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Phase-coherent conductance of a superconductenormal-metal quantum interferometer
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A theory of the subgap conductance of a hybrid superconductor—normal-r8&t§l quantum interferom-
eter consisting of two tunnel junction&/N) in contact with arN layer is developed. The oscillatory depen-
dence of the conductance of the systénon the phase difference between supercondugidssshown to be
due to the proximity effect, i.e., to the penetration of the condensate intd tlegion. TheG(¢) dependence
is found for the cases of both weak and strong proximity effects. This dependence can radically change its
shape form qualitatively when the voltage is varied. The amplitude of the conductance oscillations appears to
be large in the case of strong proximity effect. Different layouts are considered including the cases when there
is the third tunnel junction or point contact between bheonductor and th&l electrode.

[. INTRODUCTION the resistance of the barrier and what is the limiting value of
the conductance in the case of very low temperatures when
In recent years there has been considerable interest in tliee length of the N leads and its coherence length

conductance of mesoscopic “hybrid” systems with more &y (T)~+D/max(T,y) (D=vl/3 is the electron diffusion
than one superconductor—normal-met&-N) contactt™®  constant| is the elastic mean free path, andis the pair-
Many recent experiments were also devoted to the measurereaking ratg become comparable.
ment of a singleS-N contact conductance at low tempera-  All these questions are readily solved by using another
tures and voltage$:*? In most of these studies, a highly approach employed in Refs. 6,14,15,19. It is based on the
doped semiconductor with a two-dimensio@dD) or 3D  well elaborated technigue of quasiclassical Green'’s functions
electron gas was used as a normal conductor. Generally, integrated over the variable= v (p— pg).2%?* Microscopic
semiconductor-superconductor interface exhibits a low transequations for the Green'’s functions, together with the bound-
mittance, which is determined by the Schottky barrier and byary conditions’® can be written in a compact form with the
the differences in the electronic parameters of the contactingse of a 4<4 matrix g (Ref. 21) in Keldysh space,
materials. Because of the presence of the barrier, the .
superconductor-semiconductor contacts are similar to . (9 9
superconductor—insulator—normal-meta(S-1-N)  tunnel 9:( 0 QA)'
junctions. In the lowest approximation in the barrier trans- ~
mittance, a theory based on the tunnel Hamiltonian méfhod It consists of retardedd(), advanced §*), and Keldysh
predicts that at low temperatures and voltages(d) Green's functions. Each of these matrices in turn is a
(eV,T<A, A being the energy gap of the superconductor 2X2 matrix in Nambu space composed of ordinary and
the conductance of &1-N contact,G, is much smaller than anomalous Green functions,
the conductance in the normal sta®,. However, the gRA f(R,A))

@

experiment$'®revealed that at low temperatures the conduc- ~(RA) _
tance of the investigated junctions exhibits a peak at g —fTRA - g(RA)
V=0 (the so-called “zero-bias anomaly;"the magnitude of
which can be comparable witB,,. The phenomenon of the
subgap conductance enhancement has been studied A AR £ 1 F5\AA
the(?re?ically?“‘lg’quhe authors of Refs. 5,6,16—18 studied 9=07(f+fr) —(f1+17)g &

the S-1-N contact conductance for some particular casesillows one to take into account the deviation of the quasipar-
(low transmittance of the barriéror low voltagé®~§ ticle distribution functionsf and f, from their equilibrium
when the deviation of the quasiparticle distribution from thevalues?! and 7, is the Pauli matrix. Impurity averaging is
equilibrium distribution may be ignored on both sides of thetaken into account in these equations from the very begin-
barrier. In this case the problem is reduced to the calculationing. [Interference phenomena appearing due to impurity
of the probability of two-electron tunneling through the bar- scattering® are not taken into account in these equations; it is
rier. Note that a perturbation approach to the calculation ofrue in the main approximation with respect to the small
this probability does not allow one to establish the actualparameterlpg) ~1.] The tunneling of quasiparticles through
relation® between the proximity effect, i.e., the penetrationthe interface of an arbitrary transmittance is determined by
of the condensate into th&l region, and the zero-bias the boundary conditior$ which are significantly
anomaly. It should also be noted that several questions weimplified®* in the dirty limit when the impurity mean free
left unsolved by the authors of Refs. 4,5,16—18; in particularpath is very shortl <&y (T). The conductance of different

it is not clear how the conductance depends on the normaluperconducting systems with a barrier at 8Bl interface
lead resistance if the latter is comparable with or larger thamvas studied on the basis of this method in Refs. 6,14,15,19.

)

where the Keldysh matrix
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In particular, it was shown that the expression for the zero- |
temperature subgap differential conductance 8flaN con-
tact whose barrier resistance exceedsNhelectrode resis-

tance may be written in the form I |

G - IM[f8(e)IIM[ ()] c=ev. 4 —
where G(V)=dl/dV, and fSR(e) and fR(e) are retarded | N
condensate Green'’s functions in tBeand N electrodedat "
. . . L 1 W W, L
the interfacg respectively. Formally, this or a more general !
[see Eq(21)] expression may be obtained from the compo- 6 : x ) g

nent of the current known in the theory of the Josephson

effect in S-1-S' junctions as the so-called “interference cur-

rent.” But in our case, the physics described by this term is (@)

different. First, the condensate functiéfin theN electrode

differs from zero inS-1-N contacts due only to the proximity

effect, and it may not be small at low energies

(i.e., at low temperatures and voltageSecond, whereas a

voltage in aS-1-S' junction leads to a time-dependent phase

difference ¢ between superconducting electrodése volt- L, L,

age ande are coupled by the Josephson relatiogy ot =2 L

eV), the phase difference between the condensate functions 1—‘—‘

in S andN electrodes irS-1-N contacts is time independent N

and may be zero in spite of the presence of the voltage.
Interesting phenomena, related to the wave nature of qua-

siparticles, occur in mesoscopic systems that include a nor-

mal conductor in contact with more than one superconductor. I s s |

In the presence of a phase differengebetween the order | |

parameters of the superconductors, controlled by a supercur-

rent or a magnetic field, the wave nature of quasiparticles

manifests itself in oscillatory dependences @mf the con- ©

ductance of such mesoscopic systems. This oscillatory de-

pendence of the conductance has been studied theoretically

in Refs. 4,6 for some mesoscopic systems. Recently the

phase-coherent conductance of a “hybriN quantum in- | S | | S |

terferometer with twoS-I-N contacts[shown in Fig. 1a)] { |

has been experimentally investigafetiVe intend to study m

the conductance of this interferometer and another multicon- (d) N

tact hybrid interferometer of a different tyjjgee Fig. 1L Our

results for the structure studied in Ref. 7 are obtained for

weak and strong proximity effects. In the first limit our for-

mulas are valid for a wider range of parameters than expre

sions(based on the theory developed in Refpfesented in

Ref. 7.

FIG. 1. Schematic diagram of the system under consideration.
(a) Top view of the system studied experimentally in Ref. 7. The
Yistribution functions are supposed to have the equilibrium form in
superconductorS and in the wide part of thé&l layer. (b) A one-
dimensional conductdl connecting two superconductoBsand a
normal metaN. (c) and(d) A thin N layer sandwiched between two
superconductor§$ and a normal-metaN (or normal metal point
contacj. The thickened lines betwe&wandN denote barriers at the
S/N interfaces.

1. CONDUCTANCE OF A HYBRID SUPERCONDUCTING
TWO-CONTACT INTERFEROMETER

Consider first an interferometer with two plang#l -N 5
contacts and th& film of a small thicknessly<¢&y. Note iDd,(99,9) —[e7,+(1/12) y7,97,,9]1=lin- (5)
that a planar singl&-1-N contact with a widthw> &y was
analyzed in Ref. 19. As is well knowft,in the dirty limit the ~ Here
matrix Green’s functiong(e,r,vg) may be presented as a "~
sum of two termsg(e,r,vg)=0(e,r)+0:1(e,r,ve), where . O
g(e,r) is the isotropic matrix which we are interested in and 2= 0 7
01(e,r,ve) is a small matrix depending on the direction of
Vg, it is expressed through the matrixg(e,r) and vy is determined by the sum of pair-breaking rates result-
=0:9,=— (Ve /vg)94,9. The equation fog has the for*  ing from magnetic impurities and magnetic field. We suppose
(h=1) that the electron-phonon coupling constantyy, in the N



53 PHASE-COHERENT CONDUCTANCE OF A . .. 9269

film is small so that the order parametas, can be ne- p.=0 along this curve, and,=hc/2e is the flux quantum.
glected:Ay=0. The term on the right of Eq5) describes  The matrices at th¢th interface in the superconductg;
inelastic scattering. The magnitude bf, is of the order are expressed as follows:

g/ 7i,, wherer;, is the inelastic scattering time. We consider e

mesoscopic structures only; this means that the inequality gsj=5jgssz, (10

D/L2<1/r,, 6  Where éj=cos(goj/2)+i?zsin(goj/2), and g, is the Green's
function of a homogeneous superconductor, whose compo-
should be fulfilled ( is the length of the systemWe can  nents have a form
therefore negledt;, in comparison with the first term in Eq. ~R(A)_ ROA)~ | £R(A):~ A AR A
(5). This equation must be supplemented by boundary con- 95 =9s  7z+fs iy,  9s=(gs—gs)tank(e/2T).
ditions. Such conditions were obtained in Ref. 22 for a genyye neglect the influence of thé film on the superconductor,
eral case and were simplified in Ref. 24 for the dirty CaS€assuming that either the interface transmittance is small
They have the form (Ds/osdsRyj<A; here the subscrips denotes the super-
“ o . - conducting electrodg¢sor the cross-section area of tié
(99y9)(rp) = xi[9(rp).Gs;l- @) electrode is much smaller than the cross section area of the
Here k;= DlzaNébj oy is the specific conductivity of the superconductorgas it is shown in Fig. (b)]. In addition, we

N film, Ry; is the S;/N interface resistance per unit area, ;ai«)a( T}_O account the boundary conditions a0 and
Jsj is the Green’s function of the superconductor at jtte or =

interface, and they axis is directed normally to the film 9x9(0)=0, g(Xo+L)=Jeq (13)
plane. We assume that the thickness of khéilm is small: . o .

dy<+D/e,, wheree, =maxT,eV,y}. We can therefore av- wheregg, is the equilibrium Green’s function of thé elec-
erage Eq(5) over the thicknessly , taking into account Eq. trode.

(7) and regarding) as a nearly-independent function. Then ~ One can readily see from E¢B) that the density of the
we arrive at the equation faj(e,x), current in thex direction,j(x), determined by the expression

iD 3y(§0,8) — [ €7+ (112)y7,37,,0]1=1, €S) j(x)= %Fde Trr(9R3,0+ 90,0 (e,X), (12
0

wherel,=i[ 7510 1(X)ds1+ 520 2(X) 952,91, the tunneling
ratesy,;=D/20\d\Ryp;, and®;(x) is a step function which
is equal to 1(0) for x inside (outside the interval corre-
sponding theS; /N interface. In the equations f@** fol-

varies from zerdat x<<x,) to an ax-independent valug¢ at
x>Xq. Therefore after the integration of E(B) over the
intervalx; <x<Xq, the continuity equation for the current is

lowing from Eq.(8) the componentsf** describe the prox- found to be
imity effect, and in the equation fog the component, w
describes the tunneling of quasiparticles through $heN I= J'O de[GpiFi(€) +GpaFale)iLe), (13
interfaces. In addition, one should take into account that the
matrix § obeys the normalization conditith where

§2=1 9 _ 1o iRLGA\GRLGA

Fi(e)= vvs+§Tr(f I (FG+ 1) [(ex)) .

Note that we included the vector potential of the magnetic J (13)

field A in the definition of the phase of Green’s functions

¢(r) which is determined by the relationd,¢ Here vis)=Reg(RS) is the normalizgd density  of
=ps=d,x— (2e/c)A, whereps and y are the momentum states, fgj:ifg[cos@j)}ersin((pj)}x], fa:f?,i }y+f§}x,
and the. phase of superconducting condgnsatg, respective{yZA,R,«. . .))J. denote§ averaging over the width of the
Supposing that the widths of the tunnel junctions, are  jth barrier,w;, Gp;=S;/R,;, andS; are the barrier conduc-
small with respect to the London penetration lengthwe  tance and area, respectively, affle) is the distribution
will ignore the x dependence of phases at the interfaces ifynction in the intervak;<x<x,, where itsx dependence
the superconductor; therefore at thgth junction can be ignored if the length of this interval,
¢(X;)=¢;, where for the phase differenee=¢,— ¢, we W:WJrWlJrWZ’ is not too large, i.e.,

have(see, e.g., Ref. 4

W< (Ry; /pn).- (14)

e=2mP/Po+ fc psdr =27 ®/Py. Note that the conditior{14) means that the voltage drop
S across the lengthV is negligible with respect to the voltage
Here® is the flux penetrating the closed loop formed by thedrop across the barrier. When obtaining Ef3), we also
curvesCg+ Cy [shown by dashed and dotted lines in Fig.took into account the relations following from Ed8)
1(a)], whereCg and Cy, are the curves connecting the junc- (a=A,R),
tions 1 and 2 in the superconductor and the normal metal, an N
respectively, an€s is chosen to satisfy the requirement that Gpy(Tri?f g1 7,)1+ G Trf 1S, 7,)2=0,
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which are due to the continuity of the supercurrent flowing A. Weak proximity effect

between the two junctions. _ Let us turn to the case of barriers with relatively large
The distribution functiorf,(€)in the N electrode may dif- resistances,

fer from the equilibrium one if the barrier resistances are

comparable to, or less than, the resistance of the film. The .

distribution functionf, obeys a kinetic equation which may Rp;=>pn{W+min[ L, é(€,) 1}, (18

be easily obtained from th@2) element of Eq(8) by mul-

tiplying it by 7, and calculating the trace. Generally one where e, =max@V,T). Under this condition the proximity
>D/L?) or in the range of interesg~e,; i.e., the con-
M,d,f,) = 1 4 Le i *0 1Sy
A M20xt) =0, @9 Gensate functions in the film, fR® are small. Note that
whereM,=Tr(1-gR7,§”7,)/8. One should solve this equa- inequality (18) holds in a wider range of the barrier resis-
tion for f, taking into account the boundary conditions, onetances than the inequalities
of which is Eq.(13), and the second one corresponds to the
point Xo+ L,where the distribution function has the equilib- ~
Hum form: Roj>pn(L+W),  y>7,, DIL?, (19
fe,xo+L)=[tanhB(e+eV)—tanhB(e—eV)]2=F¢{ €), which were satisfied in the experiméntwhose data for
16 Rpj, on, anddy allow an estimation of the characteristic
where B=1/2T andV is the voltage across the system. It tunneling ratey,~10% 1/s<y~10% 1/s). Under the condi-
follows from Eq.(15) that M,d,f,=J(e). Therefore taking tions(19) the proximity effect is weak at any energies and, in
into account Eqs(13),(16), we obtain for the differential addition, the resistance of the structure is determined by the

conductancé&=dl/dV the expression barriers; i.e., the conductance in the normal state is equal to
w o Gn:Gb1+Gb2' R
G=[odes(€)dvFed€), 17 The Green’s functiorfR is supposed to be small and can
where be found from the equation
1

2 R\21fR—+v'R/ N\fR_rh R IR
[GoiF1(€)+GpoF o(6)] T+ Ry (UM (), [ (HAT=NADT= 00040070t 202000
Here Ry =pnL , pn being the resistance per unit length of
the film; here(1/M,(e,x)),_ denotes averaging over the in- supplemented by the boundary conditiorfdél). Here
terval (xo<x<X,) of length L, which is supposed to be (k5)2= 2(—ie+y)/D, bj=2v,;/D. This matrix equation
much larger thatw. Note that in the limit of smallv; this is the(11) element of the supermatrix in E(B). The solution
expression coincides with that found in Ref. 6 for the systenof Eq. (20) is readily found, and, as a result, we obtain from
shown in Fig. 1b). Egs. (13

e)=

Ae)= g TR+ I8+ 40+ (R4 P IR+ 14)) )= Z1(e) + ol e) + Zinl oo (20

where, for energieg<<A (we allow for simplicity w;=w; k?z k)

B PG, R 1 _ 4 sintt(kw/2) . .
Zile)= W(Imfsé) ReEg wk;smf(kmﬂ—m sinf k. (£—L4)]coshk.L4) ],
4pnGp1Gp2 sintP(k w/2) I -
Cin(€) = TUmeE)ZReW coshik.Ly)sinfk(~—Ly)], (22)

where ¥ is the length of the film£j=Lj+W/2, andL; is the geometrical parameters close to the experimental ones, is
distance between the left edge of the film and the left edge ofimilar to the experimental data.

the jth barrier. Note that forzthe subgap regierA, which Note that the solution of Eq20) may be written with the

we are interested in, (Ifg,)*=1. Equations(21) and (22 use of the Green’s function of the differential equation

describe the conductance of the structlifég. 1(a)] with R Rie i , . o
high barrier resistances. Such a system has been studi(3(d<(6)|:>f()('X )=38(x—x") with boundary conditions

R ’ _ R A H
experimentally. In particular, the temperature dependence of?xPe(X.X")[x=0=0, P(xz,x")=0. Then expressions for
the conductancésee Fig. 2, computed from Eq(22) for the  e<<Acan be written in the form
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10 obtained in the Ref. 4 if a correction to the coefficient in
10 formulas(5) of Ref. 4a) is taken into account. Note that, in
- . o . contrast to the more general expressidn), Eqgs.(21), (23
() . . . .
05| are valid only if the barrier transmittances are small and the

08 |- . proximity effect is weak.

. I | Equation(22) is considerably simplified in the case where

%% o1 the lengths of bottiright and lefy segments of the film out-
: T/A : . . .
06— 7 side the barrier regions are largelL;,L—L,—w
o | | > £y(€) = D/ (€24 y) T2 Then we get
° G2
04— = Zi(e)= p” PN by Rek—g[wk ~sinh(kw) +2 sinf(k wi2)],
2pnGp1G sinkP(k w/2
021~ | - Fine)= T Re (ks ext —k (W w)].
T ] ) (24)
0.0 1 | ‘ ‘ In the limit of small width,w<<&y(e), i.e., € y<D/w?, A,
o i R N 008 010 the result becomes independentvof(except for the coeffi-

cients containingBJ-b):

FIG. 2. Temperature dependence of the zero-bias normalized
conductanceG/G, (G, corresponds to zero temperatui the 7 (€)= G2 smf[ks( Z—Lj)]JcoshkcL))
system depicted on Fig. (@ for ®=kd, (curves 2 and 2pN bj kcosr(k %) ’
®=(k+1/2)d, (curves 2; the curves are computed for
L1=0.5\(4), wi=w,=§&y(A), W=0.3y(A), L=20%y(A), and " coshtk Ly)sink(£—L,)]
vIA=0.05; the inset shows the curves fdf=5¢y(A) and the Zin( €)= pnGp1Gp2Re k.coshk,?)
same values of other parameters. € <

For the system shown in Fig(ld) we find, analqgously to
Zi(€)= pnGR R (PR X)) | Ref. 6, the following expression for the functiofig(e) and
j(€)=pnGpiReE((P( MNii “ini(€) [they determine the conductance via Etjl)] in the

Z il €= 20\Gp1GroRE(PRX X ))1p. (29 Mt Roj>pyil+minfL éu(e)]):
Thus, one can see that, being written in terms of the Green’s 55}(6):G§jPNgn(f)' Zint(€)=Gp1GpopnTi €),

function P?(x,x’), our expression for the subgap conduc- (25
tance following from Eqs(21) and(17) coincides with that where

2— &jj
[tank(k.L,)+tanh(k L)+ coth(k.L)]coskikL;)cosik.L;) |

1
g”(6) Re-— 2k tanhkeLj)5i1+ (25’)

Note that in the symmetrical cas&f,=Gy,L1=L,), Eq.  In particularc=(1—2+2)y/m¢(—1/2)=~0.33 aty<T.
(25) is reduced to that found in Ref. 6. In the case of small Thus in the considered limit, m&(¢) and mirG(¢) cor-
Lj.w,W<éy(e,)L [wheree,=max@V,T)], Egs. (22), (25  respond togp=27k(®/Py=k) and ¢=m(2k+1)[D/D,

result in the following expression for the conductance of=(k+1/2)], k=0,1, ..., respectively, and the normalized
both systems shown in Figs(a) and 1b): amplitude of the conductance oscillations,
G(V,¢) =R(V)(Gy+ Gpo+ 2Gpi GpyCosp) maxG (@) — minG ()
= r,
=R(V)(Gp1+Gpo) [ 1-TpsiM(¢/2)],  (26) G(0)
wherer,=4Gy;Gp,/(Gpy+ Gp)?, and is of the order of unity atG,,~G,y; i.e., the conductance
oscillations are more pronounced in the case of the asymme-
=tanhk.L) try of S-1-N barriers being small.
R(V)= 2 Refo k. [IvFed €)]1de We make note of an interesting feature. If the length of
the N-conductor between two barriers is comparable to or
L, eV,y,T<D/L?, larger thanéy(e,), then & (e)may change its sign with
PN cen(T) eV, D/L2<min(,T) increasing energy, and as a result, the shape of the conduc-
~ N ' v tance versug curve may radically change with increasing

3 En(eV), D/L?,T,y<eV. voltage. In contrast to the case considered above Gtgx
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1.0 |

T

(24) that the zero-temperature conductance of the system de-

picted in Fig. 1a) with identical high-resistance barriers is

given by the expression
08

G(V,¢) [
=—— eV)G,|3y2+exp —2
I G 16ya NEN(EVIGr V2 +exp(—2ay)
aw
o X o 2qV+Z +2 exgd—Qy)
U}
aa
xcos(qVJrZ cosp |,
:/_\/\
0.2/\/\

whereq,=W/&y(eV), andL, andw are assumed to be less
thanéy(eV)<.%.
- It is noteworthy that at largé [L>&y(e€,)] the subgap
conductance of the systems in the superconducting state be-
4 comes independent of length. Thus, under the cond{i8n
the resistance of the structu(eelow T,) is determined by
. the barriers even if the total normal-state resistance of the
FIG. 3. Normalized zero-temperature conductaﬁ#@o (_herg film, or the wires, Ry, is comparable with
fo corfrespondf toiaozerog/olta)gv\e/xfitge SXStedeE%ICSed |2 Fig. Rb:(Gbl+Gb2)_1- This is the case if the length<L;,.
@ [for wy=w;=0.164(4), =3¢en(8), L1=0.0%(4), Otherwise Ry, may be ignored only if it is smaller than
L=20&y(A), andy/A=0.05] versus phase difference determined " . .
i N , Ry . Under the latter condition the results of this section are
by the magnetic flux, ¢/m=2®/d,, at different voltages lid at arbit tiod /L
eV/IA=0 (1), 0.05(2), 0.2(3), 0.3 (4). valld at arbitrary ratios./Lin .

[0%,4

and mirG(¢) may correspond, respectively, to

B. Strong proximity effect
¢=m(2k+1) andp= 27k (see Figs. 3 and)4The interfer-

We consider now the case when the resistances of the

ence part of the conductance will decrease more rapally parriers are comparable with the resistance ofNheonduc-

WorL,,~én(e,)] than the phase-independent part and mayor R . Then the Green's functionE** are not small in

be an oscillating function of voltage. This is easily seen fromiq vicinity of the barriers, and therefore the results based on

Egs. (22), (25 if one takes into account that yhe solution of the linear equatiof®0) [in particular Egs.

ke=(1—1)/é\(€) ate>y. In particular, it follows from Eq.  (22), (25)] are not valid. In what follows we confine our-

selves to the case of a sufficiently small length of the

10 conductor segment between the barrief@/<éy(e,),

) Rpj/pn [Fig. (@] and Lj<én(e.), Rpj/pn [Fig. Ub)])

when interference effects are most strong.

O\ 7 Let us take into account that the retarded Green’s function

\ may be written in the formgR=coshu®7,+sinhufize =,

06 A where the phasg is independent ok at x>Xx, and x<<x;

[see Eq.(8)]. Therefore,y may be put equal to zero, and
uR obeys the equation
04 Y

1
08— \

GIG,

Dd2uR+2(ie—y coshuR)sinhuR=0, (27)
02— \

whose solution is determined also by the boundary condi-
tions
0.0 R

K(Ry/p) (9xuR) (o) =08 sinhug
!\\ oo —f8c, coshug, uR(x)=0,
-0'20.0 0.2

03
eV/A

(28
_ - 12 _

FIG. 4. Voltage dependence of the zero-temperature normalize Qere_cq,;[l— rosSir?(¢/2)], f”md Rp= (Gup+Gay),

the system depicted in Fig(a)1 [for u~(xg)=uqg. For th_e ~system_s in Figs.(@ and ](b)_ at
Wy =W,=Ey(A), W=3&y(A), Ly=0.05(A), L=20(A), and IjjﬁgN(e), we obtaink=1/2; it caq be. showrl that in the
yIA=0.05] corresponding t@=kdy(1) andd = (k+1/2)do( 2);  limit L1>&y(€)>W for the system in Fig. (), k=1.
the dashed line is the voltage dependence of the normalized coeffi- Consider first the case of smalle and 7y:
cient G, (V)/G;(0) determining the interference part of the con- €, <€, =D/L?. Then the solution of Eq27) may be writ-
ductanceG (V) =G(V) +G,(V) + G;u(V) cosp.

ten in the formuR=ax+b. Therefore carrying out calcula-
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1

r
+
20¢Im(ze\/1+zz)
. /ij“’ q(ze.y)dy |
2¢e)o [1+0a(z.,y)])?
where q(z,y)=4e~¥[Re\1+7z%e Y/z][|1+Z%|e~¥/|z|?
+1]72. At energies &/€.)>1, (c,/r)? only the first two

terms in the square brackets of E82) are significant and it
is reduced in the main approximation to the simple form

. (32

GIG,

e @) (1+r)c;  (1+n)ck
Gn Ci+2r27c\/e/q—ci+ ele’

where €= ¢ /4r*k?. Thus, if Ry >R, (r<1), even at not
too small temperatures and voltages¥ ¢, ) the amplitude
of the conductance oscillations may be comparable with
T oom ' ‘ G,. Note that fore*>éci,we obtain from Eq(33) an ex-
' pression that coincides with E6), in the limit of infinite
FIG. 5. Normalized zero-bias conductar@£G, atT=0 versus L. In this case the conductance, which does not depend on
phase difference=27®/®, for systems shown in Figs(d and L, is small with respect t&,.
1(b) in the case when the proximity effect is stroftbe resistance Consider now the case when the pair-breaking rate is rela-
of the N conductor Ry, is large, i.e., comparable with tively high: 6L<7<D/\7V2. Then at low energiese<y),

Ry=1/(Gp1+Gpy)]; the curves are computed for the case gnecan readily find the solution of E(7) and obtain from
Ry =Ry, at different ratiosG,, /Gy;, i.€., at different values of the Egs.(28), (17) the expression

parameterr ;=4Gp; G, /(Gpr+ Gpa)%: 1—1,=1(Gpy /Gpr=1);
2—1,=0.8 (Gp; /Gppy=2.9 or 1/2.9); 3-1,=0.5 (Gp, /Gpp=5.8 " 14162
or 1/5.8). Hep) (141G

G. (2 =2
n C,trr +Cz,

wherer =2kRy,/pyyD/y>r. Thus, like the case considered
above[see EQq.(29)], the zero-bias conductance is tempera-
ture independent at sufficiently low temperatures

(33

éO(()D)l 616L<7!

tions similar to those in Refs. 15,6, we obtain from EgS),
(28), (17) the parametric expression

A . L
o) Eéo(¢)= M C cosy. =ra (T<y)and the amplitude of the conductance oscillations
Gn ap,+cota,’ P! may be comparable witG,, (if the parametef is not large.
€,v<e€., (29 IIl. CONDUCTANCE OF A THREE-CONTACT
INTERFEROMETER

where r=R, /Ry, . In the symmetrical caseG,;=Gyy,,
C,= Cos(p/2)] this is reduced to the formula found in Ref. 6.
Note that the functiorGy(¢), which does not depend on

T, is equal to the zero-bias normalized conductance at IOVYhe system in Fig. (b) this case was analyzed in Ref. 6

'EI(_er:nperaturesT< etL ‘ dThlsF;sfplgttfed ft(?]r different r']n F'tgh' > . Consider one of the possible cases when the resistance of the
us, as was noted in Ret. o, lor the case when the res"Ss"ystem is determined by the barriers so that the resistance in
tances of the barriers and tit conductor are comparable

) the normal statdR,=[(Gp;+ Gp,) 1+ Ry3]. Then, for the
\k,)wtth each t(r)]theLan_d the length of tlhkdjelcond_;::tor S(Iegmergrt] case Zz<¢\(e,) [£ being the total length of the wire
etween the barriers is comparable with or less aQZ’:L1+L2+L, or the film: see Fig. @) or 1(0)], ie.,

¢n(e.), the amplitude of the conductance oscillations maye'*< D/ #?, the spatial variation of the matrix Green’s func-

be large, i.e., of order 0B, . tion in theN conductor is small, and therefogean be found
Consider now the case of energies € ,y. Then the from the equation

solution of Eq.(27) at x>Xq is

The amplitude of the conductance oscillations can also be
large in the case when there is a third barfieith a resis-
tanceRy;) between théN electrode and thB conductor. For

[6‘7"2"_ i ')/blgsl—" [ 7b2652+ [ 7b3éN+ (i12) 7‘7"26\7"2 ’Q] :Iin )

uR ug (34)
tanh—=tanh — | exd —k(xX—Xg)]. (30 o ) -
4 4 which is obtained from Eq(5). Here yp;= Z,ju /4~ for a

system with three barriers shown in Fig.(bL and
Therefore from Eq(28) we obtain ate<A Yoj= ZpjveW;/4dy Z for the system in Fig. @t); %y, is the
averaged(over momentum directidntranstittance of the
sin(u§/2)=—z.=(\BZ+2c2—-B,)il2c,,  (31)  barriers which is related to their resistandg.******Sup-
pose that the tunneling rates exceed the pair-breaking and
where 8= krk,. With the use of Eq(17) we find energy relaxation ratesy,;> y(in); i.€., the strong proximity
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effect can occur for the energiess max(yy1, %) Then with 08
the use of Eq(9) we find the solution of Eq34) and obtain
from Eq. (17)

(/((E!(P)_ 2 ('}/bg_ié)
R

where U(y,2)=(1+T7,)y[ /Re(1Ny+z?) +yT,/Re(@/

Vy+29)]17Y and Tp=Ry3(Gp1+Gba) = (Y1t ¥b2)! Ybs-

For symmetrical barriersGy;=Gy,,), EQ.(35) is reduced to
the expression obtained in Ref. 6. It follows from E§5)

that in the case when the resistance of the strudRyrés

determined by the third barrier, i.eR,=Ry3>R,1,Rp

(Ty>1),

-?(€-<P): ~ (e+iyp3)
Gy Vie+ivps)?—ei(e)’

whereeg(¢) = (vp1+ ¥p2) C,, IS SUpposed to be large as com-
pared withyys (c,> 1/,). Thus in this case the conductance
is dgtermined by the density of states in tdilm (wire) for FIG. 6. Normalized zero-bias conductand®/G, at T=0 ver-
which €4(¢) may be called an energy gap; note that for thegs phase difference=27d/d, for systems with three barriers
asymmetry ofS-I-N barriers determined by the inequality [in Figs. 1b) and ¥c)] whose resistances dominate. The curves are
|Gp1 — Gpa|>Gps (WhereGp3< Gy ,Gp,), Eq.(36) is valid computed for different values of the parameter,
at arbitrary ¢. In the opposite limitR,3<Ry;,Ry; @ pair- =R, ,(Gp;+Gy,) for the cases,; =Gy, =1 (1), 2(2), 0.5(3),
breaking rate due to the tunneling of electrons into the 4 (5), 0.2(5).
electrode is largey,s> y,1+ yp2; therefore we obtain from
Eq. (35 gRin theN film. Therefore, using the results of Refs. 26 and
27, where the conductance of point contaSts-N (c de-
2(e,0)  voa(vprt sz)Ci_ notes a constrictiorhas been calculated for superconducting
G, 7§3+ €2 ’ (37) point contacts with different relations between their size and

. ) . ) ) ) the mean free path, we obtain
i.e., like the case considered in the previous section, the

phase dependence of the conductance is determined for
strong pair breaking by a cesterm, and the conductance 05
decreases with increasing voltage or temperature. L

At low temperature§ < y,,; one can obtain from Ed35)
the following simple expression for the zero-bias normalized 08—
conductance:

(36)

[0%,4

0.4

A

- GIG,

~ (1+Fb)FbC2 1/FbC<p1 Fb>1/C‘p,
Go(@)= 535" 2 . (38)
(1+Fgey) (o ry<l.

GIG,

Plots of the conductance found from E(88), (17) are
shown in Figs. 6 and 7. One can see that the minima of the
conductance may occur at botk/27=®/dy=k and
¢l27=(k+1/2) (k=0,1,...) depending on the particular
value of the parametdt,. Also we see that for nonidentical
resistance®R,; and R,, the maximum of the conductance
may correspond te/27= (k+ 1/2) even at zero bias, unlike
the case considered in the previous section, where this can 0o ' ; . | . ] . ] |
occur only at nonzero voltages. 0.0 04 08 12 16 2.0
Consider now the systeiiFig. 1(d)] with a small point o/n
contact(without a barrier between theN electrode and the FIG. 7. Normalized zero-bias conductar®tG, atT=0 versus

N film whose characteristic size is small,a<dy<¢y. A the phase difference=27®/®, for systems with three barriers

similar system with only one superconducting electrodeyi, Figs. yb) and 1c)] whose resistances dominate. The curves are
where interference effects do not arise, was analyzed in Refomputed for different values of,=Rys(Gpy+Gp,) and for

25. Let us assume that the resistance of the point contagl, = 4G, Gy, /(Gpy + Gpp)2=0.9 (Gp; /Gpp=1.9 or 1/1.9 F,=1
R., is large,R; >R,=1/(Gp1+ Gyy). Thgn one can neglect (1), 2 (2), 0.5(3), 4 (4), 0.2 (5); the insets show the curvéwith
both the voltage drop across the barriers with resped to maximum corresponding te/2m=®/d,=k+1/2) computed for
and the influence of thH electrode on the retarded function 7,=4 (6), 6 (7), 9 (8).




Ye o) [(@ ReasinhfPReg® RefR, 1<a,
Gn () 1+|f3%|1+gf?

a<l,
(39

whereg®, f} are the Green’s functions at the point contact
position. Note that the caséa) and(b) correspond to diffu-

sive and ballistic passage of electrons through the contact

region, respectively. If the length of the film is small,
s<én(e,), then for energieg~ €, we obtain the equation
for R putting y,3=0 in Eq.(35). Therefore, taking into ac-
count Eq. (9) we find gR=¢R/eR, fR=A%&R where
(Vb1 Yp2=p)

. R, : R R_:¢R
GR: 6+|ybgse+|’yge ’ AEZIfSE‘YbC<P’

E=N(H2 = (802 (40

If the pair-breaking rate is smally<+vy,, then a phase-
dependent energy gag<A is induced in theN film which
is determined by the equation

In particular, ate<A and y<< y,<Awe obtain from Eq(39)

g)(G,QD) jod
G, :G( )

€

Co7b

(41)

where
) A | 1+x
N(x)= (a E[X 6(1—x)+x0(x—1)]nm,
(b) 26(1—x)+ O(x—1)[1+(x+x>—1)"2].

As follows from Eq.(41), the conductance of a system with
a large point-contact resistance may exc€gd(in contrast
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GIG,

o/m

FIG. 8. Normalized zero-bias conductanGéG,, at low tem-
peratureT=0.02%\ versus phase differencg for systems[Fig.
1(d)] with a small point contact between th¢ film and theN
electrode, whose resistancR. is large as compared with
R,=1/(Gp1+Gyy). The curves are computed for different ratios
Gp1/Gpr=1(curves 3 and 0.8 or 1.25curves 2 for the case of
ballistic (solid line) and diffusive(dashed ling passage of electrons
through the contact; the sum of tunneling ratgs + y,, is put
equal to 0.A.

transmittances, the proximity effeGte., the penetration of
the condensate into thd region may be weak or strong.
The first limiting case is realized if the resistances are large:
Rp;>pnmin{L,&(e,)}, Where e,=maxeV,T} is a scale of
energy of quasiparticles. Then the condensate Green’s func-
tion fRsatisfies the linear equatiof®0) and can easily be

to the previous casgsand its phase dependence may exhibitfound for different geometries. Precisely this case was ana-

both one[case(a)] and two(b) sequences of minima corre-
sponding tog/2m=k and ¢/2m=k+1/2, respectively(see
Fig. 8.

Thus, one can use the third tuniétl-N or point N-c-
N contacts(with higher resistances than the onesSsf-N
junctiong which prevent theN film from the pair-breaking
influence of theN electrode. Then at sufficiently small thick-
ness of theN film or at relatively transparers-1-N barriers

lyzed by Hekking and Nazarfwand studied experimentally

in Ref. 7, where the theoretical analysis, based on the theory
of Ref. 4, was also presented. If the interface resistance is
sufficiently small[ Ry;<pymin{L,&(e,)}], the strong prox-
imity effect in theN conductor takes place. This means that
the condensate functidi¥ in theN conductor, arising due to
the proximity effect, is not small and satisfies the nonlinear
equation(27). Both caseqweak and strong proximity ef-

(75> 7) the strong proximity effect can be realized and thefects were analyzed for particular parameters and geom-
amplitude of the conductance oscillations may become largegtries of hybridS/N interferometer by one of the authdrin
i.e., comparable with the conductance of the structure in théhe present work and in Ref. 6, it was shown that the con-

normal state.

IV. CONCLUSIONS

ductance of different systems is a periodic function of the
phase difference (at sufficiently low magnetic field when
one may ignore its effect on the pair-breaking yatee., it
can be represented in the form

We have calculated the conductance of a mesoscopic in-

terferometer including twé-1-N contacts for different con-

figurations with, and without, the third barrier between the

N film (or the wire and the bulkN electrode(see Fig. 1
For the geometry depicted in Fig(d), it was essential to

G(V,¢)= Gngo gk(V)cogke), (42)

where coefficientg), (V) may be comparable with unity; i.e.,

assume that the barrier transmittances are sufficientlgubgap conductance is comparable wih. This is due to

small (i.e., the barrier sheet resistances are high
Rpj>Ds/ogdsA). In this case the order parameter in tBe

the fact that the conductance of t8d-N contact is propor-
tional to the product of the condensate functions of the su-

electrodes is not disturbed. But even in the case of smatberconductorf?, and of theN conductorfR (arising due to
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the proximity effect, where the latter may be of the order of contacts is smaller or comparable wik(e,). In order to

unity at small energiee~ (eV,T)<A (anomalous proximity realize this case, one can use the third tumhétN or point
effec. In the case when the proximity effect is weak, only N-c-N contact with a high resistance which prevents the

the first two terms are essential in the expres¢8® for the  film from the pair-breaking influence of th¢ electrode. We
conductance which are determined by the coefficienthave shown that different forms @&(¢) dependences may
00(V),01(V)<1. They are much larger than the contribution occur in the case of a strong proximity effect which depends
to the conductance determined by quasiparticles with\ on the relationship between ti$el -N contact resistances and
[the latter was ignored in this paper since it contains a smalbn the way by which theN film is connected with theN
factor exp(-A/T)]. Note that in the case of a weak proximity electrode(see Figs. 4—-8

effect, the conductance dependence is similar to that arising Finally let us note work€?° which have recently ap-

in the well-known quantum-mechanical problem of the inter-peared. In Ref. 28 the conductance oscillations in Au/Nb
ference of two amplitude$; and A,exp(¢), in which the  systems have been observed in the presence of a phase dif-
resulting probability of a process i$A;+Aexp(e)> ference created by a supercurrent. We believe that the ob-
=A%+ A3+ 2A,A,cosp. This fact is not surprising since we served oscillations are related to the proximity effect. In the
are dealing essentially with the same quantum-mechanicdheoretical work® an interferometer with three tunnel junc-
problem. We have shown that even in the case of the weakons has been considered for the case of symmetrical barri-
proximity effect, the conductance appears to exhibit manyers at theS-N interfaces. An expression for the conductance
interesting feature¢see Figs. 2—¥ One feature appears in obtained in this work is valid in the case of small voltages,
systems where the distance between $HeN contactW  eV< D/Lz,ybj. In this limit our more general expressions

in Fig. 2(a) or (L,;+L,) in Fig. 1(b)] is comparable with, or (obtained in this work and in Ref)@re reduced to the result
larger than,&y(e,). The interference conductance of suchfound in Ref. 29.

systems may change its sign with increasing voltage, and, as
a result, the total conductance may exhibit a sequence of
maxima (unlike the zero-bias cageat @ corresponding to
$y(k+1/2), k=0,12 ... . Note that similar change of the This work was supported by the Russian National Fund
sign of the phase-dependent conductance has been obserfedBasic Research, by the International Science Foundation
in Ref. 8. The phase dependences of the conductance turn oi@rant No. MRC300 and by INTAS(Grant Nos. 1010-CT-

to be more complicated in the case of strong proximity effec93-0051, 94-386R The authors are grateful to R. Hogg for
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