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A method is developed for solving nonlinear systems of differential, or integrodifferential, equations with
stochastic fields. The method makes it possible to give an accurate solution for an interesting physical problem:
What are the peculiarities of nonlinear spin dynamics in nonequilibrium nuclear magnets coupled with a
resonator? Evolution equations for nuclear spins are derived based on a Hamiltonian with dipole interactions.
The ensemble of spins is coupled with a resonator electric circuit. Seven types of main relaxation regimes are
found: free induction, collective induction, free relaxation, collective relaxation, weak superradiance, pure
superradiance, and triggered superradiance. The initial motion of spins can be originated by two reasons, either
by an imposed initial coherence or by local spin fluctuations due to nonsecular dipole interactions. The
relaxation regimes caused by the second reason cannot be described by the Bloch equations. Numerical
estimates show good agreement with experiment.

I. INTRODUCTION ance. In these experiments a nonequilibrium system of polar-
ized nuclear spins is placed inside a coil of a resonance elec-
Spin dynamics in polarized nonequilibrium systems istric circuit. The initial polarization is directed opposite to an
usually described by using the Bloch equations for the comexternal magnetic field. If this polarization is sufficiently
ponents of uniform magnetization. The derivation of thehigh and the coupling with a resonator is enough strong, then
Bloch equations from the evolution equations for a spinthe power of the current, as a function of time, after some
model can be found, for example, in ter Hade solution  delay, displays a sharp burst with a damping time much
of the Bloch equations for the case of small deviations fromshorter than the dephasing tinfg. This time behavior of
a stationary state is straightforward and well known in thethe current power is analogous to that of the radiation inten-
theory of magnetic resonanédhe situation becomes more sity of atoms or molecules in the case of optical superradi-
complicated when the spin system is coupled with a resonaance. Because of this analogy, the corresponding coherent
tor. Then there appears an essential nonlinearity due to thghenomenon in spin systems has also been called superradi-
action of resonator feedback field. The system of the couplednce or, more concretely, spin superradiance. Friedberg and
Bloch and resonator-field equations is typical of the theory oHartmann® pointed out that the whole process of interaction
maser amplifiers and generatdrs. of a spin system and a resonance coil, in fact, involves no
The nonlinear system of the Bloch and resonator-field-adiation into free space but merely nonradiative transfer of
equations can be slightly simplified by invoking the slowly energy from the sample to the coil, where the energy is dis-
varying amplitude approximatiohHowever, this does not sipated Ohmically. Nevertheless, the term “spin superradi-
help much, since the resulting equations are, as before, noance” has become commonly used. The excuse for this is not
linear. To achieve further simplification, one resorts to thesolely the formal analogy of temporal behavior of current
adiabatic approximation which leads to the proportionality ofpower, for spin systems, and of radiation intensity, for atomic
the feedback field to transverse magnetization, that is, to thend molecular systems, but also a deep physical similarity:
static couplind™™’ The adiabatic approximation, as is Spin superradiance, as well as optical superradiance, is a
known? works well only at the final stage of relaxation pro- collective process of coherent self-organization, although the
cesses when different variables adiabatically follow eactself-organized coherence of spin motion develops not be-
other, but it cannot correctly describe intermediate stagesause of a common radiation field, as in atomic and molecu-
where transient phenomena occur. The incorrectness of tHar systems, but owing to a resonator feedback field. In ad-
static-coupling approximation is physically evident, as onlydition, coherent motion of spins inevitably produces coherent
moving spins, but not immovable, are able to induce a fieldnagnetodipole emission with properties completely analo-
in resonator. More accurate is the dynamic-couplinggous to superradiance of optical systems, though the magne-
approximatiofi in which the feedback field is proportional to todipole radiation intensity is too weak to be measured as
the time derivative of transverse magnetization. But botheasy as the power of currett.
these, static- as well as dynamic-coupling, approximations In the same way as for optical systefisine has to dis-
do not take into account retardation effects that may be imtinguish the pure from triggered spin superradianeare
portant for transient phenomena. spin superradiancés a purely self-organized process starting
Moreover, the Bloch equations themselves may be inapfrom an absolutely incoherent state when the average trans-
propriate for explaining some kinds of relaxation processesverse magnetization is strictly zerdriggered spin superra-
This concerns, for example, the interpretation of the recendianceis a process in which self-organization also plays an
series of experiment®° observing nuclear spin superradi- important role but whose beginning is triggered by an initial
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coherence imposed onto the spin system, that is, by assumiitigis section we will preserve the generality of the presenta-

that the mean transverse magnetization is not zero. tion. All necessary specifications related to the spin dynamics
The interpretation of pure spin superradiance cannot bé nuclear magnets will be expounded in the following sec-

based on the Bloch equations because of the following. If théions. To better understand the principal ideas of the method,

initial transverse magnetization is zero, then, in the contenit is convenient to divide it into several steps.

of these equations, the relaxation of an inverted spin system

can be due only to two reasons: either to spin-lattice interac- A. Separation of variables

tions characterized by a relaxation tinfg or to thermal

damping caused by the Nyquist noise of resonator. At very

low temperature, typical of experimelis!® with polarized

Inuclear spins, the spm—latt'lce .relaxat|on tlrﬁ@ is mugh e={eli=12,. .. |ej|<1})

onger than the dephasing tinig; therefore this mechanism

cannot develop coherence. The resonator thermal dampingf small parameters. Depending on the way in which these

as shown by Bloembergen and Podfids negligibly small  parameters enter into the evolution equations, we may dis-

for macroscopic systems, the thermal relaxation time beinginguish fast and slow variables. The terms describing local

proportional to the number of spin, in the sample, and o flyctuating fields can be treated as random, or stochastic,
being much longer than not onfl, but evenT;. Thus, the  vyariables

resonator Nyquist noise can never produce the initial thermal

Suppose that in the problem under consideration there is a

relaxation. The radiation field in the coil does not provide a e={eili=12,... 1.},
microscopic thermal relaxation mechanism, but the inhomo- N
geneous internal, or local, fields are esserfial. with a probability measurg., .

The Bloch equations cannot, in principle, describe pure The fast variables
spin superradiance and, in general, any other relaxation re-
gimes in which no initial coherence is imposed on the spin u={ui(e,n)[i=1,2,...;t=0}
system. To treat all possible relaxation regimes for a non- .
equilibrium spin system, coupled with a resonator, it is nec-and slow variables
essary to take into account local spin fluctuations. This can _ o )
be done by considering a microscopic model with realistic s={sj(¢:0)]=12,...t=0}
dipole interactions between nuclear spins. But since the locgjiffer from each other by the properties of their evolution
fields are essential, we cannot invoke for a microscopiGquations
model a homogeneous approximation. The latter would im-
mediately return us to the Bloch equations with the lost in- du
formation on local spin fluctuations. ai - fusete) (1)

If the number of spinsN, is not too large, say, between
10 and 16, then one can resort to a numerical solution of thegng
corresponding evolution equations. Such a computer simula-
tion, whose mathematical details can be found in Ref. 20, has ds
been accomplishéd and confirmed the crucial importance qi-fousete), (]
of local spin fluctuations. These are sufficient for describing
pure spin superradiance, with no influence of the resonatafhose right-hand sides are such that the limit
thermal noise.

Computer simulations, however, can give only a qualita- limf(u,s,¢,t,e)#0 ®)
tive picture, as the number of spins involved is incomparably £—0
smaller than what one has in real samples \itbf the order )
of 10%%. In addition, such simulations provide no analytical I Not zero, while
formulas, making it very difficult, if possible, to classify all
possible relaxation regimes occurring when varying the nu-
merous parameters of the system.

The aim of the present paper is to untangle two mutuallyHere and in what follows the matrix form of notation is used,
interrelated problems: first, to formulate a method allowingaccording to which f={f;}, g={g;}, and the product
an analytical solution for a system of nonlinear equationseg:{zjcijsjgj} is to be understood as a column of linear
taking into account local fluctuating fields, as well as dy-combinations with coefficients;; . All parameters, vari-
namic coupling and retardation effects, and second, to anggpjes, functions, and coefficients can be complex except
lyze various relaxation regimes of nonequilibrium nucleari=q representing time. The limit—0 means that all
magnets coupled with a resonator. &;—0. The right-hand sides dfl) and(2) can contain inte-
gral operators, provided that the limi{8) and(4) hold. For
brevity, the dependence of the fast,and slow,s, variables
on the parameters is not explicitly written. Equation$l)

The method to be presented here may be used not only f@nd (2) are to be complimented by initial conditions
the particular problem discussed in the Introduction, but for a
wide variety of evolution equations for different systems. In u(e,00=ugy, s(e,0)=2z,. (5)

limeg(u,s,e,t,e)=0. (4)

g—0

Il. METHOD OF SOLUTION
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The limiting propertieg3) and(4) explain why the evolution D. Basic approximation

equations of the form1) correspond to fast variables, as  the pasic approximations for slow and fast variables are

compared to the evolution equations of the typedescrib-  yefined as follows. For the slow variables this is given by the
ing slow variables. solution
The fast and slow variables are not necessarily simply
defined for each given problem, but the aim of this step is to
introduce such variables by using the information on the ex-
istence of small parameters and by choosing the appropriat . _— -
changes of variables, so that finally they could be distin-(% Eq. (11), with the initial condition

guished in the above sense.

z=2(t) (12

z(0)=2z,. (13
B. Quasi-integrals of motion Substituting(12) into (8), we have

As far as the slow variables, by definition, vary with time
much slower than the fast variables, the former may be con- x=X(@,t)=X(z(t),0,t) (14)
sidered as quasi-integrals of motion for the latter. Then we
can try to solve the equations for fast variables under slowor fast variables. The integration constant appearing when
variables kept as fixed parameters. With the renotation solving (7) is to be found from the initial condition

u—X, s—z (6) X(9,0)=Uy. (15)

wherez is fixed, from(1) we have
Note that(11) is, generally, a nonlinear equation taking
X . e i
—=f(X,z,0,t,8), (7)  into account the characteristic features of the initial system
ot (1) and (2) in the way typical of the averaging methods.
Actually, the basic approximation of this subsection is noth-
ing but the corrected first approximation of the method of
X=X(z,,t). (8)  averaging® *The solutions to Eq¢7) and(11) are close to
the solutions of the initial Egs(l) and (2) in the same
The art of choosing variables is to get fof) as simple  asymptotic(with respect toe<<1) sense as is customary for
equation as possible. In many cases this can be done so that variants of the averaging methé8:2°Thus, for the norm
(7), under fixedz, becomes a system of linear equations. Theof a vector functionz={z|i=1,2, ...} given, e.g., by the

which defines

quasi-integrals of motion play here a role similar to the guid-so-called  octahedral  form |z|==/(z)|, where
ing centers in the guiding-center approath. (z)=[zdp,, we have lim_q|z—s|=0. Similarly,
lim,_ o/lu—x||=0. For finite values ot <1, it is possible to

C. Method of averaging find estimates for the norm of the difference

|z—s|<eXxconst, and analogously, fdiu—x||<eXx const,
valid in the time interval Bst<constk. These estimates can
be easily constructed by using the inequality

For the fast variablé€8) we define the asymptotic period
T, by the condition

lim[X(z,¢,t+To)— X(z,¢,1)|=0. 9
- TR
—|Z|l<|==.
If (9) gives several solutions foF,, the smallest of them is dt dt
to be taken. And if(9) has no solution forT,, we put
To—. All details of such constructions are expounded in numerous

To find the time evolution of quasi-integrals of motion, works??2°

we substitute8) into the right-hand side ) and introduce
the averaged function E. Generalized expansion

z.0)= |

Then the equation

1 (To Corrections to the basic approximation can be found by
T_ofo g(X(z,¢,1),2,¢,t,e)dt|du,. (100  using the generalized asymptotic expansion,

u=x(e,H)+ X, Xa(@,)e",
dz _ n=1

gt - ¢9(ze) (11
gives the sought time evolution. s=z(t)+ 2 2. (o,t)e", (16)
The foundation for this step is the Krylov-Bogolubov a1

method of averaginé?? The major difference in our case is

that the Krylov—Bogolubov vector fieldl0) is defined as an about(12) and (14).

average with respect to time and, in addition, with respect to The right-hand sides ofl) and (2) are also to be ex-
the stochastic variable. panded in a similar manner, as
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0

X —
f(u,s,go,t,s)=f(X,Z,(p,t,s)-I—z fo(o,t,e)e". (17 d_tl:fl(QD,t,E)_g(Z,S)Xz’(@,t),
n=1
For example, in the first two orders we have dz; _
EZQ(X,Z,@,t,s)—g(Z,s). (18

fl=X1f)’<+Zlf£,
The initial conditions, in compliance witf13) and(15), are
1
fo=Xof )+ 2,0+ X, 2, F 1+ E(xffﬂxﬂL zf), X1(¢,00=0, z1(¢,00=0. (19

For all subsequent orders we have
where the notation

dx,
) a W:fn((pltls)l
fngf(x,z,go,t,s), x=X(e,t), z=2z(t)
. dz,
is used. EZQn(%t,S) (n=2), (20)

The expansion&l6) and(17) are to be substituted into the
evolution equation§l) and(2). In doing this, we notice that, with the initial conditions
since because dfl4)

Xn(¢,00=0, 2z,(¢,0)=0. (22)
dX_ aX oX\ dz _ _
dt ot Z+ 9z ta’ The first equation of18) can be reduced to the form
i i dx _
then invoking(7) and(11), we get d_::X1f>/(+Al_gX£u
dx _ . .
i f(xzete) +eg(ze)X (o), in which

A]_Efl_xlf)’(zzlfé .
where . _ . .
As we see, the equation fay is really linear, since

d
Xle =5 Xz e), 2=, z1<qo,t>=f[g(x,z,qo,t,w—a(z,s)]dt 22

After substituting the above expansions into Ed3.and  jmmediately follows from the second equation (@8). The
(2), we need to compare the left- and right-hand sides of thgg|ution for this linear equation is
obtained series. This comparison is made in the way standard
for dealing with generalized asymptotic expansions, whose
coefficients, unlike those of simple asymptotic series, depend
themselves on small parameters. Comparing the generalized
asymptotic expansions, one has to keep their coefficientd€re
fixed, thus making it possible to equate similar terms with
respect to the powers of the expansion parameters. This ap- p= p(¢,t,8)zf fi(o,t,e)dt.
proach, suggested by Lindstedt, has been substantiated and
developed by Poincardor the problems of celestial
mechanic€® When one equates similar terms of generalized
asymptotic expansions, one, of course, gets sufficient, but
not necessary, conditions. However, this does not give any Xzzepf e PA,dt, 22:J g.dt, (24)
trouble, since it merely reflects the known fact that the same
function can be presented by different forms of generalizedvith
asymptotic series. The mutual transformations between these
different forms correspond to the so-called resummation pro-
cedure. Generalized asymptotic expansions nowadays are not
only widely used but are the basic practical tool of perturba-
tion theory for nonlinear differential equatiofs.3° Similarly, for thenth-order corrections we obtain the gen-

Equating similar terms with respect to the poweeofwe  eral formulas
obtain the equations for the corrections of arbitrary order. It
is important to stress that all these equations are linear; thus, X :epf e PA dt

. . . e - . . n n )

there is no principal difficulty in solving them. To exemplify
this, at the same time avoiding cumbersome formulas, let us
think of ¢ as of one parameter. Then for the first-order cor-
rections we find the equations

X]_:epJ efp(A1—§X£)dt, (23)

For the second-order corrections, frg&0), we find

1
Ap=fo— X =2+ 3z F+ S (XA 2017,

Zn:fgnfldt (n=2), (25
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in which B=Ho+H, Ho=Hoe,, H=He, (28)

A =f—x,fy. consists of two parts: The first is an external magnetic field
H, directed along the axis; the second, is a field of the
The simplicity of obtaining the higher-order corrections, coil of a resonance electric circuit, the coil axis being di-
satisfying linear equations, is a considerable advantage of th@cted along the axis. The sample is inserted into the coil.
suggested generalized asymptotic expansion, as compared t0The initial state of the spin system is assumed to be non-

the guiding-center approath or higher-order averaging equilibrium and characterized by a statistical operator
method$>?3in which each subsequent approximation order;(0). So theaverage spin

invokes more and more complicated nonlinear equations.

Here we meet nonlinear equations only once, at the third (S)Y=Trp(0)S(t)=Trp(t)S,(0)

step, when solvingl11), which corresponds to the first-order

averaging method. is a function of time. The evolution equations for averages
The use Of the averaging method 0n|y at one Step makes Qan be obtained by Using either the Liouville equation for the

possible, from one side, to include the characteristic nonlinstatistical operatop(t) or the Heisenberg equations of mo-

earity into our basic approximation and, from another side, tdion for operators. We prefer the latter based on the Heisen-

define all corrections by simple formulas. The idea of divid-Perg equations.

ing solutions onto their principal parts, including essential The resonance electric circuit, coupled with the spin

nonlinearities, and perturbative corrections, defined by lineagample, is characterized by resistafiteinductancel, and

equations, greatly helps in solving complicated nonlinea€apacityC. The coil, in which the sample is immersed, has

problems® This idea, actually, goes back to the Strublen turns of cross sectiod, over a lengthl. The magnetic

techniqué®3® employed for solving the Mathieu equation. field inside the coll,

Note that the nonlinear principal part could be also defined

by other techniques known in the theory of singular pertur- H= 4Lnj (29)

bations, for instance, by using the methods of strained coor- cl

dinates, multiple scales, nonlinear renormalizations, matche% formed by an electric current satisfying the Kirchhoff
expansions, variation of parameters, and sd’otf How- y 9

ever, these methods, as is discussed in Refs. 27-30, are mc?r%uatlon

ambiguous, more cumbersome, and less general than the

method of averaging. L
Finally, we need to remember that, in our case, the solu-

tions of nonlinear equatior(d) and(2) contain the stochastic i, \hich E; is an electromotive force of external fields, if

variablee. As far as observable quantities should not depenqjmyy and of the thermal Nyquist noise; the magnetic flux
on that variable, this means that the former are to be aver-

aged with respect to the randogmwith a given probability o
measure. The solutions themselves are not necessarily such ®=—nAynpMy

" . c
guantities that can be measured directly, but usually, the ob-
servables are some functions or functionals of these solts due to thex component of the magnetization
tions. This especially concerns the fast variables, while the
slow variables are often directly measurable.

dj

Rj 1Jt' dr= d E 30
g TRIt¢ OJ(‘f) T=— —+E;, (30)

dt

Mg, (S,

IIl. NUCLEAR MAGNET
] ~and the filling factory and spin density are
The system of nuclear spins can be modeled, as is ac-

cepted in the theory of nuclear magnetic resondrug the \Y
Hamiltonian =y p=y (Vo=1A0),
0
N N .
~ 1 . respectively.
H= Egj Hjj _Mgl B-S (26) The resonance electric circuit will be called, for brevity,
the resonator, and the internal coil figl@9), the resonator
with the dipole interaction energy field. For the latter, the Kirchhoff equatiof80) can be re-
written as
TP 2 s e =
Hij:rT[Si'31—3($'nij)(sj'nij)], (27) dH t dM, CcE
ij —+273H+w2f H(ndr=—4manp——+ ——,
- dt 0 dt nAg
in which u is a nuclear magnetoiy ={S’,S/,S’} is a spin
operator, and where
R . R 1 _ 4mn?A,
nijza, Fj=ri—rj, rijE|rij|- w=\/ﬁ T

The total magnetic field is the resonator natural frequency and
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is the resonator damping.
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At the same time the small second-order corrections to the
oscillation frequencyw, can be neglected; alternatively, they
can be included into the definition @f,. The mean-field
decoupling with corrections leading to the appearance of the

It is convenient to introduce the dimensionless resonatogpin-spin relaxation parametgs can be called the corrected

field
MmH
h=-—, 31
e (31
driving force
C,LLEf
f=——, (32
NAoh ¥3
and the dimensionless average magnetization
N
M, 1
s,=—— =12, (S), (33
M i=1
in which v=x,y,z. Define the coupling constant
2
pu
Ay=1TNn—, 34
0 nﬁ,y3 ( )

characterizing the strength of coupling between the spin sys-
tem and resonator. Then the Kirchhoff equation acquires the

form

dh , [ ds,
——+2y;h+ow f h(7)dr7=—4ag——+ysf. (35
dt 0 dt

The resonator fielth, as seen fronG35), can be induced by a
driving force f and by moving, but not static, transverse

magnetization.

The statistical averaging of a spin opera&ft=S(t),
with @=x,y,z, is given by (S")=Trp(0)S/(t). We shall
use the notation

u=(S"), s=(S). (36)

The statistical operatgr(0) defines the initial values ¢86),
that is,u;(0) ands;(0).
To obtain the evolution equations for the transverse,

and longitudinals;, magnetizations, we have to average th
Heisenberg equations of motion. The dipole interactions ar
of long-range type; therefore the double-spin correlations caﬁ:

be decoupled in the mean-field approximation

(SSP)y—(SNSP)y  (i#]).

Although this decoupling is well justified for long-range
forces, it has a deficiency that is important for nonequilib-

e

mean-field approximation.
Define the arithmetic averages

N N
u= iZ]_ Uy, S= iZ]- S (37)

for the transverse and longitudinal magnetizations, respec-
tively, and also for a stationary magnetization

N
(= ;l Gi-

Introduce the notation for the local fields

z|

N
1 3 -
6iENj(2i) S8+ Cjuf +efug |, (39
which is a real quantity, and
2 *
@iz_%z (b”Ul +Cijsl'), (39)

i(#0)
which is complex. The coefficient; , b;;, andc;; are de-

fined in Appendix A.
For the averages if87) we find

N

du ) 1
i——=—(wptiy)u+yshst —>, (Sui+¢s) (40
dt Ni=1

and

ds 1 o 1o, "

'aziﬁ’sh(U—U )—|71(S—§)+mi:l (7 Ui—@iuf ).

(41)

The derivation of(40) and(41) is given in Appendix A.

The quantitieg38) and (39) are local fluctuating fields,
whose existence is due to the inhomogeneity of the spin
gistribution. If one would resort to a homogeneous approxi-
ation, in whichu; ands; do not depend on the indejx
en §; and ¢; would be zero, since for the dipole interac-
tions we have

N

N
A=
i#)

j(#1)

N
b”‘: E CijZO

i(#1)

rium processes: It does not take into account the attenuatiomhenN—c and the spin sample is macroscopic in all three
due to spin-spin interactions. This attenuation appears in thdimensions. The above sums can be nonzero if the number of
higher-order corrections to the mean-field approximationspins is not high Il<10) or if the sample has a specially
The derivation of the spin-spin damping in the second- prepared irregular shape. Then the nonzero values of these
order perturbation theory can be found, e.g., in ter Haar.sums are defined by a nonuniformity in the space distribution
This damping has to be retained for a correct description 0bf spins in the vicinity of the sample surface. Such a bound-
relaxation process, thougjp is much smaller than the Lar- ary nonuniformity for small, at least in one of the dimen-
mor frequency sions, samples can lead to unisotropic effects in relaxation
processe&®**This kind of inhomogeneity of a sample inside
_ ,U«_Ho>o a coil can be explicitly taken into account in the definition of
Qo= ' the effective filling factor®
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It is worth emphasizing that even when the spin sample isaxation mechanism. Note that the stochastic local fields in-
macroscopic and has a regular shape, so that the above sutesconnect the transverse and longitudinal components of
over the dipole interactions are nullified, nevertheless, thenagnetization, but do not change the absolute value of the
local fields(38) and(39) are nonzero if one does not invoke latter whose time variation
a uniform approximation for the magnetizationsands; .

The local nonuniformities contribute to the inhomogeneous d 2. o )

dipole broadening® What is the most important is that with- a(|“| +8%) = =27,[ul*~2y15(s— ()

out taking into account such local fluctuating fields it is im-

possible, as has been stressed by Bloembergen and Pbunds caused only by spin-spin dephasing collisions and spin-
to provide a correct description of relaxation in spin systemslattice interactions.

At the same time, if38) and (39) depend on the indei If we would decide to invoke the adiabatic approximation,
showing their local position, then Eggl0) and(41) are not  in the way one usually does, then we shouldgutdt— 0 in
closed, but for the case ®™ spins we need to deal with a (42) which immediately results in a linear relation between
system of ] equations. For a macroscopic sample withh andu, that is, in the static approximation. However, as is
N~ 102, to deal with such a number of nonlinear differential discussed in the Introduction, such an approximation could
equations is a task that is not affordable even for a computehe reasonable only at the final stage of relaxation, but cannot

A way out of this trouble is as follows. We may trg@8)  correctly describe transient phenomena.
and (39) as random fluctuating fields with a distribution

given by a probability measupe, . That is, we may put into IV. SEPARATION OF VARIABLES
correspondence to the local fiel@38) and (39) stochastic
fields To solve the system of equatio(4$2)—(44) and (35), we
use the method developed in Sec. Il. To this end, we need to
{eo}—{8}, {e}t—{eil, separate fast from slow variables by defining the appropriate

small parameters. Usually, the widtls and y, are small as
compared towy and y; is small as compared t@. The
stochastic fieldg, and¢ are also to be considered as small,
since the corresponding local fiel{38) and (39), as is evi-
dent from their definition, are of the order of the local dipole
'interactions, that is, of the order of which is a part of the
inhomogeneous dipole broadening, being much smaller

in which ¢ is real, representing the reél, and ¢ is com-
plex representing the compley; . At the present stage an
explicit form of the probability measure,, is not important
and will be considered later.

With the stochastic representation of local fields in mind
Egs.(40) and(41) are reduced to

du thanwg. Thus, there are four small parameters
a:i(ﬁ)o_QDO‘H‘}’2)U_i(73h+<P)5 (42)
Y1 Y2 YV V3
—<], —<1, —<1, —<1. (46)
and o o o @

ds i i An additional small parameter appears in the quasiresonance
qi =z (vsh ™ pu* — 5 (ysh+ e*)u—yi(s—{). (43  situation when the resonator natural frequency is close to the
Larmor frequency of spins. Then the detuning from the reso-
Sinceu is complex, the third equation, additional®?) and  nanceA gives another small parameter,
(43), can be the equation far* or for |u|2. For the latter we
have |A|
—<1 (A=w—wy). (47)

Wo
d

2_ 2_; ko *
—|u|“=—2y,|u| —i(ysh+ @)su* +i(ysh+¢*)su
dt' | valul=i(yaht¢) (vsh+e®) The quantities inverse to the corresponding widths define
(44)  the characteristic times

These equations are to be complemented by initial conditions

1
= 1 = 1 1 T = _’ 48
u(0)=ug, s(0)=z,. (45) Y1 Y2 Vs ¥ s 49

Equations(42)—(44) for the magnetizations plus E¢35) among whichT; is the spin-lattice relaxation timé;, the
for the resonator field form the basic system of equation$pin-spin dephasing tim&; the inhomogeneous dephasing
permitting a correct description of relaxation processes for dme, andT; the resonator ringing time. To be more cautious,
spin sample coupled with a resonator. The physical meanint is worth noting that, in our case, the widty, is due to
of all terms in these equations is quite transparent: The reddcal spin fluctuations which is only one of the possible
random fielde, shifts the oscillation frequency; and the term mechanisms of inhomogeneous broadening. The latter arises
vsh+ ¢ plays the role of an effective field acting on spins, also owing to crystalline defects, hyperfine interactions, and
h being the resonator field and the stochastic field caused other inhomogeneitiés that are not included in our consid-
by local fluctuations. If in(42)—(44) we pute, and ¢ zero,  eration. Therefore, her&; is of the order ofT,, both of
then we would return to the Bloch equations; however, thehem being related to dipole interactions, and g0~ v,.
presence of these random fields, as discussed above andHm»e existence of the small parametéd$) means that the
will be demonstrated in what follows, provides a crucial re-oscillation period



53 NONLINEAR SPIN DYNAMICS IN NUCLEAR MAGNETS 9239

21 some expansions in small parameters. However, this direct
Tozw—<min{T1,T2,T§ T3} (49 way is extremely tedious and does not provide insight into

0 the physics of the made simplifications. The same final result

is the shortest time as compared to the characteristic timasan be obtained in another way which is much less weari-

(48). some and more physically clear, and which is explained in
To check the propertie§3) and(4), we have to take the Appendix B.
limit in Egs. (35 and (42)—(44) by putting zero all small For definiteness, we take the electromotive fdEgén the

parameterg46) and (47) and, respectivelyp, and ¢. This  standard form
procedure yields the limits

E;=Eycoswt, (52
t
%H_ aﬂf h(7)d7—2i agwe(u—u*), which gives for the driving forc€32)
0
f=focomot, o= —Fo0 (53
du ds d =ToCOSWt, 1= 2
RN . —ul?— NAof ¥3
gi —leod 0, dt|u| 0,
. . Solving (51), we obtain the fast variable
which shows thati andh are to be treated as fast, white
and|u|? as slow variables. The second of these limits also U=Ug+U,+ Uy (54)

shows that the adiabatic approximation is not appropriate . .
whenu is not zero. consisting of three terms. The first,

At the next step we have to consider the slow variables as U= (C,e' %+ ce 1 Pet)e Tet, (55)
quasi-integrals of motion for fast variables. The correspond- _ o
ing equationg42) and(35), with the notation corresponds to spin oscillations. The second,
u=x-iy, s=z, (50 Up=X,— 1Yy, (56)

wherez is kept as a fixed parameter, can be written in theis caused by the local random fields. And the third,
form

ur=(d,€'"'+dye ') (1—e 73, (57)
%: — yoXt 0,y — @22, is due to the driving forc€5s3).
dt The resonator field
dy h=h,+h 58
=m0 X— vy (vt ez (52 e 59
is given by the sum of the term
dh 5 [t dx o
ar- 2vhme foh(”df“‘“oa+ vsf, h=""%|i(as Hiapu* ~i(a; —iap)u
3
in which 2
_ + — (a1t ar91)Z|, (59
W,=wo— P We
is the shifted frequency and the stochastic field induced by spin motion, and of the field
=@,—i f . .
=17 1o hf:zo 1—iﬁ)(e""%e"‘”‘)(l—e_”t), (60)
is separated into its real and imaginary parts. The initial con- @
ditions to(51) are produced by the electromotive force. All necessary notation
B B _ for the expression&s4)—(60) is presented in Appendix B.
X(0)=Xo, y(0)=yo, h(0)=0. Note that the factors (£e™ ?3") in (57) and(60) describe

the retardation in the interaction of spins and the resonator.
At the next step of the method displayed in Sec. Il, we
ave to substitute the fast variablé®}) and (58) into Egs.
43) and (44) for the slow variables,

It is remarkable that the system of three integro-
differential equationg51), under fixedz, is linear, and thus
can be solved exactly by employing, e.g., the method of th
Laplace transforms. Equivalently, differentiating the last of
the equations if51), we may convert51) into a linear sys- s=z, |u|=v (61)
tem of five ordinary differential equations, which is again ’ ’
exactly solvable by means of either the method of theaveraging the right-hand sides 643) and (44) over the
Laplace transforms or the matrix methods. asymptotic period of fast oscillations and also over a distri-

The exact solution of51) is so cumbersome that it is not bution of stochastic fields characterized by a probability
pleasure to write it down explicitly. Fortunately, we can sim- measureu,,. The asymptotic period, according to the defi-
plify it by using the existence of the small paramet&6)  nition (9), is just(49). Let us denote the double averaging of
and(47). Such a simplification can be done directly by, first, a functionF=F (t), over the asymptotic period and over
finding an exact solution of51) and, second, performing stochastic fields, as
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«Fn=| %f?m(t)dt

Sincegy is real andp= ¢ —i ¢, is complex, there are three dz
independent real components of the stochastic fields; thence, dt
the differential measurdu, can be written as the product

Thus, the averaging of the right-hand sides of EgS)
dug - (62 and(44), in compliance with(62), leads to the equations

=gYW—vs— 71(2— ) — v:Z,

dw
du,=du(@o)du(e1)du(ey). qr - " 2r2W—2(gyaw— Ys)Z+2y42° (68)

Itis customary to model the distribution of local dipole fields for the slow variables, where
in spin systems by a Gaussian distributioli Accepting this

and assuming, for simplicity, that each distribution @f, yi
with »=0,1,2, has the same widtp, , we get w=v?-2¢,7, S*E;g- (69)
d )= 1 _ } Py 2 % The quantitieg66) and(67) characterize the relaxation of
plen)= /_Zwex 2\ ve) | v the magnetization owing to the action of the resonator field

(60) formed by the driving forcg53). Note thaty,=0 for
Accomplishing the averagin(62), we will take into ac- the incoherent initial condition, wheny=x,—iy,=0. The
count the existence of the small parametet§) and (47).  squared amplitude of the driving ford®3), remembering
The basic formulas that are met in the course of averagin34), can be written as
the right-hand sides of43) and (44) are assembled in Ap-

2
pendix C. Averaging the coupling functions we have 2_ 8agEg (70)
) O hy5RN
73 (Y2~ ¥3) ]
a=((ay))= @o| - m This shows thatfy~ 1/\/N. Consequently, for the attenua-
tions (66) and (67) we havey~1/\/N and y;~1/N. These
ys\ m(ya—ya)A values for a macroscopic sample wiNr 10> should be
B={{az))= ao( )WJF—AZ (63)  negligibly small.

In particular, if the electromotive forcé2) corresponds
The average effective frequency and attenuation are, respet a resonance mode of the thermal Nyquist noise of the
tively, resonator, thehfor its amplitude we have

= = fi h
Q=((Q,)=wo(1+ B2), E3=5 7R cochk—“’T, (71)

I={(Ty))= 72+ awez, (64)
‘wherekg is the Boltzmann constant afidthe temperature.
where an expansion in powers of the small parameters igor « in the radio-frequency region, typical of spin systems,

(63) is used. . . . (71) simplifies to
To write the evolution equations for the slow variables

(61) in a compact form, we shall use some notation. Intro- > 73 ho
E z?RkBT —<1

duce the effective coupling parameter kT
g vs| 7(¥2— v3)? Whence, for the amplitude i(v0) we get
g= a—=ao<—)_—z- (65)
Y2 ¥2) (y2—¥3)°+A 8arkaT
2 onB . .
Define the damping fo="7 3N (Nyquist noisg. (72)
fm,3 20 Substituting(72) into (66) and (67), we again come to the
V=5 — 80 Xo+27Yo+ Az 2[xo(ﬁA a?ys) conclusion that these attenuations for a macroscopic sample
0 are negligible. We shall exemplify this by numerical esti-
mates in Sec. VI.
+Yyo(aA+By,)] (66) The conclusion that the radiation field of the coil does not
provide a microscopic relaxation mechanism, so thaand

appearing when calculating the correlatéugh;)) and also s can be neglected in the equations for slow variables, is in

the attenuation complete agreement with the statement of Bloembergen and
Pound?® that a homogeneous magnetic field, such as exists in
f5v3 8m? the coil, will never produce the initial thermal relaxation in a
YfZW{ ( 1 ) —2mA+ 4 2[((1 macroscopic sample.
wO(A +v5) 3

Let us acknowledge that, and y; are negligibly small as
compared toy,. In addition, at low temperatures, character-
(67)  istic of experiment2?~1° the spin-lattice damping is also
much smaller than the spin-spin dephasing parameter. Thus,
resulting from the calculation of the correlat@u;hy)). we have

—27B)(A%= ¥3)+ 27,A(B+2ma)]
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Vs Vi Y1 the slow variables are defined. The corresponding solutions
y_<1’ y—<1, 7—«1. (73  for the fast variables are obtained by substitutii@§) and
2 2 2 (77) into the sumg54) and (58).
Taking into consideratiori73), the slow-variable equations
in (68) can be contracted to V. RELAXATION REGIMES
dz dw Depending on the initial conditions and system param-
gt 9rW. G T —2yW(1+92). (74) eters, one can distinguish several qualitatively different re-

_ _ _ laxation regimes. The advantage of dealing with analytical
~ The equations ii74) can be solved exactly in the follow- solutions, as compared to numerical solutions, is that there
ing way. Notice that the effective attenuatibn with nota-  are explicit formulas allowing direct investigation. When the

tion (65), acquires the form problem contains many parameters, as in the considered
case, the detailed numerical analysis of the solutions by
I'=7y(1+92). (79 varying the numerous parameters becomes excessively la-

Using (75) in (74), we obtain borous if not impossible. At the same time it may happen
that not all parameters are equally important, but only some

dr ) dw of them or some their combinations. A striking example of
gt @r2w,  gr=—2lw. this kind is presented by the problem considered here. Re-

) o ] ) ally, despite the great number of various parameters, charac-
Differentiating here the first equation, we come 10grizing the spin system coupled with a resonator, the solu-

I'+2I'T'=0, which yields tions of the evolution equations contain only several
dr constants, the main one of which is the effective coupling
4T2= 75, parametel(65). The general qualitative classification of dif-
dt ferent relaxation regimes can be done by varying only three

wherey, is an integration constant. This is the Riccati equa-duantities: the coupling parametgy the initial polarization
tion whose solution is zy, and the initial transverse magnetizatiop. The latter

defines the level of initial coherence imposed on the system.
t—tg 1 First of all, one can easily observe that if there is neither
I'= ?’otam'(T_) (TOE Yo/’ initial polarization nor initial coherence, thdi@4) has only
0 0 the trivial solution

wherety, having the meaning of a delay time, is another
integration constant. FrortY5) we have z=v=0 (zp=vy=0). (81
Yo t—ty) 1 Therefore, the necessary and sufficient condition for the ex-
z= —tan?‘( ) -, (76) istence of nontrivial solutions is a nonzero initial magnetiza-
972 To g tion
and from the first equation it74) we find
ma=z3+v3>0. (82)
2
[0 gecp| Lt
W= 97> Sec T0 ) The relation between the effective relaxation timgeand
the spin-spin dephasing tim€, depends on the value of

The functionsz andw are the exact solutions ¢74). For the
slow variablev, the relation(69) gives

2
0% t—t
_0) Secp,<_0
gv2 )

gmy. Namely,

To~T, (gmps1l),
2_

ve= +2¢e, 2. (77

To<T2 (gMmp>1), (83

which follows from (79) under the assumption that
ge, <1. The latter inequality is justified owing to the defi-
nition of ¢, in (69) as of a small parameter of second order

As is seeny is an effective relaxation time.
The integration constantg, andt, are to be found from
the initial conditions

0)=2, 0)=vn. 78 with respect ta(46).
20)=2, v ) vo (78) The delay timg(80) can have either negative or positive
From (76), (77), and(78) we obtain sign depending on the value gf;:
Ye=T5+(9v2)%(v5—2¢,20), ty<0 (gz=—1),
Fo=v2(1+92), vo70=1, (79) >0 (gZp<—1). (84)

and the delay time If t,=<0, then the maximum of the transverse magnetization

vo—To (77) occurs att=0. In this case, sincgzy=—1, then
tOZ?In T (80 I'y>0, which means that the amplitude of the fast variable

YoTlo u decreases with time. Wheig>0, then the maximum of
So all integration constants in the solutidi@§) and(77) for (77), i.e., the maximum of coherence, occurgat,. In this

70
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situation, as far agz,<—1, we havd (<0, which leads to tive and to develop a weak coherence, as a result of incipient
the increase of the amplitude of The negative sign of the self-organization. But the latter is not yet enough strong to
attenuationl’, means that the system acts as a generator. shorten the relaxation time.

Varying the quantitiegz, andgv,, we may distinguish (vi) Pure superradiance
seven qualitatively different relaxation regimes.
(i) Free induction 9%<-2, vo=0,
glzol<1l, 0<gve<1, >0, 7<T;. (90
The system is prepared in a strongly nonequilibrium state
<0, 7o~=T>. 89  with a high negative polarization. The coupling with a reso-

This is the standard case of free nuclear induction, with th&@ator is also strong. No initial coherence is imposed on the
maximal coherence imposed &0 and relaxation time system. The coherence arises as a purely self-organlze_d pro-
T,. The coupling with a resonator plays no principal role. C€SS started by local stoqhastlc fields and developed owing to
Note that the conditions of the upper line and lower line inth€ resonator feedback field.

(85) are not independent, but one line follows from another, (Vil) Triggered superradiance

in compliance with(83) and (84). However, we write down

. - <-1, >1,
the relations between effective parameters, as well as those 9% 9vo

between characteristic times, to make the classification more to>0, 7o<T,. (912)
physically transparent.
(i) Collective induction The initial polarization is negative and the coupling with a
resonator is strong enough, so that the collective behavior of
07,>-1, guo>1, spins, tight with each other through the feedback field, is
important. But the relaxation is triggered by an imposed ini-
to<0, 7o<T,. (86) tial coherence. Therefore, this is a collective but not purely

. . . . . self-organized process.
This case differs from the free induction by an essential role  yjq classification, three regimes, free induction, collec-

of the coupling with the resonator, W_h'Ch IS suff|C|entI_y tive induction, and triggered superradiance, are triggered by
strong to develop collective effects leading to the shortenmgnitial coherence thrust upon spins, that is, by setting
of t.he relaxatllon timerg. When gl.}°>1’ thenTO<T2' But . #0. Local random fields do not play an important role. Such
as in the previous case, the maximal coherence is that wh|ck nds of regimes can be described by the Bloch equations.
IS ”I‘POFsed atlzo. . Other four relaxation regimes, free relaxation, collective re-
(iii) Free relaxation laxation, weak superradiance, and pure superradiance, are
initiated solely by local fields. No initial coherence is in-
volved, i.e.,ug=0. The Bloch equations cannot treat these
four regimes.

to<<O, ~T,. 8 - I .

0 70~ 12 (&7) Organizing the above classification, we separated qualita-
The initial polarizationz, and the coupling parametgrare tively different relaxation types. As is clear, there can be
not sufficiently high for the appearance of self-organized cointermediate kinds of relaxation in between these regimes.
herence. At the same time, there is no imposed coherencEor example, the case when

The relaxation process is mainly incoherent being due to the
local random fields. 92<—-1, 0<gvoe<l

(iv) Collective relaxation is between the weak superradiance and triggered superradi-
ance. In principle, everywhere in this classification the con-
dition vy=0 can be replaced bgvy<1, to include the in-
termediate regimes. However, it seems reasonable to
<0, 7o=<T>. (88) distinguish, first, different physical reasons causing different

The difference with the previous case is that the positive€laxation mechanisms.
initial polarization and the coupling parameter now are high, In the process of relaxation, the polarizatigi6), starting
so that collective effects shorten the relaxation time. How-atz=2zo, tends to
ever, the initial state is close to a stationary one, and the
change ob, b_elng again due to the local fields, is too small 7o E(Tz— ) (t>to). (92)
to yield a noticeable coherence. g

(v) Weak superradiance

g|ZO|<1, UOZOy

9%>1, vo=0,

If the initial polarizationz, is negative, theri92) shows that

a noticeable polarization reversal to a positive value occurs

for the case whemry<T,, that is, for pure and triggered
te>0, 7o=T,. (89) superradiance; ajs_o_, it may happen at coI_Iective ind.uction,

though then the initial polarization is not high. The highest

The negative initial polarization corresponds to an invertednitial polarization is needed for pure superradiance. The cor-

system. The value of this polarization and that of the coutesponding polarization threshold is twice as large as that for

pling parameteg are sufficient to make the delay time posi- weak superradiance or triggered superradiance. Equation

—2<gz<-1, vo=0,
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(92) shows as well that there can be no essential reversal of Note that ifgz,<— 1, then for anyw, the maximal coher-

polarization from positive to negative values.
It is illustrative to consider more in detail two limiting

situations, when the coupling of the spin system with a reso-
nator is either weak or strong. Start with the weak coupling
limit g<1. Then for the relaxation width and relaxation time,

from (79), we get

2

g
Yo=17v2| 1+9z+ ?(03_28* Zy)

2
g

TO:TZ[l—gzO—7(1}%-223—23*20) . (93)

For the delay timg80) we have

70, |9°

to=2In Z(vg—Zs*Zo) . (94)

The behavior of polarization is
=75+ g(vg—Zs*zo)(l—e’zwt). (95)

Wheng|zy| <1 andgv,<1, we have the case of free induc-
tion (85), if vy#0. And if vy=0, then we have free relax-
ation (87) with

2

7o, |9
to= ?m 38*20

72=279—0e, Zo(1—e 272Y), (96)

The latter regime is entirely due to local fields, since jf
were zero, thez=z, and there would be no relaxation.
In the strong coupling limig>1, from (79) we find

Zy

M—2¢&, Zp

This, using the inequality, <1, can be reduced to

Z Zp |\ €x2p
= 1+ —>—|1- —| =1,
A BT ( gmé) m3
T z 3z z
m=—43[1——37+(1———%)5¥§. (97
gm gmg gmg/ Mg
The delay timeg(80) takes the form
tN@nPa%—mmmrn—w%—m%%
) m%(mo+zo)(gmo+1)—(9m§—zo)s*zo\'
(98)
For the final polarizatior{92) at t>t, we obtain
1-24(1 ZO) (99)
z=my——|1—— — Zo|.
0T g Mo g_mg gexZo

These formulas forgug>1, depending on the value of
02y, correspond either to collective inducti@®6) or to trig-
gered superradiand®1). Whenv,=0, we come, again de-
pending on the value ofz,, to collective relaxatior(88),
weak superradianc@9), or pure superradiand®0).

ence is reached at=t,>0, when

1
Z(to)*_aa v(to)=mp. (100

To better emphasize the role of local fields, let us analyze
the case when there is no initial coherence, that is,

m0:|20|, UOIO, (101)
andg|z,|>1. Then
126] o] 1+ 1 (1 1 )8*
=3 Z —_— - |
Yo=9|Zo| Y2 9% 9%) 7o
T, 1 3 e,
To=——7|1—-—+|1-——|—|. (102
9lzol |7 92 9%/ 2o
The delay time(80) becomes
Zo|— 2 Zo|—1)— -1
(e Topp| U2l = 20)(0f20 ~ 1) (02~ Dye|
2 7| (2ol + 20) (9l 20l + 1)~ (920~ 1) &, |
The final polarization92) att>t, is
1
z=|zo| = ——[l20| =20+ (920~ D&, ]. (104
9lzo|

Consider separately the cases of positive and negative ini-
tial polarizations. When the latter is positive, i.e.,

(109
then the delay tim¢€103) and final polarization(104) are

Zo=|z0],

C T (92— )&, |
O 2 722y(92+ 1)~ (92— Ve, |’
1
Z=Zg— 1_a €4 (t>t0) (106)

Simplifying this for asymptotically larggz,>1, and keep-
ing in mind thate, <1, we have

t ~E| Ex ~E
T2 2z ™ gz
I=Zp— &4 (t>to) (107)

Formulas(106) and(107) correspond to collective relaxation
(88) due to local fields.
Pass to the case of the negative initial polarization

(108

Then, for the delay timg103) and final polarization104)
we find

Zo=—12o|.

o0, 2|2| (9|20l = 1) +(glzo| + e |
) (9]0l +1)e, ,
|z 2+ 1+ ! ) (t>1p) (109
z=|zy| — = — >1p).
g 9lzol | 0
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This can describe weak superradiari88) or pure superra- P(t) but contains a small factor makirgt) <P(t), so that
diance(90). Under the inequalitieg|zo|>1 ande, <1 the  P(t) is much easier to measute!®
latter expressions change to

VI. NUMERICAL ESTIMATES
To 220

to= = In| ==

> T2 The aim of the present paper is not to discuss some par-
*

T 9lzo| ticular experiments but rather to give the general picture of
possible relaxation processes. Nevertheless, the general
2 qualitative picture can be better understood if illustrated by
z=|zp| - =+e, (t<ty), (110 guantitative estimates. For this purpose, let us accept the
9 values of parameters typical of experiméht$®with proton-
which corresponds to pure superradiaf@@). The origin of ~ rfich materials, such as propanadiol3isO,, butanol
this phenomenon is completely due to local fluctuating fieldsC4H¢OH, and ammonia NK. Employing the method of
An interesting question is, which part of dipole interaction dynamic nuclear polarization, it is possible to polarize spins
is mainly responsible for starting the relaxation process if0 a level of polarization reaching almost 100%. The
the regime of pure superradiance? Looking at E48 and  samples polarized in this way are good examples of meta-
(43), we see that it is the random field which initiates the ~ stable nuclear magnets. The lifetime of such metastable ma-
process, whilep, only shifts the oscillation frequency. The terials at low temperature is very long. This tinig,, is
stochastic fieldp represents the local field89), which are ~ related to the spin-lattice relaxation time. The order of its
related to the term&;; andc;; of the dipole interactions. magnitude is given by the relatioh,~(a/Al)*T,, in which
These terms are called nonsecular dipole interactions co®~10 ° cm is the mean distance between spins,
trary toa;; , which is called the secular dipole interactfom A'f_lo_saw 10_1.3 cm is the coefficient of linear magneto-
this way, it is the nonsecular dipole interactions that originatestriction, andT, is the spin-spin relaxation time. Whence,
an initial relaxation and, consequently, the pure spin superf1/T,~10%.
radiance. The spin-spin relaxation time is characterized by dipole
The results obtained make it possible to give one morénteractions yieldingT,~%a/ u?~10"° s. Consequently,
justification for the term “spin superradiance.” For a systemT,;~10° s. The relaxation tim&% , related to local spin fluc-
of N nuclei an effective number of radiators may be defineduations, is also due to dipole interactions because of which
as T5~10%s.

In principle, there exists another longitudinal relaxation
moN time due to the interaction of spins through the common
< electromagnetic field formed under the magnetodipole spin

radiation. This time, which will be denoted By, to distin-
wheremy is the initial magnetization introduced {82) and  guish it from the spin-lattice relaxation tim;, can be es-
S is nuclear spin. Averaging the power of current timated asT;~(\/a)?T,, where\ is the radiation wave-
length. For the external magnetic fiel,~10* G, spins

NeffE

792 radiate in the radio-frequency region wiily~10° s~ 1, and
pw(t)ERJ‘Z: N—3h2, thus with the wavelengthA\~10° cm. This gives
4ao T/ T,~10% or T{~10'5 s. As far asT}/T,~10%, the lon-
according to(62), we have gitudinal relaxation is practically due to the spin-lattice in-

teractions only. The interaction through the radiation electro-
hy2 magnetic field is so weak, as compared to dipole interactions,
_ _ 2, a2t ?2 that it does not play any role. This drastically distinguishes
PO=({P(1)=N(a"+ %) ag v spin systems from atomic and molecular ones exhibiting su-
: , perradiance. In the latter systems, the effective interaction
The average current power for a superradiant regime has @,,gh the common radiation field is not only important but
maximum at =t,>0, wherev (to) =My, in compliance With  goryes as the basic mechanism for the appearance of strong
(100. Therefore, collective correlations and coherence.
The resonator ringing tim@; in the case of quasireso-

P(tg) ~ma~N2Z,. nance, whenw~ wo~10® s™1, and for the quality factor
_ R Q~10% is T3~10 © s. The time of fast oscillations, defined
Also, as is seen fron97), the radiation time in (49), is To~10"8 s; so it is really the shortest among other
characteristic times.
TONm(;lNNe—ﬁl. The damping parameters corresponding to the character-

istic times in (48) are y;~10"° s7! y,~10° s
The situation when the radiation pulse is proportional to the,* —1¢° s=1, and y;~10° s~*. In this way, for the small
number of radiators squared, and the radiation time is inparameters ir46) we have
versely proportional to this number, is characteristic of su-
perradiance. N
Note that the intensity of magnetodipole radiatid(t), ﬁ~10_13 ﬁ~10_3 7_2~10_3 £~10_2
as a function of time, behaves similarly to the current power wq " wg " wg ' w '
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The coupling constant(34), owing to the relations state targets is of great practical importance for the study of
#y,~ n?la® and pa®=1, wherep is the particle density, is scattering in high- and intermediate-energy physicshe
ag~mny,lys~10"1. The average coupling functions in phenomenon of spin superradiance can be used to achieve
(63) are a~y,/we~10"2 and B<y,/wy~10"3. In the the desired fast repolarization.
case of exact resonance, wher- 0, the latter is identically
zero, 3=0. Thus,a and B are also small parameters.

The maximal value of the effective coupling parameter

(65) is of the order ofr?. Therefore it varies in the interval A method has been presented for treating the nonlinear
0$g“19- i , systems of differential or integro-differential equations with
Consider the damping$6) and(67) caused by the action gigchastic terms. Such terms simulate local random fields of
of the electromotive force corresponding to a resonancgyteracting statistical systems.
mode of the thermal Nyquist noige withSt.he amplitude). The use of the method has made it possible to give a
The typical temp_esrature in experlmeHES; isT~0.1 K.As  (etailed analysis of nonlinear spin relaxation in nuclear mag-
far as kgT~10"> eV and hw~10"" eV, we have pets coupled with resonance electric circuits. The consider-
fiw/kgT~10 2 hence the approximatiofir2) is justified.  ation is based on a microscopic Hamiltonian with realistic
fo~10%/YN. Then, for the damping(66) we get ys Seven qualitatively different regimes of relaxation are
Oc(105/\/N) s~ 1. In the case of passive initial conditions, found. Three of them, free induction, collective induction,
when xg=Yy,=0, the value of(66) is exactly zero,ys=0. and triggered superradiance, are initiated by primary coher-
Expression(67) yields y;~(10'/N) s~1. For a sample of ence imposed upon spins, with local fields playing no essen-
about 1 cni the number of protons isl~10?. Thence, the tial role. These cases can be reasonably treated by the Bloch
thermal-noise forcing field has the amplitutie~10"1°, so  equations. Four other regimes, free relaxation, collective re-
for the damping(66) and (67) we gety,<10’ s™! and laxation, weak superradiance, and pure superradiance, are
yi~10" % 571 These quantities are so much less thgn triggered by local fields. The cases when no primary coher-
that there is no reason to keep them in the equations. Thignce is imposed cannot be treated by the standard Bloch
also concerng/, . Really, the relations i(73) are equations.
Dealing with superradiant relaxation in nuclear magnets,
one may naturally remember superradiance occurring in
Ys qo12 Y _qgan Y _qp10 atomic systems. The latter has been studied in detail both
Y2 Ty oy ' experimentally and theoretically. There exists a number of
. . books and surveys on atomic superradiance. We cite here
Therefore, the thermal Nyquist noise of a resonator has ngnly one of the recent reviewswhere further references can
influence on the spin dynamics in a macroscopic sample. pe found. Although the relaxation process in an atomic sys-
One might ask a question: What should be the size of @m with photon transitions between two selected levels
sample on which the resonator thermal noise could produce ghares a few formal similarities with the spin relaxation,
noticeable effect? This would happemyd~ y,, which gives  there are much more principal differences, both in physics
N~1, or wheny;~ y,, from whereN~100. ForN>100the  and mathematics, between the superradiant phenomena in
Nyquist noise is practically of no importance. spin and atomic systems. It is instructive to emphasize the
The method of SO|Ving the equations, used in the presefﬁorresponding ana|ogies and differences.
paper, makes it possible to take into account the retardation The main formal similarities are as follows: An atomic
effects, related to the appearance of factors likesystem is often put into a resonator cavity discriminating one
(1—e"74). These effects are important for the correct de-or several resonance modes. Pure spin superradiance is
scription of relaxation processes. For example, the thresholginalogous to the superfluorescence of atomic systems, both
of initial polarization for superradiance, weak or triggered, asheing the processes of coherent self-organization. In the col-
follows from (89) and (91), is zy~ —1/g. As a percentage, |ection of induced atomic dipoles, superfluorescence evolves
for spin 1/2 andg~20, this means that the superradiancefrom a state of complete inversion of atoms, and is due to
threshold is—10%. Respectively, the threshold of pure su-effective dipole-dipole interactions induced by the exchange
perradiance, given i90), is —20%. These values are in of photons between atoms. These induced dipole-dipole in-
agreement with experiments;**while, if we would neglect  teractions of atoms are similar in their form, to real dipole
the retardation replacing the factor{®~"3') by 1, then for  interactions of spins, since both of them can be expressed
the superradiance threshold we would gety,/agwo  through Pauli matrices. Using the pseudospin representation
=—1my3/gwy~10"3. As a percentage, this makes for two-level systems, the atomic relaxation can be described
—0.1%, which is unrealistically small. by an effective Bloch equation. The relaxation regimes in
In the regime of pure spin superradiance, the characterispin systems, which can also be described by the Bloch
tic times 7, and t, can be estimated fronfl10. Since equations, should be similar to their atomic counterparts.
70~T,/9|zo|, taking g|zp|~ 10, we find the radiation time This concerns, for instance, the triggered spin superradiance
70~107% s. The local-field parameter, defined §69), is  and triggered atomic superradiance, or the free nuclear in-
e,~107% Whence, for the delay time we obtaity,  duction and free atomic induction.
~(3-5)r,, that is, t;~10 61075 s. The reversed final However, many of these similarities are only formal and
polarization, according t¢110, can reach 90%. Note that even can be misleading, since there are several principal dif-
the problem of the fast polarization reversal of proton solid-ferences between atomic and spin systems.

VIIl. DISCUSSION
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(i) The relaxation of induced atomic dipoles is physically analogous, not to the real spin-spin interaction, but to the
different from that of polarized nuclear spins. effective coupling between spins through the resonator feed-

The process of relaxation of an inverted atomic system ispack fie_Id. The formallana_logy between the efft_active ir)terac—
accompanied by radiation into free space. This electric dition of induced atomic dipoles and the real interaction of

pole radiation can be of quite high intensity. spins, based on the fact that both these interactions are ex-
The relaxation in a spin system coupled with a resonatoPressed through the Pauli matrices, is misleading.
as has been pointed out by Friedberg and Hartnt&im a (v) The mathematical description of atomic and spin re-

radiationless process involving merely nonradiative transfefaxation requires, in general, different methods.

of energy from the sample to the coil, in which the energy is 1€ radiation in atomic systems is usually treated by the

dissipated. slow-varying-amplitude approximation which is somewhat
(i) The role of a low-quality cavity for atoms and of a similar to the averaging method although the latter is more

resonant circuit for spins is drastically different. regular and mathematically grou_nded. L
For atoms a low-quality cavity is used whose aim is to For the system of nuclear spins, the complication comes

define a sufficiently narrow band of preferential modes. mfrom the necessity of taking into account local random fields

the following process the cavity does not play an active rolewithout which it is impossible to describe several important

in developing coherence, but superfluorescence evolves dggdmes. €.g., such as pure spin superradiance. Also, there is

to induced dipole-dipole interactions an additional equation, the Kirchhoff equation, characteriz-
In the case of nuclear spins there is no need to discrimit\9 the coupling between the spin sample and a resonant

nate modes, as far as, for spin one-half, the sole mode I%Iectric circuit. This coupling, for a correct description of
already defir'1ed by the ieeman splitting of'the spin energy irpP!N relaxation, cannot b.e rgduced to a simple prop_ort|onal|ty
an external magnetic field. In other words, one could say tha(?f the sample magneUzatlon to the resonator field. The
a cavity for atoms does the same, that is, defines workin ethod developed_ln t_he present paper seems to be the_r_nost
modes, as an external magnetic field for spins. But a high__dequate for co_n5|der|ng the spin relaxation in nonequilib-
quality resonator for spins plays another and crucial role durilum magnets with resonators.

ing the whole process of spin relaxation, the resonator feed-
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The dipole interaction between spins is a real interaction
existing without any radiation field. The actual form of this APPENDIX A: EVOLUTION EQUATIONS

interaction is quite different from that of the effective atomic i . . i
interaction. Related to this is the principal difference of their, 1he evolution equationg40) and (41) are derived in the
roles. As is known from the theory of such phenomena afollowing way. _ P

nuclear magnetic resonance or nuclear induction, the dipole EXPressing the spin operator§'=3(S +S7) and
spin interactions can never be responsible for organizing & = i/2 (S’ —S')  through the ladder  operators
collective spin evolution. Vice versa, the dipole spin interac-S, =S —iS andS" =S+iS!, we may cast the dipole in-
tions are responsible for dephasing the motion of spins deteraction energy27) into the form

stroying their coherence. At the same time, the effective in-
teractions of spins through the common radiation field is too
weak for playing any noticeable role.

(iv) The origin of the evolving coherence is absolutely
different for atomic and for spin systems.

In an inverted atomic system, the process starts with in-
coherent spontaneous radiation of atoms. This creates an ef- . . . -
fective interaction between atoms through the common ral’ WL LS C Rl
diation field. The arising interaction collectivizes the atoms
leading to their coherent radiation. 2

In a polarized spin system, the relaxation begins owing to a=
random spin fluctuations caused by spin-spin interactions. i
Then the resonator feedback field appears organizing the co-
herence of spin motion, while the spin interactions at this 342
stage start playing a destructive role. Thus, the effective in- bij=— issinzﬁi,-exp(—iaoij),
teraction of atoms through the common radiation field is ar

1

Hij=aj; 5

SISi- 5SS | +b;S'S +b5S S,

+2(c;S +ctS)S,

(1_3 0050”),
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3u?

. . a;
Cij=— 2, FSIN20;) ) exp —igy), 3 2 ”(s S’ -S'S)+b;S'S —biS'S/
ij i(#0
where 9;; and ¢;; are the spherical angles 6f” These b . Ll o
interaction coefficients enjoy the symmetry property +(6S ¢SS+ S HS —S7)
aj=aj, by=bj, cj=c;j. —ihy (S0,

With the commutation relationS’,S;" == &;S~ and
[S' ,ST]=25ijS|Z we have the Heisenberg equations of mo-which are supplemented by a term taking into account spin-
tion lattice interactions leading to the longitudinal dampipg,

N and¢; being a stationary value of the smncomponent.

d Of course, the evolution equations could be written

'ﬁasl igi) (aij shorter, invoking some tensor notation. However, we need
here their explicit form in order to separate different parts of
dipole spin interactions. As analysis shows, these different
interaction terms play principally different physical role.

Averaging the above equations of motion, in the frame-

ssz+zsz ) 2b;S's’

+0(S Sy — 25+t S S) ] uHoS™

+uHS, work of the corrected mean-field approximation, yields
|
N
dy; ; 1 aij * * *
|——= —(w0+|y2)ui+y3hs+—_2 —(Sin+2UiSj)_2bijSin +Cij(uiuj _ZSiSj)+CijUin ,
dt ﬁj(;&,) 2
ds .

1 1 _
|dt 2y3h(u| u; )+ 2 ~{a,J(u|uJ u;*uj) + by uff u —b uuj+(cijui*—ci’}ui)sj}—wl(s—gi).

From here, for the arithmetic averag€), with the local The action of the resonator field on the spin system
fields (38) and(39), we obtain(40) and (41). involves, as follows from(51), the small parametey;. Ne-
glecting this parameter reduces the first two equatioiSin
APPENDIX B: FAST VARIABLES to the system
The formal solution of the last equation {51) can be dx
written as the sumh=hg¢+h; in which the first term is a EE—YZXJF WY~ P27,

feedback field induced in the resonator by moving spins and
the second term is a resonator field formed by driving forces.

The resonator feedback field may be presented either as the d_y__w X— Y2yt @12,
convolution dt

td The solution to the latter is
hs= —4a0f ax(t— TIW(7)dr
0

. _ @1
X=(2pCoW 4t + bgsinw t)e™ 72!+ —z,

or as the Stieltjes integral Wy
— ‘ t, P2
hg=—4aqy | W(t—7)dx(7), y=(bocosw t—agsinw,t)e 72"+ .2
0 ¢
and the resonator forcing field is given by the convolution where
t
hf:'y3f W(t_T)f(T)d'T, aozxo_ﬂz, bo:)’o— &Z.
0 C!)<P wq,
where the transfer function is Employing this gives the feedback field
Y3 . _ 2 dx 01
W(t)=| coswst— w—35|nw3t) e 73, hg=— 7_3 agt + a2w¢< X— w—q}z) ,

with wz=w?— 3. in which
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aoy3(y2—¥3) (yo— ®

= elr2=7t_17, bo=— =2[(1+2as2)Xo+ 12

1 (72_7’3)2+(A+§D0)2[ ] 2 Q‘p[( 2 ) 0 1 yO]

oZ Q r

_ CYOF),S(A'F(PO) (72— ya)t + 2 7 2 {(1+ 20[22) —+alz—) (F)

e S Qo+l e
: . Q, r, r,
If in the expression fohg we put @;=0,a,= const, we +|2a,2 —+ale— —(1+ 2a22) <p2 ;
W, ¢

return to the static-coupling approximation, while if we put
a;=const, a,=0, then we get the dynamic-coupling the terms
approximatior”. However, in general, a;=a4(t) and

a,= a,(t) are nonzero functions of time. The temporal de- W,
pendence of the coupling functions portrays the retardation Xe= 02412
due to a gradual switching on of the coupling between the £r
spins and resonator. Really, as is seen, at the initial moment w,Z
the coupling is absent, y¢_Qi+F2

Iy
(1+2a,2) 1= | — —a1Z] @3],
W,

r
(1+2a22)(w——a12) P1

¢

a1(0)=a2(0)=0.

r
+ 1+2a22+2a12<w—¢—a12) (,02] (Bl)

Using the first of the equations i51) for hg yields ¢

are originated by the local random fields, and the last terms

he=—[(a1y,— a0 ,)X— a1 Y+ (1@t aspq)Z]. t
STyt V2T 2% 1Y T imP2T 201 Xf:73J Gy(t=7)h¢(n)d7,
0

Substituting this back intg51) reduces the system of three

integro-differential equations to the system of two ordinary
differential equations yi= st Ga(t—=7h¢(m)d7 (B2
dx are due to the resonator forcing field, the Green functions
52_72X+w¢y_ ©2Z, being
w
dy Gi(t)=z=2sinQ te ot
qi- (0= 20172+ 20,0 ,2)X— (Y21 20,0 ,2)y () Q, @
+((pl+2a1(p22+2a2(p12+ )/3hf)Z Gz(t):ZC0ﬂ¢te7r‘Pt_alZGl(t)'
for the fast variables. In this way, the fast variable, defined by Eq(42), takes
There is no problem in solving the latter system, whichthe form of (54) where
gives

1 [
Ci=5(a;—by)— 5(by+ay),
x=(a,cod) t+b;sinQ t)e Te'+x, + X, ! 2( e 2( 1he

y=(a,cod) t+bysinQ t)e et +y +y;, 022%(31+ b,) + Ii(bl_az)-
where the first parts describe the spin oscillations with the
effective frequency To find an explicit expression far; , induced by an elec-
tromotive forceE;, entering into the right-hand side of the
Q,=w,(1- a§22+ 2a,2)'72 Kirchhoff equation(30), we need to concretize the form of
. . E;. Accepting for the latter the standard expression
effective attenuation E{=Eqcoswt for the driving force(32) we have(53). Then

the convolution forh; gives
F,=v,+ta1zo,,

- fo Y3 . _
and coefficients hf=§ coaut—;smwt (1—e~ 7Y,
=X~ Xy, A2=Yo Yo Substituting the resonator forcing fiehd into x; andy;, we
get
b _2 + ol 1+2 jot | fx q—iot —yat
1—Q—¢(YO a’lzxo)__2_2' ( azz)Q ¢1 =(f,e''+ffe o) (1—e 73,
<P
0, T yi=(fe''+3e 1) (1-e"),
+ _+alz (’D)(PZ ’ ..
Wy Q where the coefficients are
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fow,vsz 7
=g azer2 Qetile) (et =1-—-,
8O (AL+TY) 7 ® g
Q . : Q—wo+ill
f2=f1(lw—:—alz), <<e'(Qw+IFKP)t>>z w—O,
and the effective detuning isA =w—Q,. Therefore
us=Xx;—iy; transforms ta57) with the coefficients ((elh=7tyy =1+ wlo(iA_ ¥s),
d,=f (1+ 2y +i )
1=T —tlagzy, .
Vo (et 1-e r)=—i 2,
o
Q
dzsz(l—w—“’ﬂalz). )
(2 <<eiA’[(1_ef'y3’[)>>zﬂ_w_z,
APPENDIX C: SLOW VARIABLES
Here we present the basic formulas for the averages de- (€@t QetiTolt(] — g7 73l ) )= —| 27’_3
fined in(62) and used in Sec. IV when deriving the equations “o
for slow variables. ) 2
For the stochastic fields, with the Gaussian distribution in PN
- (((1-e779)%))= ,
mind, we have 3w§

(e0))={{¢1))=({¢2))=0, 2
(oo =D =(e2)) =72 .

((ez“”t(l—e”’a’t)z)):(l—277i)z—wg,
Note that, instead of defining a particular distribution, wewhere(} , andI' , are defined in Appendix B, and andI’

¢ ¢
could postulate the above properties of random fields. are given in(64).
In the following expressions the averagi(@®) is accom- We emphasize the importance of the factor—(d 73!
panied by expansions in powers of small paramet#46s responsible for the retardation effects.
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