe a large enhancement in the effective nonlin-
[1l. LINEAR AND NONLINEAR RESPONSES ear response near the percolation threshold of the second
OF COMPOSITE WIRES component; we findj.= 1.

) . . L . Moreover, for a large but finite ratich, and near
We first examine the&f=1 case; i.e., we have a chain of percolation, we find o.=04(q.—q) F(z)and xe

nonlinear conductors. Consider a chairLofonductorsk of =x1(9.—q) 3G(2), where F(2)=(1+2)"! and G(2)
which are of type 1 &4,x1), while the remainingI{ — k) of e ’
which are of type 2 ¢, x>), subject to an applied voltage
V=L along the chain. For convenience, we denote the con(—ﬁ: 1. If we write =s+t, we find the conductivity expo-
ductance ratich=o,/0;. By using the circuit formula for . +t=0 in one dimensio” For a large but finite, we
series combination of linear conductances, we obtain th’éxpect the percolation correlation length diverges as
voltages V;=hL/(L—k+hk) and Vp=L/(L—k+hk) »~L~1/p=(q.—q) . Hence we identify the percolation
across type 1 and 2 conductors, respectively. By using thgq e |ation length exponent=1 in one dimensio®’ In this

v_oItage—summation_ formul_a9{4) _and (5), to_gether with regard, we may propose finite-size scaling formsdgrand
simple combinatorial considerations, we arrive at #xact o ,=01Lf(h’1L) and .= x;L3g(h~'L), wheref and
e- e e ’

formulas for the effective linear and nonlinear responses of &° - finite-size scaling functions.
composite wire:

=(1+2)~* are scaling functions of the variable
=h"1(g.—q) 1. Hence we identify the crossover exponent

L IV. LINEAR AND NONLINEAR RESPONSES
Ly ok Loios
o= E p qL* - - (6) OF COMPOSITE STRIPS
k=0 \ k (L=K)o1t+ko; . . .
When interwire couplings are present, we may model the
and system by a nonlinear composite strip of a finite width~or
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We observe a large enhancement
in the effective nonlinear response
4 Xe: Which increases witlh while
the location of maximum nonlin-
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roughly independent ofh. For
12000 clarity, in the insets, we show
(b) lTe/U; and y./x; in a semiloga-
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6=2, we have a ladder network. Exact analytic results carformation, to obtain a wire of a shorter length. In this way,
only be obtained foth=oc,/0;=021" Unfortunately, for a we obtain a set of renormalized parameters
finite conductance ratib, we are unable to solve the com- p’, q', o1, 05, x1, andyxs; h'=o5/c;. The RG analysis
posite strip problem exactly. We resort to a renormalizationgoes with the following steps. We start out with a strip of
group (RG) analysi$®~?° because we believe that the RG dimensionL X 8, at a conductance rath= o,/o and prob-
approximation is able to capture local field fluctuations bettembility p. The nonlinear bonds have a finitg and y,=0.
than the effective medium approximation. The idea of RG isHowever, one should note that although we start out with a
to rescale the strip repeatedly by a simple small-cell translinear second component, the renormalized one will gener-
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ally be nonlinear, i.e.x,#0. We perform an approximate q’'=Ry(q)=2p3q?+8p?q>+5pq*+q°. (8)

2X 2 cell RG calculation to reduce the dimension of the strip

to (L/2) X (6/2). A similar analysis can be performed for the nonsupercon-
Consider a X2 cell, identical with aL=2, §=2 ladder  ducting configurations; we find'=1—q’.

with five conductors, each of which is of type &, x1) and Accordingly, we divide the 2=32 possible configura-

type 2 (075, x,) with probability p andq, respectively. It is  tions into two sets, one of which is superconducting., the

easy to see that there is only one configuration with all fivesecond component is spanning the jcelthile the other of

bonds superconductin@robability g°), five superconduct- Which is nonspanning. If we apply a voltaye=2 across the

ing configurations with four bonds superconducting and on&ell, we can calculate the linear voltages across the 5 bonds

bond normal conductin¢probability 5pq), eight supercon- 0f each of the 32 configurations. The voltage-summation for-

ducting configurations with three bonds superconducting angnulas can be used to evaluate the effective linear and non-

two bonds normal conductingrobability 8p?g°), and two  linear response of a given configuration. We then perform

superconducting configurations with two bonds superconcertain averages over the 16 spanning configurations to ob-

ducting and three bonds normal conductifgrobability  tain o5, and x5, while over the remaining 16 nonspanning

2p3g?). Hence the entire 2 cell is superconducting with a configurations to obtaior; andy;. We obtain the following

probability g given by*3-2° results:

o1=®4(0q,0,,p)

—exd = | pSine + pgingy + 2p%qRn -2 +23|0 d
=ex) 5| PPIna+ plalne, +2p%Pin "= + 2p7lin =+ 2p i

0'1(30'1+ 50’2)

+5 +2
+4p3q2|n‘71(01 0107 Uz)) } ©

+4pigin—-—-—-—="
P 501+305 20'%4- 50105+ a’%

gy=®y(01,02,p)

1 o1toy o1t oy 05(301+ 7))
YIno,+g°Ino, + 2p3g2in——— + 2p2qPIn——+ 2p?g{In——-——
ex;{Rz(q)(pq Ino,+g°Ino,+2p°qg°in 5 2p<g°In 5 2p~g°In 01530,

oy(50,+ 30 05(202+50,0,+ 2)
2507 2)+4p2q3In 220 1027 03

+4pgin————=
Pa 30,150, (r%—i- 50105+ 20%

: (10

x1=¥1(x1.x2.h.p)

1 2(x2+ x1h") 2(xo+
4ex;{R2(p)(p In +p qln +2p g<ln —(1+h)4 +2p-q ln—(1+h)4

3x1+32x,+4xh+ 18y h?+ 4y, h3+ 3y, h?
(3+h)?

+2p3g2In

99y + 256y, + 180y, h+ 210y, h?+ 180y ;h3+ 99y, h*

+4ptdln (5+3h)°

+4p3g?In

2x1+ 172+ 20x;h+ - - - +82x1h®+ 20y, h7+ 2X1h8” 1D

(2+5h+h?)*

_\IIZ(X]JXthvp)

+2p2%g3In

X1t x2 X1t xe
8 8

1
=4ex 4In + 5In +2p3gAn—=-=
e
3X2+ 4X2h+ 18X2h2+ 4X2h3+ 32X1h4+ 3X2h4
(1+3h)*
99y, + 180y,h + 210y ,h?+ 180y ,h3+ 256y ;h*+ 99y ,h*
(3+5h)*
2x2+ 20y, h+82y,h%+ - - - +20x,h7 + 17y h8+ 2 ,h®
(14+5h+2h?)* ’

+2p2%g3In

+4pg’in

+4p2g°In 12
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and h'=®d(h,p)=®,(1,h,p)/®P.(1,h,p), where &, d,, observe a large enhancement in the effective nonlinear re-
®,, ¥,, and¥, are transformations of their arguments. In sponse. The enhancement increases with the conductance ra-
obtaining Egs.(9)—(12), we have invoked a geometrical tio while the location of maximum response gf has now
mean over spanning and nonspanning configuratfomkile ~ shifted to an even larggy™, indicating a crossover from 1D
Egs. (11) and (12) represent a generalization of the estab-t0 2D behaviors. It is also noted that the strength of enhance-
lished RG analysi§~?°to the nonlinear response. We prefer ment has decreased substantially as compared to the small-
the geometric mean because it gives results better Comparé?dcas_es._ This is attributed to the Igrge fluctuations of local
with simulation data to be considered in the following. More electric fields present at smai| leading to a large enhance-
importantly, the geometric mean is able to satisfy duality™ent in the nonlinear response.

symmetry in 2D random conductance netwotksVe then theToRgsgigllsgisa 'Ir'iseughfi?tr(;frletlc?v(\:/::g:tgg pzeDalilla\lAL/JZ |:goke
repeat the RG several times unéil=1. Of course, for a . alysis. ) .
5=2 ladder, one RG has already done so, while fa-a4 increases is attributed to the fact that the renormalized wire

strip, two consecutive RG’s are needed. We end up with zlfznf? S(ilreicgeafe:sovg:tg. IgyﬂuSs mgég'(g]’ dV\ée 4th?élflm
composite wire of a shorter length’, with renormalized bs.P ol val e o ) i

itiesp’ o' o h' v d+’. The wi | 2, 4, and 8, respectively, values that are in good agreement
quantitiesp’, oy, 03, 1", x3, andx;. The wire formulas iy the numerical calculations presented in Figs. 2 and 3.
[Egs. (6) and (7)] can therefore be used to obtain the effec-These values can be interpreted as the effective percolation

tive linear and nonlinear responses of composite strips.  threshold of a strip of finite widtR22! It is evident that the

It is instructive to obtain the critical behavior of the RG peak of response shifts towards the 2D percolation threshold
transformations near percolation. Equatié®) possesses  —0.5 ass increases. Incidentally, the present RG analysis
three fixed pointg* =0, 3, and 1, withg* =q.= 3 being an  gives the exaap, in 2D. Hence a clear crossover from 1D to
unstable fixed point, to be identified with the percolation2D behavior has been observed.
threshold of the second component. From the fixed-point To confirm the RG result, we perform numerical simula-
analysis afg., we find the inverse of the percolation corre- tions in nonlinear conductance networks. We have done
lation length exponent 1~1log,(13/8)~0.70, to be com- simulations for 3X2 and 3% 4 networks. Details of the
pared with theexactvalue 1#=0.75 in two dimensions. numerical simulations can be found in Ref. 15. We present
Right at the percolation thresholy=q,. (or p=p.) and in  results for theS/N case only. In the insets of Figs. 2 and 3,
the limit h—o, one finds o;~1.843%,, while Wwe also show the normalized effective linear and nonlinear
X:,L%573&(1 Hence we find the Superconducting exponentresponses of numerical simulation in a Semilogarithmic plOt
s~1.26, to be compared witls=1.297 from numerical for comparison. As evident from the figures, a reasonable
simulation!” We also find the nonlinear exponent=3.60, agreement between the RG and simulation data is obtained.
to be compared wittw=3.71 from available estimates on The agreement is even better for large ratios. In this connec-
noise exponent&: Moreover, right atj, and in the limit of ~ tion, it is tempting to fit the simulation data by a simple
large h=0, /0, we find h' = o}/ o ~0.2943 from Egs. effective medium apprOX|mat|6r‘(EMA)_ but paramet_nzed
(9) and (10). Hence we determine the crossover exponenPY Pc=P™. It has been found that while the EMA fits the

&l v=10g,(1/0.2943)~1.76, to be compared with the estab- simulation data ofo, reasonably well, strongly deviations
lished valued/v=1.949 from numerical simulatioh. we &€ nevertheless observed for the effective nonlinear re-

also find thats/»~0.88, to be compared with/ v=0.9745 sponsey. . This is attributed to the fact that the EMA ignores

from numerical simulatio’ while w/»~2.52, to be com- |0c@l field fluctuations explicitly.
pared withw/v=2.79 from available estimaté$Again, if
we write ¢=s+t, we find the conductivity exponent

t/v~0.88. Hence the RG analysis explicitly satisfies duality ) ) . )
symmetry in two dimensions. In this section, we shall study the scaling behaviors of the

In what follows, we restrict ourselves to tH&N case effective linear and nonlinear responses of composite strips
only and present RG results fét=2 ladders and fos=4 of arbitrary lengths and widths.' For strips of infipite length
strips. Again, we také =32 andy,=0 for comparison with L—ce, we may apply the Spallng theory of Ne|m§fr|¢_to
the wire results in the previous section. We first present nuobtain the effective percolation threshaigd(s) of a finite
merical RG results for @=2 ladder. In Fig. 2, we plot Width 6,
o.loq andy./ x4, as a function of the volume fractigm for _ 2D 1D_ 2Dy o—1/v
various conductance ratids Again, we observe a large en- Ac(9) =0+ (e~ g )0 2 (13
hancement in the effective nonlinear response. The enhancehereq:®=1 andg2°=1/2 are the percolation thresholds in
ment increases with the conductance ratio while the locatiomne and two dimensions, respectively, ang is the perco-
of maximum response of. has shifted to a largep*, an lation correlation length exponent in 2D. By using the exact
estimate of which will be discussed below. However, it isvalues for v,p=4/3, we can calculatey.(5) and hence
also noted that the strength of enhancement has decreased §). We find p.(5)=0.203, 0.323, 0.395, and 0.438 for
slightly. 6=2,4,8, and 16, respectively. If we use the RG estimate

We then present numerical RG results fofa4 strip. In~ for »=1/0.70, we find p.(8)=0.192, 0.311, 0.383, and
Fig. 3, we ploto. /0o, andy./x; as a function of the volume 0.428 for §=2, 4, 8, and 16, respectively, values that are
fraction p for various conductance ratids. Similarly, we  slightly smaller. However, these values are in qualitative

V. SCALING BEHAVIORS
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FIG. 2. For =2 ladder and
L=32, the (a) linear response
300 - o./oq and(b) nonlinear response
xe/x1 are plotted as a function of
200 the volume fractiorp for various
h. Again, we observe a large en-
100 J hancement iy, . The location of
maximum nonlinear response has
0 shifted to a largep*, the value of
) 1 which coincides with the estimate
0 of RG analysis. It is also noted
that the strength of enhancement
has decreased slightly. In the in-
12000 sets, we show the numerical simu-
b lation (symbolg in a semilogarith-
( ) mic plot. From bottom to top in
order of increasing conductance
10000 + ratio, h=2, 5, 10, 20, 50, 100,
200, 500, and 1000. As evident
""""“'“.‘.» from the figures, a reasonable
agreement between the RG and
8000 1 simulation data is obtained. The
agreement is even better for large
h.
>3 6000
4000 | 1
2000 4
0
] 0.2 0.4 0.6 0.8 1

agreement with the RG estimatesf for strips ofL=32, among these three variables, we construct universal scaling
presented in the previous section. functions of two variable$! By rescaling our RG and nu-

For strips of finite length, however, there are three vari-merical data appropriately, it may be possible to collapse
ables to be considered, namely, the finite lengthwidth ~ data onto one single universal curve. In what follows, we
8, and ratioh of conductances. Forming scaling variablesshall limit ourselves tog=q* (or p=p*), h=«, and
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FIG. 3. Similar to Fig. 2, but
100 4 for a 6=4 strip. We observe a
large enhancement ig.. The lo-
cation of maximum response of
0 .

1 Xe has now shifted to an even
larger p*, indicating a crossover
from 1D to 2D behaviors. It is
also noted that the strength of en-
hancement has decreased substan-

12000 tially. In the insets, we also show
’ the simulation datdsymbols. As
(b) evident from the figures, a reason-
able agreement between the RG
10000 and simulation data is obtained.
8000 +
>3 6000 +
4000 |
2000 |
0 4
1
6<<L. For strips of finite lengti., we propose the following Xe=~x16~ (Wip/v10~W2p/v2D)| Win/viD, (15)

scaling forms foro, and y. in analogy with the scaling
theory of Neimarlké? pertaining to a two- to three-

. . where we have explicitly distinguished exponents in one and
dimensional crossover:

two dimensions. One can readily show that for a fixed width
5 and L—», o.~0c;L%0/"10, and one recovers the one-
Te~0,6 (S10/V1p7S20/v20)| S10/71D, (14  dimensional behavior, while fof—L, oo~o4L%0/"20, and
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0.1 + ek © gradual decrease of the rescaled respensand
’ . a RARRYN Xe With increasingd is evident from the plots, in
qualitative agreement with the asymptotic scaling
. ~_',‘ -
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one recovers the two-dimensional behavior. The same corfrom the plots that as increases, the rescaled nonlinear
clusions can be drawn fgy,. Using the numerical values of responses./x;L% converge rapidly to thé=o limits. In

the critical exponents from Secs. Il and IV, we find gener-this regard, if one had used only nonspanning configurations
ally sip/vip>Sop/vop andwyp/vip>w,p/v,p, valid both  to calculates,, the effective linear response would have
for the RG analysis and available estimates. Hence a gradushown saturation too. The gradual decrease of the rescaled
decrease in the enhanced nonlinear response is evident as ti@nlinear response with increasiAgs evident from the plot,
width 6 becomes large. We finshp/vip—Sop/v2p~0.12 in in qualitative agreement with the asymptotic scaling relations
RG and 0.026 in numerical simulations, respectively, while[Eq. (15)]. Hence the scaling forms are verified.
W1p/v1p—Wop/vop~0.48 in RG and 0.21 in numerical
simulations, respectively.

To verify the scaling relations, we plot in Fig. 4 the res-
caled effective linear and nonlinear response¢o;L and Here a few comments on the results are in order. Although
xe/x1L2 as a function of the widths in a log-log plot for  the discussion has been limited to couplings within the plane
various ratios and for various length and width of strips. Theonly, an extension can be readily made to realistic composite
data are displaced into three separate groups alongsthe systems in three dimension8D). We expect that similar
axis: left (L=16), middle L=32), and right (=64). For results can be obtained, namely, a large enhancement of the
the effective linear response, we observe a gradual decreasffective nonlinear response under appropriate conditions
of the rescaled responge./o;L as é increases, in qualita- and a crossover from 1D to 3D behaviors can be observed.
tive agreement with the asymptotic scaling relatidag.  The enhancement as well as dimensionality crossover effects
(14)]. Moreover, the results agree among the three sets aghay possibly be observed in experiments on electrorheologi-
L values. For the effective nonlinear response, it is evidental (ER) systems where an inherent nonlinear characteristic
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occurs due to the formation of columnar structures in the ER In summary, the effective response has been calculated in
systems under the application of intense electric fiélds. nonlinear composite wires and strips with lateral sizauch
Moreover, generalization can also be made to thin comtarger than the widths. We have used the renormalization-
posite film$* of metallic particles embedded in dielectric group analysis to calculate the effective linear and nonlinear
host, in which case plays the role of the thickness of the responses as a function of the volume fractiofor various
film and a crossover from 2D to 3D behaviors can be obtonductance ratib and examine their dependence &nwe
served. Possible experiments may also be done on the opticghserve large enhancements in the nonlinear response under
properties of nonlinear composite thin films. In this connec-appropriate conditions, as well as interesting crossover from
tion, a simple EMA is shown to give a reasonable fit of the1p to 2D behaviors a$ increases. Numerical simulations

simulation dat&' in linear composite thin films. However, we are performed and compared well with the RG calculations.
believe that the present RG analysis may fit the effective

nonlinear response better. In order to test the asymptotic
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