
Phase-coherent conductance of a superconductor–normal-metal quantum interferometer

A. F. Volkov and A. V. Zaitsev
Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Mokhovaya Street 11, 103907 Moscow, Russia

~Received 13 January 1995; revised manuscript received 6 October 1995!

A theory of the subgap conductance of a hybrid superconductor–normal-metal (S/N) quantum interferom-
eter consisting of two tunnel junctions (S/N) in contact with anN layer is developed. The oscillatory depen-
dence of the conductance of the systemG on the phase difference between superconductorsw is shown to be
due to the proximity effect, i.e., to the penetration of the condensate into theN region. TheG(w) dependence
is found for the cases of both weak and strong proximity effects. This dependence can radically change its
shape form qualitatively when the voltage is varied. The amplitude of the conductance oscillations appears to
be large in the case of strong proximity effect. Different layouts are considered including the cases when there
is the third tunnel junction or point contact between theN conductor and theN electrode.

I. INTRODUCTION

In recent years there has been considerable interest in the
conductance of mesoscopic ‘‘hybrid’’ systems with more
than one superconductor–normal-metal (S-N) contact.1–8

Many recent experiments were also devoted to the measure-
ment of a singleS-N contact conductance at low tempera-
tures and voltages.9–12 In most of these studies, a highly
doped semiconductor with a two-dimensional~2D! or 3D
electron gas was used as a normal conductor. Generally, a
semiconductor-superconductor interface exhibits a low trans-
mittance, which is determined by the Schottky barrier and by
the differences in the electronic parameters of the contacting
materials. Because of the presence of the barrier, the
superconductor-semiconductor contacts are similar to
superconductor–insulator–normal-metal~S-I -N! tunnel
junctions. In the lowest approximation in the barrier trans-
mittance, a theory based on the tunnel Hamiltonian method13

predicts that at low temperatures and voltages
(eV,T!D, D being the energy gap of the superconductor!
the conductance of aS-I -N contact,G, is much smaller than
the conductance in the normal state,Gn . However, the
experiments9,10 revealed that at low temperatures the conduc-
tance of the investigated junctions exhibits a peak at
V50 ~the so-called ‘‘zero-bias anomaly’’!, the magnitude of
which can be comparable withGn . The phenomenon of the
subgap conductance enhancement has been studied
theoretically.14–19,5–7The authors of Refs. 5,6,16–18 studied
the S-I -N contact conductance for some particular cases
~low transmittance of the barrier,6 or low voltage6,16–18!
when the deviation of the quasiparticle distribution from the
equilibrium distribution may be ignored on both sides of the
barrier. In this case the problem is reduced to the calculation
of the probability of two-electron tunneling through the bar-
rier. Note that a perturbation approach to the calculation of
this probability4 does not allow one to establish the actual
relation15 between the proximity effect, i.e., the penetration
of the condensate into theN region, and the zero-bias
anomaly. It should also be noted that several questions were
left unsolved by the authors of Refs. 4,5,16–18; in particular,
it is not clear how the conductance depends on the normal
lead resistance if the latter is comparable with or larger than

the resistance of the barrier and what is the limiting value of
the conductance in the case of very low temperatures when
the length of the N leads and its coherence length
jN(T);AD/max(T,g) (D5vFl/3 is the electron diffusion
constant,l is the elastic mean free path, andg is the pair-
breaking rate! become comparable.

All these questions are readily solved by using another
approach employed in Refs. 6,14,15,19. It is based on the
well elaborated technique of quasiclassical Green’s functions
integrated over the variablez5vF(p2pF).

20,21Microscopic
equations for the Green’s functions, together with the bound-
ary conditions,22 can be written in a compact form with the
use of a 434 matrix ǧ ~Ref. 21! in Keldysh space,

ǧ5S ĝR ĝ

0̂ ĝAD . ~1!

It consists of retarded (ĝR), advanced (ĝA), and Keldysh
(ĝ) Green’s functions. Each of these matrices in turn is a
232 matrix in Nambu space composed of ordinary and
anomalous Green functions,

ĝ~R,A!5S g~R,A! f ~R,A!

2 f †~R,A! ḡ~R,A!D , ~2!

where the Keldysh matrix

ĝ5ĝR~ f1̂1fzt̂z!2~ f1̂1fzt̂z!ĝ
A ~3!

allows one to take into account the deviation of the quasipar-
ticle distribution functionsf and fz from their equilibrium
values,21 and t̂z is the Pauli matrix. Impurity averaging is
taken into account in these equations from the very begin-
ning. @Interference phenomena appearing due to impurity
scattering23 are not taken into account in these equations; it is
true in the main approximation with respect to the small
parameter (lpF)

21.# The tunneling of quasiparticles through
the interface of an arbitrary transmittance is determined by
the boundary conditions22 which are significantly
simplified24 in the dirty limit when the impurity mean free
path is very short:l!jN(T). The conductance of different
superconducting systems with a barrier at theS-N interface
was studied on the basis of this method in Refs. 6,14,15,19.
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In particular, it was shown that the expression for the zero-
temperature subgap differential conductance of aS-I -N con-
tact whose barrier resistance exceeds theN-electrode resis-
tance may be written in the form

G~V!

Gn
5Im@ f s

R~e!#Im@ f R~e!#ue5eV , ~4!

where G(V)5dI/dV, and f s
R(e) and f R(e) are retarded

condensate Green’s functions in theS andN electrodes~at
the interface!, respectively. Formally, this or a more general
@see Eq.~21!# expression may be obtained from the compo-
nent of the current known in the theory of the Josephson
effect inS-I -S8 junctions as the so-called ‘‘interference cur-
rent.’’ But in our case, the physics described by this term is
different. First, the condensate functionf R in theN electrode
differs from zero inS-I -N contacts due only to the proximity
effect, and it may not be small at low energies
~i.e., at low temperatures and voltages!. Second, whereas a
voltage in aS-I -S8 junction leads to a time-dependent phase
differencew between superconducting electrodes~the volt-
age andw are coupled by the Josephson relation]w/]t52
eV!, the phase difference between the condensate functions
in S andN electrodes inS-I -N contacts is time independent
and may be zero in spite of the presence of the voltage.

Interesting phenomena, related to the wave nature of qua-
siparticles, occur in mesoscopic systems that include a nor-
mal conductor in contact with more than one superconductor.
In the presence of a phase differencew between the order
parameters of the superconductors, controlled by a supercur-
rent or a magnetic field, the wave nature of quasiparticles
manifests itself in oscillatory dependences onw of the con-
ductance of such mesoscopic systems. This oscillatory de-
pendence of the conductance has been studied theoretically
in Refs. 4,6 for some mesoscopic systems. Recently the
phase-coherent conductance of a ‘‘hybrid’’S/N quantum in-
terferometer with twoS-I -N contacts@shown in Fig. 1~a!#
has been experimentally investigated.7 We intend to study
the conductance of this interferometer and another multicon-
tact hybrid interferometer of a different type~see Fig. 1!. Our
results for the structure studied in Ref. 7 are obtained for
weak and strong proximity effects. In the first limit our for-
mulas are valid for a wider range of parameters than expres-
sions~based on the theory developed in Ref. 4! presented in
Ref. 7.

II. CONDUCTANCE OF A HYBRID SUPERCONDUCTING
TWO-CONTACT INTERFEROMETER

Consider first an interferometer with two planarS-I -N
contacts and theN film of a small thicknessdN!jN . Note
that a planar singleS-I -N contact with a widthw@jN was
analyzed in Ref. 19. As is well known,21 in the dirty limit the
matrix Green’s functionǧ(e,r ,vF) may be presented as a
sum of two terms ǧ(e,r ,vF)5ǧ(e,r )1ǧ1(e,r ,vF),where
ǧ(e,r ) is the isotropic matrix which we are interested in and
ǧ1(e,r ,vF) is a small matrix depending on the direction of
vF; it is expressed through the matrixǧ(e,r )
[ǧ:ǧ152 l (vF /vF)ǧ] rǧ. The equation forǧ has the form

21

(\51)

iD ] r~ ǧ] rǧ!2@eťz1~ i /2!gťzǧťz ,ǧ#5 Ǐ in . ~5!

Here

ťz5S t̂z 0̂

0̂ t̂z
D ,

andg is determined by the sum of pair-breaking rates result-
ing from magnetic impurities and magnetic field. We suppose
that the electron-phonon coupling constantle-ph in the N

FIG. 1. Schematic diagram of the system under consideration.
~a! Top view of the system studied experimentally in Ref. 7. The
distribution functions are supposed to have the equilibrium form in
superconductorsS and in the wide part of theN layer. ~b! A one-
dimensional conductorN connecting two superconductorsS and a
normal metalN. ~c! and~d!A thin N layer sandwiched between two
superconductorsS and a normal-metalN ~or normal metal point
contact!. The thickened lines betweenSandN denote barriers at the
S/N interfaces.
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film is small so that the order parameterDN can be ne-
glected:DN.0. The term on the right of Eq.~5! describes
inelastic scattering. The magnitude ofǏ in is of the order
ǧ/t in , wheret in is the inelastic scattering time. We consider
mesoscopic structures only; this means that the inequality

D/L2!1/t in ~6!

should be fulfilled (L is the length of the system!. We can
therefore neglectǏ in in comparison with the first term in Eq.
~5!. This equation must be supplemented by boundary con-
ditions. Such conditions were obtained in Ref. 22 for a gen-
eral case and were simplified in Ref. 24 for the dirty case.
They have the form

~ ǧ]yǧ!~rb!5k j@ ǧ~rb!,ǧs j#. ~7!

Here k j5D/2sNR̃b j ,sN is the specific conductivity of the
N film, R̃b j is the Sj /N interface resistance per unit area,
ǧs j is the Green’s function of the superconductor at thej th
interface, and they axis is directed normally to the film
plane. We assume that the thickness of theN film is small:
dN!AD/e* , wheree*5max$T,eV,g%. We can therefore av-
erage Eq.~5! over the thicknessdN , taking into account Eq.
~7! and regardingǧ as a nearlyy-independent function. Then
we arrive at the equation forǧ(e,x),

iD ]x~ ǧ]xǧ!2@eťz1~ i /2!gťzǧťz ,ǧ#5 Ǐ b , ~8!

where Ǐ b5 i @gb1Q1(x)ǧs11gb2Q2(x)ǧs2 ,ǧ#, the tunneling
ratesgb j5D/2sNdNR̃b j , andQ j (x) is a step function which
is equal to 1~0! for x inside ~outside! the interval corre-
sponding theSj /N interface. In the equations forĝR,A fol-
lowing from Eq.~8! the componentsÎ b

R,A describe the prox-
imity effect, and in the equation forĝ the componentÎ b
describes the tunneling of quasiparticles through theSj /N
interfaces. In addition, one should take into account that the
matrix ǧ obeys the normalization condition21

ǧ251̌. ~9!

Note that we included the vector potential of the magnetic
field A in the definition of the phase of Green’s functions
w(r ) which is determined by the relation] rw
5ps5] rx2(2e/c)A, whereps and x are the momentum
and the phase of superconducting condensate, respectively.
Supposing that the widths of the tunnel junctions,wj , are
small with respect to the London penetration lengthl, we
will ignore the x dependence of phases at the interfaces in
the superconductor; therefore at thej th junction
w(xj )[w j , where for the phase differencew5w12w2 we
have~see, e.g., Ref. 4!

w52pF/F01E
CS

psdr52pF/F0 .

HereF is the flux penetrating the closed loop formed by the
curvesCS1CN @shown by dashed and dotted lines in Fig.
1~a!#, whereCS andCN are the curves connecting the junc-
tions 1 and 2 in the superconductor and the normal metal,
respectively, andCS is chosen to satisfy the requirement that

ps50 along this curve, andF05hc/2e is the flux quantum.
The matrices at thej th interface in the superconductorǧs j
are expressed as follows:

ǧs j5Šj ǧsŠj
† , ~10!

where Šj5cos(wj/2)1 i ťzsin(wj/2), and ǧs is the Green’s
function of a homogeneous superconductor, whose compo-
nents have a form

ĝs
R~A!5gs

R~A!t̂z1 f s
R~A!i t̂y , ĝs5~ ĝs

R2ĝs
A!tanh~e/2T!.

We neglect the influence of theN film on the superconductor,
assuming that either the interface transmittance is small
(DS /sSdSR̃b j!D; here the subscriptS denotes the super-
conducting electrodes! or the cross-section area of theN
electrode is much smaller than the cross section area of the
superconductors@as it is shown in Fig. 1~b!#. In addition, we
take into account the boundary conditions atx50 and
x5x01L:

]xǧ~0!50, ǧ~x01L !5ǧeq, ~11!

whereǧeq is the equilibrium Green’s function of theN elec-
trode.

One can readily see from Eq.~8! that the density of the
current in thex direction,j (x), determined by the expression

j ~x!5
sN

4 E
0

`

de Trt̂z~ ĝ
R]xĝ1ĝ]xĝ

A!~e,x!, ~12!

varies from zero~at x,x1) to an ax-independent valuej at
x.x0 . Therefore after the integration of Eq.~8! over the
intervalx1,x,x0 , the continuity equation for the current is
found to be

I5E
0

`

de@Gb1F1~e!1Gb2F2~e!#fz~e!, ~13!

where

F j~e!5 K Fnns1
1

8
Tr~ f̂ R1 f̂ A!~ f̂ s j

R1 f̂ s j
A !G~e,x!L

j

.

~138!

Here n (s)5Reg(s)
R is the normalized density of

states, f̂ s j
a 5 i f s

a@cos(wj)t̂y1sin(wj)t̂x#, f̂ a5 f y
ai t̂y1 f x

at̂x ,
a5A,R,^(•••)& j denotes averaging over the width of the
j th barrier,wj , Gbj5Sj /R̃b j , andSj are the barrier conduc-
tance and area, respectively, andfz(e) is the distribution
function in the intervalx1,x,x0 , where itsx dependence
can be ignored if the length of this interval,
W̃5W1w11w2 , is not too large, i.e.,

W̃!~Rbj /rN!. ~14!

Note that the condition~14! means that the voltage drop
across the lengthW̃ is negligible with respect to the voltage
drop across the barrier. When obtaining Eq.~13!, we also
took into account the relations following from Eq.~8!
(a5A,R),

Gb1^Tr f̂
a f̂ s1

a t̂z&11Gb2^Tr f̂
a f̂ s2

a t̂z&250,
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which are due to the continuity of the supercurrent flowing
between the two junctions.

The distribution functionf z(e)in theN electrode may dif-
fer from the equilibrium one if the barrier resistances are
comparable to, or less than, the resistance of the film. The
distribution functionfz obeys a kinetic equation which may
be easily obtained from the~12! element of Eq.~8! by mul-
tiplying it by t̂z and calculating the trace. Generally one
should findf z(e) from the kinetic equation atx.x0

]x~Mz]xfz!50 , ~15!

whereMz5Tr(1̂-ĝRt̂zĝ
At̂z)/8. One should solve this equa-

tion for fz taking into account the boundary conditions, one
of which is Eq.~13!, and the second one corresponds to the
point x01L,where the distribution function has the equilib-
rium form:

fz~e,x01L !5@ tanhb~e1eV!2tanhb~e2eV!#/2[Feq~e!,
~16!

whereb51/2T and V is the voltage across the system. It
follows from Eq. ~15! that Mz]xfz5J(e). Therefore taking
into account Eqs.~13!,~16!, we obtain for the differential
conductanceG5dI/dV the expression

G5*0
`deG ~e!]VFeq~e!, ~17!

where

G ~e!5
1

@Gb1F1~e!1Gb2F2~e!#211RNL^1/Mz~e,x!&L
.

HereRNL5rNL , rN being the resistance per unit length of
the film; here^1/Mz(e,x)&L denotes averaging over the in-
terval (x0,x,x2) of length L, which is supposed to be
much larger thanW̃. Note that in the limit of smallwj this
expression coincides with that found in Ref. 6 for the system
shown in Fig. 1~b!.

A. Weak proximity effect

Let us turn to the case of barriers with relatively large
resistances,

Rbj@rN$W̃1min@L,jN~e!!#%, ~18!

where e!5max(eV,T). Under this condition the proximity
effect appears to be weak for arbitrary energies~if
g.D/L2) or in the range of interest,e;e! ; i.e., the con-
densate functions in theN film, f̂ R(A), are small. Note that
inequality ~18! holds in a wider range of the barrier resis-
tances than the inequalities

Rbj@rN~L1W̃!, g@gb , D/L2, ~19!

which were satisfied in the experiment7 ~whose data for
R̃b j , sN , anddN allow an estimation of the characteristic
tunneling rategb'108 1/s!g'1010 1/s). Under the condi-
tions~19! the proximity effect is weak at any energies and, in
addition, the resistance of the structure is determined by the
barriers; i.e., the conductance in the normal state is equal to
Gn5Gb11Gb2 .

The Green’s functionf̂ R is supposed to be small and can
be found from the equation

@]x
22~ke

R!2# f̂ R[Yx
R~e! f̂ R5@b1 f̂ s1

R Q1~x!1b2 f̂ s2
R Q2~x!#,

~20!

supplemented by the boundary conditions~11!. Here
(ke

R)25 2(2 i e1g)/D, bj52gb j /D. This matrix equation
is the~11! element of the supermatrix in Eq.~8!. The solution
of Eq. ~20! is readily found, and, as a result, we obtain from
Eqs.~13!

G ~e!5
1

8
Tr@^~ f̂ R1 f̂ A!~ f̂ s1

R 1 f̂ s1
A !&11^~ f̂ R1 f̂ A!~ f̂ s2

R 1 f̂ s2
A !&2#5G 1~e!1G 2~e!1G int~e!cosw, ~21!

where, for energiese,D ~we allow for simplicitywj5w; ke
R[ke)

G j~e!5
rNGbj

2

2w2 ~ Imf se
R !2Re

1

ke
3 Fwke2sinh~kew!1

4 sinh2~kew/2!

cosh~keL!
sinh@ke~L2L̃1!#cosh~keL̃1!G ,

G int~e!5
4rNGb1Gb2

w2 ~ Imf se
R !2Re

sinh2~kew/2!

ke
3cosh~keL!

cosh~keL̃1!sinh@ke~L2L̃2!#, ~22!

whereL is the length of the film,L̃ j5L j1w/2, andL j is the
distance between the left edge of the film and the left edge of
the j th barrier. Note that for the subgap regione!D, which
we are interested in, (Imf se

R )251. Equations~21! and ~22!
describe the conductance of the structure@Fig. 1~a!# with
high barrier resistances. Such a system has been studied
experimentally.7 In particular, the temperature dependence of
the conductance~see Fig. 2!, computed from Eq.~22! for the

geometrical parameters close to the experimental ones, is
similar to the experimental data.

Note that the solution of Eq.~20! may be written with the
use of the Green’s function of the differential equation
Yx
R(e)Pe

R(x,x8)5d(x2x8) with boundary conditions
]xPe

R(x,x8)ux5050, Pe
R(x2 ,x8)50. Then expressions for

e!Dcan be written in the form
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G j~e!5rNGbj
2 Rê ^Pe

R~x,x8!&& j j ,

G int~e!52rNGb1Gb2Rê ^Pe
R~x,x8!&&12. ~23!

Thus, one can see that, being written in terms of the Green’s
function Pe

R(x,x8), our expression for the subgap conduc-
tance following from Eqs.~21! and ~17! coincides with that

obtained in the Ref. 4 if a correction to the coefficient in
formulas~5! of Ref. 4~a! is taken into account. Note that, in
contrast to the more general expression~17!, Eqs.~21!, ~23!
are valid only if the barrier transmittances are small and the
proximity effect is weak.

Equation~22! is considerably simplified in the case where
the lengths of both~right and left! segments of the film out-
side the barrier regions are large:L1 ,L2L22w
@jN(e)5AD/(e21g2)1/2. Then we get

G j~e!5
rNGbj

2

2w2 Re
1

ke
3 @wke2sinh~kew!12 sinh2~kew/2!#,

G int~e!5
2rNGb1Gb2

w2 Re
sinh2~kew/2!

ke
3 exp@2ke~W1w!#.

~24!

In the limit of small width,w!jN(e), i.e., e, g!D/w2, D,
the result becomes independent ofw ~except for the coeffi-
cients containingGjb):

G j~e!5
1

2
rNGbj

2 Re
sinh@ke~L2L j !#cosh~keL j !

kecosh~keL!
,

G int~e!5rNGb1Gb2Re
cosh~keL1!sinh@ke~L2L2!#

kecosh~keL!
.

For the system shown in Fig. 1~b! we find, analogously to
Ref. 6, the following expression for the functionsG j (e) and
G int(e) @they determine the conductance via Eq.~11!# in the
limit Rbj@rN$L j1min@L,jN(e!)#%:

G j~e!5Gbj
2 rNgj j ~e!, G int~e!5Gb1Gb2rNg12~e!,

~25!

where

gi j ~e!5Re
1

2ke
F tanh~keL j !d i j1

22d i j
@ tanh~keL1!1tanh~keL2!1coth~keL !#cosh~keLi !cosh~keL j !

G . ~258!

Note that in the symmetrical case (Gb15Gb2 ,L15L2), Eq.
~25! is reduced to that found in Ref. 6. In the case of small
L j ,w,W!jN(e!)L @wheree!5max(eV,T)], Eqs. ~22!, ~25!
result in the following expression for the conductance of
both systems shown in Figs. 1~a! and 1~b!:

G~V,w!5R~V!~Gb1
2 1Gb2

2 12Gb1Gb2cosw!

5R~V!~Gb11Gb2!
2@12r bsin

2~w/2!#, ~26!

wherer b54Gb1Gb2 /(Gb11Gb2)
2, and

R~V!5
rN
2

ReE
0

` tanh~keL !

ke
@]VFeq~e!#de

5
rN
2 H L, eV,g,T!D/L2,

cjN~T!, eV,D/L2!min~g,T!,

1
2 jN~eV!, D/L2,T,g!eV.

In particularc5(122A2)Apz(21/2).0.33 atg!T.
Thus in the considered limit, maxG(w) and minG(w) cor-

respond tow52pk(F/F05k) and w5p(2k11)@F/F0
5(k11/2)], k50,1, . . . , respectively, and the normalized
amplitude of the conductance oscillations,

maxG~w!2minG~w!

G~0!
5r ,

is of the order of unity atG1b;G2b ; i.e., the conductance
oscillations are more pronounced in the case of the asymme-
try of S-I -N barriers being small.

We make note of an interesting feature. If the length of
the N-conductor between two barriers is comparable to or
larger thanjN(e!), then G int(e)may change its sign with
increasing energy, and as a result, the shape of the conduc-
tance versusw curve may radically change with increasing
voltage. In contrast to the case considered above, maxG(w)

FIG. 2. Temperature dependence of the zero-bias normalized
conductanceG/G0 (G0 corresponds to zero temperature! of the
system depicted on Fig. 1~a! for F5kF0 ~curves 1! and
F5(k11/2)F0 ~curves 2!; the curves are computed for
L150.5jN(D), w15w25jN(D), W50.3jN(D), L520jN(D), and
g/D50.05; the inset shows the curves forW55jN(D) and the
same values of other parameters.
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and minG(w) may correspond, respectively, to
w5p(2k11) andw52pk ~see Figs. 3 and 4!. The interfer-
ence part of the conductance will decrease more rapidly@at
W or L1,2;jN(e!)] than the phase-independent part and may
be an oscillating function of voltage. This is easily seen from
Eqs. ~22!, ~25! if one takes into account that
ke5(12 i )/jN(e) at e@g. In particular, it follows from Eq.

~24! that the zero-temperature conductance of the system de-
picted in Fig. 1~a! with identical high-resistance barriers is
given by the expression

G~V,w!

Gn
5

1

16A2
rNjN~eV!GnF3A21exp~22qV!

3cosS 2qV1
p

4 D12 exp~2qV!

3cosS qV1
p

4 D cosw G ,
whereqV5W/jN(eV), andL1 andw are assumed to be less
thanjN(eV)!L.

It is noteworthy that at largeL @L@jN(e!)# the subgap
conductance of the systems in the superconducting state be-
comes independent of length. Thus, under the condition~18!,
the resistance of the structure~below Tc) is determined by
the barriers even if the total normal-state resistance of the
film, or the wires, RNL , is comparable with
Rb5(Gb11Gb2)

21. This is the case if the lengthL!L in .
OtherwiseRNL may be ignored only if it is smaller than
Rb . Under the latter condition the results of this section are
valid at arbitrary ratiosL/L in .

B. Strong proximity effect

We consider now the case when the resistances of the
barriers are comparable with the resistance of theN conduc-
tor, RNL . Then the Green’s functionsf̂ R,A are not small in
the vicinity of the barriers, and therefore the results based on
the solution of the linear equation~20! @in particular Eqs.
~22!, ~25!# are not valid. In what follows we confine our-
selves to the case of a sufficiently small length of theN
conductor segment between the barriers„W̃!jN(e!),
Rbj /rN @Fig. 1~a!# and L j!jN(e!), Rbj /rN @Fig. 1~b!#…
when interference effects are most strong.

Let us take into account that the retarded Green’s function
may be written in the formĝR5coshuRt̂z1sinhuRit̂ye

ixt̂z ,,
where the phasex is independent ofx at x.x0 and x,x1
@see Eq.~8!#. Therefore,x may be put equal to zero, and
uR obeys the equation

D]x
2uR12~ i e2g coshuR!sinhuR50 , ~27!

whose solution is determined also by the boundary condi-
tions

k̃~Rb /rN!~]xu
R!~x0!5gs

R sinhu0
R

2 f s
Rcw coshu0

R , uR~x2!50 ,

~28!

where cw5@12r bsin
2(w/2)#1/2, and Rb51/(G1b1G2b),

uR(x0)[u0
R. For the systems in Figs. 1~a! and 1~b! at

L j!jN(e), we obtaink̃51/2; it can be shown that in the
limit L1@jN(e)@W̃ for the system in Fig. 1~a!, k̃51.

Consider first the case of smalle and g:
e,g!eL5D/L2. Then the solution of Eq.~27! may be writ-
ten in the formuR5ax1b. Therefore carrying out calcula-

FIG. 3. Normalized zero-temperature conductanceG/G0 ~here
G0 corresponds to a zero voltage! of the system depicted in Fig.
1~a! @for w15w250.1jN(D), W53jN(D), L150.05jN(D),
L520jN(D), andg/D50.05] versus phase difference determined
by the magnetic flux, w/p52F/F0 , at different voltages
eV/D50 ~1!, 0.05 ~2!, 0.2 ~3!, 0.3 ~4!.

FIG. 4. Voltage dependence of the zero-temperature normalized
conductance for the system depicted in Fig. 1~a! @for
w15w25jN(D), W53jN(D), L150.05jN(D), L520jN(D), and
g/D50.05] corresponding toF5kF0~1! andF5(k11/2)F0~ 2!;
the dashed line is the voltage dependence of the normalized coeffi-
cientGint(V)/Gint(0) determining the interference part of the con-
ductanceG(V)5G1(V)1G2(V)1Gint(V)cosw.
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tions similar to those in Refs. 15,6, we obtain from Eqs.~27!,
~28!, ~17! the parametric expression

G ~e,w!

Gn
[G̃0~w!5

~11r !aw

aw1cotaw
, cwcosaw5raw ,

e,g!eL , ~29!

where r5Rb /RNL . In the symmetrical case@Gb15Gb2 ,
cw5cos(w/2)# this is reduced to the formula found in Ref. 6.
Note that the functionG̃0(w), which does not depend on
T, is equal to the zero-bias normalized conductance at low
temperatures:T!eL . This is plotted for differentr in Fig. 5.
Thus, as was noted in Ref. 6, for the case when the resis-
tances of the barriers and theN conductor are comparable
with each other and the length of theN conductor segment
between the barriers is comparable with or less than
jN(e!), the amplitude of the conductance oscillations may
be large, i.e., of order ofGn .

Consider now the case of energiese@eL ,g. Then the
solution of Eq.~27! at x.x0 is

tanh
uR

4
5tanhS u0R4 Dexp@2ke~x2x0!#. ~30!

Therefore from Eq.~28! we obtain ate!D

sinh~u0
R/2![2ze5~Abe

212cw
22be!i /2cw , ~31!

wherebe5k̃rke . With the use of Eq.~17! we find

G ~e,w!

Gn
5~11r !F11

r

2cwIm~zeA11ze
2!

2AeL
2eE0

` q~ze ,y!dy

@11q~ze ,y!#2G21

, ~32!

where q(z,y)54e22y@ReA11z2e2 iy/z#2@ u11z2ue22y/uzu2
11]22. At energies (e/eL)@1, (cw /r )

2 only the first two
terms in the square brackets of Eq.~32! are significant and it
is reduced in the main approximation to the simple form

G ~e,w!

Gn
5

~11r !cw
2

cw
212r 2k̃Ae/eL

[
~11r !cw

2

cw
21Ae/ ẽ

, ~33!

where ẽ5eL/4r
4k̃2. Thus, if RNL@Rb (r!1), even at not

too small temperatures and voltages (e!@eL) the amplitude
of the conductance oscillations may be comparable with
Gn . Note that fore!@ ẽcw

4 ,we obtain from Eq.~33! an ex-
pression that coincides with Eq.~26!, in the limit of infinite
L. In this case the conductance, which does not depend on
L, is small with respect toGn .

Consider now the case when the pair-breaking rate is rela-
tively high: eL!g!D/W̃2. Then at low energies (e!g),
one can readily find the solution of Eq.~27! and obtain from
Eqs.~28!, ~17! the expression

G ~e,w!

Gn
5

~11r !cw
2

cw
21rAr̃ 21cw

2
[G̃0~w!, e,eL!g,

wherer̃52k̃Rb /rNAD/g@r . Thus, like the case considered
above@see Eq.~29!#, the zero-bias conductance is tempera-
ture independent at sufficiently low temperatures
(T!g)and the amplitude of the conductance oscillations
may be comparable withGn ~if the parameterr̃ is not large!.

III. CONDUCTANCE OF A THREE-CONTACT
INTERFEROMETER

The amplitude of the conductance oscillations can also be
large in the case when there is a third barrier~with a resis-
tanceRb3) between theN electrode and theN conductor. For
the system in Fig. 1~b! this case was analyzed in Ref. 6.
Consider one of the possible cases when the resistance of the
system is determined by the barriers so that the resistance in
the normal stateRn5@(Gb11Gb2)

211Rb3#. Then, for the
caseL!jN(e!) @L being the total length of the wire
L=L11L21L, or the film; see Fig. 1~b! or 1~c!#, i.e.,
e!!D/L2, the spatial variation of the matrix Green’s func-
tion in theN conductor is small, and thereforeǧcan be found
from the equation

@eťz1 igb1ǧs11 igb2ǧs21 igb3ǧN1~ i /2!gťzǧťz ,ǧ#5 Ǐ in ,
~34!

which is obtained from Eq.~5!. Heregb j5Db jvF/4L for a
system with three barriers shown in Fig. 1~b! and
gb j5Db jvFwj /4dNL for the system in Fig. 1~c!; Db j is the
averaged~over momentum direction! transmittance of the
barriers which is related to their resistancesR̃b j .

24,14,15Sup-
pose that the tunneling rates exceed the pair-breaking and
energy relaxation rates,gb j@g ( in) ; i.e., the strong proximity

FIG. 5. Normalized zero-bias conductanceG/Gn atT50 versus
phase differencew52pF/F0 for systems shown in Figs. 1~a! and
1~b! in the case when the proximity effect is strong@the resistance
of the N conductor RNL is large, i.e., comparable with
Rb51/(Gb11Gb2)#; the curves are computed for the case
RNL5Rb at different ratiosGb1 /Gb2 , i.e., at different values of the
parameterr b54Gb1Gb2 /(Gb11Gb2)

2: 12r b51 (Gb1 /Gb251);
22r b50.8 (Gb1 /Gb2.2.9 or 1/2.9); 32r b50.5 (Gb1 /Gb2.5.8
or 1/5.8).
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effect can occur for the energiese<max(gb1,gb2). Then with
the use of Eq.~9! we find the solution of Eq.~34! and obtain
from Eq. ~17!

G ~e,w!

Gn
5US cw

2 ,
~gb32 i e!

~gb11gb2!
D , e,gb j!D, ~35!

where U(y,z)5(11 r̃ b)y@1/Re(1/Ay1z2)1yr̃b /Re(z/
Ay1z2)]21, and r̃ b5Rb3(Gb11Gb2)5(gb11gb2)/gb3 .
For symmetrical barriers (Gb15Gb2), Eq. ~35! is reduced to
the expression obtained in Ref. 6. It follows from Eq.~35!
that in the case when the resistance of the structureRn is
determined by the third barrier, i.e.,Rn.Rb3@Rb1 ,Rb2
( r̃ b@1),

G ~e,w!

Gn
5Re

~e1 igb3!

A~e1 igb3!
22eg

2~w!
, ~36!

whereeg(w)5(gb11gb2)cw is supposed to be large as com-
pared withgb3 (cw@1/r̃ b). Thus in this case the conductance
is determined by the density of states in theN film ~wire! for
which eg(w) may be called an energy gap; note that for the
asymmetry ofS-I -N barriers determined by the inequality
uGb12Gb2u@Gb3 ~whereGb3!Gb1 ,Gb2), Eq. ~36! is valid
at arbitraryw. In the opposite limitRb3!Rb1 ,Rb2 a pair-
breaking rate due to the tunneling of electrons into theN
electrode is large:gb3@gb11gb2; therefore we obtain from
Eq. ~35!

G ~e,w!

Gn
5

gb3~gb11gb2!cw
2

gb3
2 1e2

; ~37!

i.e., like the case considered in the previous section, the
phase dependence of the conductance is determined for
strong pair breaking by a cosw term, and the conductance
decreases with increasing voltage or temperature.

At low temperaturesT!gb j one can obtain from Eq.~35!
the following simple expression for the zero-bias normalized
conductance:

G̃0~w!5
~11 r̃ b! r̃ bcw

2

~11 r̃ b
2cw

2 !3/2
5H 1/r̃ bcw , r̃ b@1/cw ,

r̃ bcw
2 , r̃ b!1.

~38!

Plots of the conductance found from Eqs.~38!, ~17! are
shown in Figs. 6 and 7. One can see that the minima of the
conductance may occur at bothw/2p5F/F05k and
w/2p5(k11/2) (k50,1, . . . ) depending on the particular
value of the parameterr̃ b . Also we see that for nonidentical
resistancesRb1 andRb2 the maximum of the conductance
may correspond tow/2p5(k11/2) even at zero bias, unlike
the case considered in the previous section, where this can
occur only at nonzero voltages.

Consider now the system@Fig. 1~d!# with a small point
contact~without a barrier! between theN electrode and the
N film whose characteristic sizea is small,a!dN!jN . A
similar system with only one superconducting electrode,
where interference effects do not arise, was analyzed in Ref.
25. Let us assume that the resistance of the point contact,
Rc , is large,Rc @Rb51/(Gb11Gb2). Then one can neglect
both the voltage drop across the barriers with respect toV
and the influence of theN electrode on the retarded function

ĝR in theN film. Therefore, using the results of Refs. 26 and
27, where the conductance of point contactsS-c-N (c de-
notes a constriction! has been calculated for superconducting
point contacts with different relations between their size and
the mean free path, we obtain

FIG. 6. Normalized zero-bias conductanceG/Gn at T50 ver-
sus phase differencew52pF/F0 for systems with three barriers
@in Figs. 1~b! and 1~c!# whose resistances dominate. The curves are
computed for different values of the parameterr̃ b
5Rb3(Gb11Gb2) for the caseGb15Gb2 ; r̃ b51 ~1!, 2 ~2!, 0.5 ~3!,
4 ~5!, 0.2 ~5!.

FIG. 7. Normalized zero-bias conductanceG/Gn atT50 versus
the phase differencew52pF/F0 for systems with three barriers
@in Figs. 1~b! and 1~c!# whose resistances dominate. The curves are
computed for different values ofr̃ b5Rb3(Gb11Gb2) and for
r b54Gb1Gb2 /(Gb11Gb2)

250.9 (Gb1 /Gb251.9 or 1/1.9! r̃ b51
~1!, 2 ~2!, 0.5 ~3!, 4 ~4!, 0.2 ~5!; the insets show the curves~with
maximum corresponding tow/2p5F/F05k11/2) computed for
r̃ b54 ~6!, 6 ~7!, 9 ~8!.
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G ~e,w!

Gn
5H ~a! Re~a sinh f e

R!Rege
R/ Ref e

R , l!a,

~b! 11u f e
Ru2/u11ge

Ru2, a! l ,
~39!

wherege
R , f e

R are the Green’s functions at the point contact
position. Note that the cases~a! and~b! correspond to diffu-
sive and ballistic passage of electrons through the contact
region, respectively. If the length of the film is small,
L!jN(e!), then for energiese;e! we obtain the equation
for ĝR puttinggb350 in Eq. ~35!. Therefore, taking into ac-
count Eq. ~9! we find ge

R5eR/je
R , f e

R5De
R/je

R , where
(gb11gb2[gb)

eR5e1 igbgse
R 1 igge

R , De
R5 i f se

R gbcw ,

je
R5A~eR!22~De

R!2. ~40!

If the pair-breaking rate is small,g!gb , then a phase-
dependent energy gapeg,D is induced in theN film which
is determined by the equation

eg5
Dgbcw

AD22eg
21gb

→cwgb , gb!D.

In particular, ate!D andg!gb!Dwe obtain from Eq.~39!

G ~e,w!

Gn
5G̃S e

cwgb
D , ~41!

where

G̃~x!5H ~a!
1

2
@x21u~12x!1xu~x21!# lnU11x

12xU,
~b! 2u~12x!1u~x21!@11~x1Ax221!22#.

As follows from Eq.~41!, the conductance of a system with
a large point-contact resistance may exceedGn ~in contrast
to the previous cases!, and its phase dependence may exhibit
both one@case~a!# and two~b! sequences of minima corre-
sponding tow/2p5k andw/2p5k11/2, respectively~see
Fig. 8!.

Thus, one can use the third tunnelN-I -N or point N-c-
N contacts~with higher resistances than the ones ofS-I -N
junctions! which prevent theN film from the pair-breaking
influence of theN electrode. Then at sufficiently small thick-
ness of theN film or at relatively transparentS-I -N barriers
(gb.g) the strong proximity effect can be realized and the
amplitude of the conductance oscillations may become large,
i.e., comparable with the conductance of the structure in the
normal state.

IV. CONCLUSIONS

We have calculated the conductance of a mesoscopic in-
terferometer including twoS-I -N contacts for different con-
figurations with, and without, the third barrier between the
N film ~or the wire! and the bulkN electrode~see Fig. 1!.
For the geometry depicted in Fig. 1~a!, it was essential to
assume that the barrier transmittances are sufficiently
small ~i.e., the barrier sheet resistances are high:
R̃b j@DS /sSdSD). In this case the order parameter in theS
electrodes is not disturbed. But even in the case of small

transmittances, the proximity effect~i.e., the penetration of
the condensate into theN region! may be weak or strong.
The first limiting case is realized if the resistances are large:
Rbj@rNmin$L,jN(e!)%, where e!5max$eV,T% is a scale of
energy of quasiparticles. Then the condensate Green’s func-
tion f Rsatisfies the linear equation~20! and can easily be
found for different geometries. Precisely this case was ana-
lyzed by Hekking and Nazarov4 and studied experimentally
in Ref. 7, where the theoretical analysis, based on the theory
of Ref. 4, was also presented. If the interface resistance is
sufficiently small @Rbj<rNmin$L,jN(e!)%#, the strong prox-
imity effect in theN conductor takes place. This means that
the condensate functionf R in theN conductor, arising due to
the proximity effect, is not small and satisfies the nonlinear
equation~27!. Both cases~weak and strong proximity ef-
fects! were analyzed for particular parameters and geom-
etries of hybridS/N interferometer by one of the authors.6 In
the present work and in Ref. 6, it was shown that the con-
ductance of different systems is a periodic function of the
phase differencew ~at sufficiently low magnetic field when
one may ignore its effect on the pair-breaking rate!; i.e., it
can be represented in the form

G~V,w!5Gn(
k50

`

gk~V!cos~kw!, ~42!

where coefficientsgk(V) may be comparable with unity; i.e.,
subgap conductance is comparable withGn . This is due to
the fact that the conductance of theS-I -N contact is propor-
tional to the product of the condensate functions of the su-
perconductor,f s

R , and of theN conductor,f R ~arising due to

FIG. 8. Normalized zero-bias conductanceG/Gn at low tem-
peratureT50.025D versus phase differencew for systems@Fig.
1~d!# with a small point contact between theN film and theN
electrode, whose resistanceRc is large as compared with
Rb51/(Gb11Gb2). The curves are computed for different ratios
Gb1 /Gb251 ~curves 1! and 0.8 or 1.25~curves 2! for the case of
ballistic ~solid line! and diffusive~dashed line! passage of electrons
through the contact; the sum of tunneling ratesgb11gb2 is put
equal to 0.1D.
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the proximity effect!, where the latter may be of the order of
unity at small energiese;(eV,T)!D ~anomalous proximity
effect!. In the case when the proximity effect is weak, only
the first two terms are essential in the expression~34! for the
conductance which are determined by the coefficients
g0(V),g1(V)!1. They are much larger than the contribution
to the conductance determined by quasiparticles withe.D
@the latter was ignored in this paper since it contains a small
factor exp(2D/T)]. Note that in the case of a weak proximity
effect, the conductance dependence is similar to that arising
in the well-known quantum-mechanical problem of the inter-
ference of two amplitudesA1 andA2exp(iw), in which the
resulting probability of a process isuA11A2exp(iw)u2

5A1
21A2

212A1A2cosw. This fact is not surprising since we
are dealing essentially with the same quantum-mechanical
problem. We have shown that even in the case of the weak
proximity effect, the conductance appears to exhibit many
interesting features~see Figs. 2–4!. One feature appears in
systems where the distance between theS-I -N contacts@W
in Fig. 1~a! or (L11L2) in Fig. 1~b!# is comparable with, or
larger than,jN(e!). The interference conductance of such
systems may change its sign with increasing voltage, and, as
a result, the total conductance may exhibit a sequence of
maxima ~unlike the zero-bias case! at F corresponding to
F0(k11/2), k50,1,2 . . . . Note that similar change of the
sign of the phase-dependent conductance has been observed
in Ref. 8. The phase dependences of the conductance turn out
to be more complicated in the case of strong proximity effect
under the condition when the distance between theS-I -N

contacts is smaller or comparable withjN(e!). In order to
realize this case, one can use the third tunnelN-I -N or point
N-c-N contact with a high resistance which prevents theN
film from the pair-breaking influence of theN electrode. We
have shown that different forms ofG(w) dependences may
occur in the case of a strong proximity effect which depends
on the relationship between theS-I -N contact resistances and
on the way by which theN film is connected with theN
electrode~see Figs. 4–8!.

Finally let us note works28,29 which have recently ap-
peared. In Ref. 28 the conductance oscillations in Au/Nb
systems have been observed in the presence of a phase dif-
ference created by a supercurrent. We believe that the ob-
served oscillations are related to the proximity effect. In the
theoretical work29 an interferometer with three tunnel junc-
tions has been considered for the case of symmetrical barri-
ers at theS-N interfaces. An expression for the conductance
obtained in this work is valid in the case of small voltages,
eV!D/L2,gb j . In this limit our more general expressions
~obtained in this work and in Ref. 6! are reduced to the result
found in Ref. 29.
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