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A method is developed for solving nonlinear systems of differential, or integrodifferential, equations with
stochastic fields. The method makes it possible to give an accurate solution for an interesting physical problem:
What are the peculiarities of nonlinear spin dynamics in nonequilibrium nuclear magnets coupled with a
resonator? Evolution equations for nuclear spins are derived based on a Hamiltonian with dipole interactions.
The ensemble of spins is coupled with a resonator electric circuit. Seven types of main relaxation regimes are
found: free induction, collective induction, free relaxation, collective relaxation, weak superradiance, pure
superradiance, and triggered superradiance. The initial motion of spins can be originated by two reasons, either
by an imposed initial coherence or by local spin fluctuations due to nonsecular dipole interactions. The
relaxation regimes caused by the second reason cannot be described by the Bloch equations. Numerical
estimates show good agreement with experiment.

I. INTRODUCTION

Spin dynamics in polarized nonequilibrium systems is
usually described by using the Bloch equations for the com-
ponents of uniform magnetization. The derivation of the
Bloch equations from the evolution equations for a spin
model can be found, for example, in ter Haar.1 The solution
of the Bloch equations for the case of small deviations from
a stationary state is straightforward and well known in the
theory of magnetic resonance.2 The situation becomes more
complicated when the spin system is coupled with a resona-
tor. Then there appears an essential nonlinearity due to the
action of resonator feedback field. The system of the coupled
Bloch and resonator-field equations is typical of the theory of
maser amplifiers and generators.3

The nonlinear system of the Bloch and resonator-field
equations can be slightly simplified by invoking the slowly
varying amplitude approximation.3 However, this does not
help much, since the resulting equations are, as before, non-
linear. To achieve further simplification, one resorts to the
adiabatic approximation which leads to the proportionality of
the feedback field to transverse magnetization, that is, to the
static coupling.4–7 The adiabatic approximation, as is
known,8 works well only at the final stage of relaxation pro-
cesses when different variables adiabatically follow each
other, but it cannot correctly describe intermediate stages
where transient phenomena occur. The incorrectness of the
static-coupling approximation is physically evident, as only
moving spins, but not immovable, are able to induce a field
in resonator. More accurate is the dynamic-coupling
approximation9 in which the feedback field is proportional to
the time derivative of transverse magnetization. But both
these, static- as well as dynamic-coupling, approximations
do not take into account retardation effects that may be im-
portant for transient phenomena.

Moreover, the Bloch equations themselves may be inap-
propriate for explaining some kinds of relaxation processes.
This concerns, for example, the interpretation of the recent
series of experiments10–15 observing nuclear spin superradi-

ance. In these experiments a nonequilibrium system of polar-
ized nuclear spins is placed inside a coil of a resonance elec-
tric circuit. The initial polarization is directed opposite to an
external magnetic field. If this polarization is sufficiently
high and the coupling with a resonator is enough strong, then
the power of the current, as a function of time, after some
delay, displays a sharp burst with a damping time much
shorter than the dephasing timeT2 . This time behavior of
the current power is analogous to that of the radiation inten-
sity of atoms or molecules in the case of optical superradi-
ance. Because of this analogy, the corresponding coherent
phenomenon in spin systems has also been called superradi-
ance or, more concretely, spin superradiance. Friedberg and
Hartmann16 pointed out that the whole process of interaction
of a spin system and a resonance coil, in fact, involves no
radiation into free space but merely nonradiative transfer of
energy from the sample to the coil, where the energy is dis-
sipated Ohmically. Nevertheless, the term ‘‘spin superradi-
ance’’ has become commonly used. The excuse for this is not
solely the formal analogy of temporal behavior of current
power, for spin systems, and of radiation intensity, for atomic
and molecular systems, but also a deep physical similarity:
Spin superradiance, as well as optical superradiance, is a
collective process of coherent self-organization, although the
self-organized coherence of spin motion develops not be-
cause of a common radiation field, as in atomic and molecu-
lar systems, but owing to a resonator feedback field. In ad-
dition, coherent motion of spins inevitably produces coherent
magnetodipole emission with properties completely analo-
gous to superradiance of optical systems, though the magne-
todipole radiation intensity is too weak to be measured as
easy as the power of current.17

In the same way as for optical systems,18 one has to dis-
tinguish the pure from triggered spin superradiance.Pure
spin superradianceis a purely self-organized process starting
from an absolutely incoherent state when the average trans-
verse magnetization is strictly zero.Triggered spin superra-
diance is a process in which self-organization also plays an
important role but whose beginning is triggered by an initial
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coherence imposed onto the spin system, that is, by assuming
that the mean transverse magnetization is not zero.

The interpretation of pure spin superradiance cannot be
based on the Bloch equations because of the following. If the
initial transverse magnetization is zero, then, in the content
of these equations, the relaxation of an inverted spin system
can be due only to two reasons: either to spin-lattice interac-
tions characterized by a relaxation timeT1 or to thermal
damping caused by the Nyquist noise of resonator. At very
low temperature, typical of experiments10–15 with polarized
nuclear spins, the spin-lattice relaxation timeT1 is much
longer than the dephasing timeT2; therefore this mechanism
cannot develop coherence. The resonator thermal damping,
as shown by Bloembergen and Pound,19 is negligibly small
for macroscopic systems, the thermal relaxation time being
proportional to the number of spins,N, in the sample, and so
being much longer than not onlyT2 but evenT1 . Thus, the
resonator Nyquist noise can never produce the initial thermal
relaxation. The radiation field in the coil does not provide a
microscopic thermal relaxation mechanism, but the inhomo-
geneous internal, or local, fields are essential.19

The Bloch equations cannot, in principle, describe pure
spin superradiance and, in general, any other relaxation re-
gimes in which no initial coherence is imposed on the spin
system. To treat all possible relaxation regimes for a non-
equilibrium spin system, coupled with a resonator, it is nec-
essary to take into account local spin fluctuations. This can
be done by considering a microscopic model with realistic
dipole interactions between nuclear spins. But since the local
fields are essential, we cannot invoke for a microscopic
model a homogeneous approximation. The latter would im-
mediately return us to the Bloch equations with the lost in-
formation on local spin fluctuations.

If the number of spins,N, is not too large, say, between
10 and 103, then one can resort to a numerical solution of the
corresponding evolution equations. Such a computer simula-
tion, whose mathematical details can be found in Ref. 20, has
been accomplished17 and confirmed the crucial importance
of local spin fluctuations. These are sufficient for describing
pure spin superradiance, with no influence of the resonator
thermal noise.

Computer simulations, however, can give only a qualita-
tive picture, as the number of spins involved is incomparably
smaller than what one has in real samples withN of the order
of 1023. In addition, such simulations provide no analytical
formulas, making it very difficult, if possible, to classify all
possible relaxation regimes occurring when varying the nu-
merous parameters of the system.

The aim of the present paper is to untangle two mutually
interrelated problems: first, to formulate a method allowing
an analytical solution for a system of nonlinear equations,
taking into account local fluctuating fields, as well as dy-
namic coupling and retardation effects, and second, to ana-
lyze various relaxation regimes of nonequilibrium nuclear
magnets coupled with a resonator.

II. METHOD OF SOLUTION

The method to be presented here may be used not only for
the particular problem discussed in the Introduction, but for a
wide variety of evolution equations for different systems. In

this section we will preserve the generality of the presenta-
tion. All necessary specifications related to the spin dynamics
in nuclear magnets will be expounded in the following sec-
tions. To better understand the principal ideas of the method,
it is convenient to divide it into several steps.

A. Separation of variables

Suppose that in the problem under consideration there is a
set

«5$« i u i51,2, . . . ;u« i u!1%

of small parameters. Depending on the way in which these
parameters enter into the evolution equations, we may dis-
tinguish fast and slow variables. The terms describing local
fluctuating fields can be treated as random, or stochastic,
variables

w5$w i u i51,2, . . . ;mw%,

with a probability measuremw .
The fast variables

u5$ui~w,t !u i51,2, . . . ;t>0%

and slow variables

s5$sj~w,t !u j51,2, . . . ;t>0%

differ from each other by the properties of their evolution
equations

du

dt
5 f ~u,s,w,t,«! ~1!

and

ds

dt
5«g~u,s,w,t,«!, ~2!

whose right-hand sides are such that the limit

lim
«→0

f ~u,s,w,t,«!Þ0 ~3!

is not zero, while

lim
«→0

«g~u,s,w,t,«!50. ~4!

Here and in what follows the matrix form of notation is used,
according to which f5$ f i%, g5$gi%, and the product
«g5$( j ci j« jgj% is to be understood as a column of linear
combinations with coefficientsci j . All parameters, vari-
ables, functions, and coefficients can be complex except
t>0 representing time. The limit«→0 means that all
« i→0. The right-hand sides of~1! and ~2! can contain inte-
gral operators, provided that the limits~3! and ~4! hold. For
brevity, the dependence of the fast,u, and slow,s, variables
on the parameters« is not explicitly written. Equations~1!
and ~2! are to be complimented by initial conditions

u~w,0!5u0 , s~w,0!5z0 . ~5!
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The limiting properties~3! and~4! explain why the evolution
equations of the form~1! correspond to fast variables, as
compared to the evolution equations of the type~2! describ-
ing slow variables.

The fast and slow variables are not necessarily simply
defined for each given problem, but the aim of this step is to
introduce such variables by using the information on the ex-
istence of small parameters and by choosing the appropriate
changes of variables, so that finally they could be distin-
guished in the above sense.

B. Quasi-integrals of motion

As far as the slow variables, by definition, vary with time
much slower than the fast variables, the former may be con-
sidered as quasi-integrals of motion for the latter. Then we
can try to solve the equations for fast variables under slow
variables kept as fixed parameters. With the renotation

u→X, s→z, ~6!

wherez is fixed, from~1! we have

]X

]t
5 f ~X,z,w,t,«!, ~7!

which defines

X5X~z,w,t !. ~8!

The art of choosing variables is to get for~7! as simple
equation as possible. In many cases this can be done so that
~7!, under fixedz, becomes a system of linear equations. The
quasi-integrals of motion play here a role similar to the guid-
ing centers in the guiding-center approach.21

C. Method of averaging

For the fast variable~8! we define the asymptotic period
T0 by the condition

lim
«→0

uX~z,w,t1T0!2X~z,w,t !u50. ~9!

If ~9! gives several solutions forT0 , the smallest of them is
to be taken. And if~9! has no solution forT0 , we put
T0→`.

To find the time evolution of quasi-integrals of motion,
we substitute~8! into the right-hand side of~2! and introduce
the averaged function

ḡ~z,«![E F 1T0E0T0g„X~z,w,t !,z,w,t,«…dtGdmw . ~10!

Then the equation

dz

dt
5«ḡ~z,«! ~11!

gives the sought time evolution.
The foundation for this step is the Krylov-Bogolubov

method of averaging.22,23The major difference in our case is
that the Krylov–Bogolubov vector field~10! is defined as an
average with respect to time and, in addition, with respect to
the stochastic variablew.

D. Basic approximation

The basic approximations for slow and fast variables are
defined as follows. For the slow variables this is given by the
solution

z5z~ t ! ~12!

of Eq. ~11!, with the initial condition

z~0!5z0 . ~13!

Substituting~12! into ~8!, we have

x5x~w,t !5X„z~ t !,w,t… ~14!

for fast variables. The integration constant appearing when
solving ~7! is to be found from the initial condition

x~w,0!5u0 . ~15!

Note that~11! is, generally, a nonlinear equation taking
into account the characteristic features of the initial system
~1! and ~2! in the way typical of the averaging methods.
Actually, the basic approximation of this subsection is noth-
ing but the corrected first approximation of the method of
averaging.22–25The solutions to Eqs.~7! and~11! are close to
the solutions of the initial Eqs.~1! and ~2! in the same
asymptotic~with respect to«!1) sense as is customary for
all variants of the averaging method.22–25Thus, for the norm
of a vector functionz5$zi u i51,2, . . .% given, e.g., by the
so-called octahedral form izi[( i u^zi&u, where
^zi&[*zidmw , we have lim«→0iz2si50. Similarly,
lim«→0iu2xi50. For finite values of«!1, it is possible to
find estimates for the norm of the difference
iz2si<«3const, and analogously, foriu2xi<«3const,
valid in the time interval 0<t<const/«. These estimates can
be easily constructed by using the inequality

d

dt
izi< Idzdt I .

All details of such constructions are expounded in numerous
works.22–25

E. Generalized expansion

Corrections to the basic approximation can be found by
using the generalized asymptotic expansion,

u5x~w,t !1 (
n51

`

xn~w,t !«n,

s5z~ t !1 (
n51

`

zn~w,t !«n, ~16!

about~12! and ~14!.
The right-hand sides of~1! and ~2! are also to be ex-

panded in a similar manner, as

9234 53V. I. YUKALOV



f ~u,s,w,t,«!5 f ~x,z,w,t,«!1 (
n51

`

f n~w,t,«!«n. ~17!

For example, in the first two orders we have

f 15x1f x81z1f z8 ,

f 25x2f x81z2f z81x1z1f xz9 1
1

2
~x1

2f xx9 1z1
2f zz9 !,

where the notation

f x8[
]

]x
f ~x,z,w,t,«!, x5x~w,t !, z5z~ t !

is used.
The expansions~16! and~17! are to be substituted into the

evolution equations~1! and~2!. In doing this, we notice that,
since because of~14!

dx

dt
5S ]X

]t D
z

1S ]X

]z D
t

dz

dt
,

then invoking~7! and ~11!, we get

dx

dt
5 f ~x,z,w,t,«!1«ḡ~z,«!Xz8~w,t !,

where

Xz8~w,t ![
]

]z
X~z,w,t !, z5z~ t !.

After substituting the above expansions into Eqs.~1! and
~2!, we need to compare the left- and right-hand sides of the
obtained series. This comparison is made in the way standard
for dealing with generalized asymptotic expansions, whose
coefficients, unlike those of simple asymptotic series, depend
themselves on small parameters. Comparing the generalized
asymptotic expansions, one has to keep their coefficients
fixed, thus making it possible to equate similar terms with
respect to the powers of the expansion parameters. This ap-
proach, suggested by Lindstedt, has been substantiated and
developed by Poincare´ for the problems of celestial
mechanics.26 When one equates similar terms of generalized
asymptotic expansions, one, of course, gets sufficient, but
not necessary, conditions. However, this does not give any
trouble, since it merely reflects the known fact that the same
function can be presented by different forms of generalized
asymptotic series. The mutual transformations between these
different forms correspond to the so-called resummation pro-
cedure. Generalized asymptotic expansions nowadays are not
only widely used but are the basic practical tool of perturba-
tion theory for nonlinear differential equations.27–30

Equating similar terms with respect to the power of«, we
obtain the equations for the corrections of arbitrary order. It
is important to stress that all these equations are linear; thus,
there is no principal difficulty in solving them. To exemplify
this, at the same time avoiding cumbersome formulas, let us
think of « as of one parameter. Then for the first-order cor-
rections we find the equations

dx1
dt

5 f 1~w,t,«!2ḡ~z,«!Xz8~w,t !,

dz1
dt

5g~x,z,w,t,«!2ḡ~z,«!. ~18!

The initial conditions, in compliance with~13! and~15!, are

x1~w,0!50, z1~w,0!50. ~19!

For all subsequent orders we have

dxn
dt

5 f n~w,t,«!,

dzn
dt

5gn~w,t,«! ~n>2!, ~20!

with the initial conditions

xn~w,0!50, zn~w,0!50. ~21!

The first equation of~18! can be reduced to the form

dx1
dt

5x1f x81D12ḡXz8 ,

in which

D1[ f 12x1f x85z1f z8 .

As we see, the equation forx1 is really linear, since

z1~w,t !5E @g~x,z,w,t,«!2ḡ~z,«!#dt ~22!

immediately follows from the second equation of~18!. The
solution for this linear equation is

x15epE e2p~D12ḡXz8!dt, ~23!

where

p5p~w,t,«![E f x8~w,t,«!dt.

For the second-order corrections, from~20!, we find

x25epE e2pD2dt, z25E g1dt, ~24!

with

D2[ f 22x2f x85z2f z81x1z1f xz9 1
1

2
~x1

2f xx9 1z1
2f zz9 !.

Similarly, for thenth-order corrections we obtain the gen-
eral formulas

xn5epE e2pDndt,

zn5E gn21dt ~n>2!, ~25!

53 9235NONLINEAR SPIN DYNAMICS IN NUCLEAR MAGNETS



in which

Dn[ f n2xnf x8 .

The simplicity of obtaining the higher-order corrections,
satisfying linear equations, is a considerable advantage of the
suggested generalized asymptotic expansion, as compared to
the guiding-center approach21 or higher-order averaging
methods22,23 in which each subsequent approximation order
invokes more and more complicated nonlinear equations.
Here we meet nonlinear equations only once, at the third
step, when solving~11!, which corresponds to the first-order
averaging method.

The use of the averaging method only at one step makes it
possible, from one side, to include the characteristic nonlin-
earity into our basic approximation and, from another side, to
define all corrections by simple formulas. The idea of divid-
ing solutions onto their principal parts, including essential
nonlinearities, and perturbative corrections, defined by linear
equations, greatly helps in solving complicated nonlinear
problems.31 This idea, actually, goes back to the Struble
technique32,33 employed for solving the Mathieu equation.
Note that the nonlinear principal part could be also defined
by other techniques known in the theory of singular pertur-
bations, for instance, by using the methods of strained coor-
dinates, multiple scales, nonlinear renormalizations, matched
expansions, variation of parameters, and so on.27–30 How-
ever, these methods, as is discussed in Refs. 27–30, are more
ambiguous, more cumbersome, and less general than the
method of averaging.

Finally, we need to remember that, in our case, the solu-
tions of nonlinear equations~1! and~2! contain the stochastic
variablew. As far as observable quantities should not depend
on that variable, this means that the former are to be aver-
aged with respect to the randomw with a given probability
measure. The solutions themselves are not necessarily such
quantities that can be measured directly, but usually, the ob-
servables are some functions or functionals of these solu-
tions. This especially concerns the fast variables, while the
slow variables are often directly measurable.

III. NUCLEAR MAGNET

The system of nuclear spins can be modeled, as is ac-
cepted in the theory of nuclear magnetic resonance,2 by the
Hamiltonian

Ĥ5
1

2(iÞ j

N

Hi j2m(
i51

N

BW •SW i ~26!

with the dipole interaction energy

Hi j5
m2

r i j
3 @SW i•SW j23~SW i•nW i j !~SW j•nW i j !#, ~27!

in which m is a nuclear magneton,SW i5$Si
x ,Si

y ,Si
z% is a spin

operator, and

nW i j[
rW i j
r i j

, rW i j[rW i2rW j , r i j[urW i j u.

The total magnetic field

BW 5HW 01HW , HW 05H0eW z , HW 5HeW x ~28!

consists of two parts: The first is an external magnetic field
H0 directed along thez axis; the second,H, is a field of the
coil of a resonance electric circuit, the coil axis being di-
rected along the axisx. The sample is inserted into the coil.

The initial state of the spin system is assumed to be non-
equilibrium and characterized by a statistical operator
r̂(0). So theaverage spin

^SW i&[Trr̂~0!SW i~ t !5Trr̂~ t !SW i~0!

is a function of time. The evolution equations for averages
can be obtained by using either the Liouville equation for the
statistical operatorr̂(t) or the Heisenberg equations of mo-
tion for operators. We prefer the latter based on the Heisen-
berg equations.

The resonance electric circuit, coupled with the spin
sample, is characterized by resistanceR, inductanceL, and
capacityC. The coil, in which the sample is immersed, has
n turns of cross sectionA0 over a lengthl . The magnetic
field inside the coil,

H5
4pn

cl
j , ~29!

is formed by an electric current satisfying the Kirchhoff
equation

L
d j

dt
1Rj1

1

CE0
t

j ~t!dt52
dF

dt
1Ef , ~30!

in which Ef is an electromotive force of external fields, if
any, and of the thermal Nyquist noise; the magnetic flux

F5
4p

c
nA0hrMx

is due to thex component of the magnetization

Mx5
m

N(
i51

N

^Si
x&,

and the filling factorh and spin densityr are

h[
V

V0
, r[

N

V
~V0[ lA0!,

respectively.
The resonance electric circuit will be called, for brevity,

the resonator, and the internal coil field~29!, the resonator
field. For the latter, the Kirchhoff equation~30! can be re-
written as

dH

dt
12g3H1v2E

0

t

H~t!dt524phr
dMx

dt
1
cEf

nA0
,

where

v[
1

ALC
S L[

4pn2A0

c2l D
is the resonator natural frequency and
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g3[
R

2L
5

v

2Q SQ[
vL

R D
is the resonator damping.

It is convenient to introduce the dimensionless resonator
field

h[
mH

\g3
, ~31!

driving force

f[
cmEf

nA0\g3
2 , ~32!

and the dimensionless average magnetization

sn[
M n

m
5
1

N(
i51

N

^Si
n&, ~33!

in which n5x,y,z. Define the coupling constant

a0[ph
rm2

\g3
, ~34!

characterizing the strength of coupling between the spin sys-
tem and resonator. Then the Kirchhoff equation acquires the
form

dh

dt
12g3h1v2E

0

t

h~t!dt524a0

dsx
dt

1g3f . ~35!

The resonator fieldh, as seen from~35!, can be induced by a
driving force f and by moving, but not static, transverse
magnetization.

The statistical averaging of a spin operatorSi
a5Si

a(t),
with a5x,y,z, is given by ^Si

a&[Trr̂(0)Si
a(t). We shall

use the notation

ui[^Si
2&, si[^Si

z&. ~36!

The statistical operatorr̂(0) defines the initial values of~36!,
that is,ui(0) andsi(0).

To obtain the evolution equations for the transverse,ui ,
and longitudinal,si , magnetizations, we have to average the
Heisenberg equations of motion. The dipole interactions are
of long-range type; therefore the double-spin correlations can
be decoupled in the mean-field approximation

^Si
aSj

b&→^Si
a&^Sj

b& ~ iÞ j !.

Although this decoupling is well justified for long-range
forces, it has a deficiency that is important for nonequilib-
rium processes: It does not take into account the attenuation
due to spin-spin interactions. This attenuation appears in the
higher-order corrections to the mean-field approximation.
The derivation of the spin-spin dampingg2 in the second-
order perturbation theory can be found, e.g., in ter Haar.1

This damping has to be retained for a correct description of
relaxation process, thoughg2 is much smaller than the Lar-
mor frequency

v0[
mH0

\
.0.

At the same time the small second-order corrections to the
oscillation frequencyv0 can be neglected; alternatively, they
can be included into the definition ofv0 . The mean-field
decoupling with corrections leading to the appearance of the
spin-spin relaxation parameterg2 can be called the corrected
mean-field approximation.

Define the arithmetic averages

u[
1

N(
i51

N

ui , s[
1

N(
i51

N

si ~37!

for the transverse and longitudinal magnetizations, respec-
tively, and also for a stationary magnetization

z[
1

N(
i51

N

z i .

Introduce the notation for the local fields

d i[
1

N (
j ~Þ i !

N S 32 ai j sj1ci j uj*1ci j* uj D , ~38!

which is a real quantity, and

w i[2
2

\ (
j ~Þ i !

~bi j uj*1ci j sj !, ~39!

which is complex. The coefficientsai j , bi j , andci j are de-
fined in Appendix A.

For the averages in~37! we find

i
du

dt
52~v01 ig2!u1g3hs1

1

N(
i51

N

~d iui1w isi ! ~40!

and

i
ds

dt
5
1

2
g3h~u2u* !2 ig1~s2z!1

1

2N(
i51

N

~w i* ui2w iui* !.

~41!

The derivation of~40! and ~41! is given in Appendix A.
The quantities~38! and ~39! are local fluctuating fields,1

whose existence is due to the inhomogeneity of the spin
distribution. If one would resort to a homogeneous approxi-
mation, in whichuj and sj do not depend on the indexj ,
then d i andw i would be zero, since for the dipole interac-
tions we have

(
j ~Þ i !

N

ai j. (
j ~Þ i !

N

bi j. (
j ~Þ i !

N

ci j.0

whenN→` and the spin sample is macroscopic in all three
dimensions. The above sums can be nonzero if the number of
spins is not high (N,10) or if the sample has a specially
prepared irregular shape. Then the nonzero values of these
sums are defined by a nonuniformity in the space distribution
of spins in the vicinity of the sample surface. Such a bound-
ary nonuniformity for small, at least in one of the dimen-
sions, samples can lead to unisotropic effects in relaxation
processes.16,34This kind of inhomogeneity of a sample inside
a coil can be explicitly taken into account in the definition of
the effective filling factor.19
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It is worth emphasizing that even when the spin sample is
macroscopic and has a regular shape, so that the above sums
over the dipole interactions are nullified, nevertheless, the
local fields~38! and~39! are nonzero if one does not invoke
a uniform approximation for the magnetizationsuj and sj .
The local nonuniformities contribute to the inhomogeneous
dipole broadening.35What is the most important is that with-
out taking into account such local fluctuating fields it is im-
possible, as has been stressed by Bloembergen and Pound,19

to provide a correct description of relaxation in spin systems.
At the same time, if~38! and ~39! depend on the indexi

showing their local position, then Eqs.~40! and~41! are not
closed, but for the case ofN spins we need to deal with a
system of 3N equations. For a macroscopic sample with
N;1023, to deal with such a number of nonlinear differential
equations is a task that is not affordable even for a computer.

A way out of this trouble is as follows. We may treat~38!
and ~39! as random fluctuating fields with a distribution
given by a probability measuremw . That is, we may put into
correspondence to the local fields~38! and ~39! stochastic
fields

$w0%↔$d i%, $w%↔$w i%,

in which w0 is real, representing the reald i , andw is com-
plex representing the complexw i . At the present stage an
explicit form of the probability measuremw is not important
and will be considered later.

With the stochastic representation of local fields in mind,
Eqs.~40! and ~41! are reduced to

du

dt
5 i ~v02w01 ig2!u2 i ~g3h1w!s ~42!

and

ds

dt
5

i

2
~g3h1w!u*2

i

2
~g3h1w* !u2g1~s2z!. ~43!

Sinceu is complex, the third equation, additional to~42! and
~43!, can be the equation foru* or for uuu2. For the latter we
have

d

dt
uuu2522g2uuu22 i ~g3h1w!su*1 i ~g3h1w* !su.

~44!

These equations are to be complemented by initial conditions

u~0!5u0 , s~0!5z0 . ~45!

Equations~42!–~44! for the magnetizations plus Eq.~35!
for the resonator field form the basic system of equations
permitting a correct description of relaxation processes for a
spin sample coupled with a resonator. The physical meaning
of all terms in these equations is quite transparent: The real
random fieldw0 shifts the oscillation frequency; and the term
g3h1w plays the role of an effective field acting on spins,
h being the resonator field andw the stochastic field caused
by local fluctuations. If in~42!–~44! we putw0 andw zero,
then we would return to the Bloch equations; however, the
presence of these random fields, as discussed above and as
will be demonstrated in what follows, provides a crucial re-

laxation mechanism. Note that the stochastic local fields in-
terconnect the transverse and longitudinal components of
magnetization, but do not change the absolute value of the
latter whose time variation

d

dt
~ uuu21s2!522g2uuu222g1s~s2z!

is caused only by spin-spin dephasing collisions and spin-
lattice interactions.

If we would decide to invoke the adiabatic approximation,
in the way one usually does, then we should putdu/dt→0 in
~42! which immediately results in a linear relation between
h andu, that is, in the static approximation. However, as is
discussed in the Introduction, such an approximation could
be reasonable only at the final stage of relaxation, but cannot
correctly describe transient phenomena.

IV. SEPARATION OF VARIABLES

To solve the system of equations~42!–~44! and ~35!, we
use the method developed in Sec. II. To this end, we need to
separate fast from slow variables by defining the appropriate
small parameters. Usually, the widthsg1 andg2 are small as
compared tov0 and g3 is small as compared tov. The
stochastic fieldsw0 andw are also to be considered as small,
since the corresponding local fields~38! and ~39!, as is evi-
dent from their definition, are of the order of the local dipole
interactions, that is, of the order ofg* which is a part of the
inhomogeneous dipole broadening,g* being much smaller
thanv0 . Thus, there are four small parameters

g1

v0
!1,

g2

v0
!1,

g*
v0

!1,
g3

v
!1. ~46!

An additional small parameter appears in the quasiresonance
situation when the resonator natural frequency is close to the
Larmor frequency of spins. Then the detuning from the reso-
nanceD gives another small parameter,

uDu
v0

!1 ~D[v2v0!. ~47!

The quantities inverse to the corresponding widths define
the characteristic times

T1[
1

g1
, T2[

1

g2
, T2*[

1

g*
, T3[

1

g3
, ~48!

among whichT1 is the spin-lattice relaxation time,T2 the
spin-spin dephasing time,T2* the inhomogeneous dephasing
time, andT3 the resonator ringing time. To be more cautious,
it is worth noting that, in our case, the widthg* is due to
local spin fluctuations which is only one of the possible
mechanisms of inhomogeneous broadening. The latter arises
also owing to crystalline defects, hyperfine interactions, and
other inhomogeneities35 that are not included in our consid-
eration. Therefore, hereT2* is of the order ofT2 , both of
them being related to dipole interactions, and sog*;g2 .
The existence of the small parameters~46! means that the
oscillation period
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T0[
2p

v0
!min$T1 ,T2 ,T2* ,T3% ~49!

is the shortest time as compared to the characteristic times
~48!.

To check the properties~3! and ~4!, we have to take the
limit in Eqs. ~35! and ~42!–~44! by putting zero all small
parameters~46! and ~47! and, respectively,w0 andw. This
procedure yields the limits

dh

dt
→2v2E

0

t

h~t!dt22ia0v0~u2u* !,

du

dt
→ iv0u,

ds

dt
→0,

d

dt
uuu2→0,

which shows thatu andh are to be treated as fast, whiles
and uuu2 as slow variables. The second of these limits also
shows that the adiabatic approximation is not appropriate
whenu is not zero.

At the next step we have to consider the slow variables as
quasi-integrals of motion for fast variables. The correspond-
ing equations~42! and ~35!, with the notation

u5x2 iy , s5z, ~50!

wherez is kept as a fixed parameter, can be written in the
form

dx

dt
52g2x1vwy2w2z,

dy

dt
52vwx2g2y1~g3h1w1!z, ~51!

dh

dt
522g3h2v2E

0

t

h~t!dt24a0

dx

dt
1g3f ,

in which

vw[v02w0

is the shifted frequency and the stochastic field

w5w12 iw2

is separated into its real and imaginary parts. The initial con-
ditions to ~51! are

x~0!5x0 , y~0!5y0 , h~0!50.

It is remarkable that the system of three integro-
differential equations~51!, under fixedz, is linear, and thus
can be solved exactly by employing, e.g., the method of the
Laplace transforms. Equivalently, differentiating the last of
the equations in~51!, we may convert~51! into a linear sys-
tem of five ordinary differential equations, which is again
exactly solvable by means of either the method of the
Laplace transforms or the matrix methods.

The exact solution of~51! is so cumbersome that it is not
pleasure to write it down explicitly. Fortunately, we can sim-
plify it by using the existence of the small parameters~46!
and~47!. Such a simplification can be done directly by, first,
finding an exact solution of~51! and, second, performing

some expansions in small parameters. However, this direct
way is extremely tedious and does not provide insight into
the physics of the made simplifications. The same final result
can be obtained in another way which is much less weari-
some and more physically clear, and which is explained in
Appendix B.

For definiteness, we take the electromotive forceEf in the
standard form

Ef5E0cosvt, ~52!

which gives for the driving force~32!

f5 f 0cosvt, f 0[
cmE0

nA0\g3
2 . ~53!

Solving ~51!, we obtain the fast variable

u5us1uw1uf ~54!

consisting of three terms. The first,

us5~c1e
iVwt1c2e

2 iVwt!e2Gwt, ~55!

corresponds to spin oscillations. The second,

uw5xw2 iyw , ~56!

is caused by the local random fields. And the third,

uf5~d1e
ivt1d2e

2 ivt!~12e2g3t!, ~57!

is due to the driving force~53!.
The resonator field

h5hs1hf ~58!

is given by the sum of the term

hs5
vw

g3
F i ~a11 ia2!u*2 i ~a12 ia2!u

1
2

vw
~a1w21a2w1!zG , ~59!

induced by spin motion, and of the field

hf5
f 0
4 S 12 i

g3

v D ~eivt1e2 ivt!~12e2g3t!, ~60!

produced by the electromotive force. All necessary notation
for the expressions~54!–~60! is presented in Appendix B.

Note that the factors (12e2g3t) in ~57! and~60! describe
the retardation in the interaction of spins and the resonator.

At the next step of the method displayed in Sec. II, we
have to substitute the fast variables~54! and ~58! into Eqs.
~43! and ~44! for the slow variables,

s5z, uuu5v, ~61!

averaging the right-hand sides of~43! and ~44! over the
asymptotic period of fast oscillations and also over a distri-
bution of stochastic fields characterized by a probability
measuremw . The asymptotic period, according to the defi-
nition ~9!, is just~49!. Let us denote the double averaging of
a functionF5Fw(t), over the asymptotic period and over
stochastic fields, as
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^^F&&[E F 1T0E0T0Fw~ t !dtGdmw . ~62!

Sincew0 is real andw5w12 iw2 is complex, there are three
independent real components of the stochastic fields; thence,
the differential measuredmw can be written as the product

dmw5dm~w0!dm~w1!dm~w2!.

It is customary to model the distribution of local dipole fields
in spin systems by a Gaussian distribution.3,35Accepting this
and assuming, for simplicity, that each distribution ofwn ,
with n50,1,2, has the same widthg* , we get

dm~wn!5
1

A2p
expH 2

1

2 S wn

g*
D 2J dwn

g*
.

Accomplishing the averaging~62!, we will take into ac-
count the existence of the small parameters~46! and ~47!.
The basic formulas that are met in the course of averaging
the right-hand sides of~43! and ~44! are assembled in Ap-
pendix C. Averaging the coupling functions we have

a[^^a1&&5a0S g3

v0
D p~g22g3!

2

~g22g3!
21D2 ,

b[^^a2&&5a0S g3

v0
D p~g22g3!D

~g22g3!
21D2 . ~63!

The average effective frequency and attenuation are, respec-
tively,

V[^^Vw&&5v0~11bz!,

G[^^Gw&&5g21av0z, ~64!

where an expansion in powers of the small parameters in
~63! is used.

To write the evolution equations for the slow variables
~61! in a compact form, we shall use some notation. Intro-
duce the effective coupling parameter

g[a
v0

g2
5a0S g3

g2
D p~g22g3!

2

~g22g3!
21D

. ~65!

Define the damping

gs[
f 0g3

2

8v0
H x012py01

2v0z

D21g2
2 @x0~bD2ag2!

1y0~aD1bg2!#J ~66!

appearing when calculating the correlator^^ushf&& and also
the attenuation

g f5
f 0
2g3

4

32v0
2~D21g2

2! H S 11
8p2

3 Dg222pD1
v0z

D21g2
2 @~a

22pb!~D22g2
2!12g2D~b12pa!#J ~67!

resulting from the calculation of the correlator^^ufhf&&.

Thus, the averaging of the right-hand sides of Eqs.~43!
and ~44!, in compliance with~62!, leads to the equations

dz

dt
5gg2w2gs2g1~z2z!2g fz,

dw

dt
522g2w22~gg2w2gs!z12g fz

2 ~68!

for the slow variables, where

w[v222«* z, «*[
g
*
2

v0
2 . ~69!

The quantities~66! and~67! characterize the relaxation of
the magnetization owing to the action of the resonator field
~60! formed by the driving force~53!. Note thatgs[0 for
the incoherent initial condition, whenu0[x02 iy050. The
squared amplitude of the driving force~53!, remembering
~34!, can be written as

f 0
25

8a0E0
2

\g3
2RN

. ~70!

This shows thatf 0;1/AN. Consequently, for the attenua-
tions ~66! and ~67! we havegs;1/AN andg f;1/N. These
values for a macroscopic sample withN;1023 should be
negligibly small.

In particular, if the electromotive force~52! corresponds
to a resonance mode of the thermal Nyquist noise of the
resonator, then3 for its amplitude we have

E0
25

\v

2p
g3R coth

\v

2kBT
, ~71!

wherekB is the Boltzmann constant andT the temperature.
Forv in the radio-frequency region, typical of spin systems,
~71! simplifies to

E0
2.

g3

p
RkBT S \v

kBT
!1D .

Whence, for the amplitude in~70! we get

f 0
25

8a0kBT

p\g3N
~Nyquist noise!. ~72!

Substituting~72! into ~66! and ~67!, we again come to the
conclusion that these attenuations for a macroscopic sample
are negligible. We shall exemplify this by numerical esti-
mates in Sec. VI.

The conclusion that the radiation field of the coil does not
provide a microscopic relaxation mechanism, so thatgs and
g f can be neglected in the equations for slow variables, is in
complete agreement with the statement of Bloembergen and
Pound19 that a homogeneous magnetic field, such as exists in
the coil, will never produce the initial thermal relaxation in a
macroscopic sample.

Let us acknowledge thatgs andg f are negligibly small as
compared tog2 . In addition, at low temperatures, character-
istic of experiments,10–15 the spin-lattice damping is also
much smaller than the spin-spin dephasing parameter. Thus,
we have
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gs

g2
!1,

g f

g2
!1,

g1

g2
!1. ~73!

Taking into consideration~73!, the slow-variable equations
in ~68! can be contracted to

dz

dt
5gg2w,

dw

dt
522g2w~11gz!. ~74!

The equations in~74! can be solved exactly in the follow-
ing way. Notice that the effective attenuationG, with nota-
tion ~65!, acquires the form

G5g2~11gz!. ~75!

Using ~75! in ~74!, we obtain

dG

dt
5~gg2!

2w,
dw

dt
522Gw.

Differentiating here the first equation, we come to
G̈12GĠ50, which yields

dG

dt
1G25g0

2 ,

whereg0 is an integration constant. This is the Riccati equa-
tion whose solution is

G5g0tanhS t2t0
t0

D S t0[
1

g0
D ,

where t0 , having the meaning of a delay time, is another
integration constant. From~75! we have

z5
g0

gg2
tanhS t2t0

t0
D2

1

g
, ~76!

and from the first equation in~74! we find

w5S g0

gg2
D 2sech2S t2t0

t0
D .

The functionsz andw are the exact solutions of~74!. For the
slow variablev, the relation~69! gives

v25S g0

gg2
D 2sech2S t2t0

t0
D12«* z. ~77!

As is seen,t0 is an effective relaxation time.
The integration constantsg0 and t0 are to be found from

the initial conditions

z~0!5z0 , v~0!5v0 . ~78!

From ~76!, ~77!, and~78! we obtain

g0
25G0

21~gg2!
2~v0

222«* z0!,

G0[g2~11gz0!, g0t051, ~79!

and the delay time

t05
t0
2
lnUg02G0

g01G0
U. ~80!

So all integration constants in the solutions~76! and~77! for

the slow variables are defined. The corresponding solutions
for the fast variables are obtained by substituting~76! and
~77! into the sums~54! and ~58!.

V. RELAXATION REGIMES

Depending on the initial conditions and system param-
eters, one can distinguish several qualitatively different re-
laxation regimes. The advantage of dealing with analytical
solutions, as compared to numerical solutions, is that there
are explicit formulas allowing direct investigation. When the
problem contains many parameters, as in the considered
case, the detailed numerical analysis of the solutions by
varying the numerous parameters becomes excessively la-
borous if not impossible. At the same time it may happen
that not all parameters are equally important, but only some
of them or some their combinations. A striking example of
this kind is presented by the problem considered here. Re-
ally, despite the great number of various parameters, charac-
terizing the spin system coupled with a resonator, the solu-
tions of the evolution equations contain only several
constants, the main one of which is the effective coupling
parameter~65!. The general qualitative classification of dif-
ferent relaxation regimes can be done by varying only three
quantities: the coupling parameterg, the initial polarization
z0 , and the initial transverse magnetizationv0 . The latter
defines the level of initial coherence imposed on the system.

First of all, one can easily observe that if there is neither
initial polarization nor initial coherence, then~74! has only
the trivial solution

z5v50 ~z05v050!. ~81!

Therefore, the necessary and sufficient condition for the ex-
istence of nontrivial solutions is a nonzero initial magnetiza-
tion

m0
2[z0

21v0
2.0. ~82!

The relation between the effective relaxation timet0 and
the spin-spin dephasing timeT2 depends on the value of
gm0 . Namely,

t0'T2 ~gm0<1!,

t0,T2 ~gm0.1!, ~83!

which follows from ~79! under the assumption that
g«*!1. The latter inequality is justified owing to the defi-
nition of «* in ~69! as of a small parameter of second order
with respect to~46!.

The delay time~80! can have either negative or positive
sign depending on the value ofgz0:

t0<0 ~gz0>21!,

t0.0 ~gz0,21!. ~84!

If t0<0, then the maximum of the transverse magnetization
~77! occurs at t50. In this case, sincegz0>21, then
G0.0, which means that the amplitude of the fast variable
u decreases with time. Whent0.0, then the maximum of
~77!, i.e., the maximum of coherence, occurs att5t0 . In this
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situation, as far asgz0,21, we haveG0,0, which leads to
the increase of the amplitude ofu. The negative sign of the
attenuationG0 means that the system acts as a generator.

Varying the quantitiesgz0 andgv0 , we may distinguish
seven qualitatively different relaxation regimes.

~i! Free induction:

guz0u,1, 0,gv0,1,

t0,0, t0'T2 . ~85!

This is the standard case of free nuclear induction, with the
maximal coherence imposed att50 and relaxation time
T2 . The coupling with a resonator plays no principal role.
Note that the conditions of the upper line and lower line in
~85! are not independent, but one line follows from another,
in compliance with~83! and ~84!. However, we write down
the relations between effective parameters, as well as those
between characteristic times, to make the classification more
physically transparent.

~ii ! Collective induction:

gz0.21, gv0.1,

t0,0, t0,T2 . ~86!

This case differs from the free induction by an essential role
of the coupling with the resonator, which is sufficiently
strong to develop collective effects leading to the shortening
of the relaxation timet0 . Whengv0@1, thent0!T2 . But
as in the previous case, the maximal coherence is that which
is imposed att50.

~iii ! Free relaxation:

guz0u,1, v050,

t0,0, t0'T2 . ~87!

The initial polarizationz0 and the coupling parameterg are
not sufficiently high for the appearance of self-organized co-
herence. At the same time, there is no imposed coherence.
The relaxation process is mainly incoherent being due to the
local random fields.

~iv! Collective relaxation:

gz0.1, v050,

t0,0, t0,T2 . ~88!

The difference with the previous case is that the positive
initial polarization and the coupling parameter now are high,
so that collective effects shorten the relaxation time. How-
ever, the initial state is close to a stationary one, and the
change ofv, being again due to the local fields, is too small
to yield a noticeable coherence.

~v! Weak superradiance:

22,gz0,21, v050,

t0.0, t0'T2 . ~89!

The negative initial polarization corresponds to an inverted
system. The value of this polarization and that of the cou-
pling parameterg are sufficient to make the delay time posi-

tive and to develop a weak coherence, as a result of incipient
self-organization. But the latter is not yet enough strong to
shorten the relaxation time.

~vi! Pure superradiance:

gz0,22, v050,

t0.0, t0,T2 . ~90!

The system is prepared in a strongly nonequilibrium state
with a high negative polarization. The coupling with a reso-
nator is also strong. No initial coherence is imposed on the
system. The coherence arises as a purely self-organized pro-
cess started by local stochastic fields and developed owing to
the resonator feedback field.

~vii ! Triggered superradiance:

gz0,21, gv0.1,

t0.0, t0,T2 . ~91!

The initial polarization is negative and the coupling with a
resonator is strong enough, so that the collective behavior of
spins, tight with each other through the feedback field, is
important. But the relaxation is triggered by an imposed ini-
tial coherence. Therefore, this is a collective but not purely
self-organized process.

In this classification, three regimes, free induction, collec-
tive induction, and triggered superradiance, are triggered by
initial coherence thrust upon spins, that is, by settingv0
Þ0. Local random fields do not play an important role. Such
kinds of regimes can be described by the Bloch equations.
Other four relaxation regimes, free relaxation, collective re-
laxation, weak superradiance, and pure superradiance, are
initiated solely by local fields. No initial coherence is in-
volved, i.e.,v050. The Bloch equations cannot treat these
four regimes.

Organizing the above classification, we separated qualita-
tively different relaxation types. As is clear, there can be
intermediate kinds of relaxation in between these regimes.
For example, the case when

gz0,21, 0,gv0,1

is between the weak superradiance and triggered superradi-
ance. In principle, everywhere in this classification the con-
dition v050 can be replaced bygv0,1, to include the in-
termediate regimes. However, it seems reasonable to
distinguish, first, different physical reasons causing different
relaxation mechanisms.

In the process of relaxation, the polarization~76!, starting
at z5z0 , tends to

z.
g0

g
~T22t0! ~ t@t0!. ~92!

If the initial polarizationz0 is negative, then~92! shows that
a noticeable polarization reversal to a positive value occurs
for the case whent0,T2 , that is, for pure and triggered
superradiance; also, it may happen at collective induction,
though then the initial polarization is not high. The highest
initial polarization is needed for pure superradiance. The cor-
responding polarization threshold is twice as large as that for
weak superradiance or triggered superradiance. Equation
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~92! shows as well that there can be no essential reversal of
polarization from positive to negative values.

It is illustrative to consider more in detail two limiting
situations, when the coupling of the spin system with a reso-
nator is either weak or strong. Start with the weak coupling
limit g!1. Then for the relaxation width and relaxation time,
from ~79!, we get

g0.g2F11gz01
g2

2
~v0

222«* z0!G ,
t0.T2F12gz02

g2

2
~v0

222z0
222«* z0!G . ~93!

For the delay time~80! we have

t0.
t0
2
lnUg24 ~v0

222«* z0!U. ~94!

The behavior of polarization is

z.z01
g

2
~v0

222«* z0!~12e22g2t!. ~95!

Whenguz0u,1 andgv0,1, we have the case of free induc-
tion ~85!, if v0Þ0. And if v050, then we have free relax-
ation ~87! with

t0.
t0
2
lnUg22 «* z0U,

z.z02g«* z0~12e22g2t!. ~96!

The latter regime is entirely due to local fields, since if«*
were zero, thenz.z0 and there would be no relaxation.

In the strong coupling limitg@1, from ~79! we find

g0.g2S gAm0
222«* z01

z0

Am0
222«* z0

D .
This, using the inequality«*!1, can be reduced to

g0.gm0g2F11
z0
gm0

2 2S 12
z0
gm0

2D «* z0
m0
2 G ,

t0.
T2
gm0

F12
z0
gm0

2 1S 12
3z0
gm0

2D «* z0
m0
2 G . ~97!

The delay time~80! takes the form

t0.
t0
2
lnUm0

2~m02z0!~gm021!2~gm0
22z0!«* z0

m0
2~m01z0!~gm011!2~gm0

22z0!«* z0
U.

~98!

For the final polarization~92! at t@t0 we obtain

z.m02
1

g F12
z0
m0

1S 12
z0
gm0

2Dg«* z0G . ~99!

These formulas forgv0.1, depending on the value of
gz0 , correspond either to collective induction~86! or to trig-
gered superradiance~91!. Whenv050, we come, again de-
pending on the value ofgz0 , to collective relaxation~88!,
weak superradiance~89!, or pure superradiance~90!.

Note that ifgz0,21, then for anyv0 the maximal coher-
ence is reached att5t0.0, when

z~ t0!'2
1

g
, v~ t0!.m0 . ~100!

To better emphasize the role of local fields, let us analyze
the case when there is no initial coherence, that is,

m05uz0u, v050, ~101!

andguz0u.1. Then

g0.guz0ug2F11
1

gz0
2S 12

1

gz0
D «*
z0

G ,
t0.

T2
guz0u

F12
1

gz0
1S 12

3

gz0
D «*
z0

G . ~102!

The delay time~80! becomes

t0.
t0
2
lnU~ uz0u2z0!~guz0u21!2~gz021!«*

~ uz0u1z0!~guz0u11!2~gz021!«*
U. ~103!

The final polarization~92! at t@t0 is

z.uz0u2
1

guz0u
@ uz0u2z01~gz021!«* #. ~104!

Consider separately the cases of positive and negative ini-
tial polarizations. When the latter is positive, i.e.,

z05uz0u, ~105!

then the delay time~103! and final polarization~104! are

t0.
t0
2
lnU ~gz021!«*
2z0~gz011!2~gz021!«*

U,
z.z02S 12

1

gz0
D «* ~ t@t0!. ~106!

Simplifying this for asymptotically largegz0@1, and keep-
ing in mind that«*!1, we have

t0.
t0
2
lnU «*
2z0

U, t0.
T2
gz0

,

z.z02«* ~ t@t0!. ~107!

Formulas~106! and~107! correspond to collective relaxation
~88! due to local fields.

Pass to the case of the negative initial polarization

z052uz0u. ~108!

Then, for the delay time~103! and final polarization~104!
we find

t0.
t0
2
lnU2uz0u~guz0u21!1~guz0u11!«*

~guz0u11!«*
U,

z.uz0u2
2

g
1S 11

1

guz0u
D «* ~ t@t0!. ~109!
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This can describe weak superradiance~89! or pure superra-
diance~90!. Under the inequalitiesguz0u@1 and«*!1 the
latter expressions change to

t0.
t0
2
lnU2z0«*

U, t0.
T2
guz0u

,

z.uz0u2
2

g
1«* ~ t!t0!, ~110!

which corresponds to pure superradiance~90!. The origin of
this phenomenon is completely due to local fluctuating fields.

An interesting question is, which part of dipole interaction
is mainly responsible for starting the relaxation process in
the regime of pure superradiance? Looking at Eqs.~42! and
~43!, we see that it is the random fieldw which initiates the
process, whilew0 only shifts the oscillation frequency. The
stochastic fieldw represents the local fields~39!, which are
related to the termsbi j and ci j of the dipole interactions.
These terms are called nonsecular dipole interactions con-
trary toai j , which is called the secular dipole interaction.

2 In
this way, it is the nonsecular dipole interactions that originate
an initial relaxation and, consequently, the pure spin super-
radiance.

The results obtained make it possible to give one more
justification for the term ‘‘spin superradiance.’’ For a system
of N nuclei an effective number of radiators may be defined
as

Neff[
m0N

S
,

wherem0 is the initial magnetization introduced in~82! and
S is nuclear spin. Averaging the power of current

Pw~ t ![Rj25N
\g3

2

4a0
h2,

according to~62!, we have

P~ t ![^^Pw~ t !&&5N~a21b2!
\g2

2

a0
v2.

The average current power for a superradiant regime has a
maximum att5t0.0, wherev(t0)5m0 , in compliance with
~100!. Therefore,

P~ t0!;m0
2;Neff

2 .

Also, as is seen from~97!, the radiation time

t0;m0
21;Neff

21 .

The situation when the radiation pulse is proportional to the
number of radiators squared, and the radiation time is in-
versely proportional to this number, is characteristic of su-
perradiance.

Note that the intensity of magnetodipole radiation,I (t),
as a function of time, behaves similarly to the current power

P(t) but contains a small factor makingI (t)!P(t), so that
P(t) is much easier to measure.17,19

VI. NUMERICAL ESTIMATES

The aim of the present paper is not to discuss some par-
ticular experiments but rather to give the general picture of
possible relaxation processes. Nevertheless, the general
qualitative picture can be better understood if illustrated by
quantitative estimates. For this purpose, let us accept the
values of parameters typical of experiments11–15with proton-
rich materials, such as propanadiol C3H8O2, butanol
C4H9OH, and ammonia NH3. Employing the method of
dynamic nuclear polarization, it is possible to polarize spins
to a level of polarization reaching almost 100%. The
samples polarized in this way are good examples of meta-
stable nuclear magnets. The lifetime of such metastable ma-
terials at low temperature is very long. This time,T1 , is
related to the spin-lattice relaxation time. The order of its
magnitude is given by the relationT1;(a/D l )2T2 , in which
a;1028 cm is the mean distance between spins,
D l;1025a;10213 cm is the coefficient of linear magneto-
striction, andT2 is the spin-spin relaxation time. Whence,
T1 /T2;1010.

The spin-spin relaxation time is characterized by dipole
interactions yieldingT2;\a3/m2;1025 s. Consequently,
T1;105 s. The relaxation timeT2* , related to local spin fluc-
tuations, is also due to dipole interactions because of which
T2*;1025 s.

In principle, there exists another longitudinal relaxation
time due to the interaction of spins through the common
electromagnetic field formed under the magnetodipole spin
radiation. This time, which will be denoted byT18 , to distin-
guish it from the spin-lattice relaxation timeT1 , can be es-
timated asT18;(l/a)2T2 , wherel is the radiation wave-
length. For the external magnetic fieldH0;104 G, spins
radiate in the radio-frequency region withv0;108 s21, and
thus with the wavelengthl;102 cm. This gives
T18/T2;1020 or T18;1015 s. As far asT18/T1;1010, the lon-
gitudinal relaxation is practically due to the spin-lattice in-
teractions only. The interaction through the radiation electro-
magnetic field is so weak, as compared to dipole interactions,
that it does not play any role. This drastically distinguishes
spin systems from atomic and molecular ones exhibiting su-
perradiance. In the latter systems, the effective interaction
through the common radiation field is not only important but
serves as the basic mechanism for the appearance of strong
collective correlations and coherence.

The resonator ringing timeT3 in the case of quasireso-
nance, whenv;v0;108 s21, and for the quality factor
Q;102 is T3;1026 s. The time of fast oscillations, defined
in ~49!, isT0;1028 s; so it is really the shortest among other
characteristic times.

The damping parameters corresponding to the character-
istic times in ~48! are g1;1025 s21, g2;105 s21,
g2*;105 s21, andg3;106 s21. In this way, for the small
parameters in~46! we have

g1

v0
;10213,

g2

v0
;1023,

g2*

v0
;1023,

g3

v
;1022.
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The coupling constant~34!, owing to the relations
\g2;m2/a3 andra351, wherer is the particle density, is
a0;phg2 /g3;1021. The average coupling functions in
~63! are a;g2 /v0;1023 and b<g2 /v0;1023. In the
case of exact resonance, whenD50, the latter is identically
zero,b[0. Thus,a andb are also small parameters.

The maximal value of the effective coupling parameter
~65! is of the order ofp2. Therefore it varies in the interval
0<g}10.

Consider the dampings~66! and~67! caused by the action
of the electromotive force corresponding to a resonance
mode of the thermal Nyquist noise with the amplitude~71!.
The typical temperature in experiments11–15 is T;0.1 K. As
far as kBT;1025 eV and \v;1027 eV, we have
\v/kBT;1022; hence the approximation~72! is justified.
Using\g3;1029 eV, for the forcing-field amplitude we find
f 0;102/AN. Then, for the damping~66! we get gs

}(105/AN) s21. In the case of passive initial conditions,
when x05y050, the value of~66! is exactly zero,gs[0.
Expression~67! yields g f;(107/N) s21. For a sample of
about 1 cm3 the number of protons isN;1023. Thence, the
thermal-noise forcing field has the amplitudef 0;10210, so
for the damping~66! and ~67! we get gs<1027 s21 and
g f;10216 s21. These quantities are so much less thang2
that there is no reason to keep them in the equations. This
also concernsg1 . Really, the relations in~73! are

gs

g2
;10212,

g f

g2
;10221,

g1

g2
;10210.

Therefore, the thermal Nyquist noise of a resonator has no
influence on the spin dynamics in a macroscopic sample.

One might ask a question: What should be the size of a
sample on which the resonator thermal noise could produce a
noticeable effect? This would happen ifgs;g2 , which gives
N;1, or wheng f;g2 , from whereN;100. ForN.100 the
Nyquist noise is practically of no importance.

The method of solving the equations, used in the present
paper, makes it possible to take into account the retardation
effects, related to the appearance of factors like
(12e2g3t). These effects are important for the correct de-
scription of relaxation processes. For example, the threshold
of initial polarization for superradiance, weak or triggered, as
follows from ~89! and ~91!, is z0;21/g. As a percentage,
for spin 1/2 andg;20, this means that the superradiance
threshold is210%. Respectively, the threshold of pure su-
perradiance, given in~90!, is 220%. These values are in
agreement with experiments,11–15while, if we would neglect
the retardation replacing the factor (12e2g3t) by 1, then for
the superradiance threshold we would get2g2 /a0v0
52pg3 /gv0;1023. As a percentage, this makes
20.1%, which is unrealistically small.

In the regime of pure spin superradiance, the characteris-
tic times t0 and t0 can be estimated from~110!. Since
t0;T2 /guz0u, taking guz0u;10, we find the radiation time
t0;1026 s. The local-field parameter, defined in~69!, is
«*;1026. Whence, for the delay time we obtaint0
;(3–5)t0 , that is, t0;102621025 s. The reversed final
polarization, according to~110!, can reach 90%. Note that
the problem of the fast polarization reversal of proton solid-

state targets is of great practical importance for the study of
scattering in high- and intermediate-energy physics.15 The
phenomenon of spin superradiance can be used to achieve
the desired fast repolarization.

VII. DISCUSSION

A method has been presented for treating the nonlinear
systems of differential or integro-differential equations with
stochastic terms. Such terms simulate local random fields of
interacting statistical systems.

The use of the method has made it possible to give a
detailed analysis of nonlinear spin relaxation in nuclear mag-
nets coupled with resonance electric circuits. The consider-
ation is based on a microscopic Hamiltonian with realistic
dipole spin interactions.

Seven qualitatively different regimes of relaxation are
found. Three of them, free induction, collective induction,
and triggered superradiance, are initiated by primary coher-
ence imposed upon spins, with local fields playing no essen-
tial role. These cases can be reasonably treated by the Bloch
equations. Four other regimes, free relaxation, collective re-
laxation, weak superradiance, and pure superradiance, are
triggered by local fields. The cases when no primary coher-
ence is imposed cannot be treated by the standard Bloch
equations.

Dealing with superradiant relaxation in nuclear magnets,
one may naturally remember superradiance occurring in
atomic systems. The latter has been studied in detail both
experimentally and theoretically. There exists a number of
books and surveys on atomic superradiance. We cite here
only one of the recent reviews18 where further references can
be found. Although the relaxation process in an atomic sys-
tem with photon transitions between two selected levels
shares a few formal similarities with the spin relaxation,
there are much more principal differences, both in physics
and mathematics, between the superradiant phenomena in
spin and atomic systems. It is instructive to emphasize the
corresponding analogies and differences.

The main formal similarities are as follows: An atomic
system is often put into a resonator cavity discriminating one
or several resonance modes. Pure spin superradiance is
analogous to the superfluorescence of atomic systems, both
being the processes of coherent self-organization. In the col-
lection of induced atomic dipoles, superfluorescence evolves
from a state of complete inversion of atoms, and is due to
effective dipole-dipole interactions induced by the exchange
of photons between atoms. These induced dipole-dipole in-
teractions of atoms are similar in their form, to real dipole
interactions of spins, since both of them can be expressed
through Pauli matrices. Using the pseudospin representation
for two-level systems, the atomic relaxation can be described
by an effective Bloch equation. The relaxation regimes in
spin systems, which can also be described by the Bloch
equations, should be similar to their atomic counterparts.
This concerns, for instance, the triggered spin superradiance
and triggered atomic superradiance, or the free nuclear in-
duction and free atomic induction.

However, many of these similarities are only formal and
even can be misleading, since there are several principal dif-
ferences between atomic and spin systems.
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~i! The relaxation of induced atomic dipoles is physically
different from that of polarized nuclear spins.

The process of relaxation of an inverted atomic system is
accompanied by radiation into free space. This electric di-
pole radiation can be of quite high intensity.

The relaxation in a spin system coupled with a resonator,
as has been pointed out by Friedberg and Hartmann,16 is a
radiationless process involving merely nonradiative transfer
of energy from the sample to the coil, in which the energy is
dissipated.

~ii ! The role of a low-quality cavity for atoms and of a
resonant circuit for spins is drastically different.

For atoms a low-quality cavity is used whose aim is to
define a sufficiently narrow band of preferential modes. In
the following process the cavity does not play an active role
in developing coherence, but superfluorescence evolves due
to induced dipole-dipole interactions.

In the case of nuclear spins there is no need to discrimi-
nate modes, as far as, for spin one-half, the sole mode is
already defined by the Zeeman splitting of the spin energy in
an external magnetic field. In other words, one could say that
a cavity for atoms does the same, that is, defines working
modes, as an external magnetic field for spins. But a high-
quality resonator for spins plays another and crucial role dur-
ing the whole process of spin relaxation, the resonator feed-
back field being the driving force for developing the
collective spin evolution.

~iii ! The effective interactions between induced atomic di-
poles and the real interactions between spins have nothing
common with each other neither in their physical origin or in
their role in collective processes.

The interaction between induced atomic dipoles describes
an effective interaction of atoms through the common radia-
tion field. It is just this interaction which is solely responsible
for the formation of such a collective coherent state as su-
perfluorescence.

The dipole interaction between spins is a real interaction
existing without any radiation field. The actual form of this
interaction is quite different from that of the effective atomic
interaction. Related to this is the principal difference of their
roles. As is known from the theory of such phenomena as
nuclear magnetic resonance or nuclear induction, the dipole
spin interactions can never be responsible for organizing a
collective spin evolution. Vice versa, the dipole spin interac-
tions are responsible for dephasing the motion of spins de-
stroying their coherence. At the same time, the effective in-
teractions of spins through the common radiation field is too
weak for playing any noticeable role.

~iv! The origin of the evolving coherence is absolutely
different for atomic and for spin systems.

In an inverted atomic system, the process starts with in-
coherent spontaneous radiation of atoms. This creates an ef-
fective interaction between atoms through the common ra-
diation field. The arising interaction collectivizes the atoms
leading to their coherent radiation.

In a polarized spin system, the relaxation begins owing to
random spin fluctuations caused by spin-spin interactions.
Then the resonator feedback field appears organizing the co-
herence of spin motion, while the spin interactions at this
stage start playing a destructive role. Thus, the effective in-
teraction of atoms through the common radiation field is

analogous, not to the real spin-spin interaction, but to the
effective coupling between spins through the resonator feed-
back field. The formal analogy between the effective interac-
tion of induced atomic dipoles and the real interaction of
spins, based on the fact that both these interactions are ex-
pressed through the Pauli matrices, is misleading.

~v! The mathematical description of atomic and spin re-
laxation requires, in general, different methods.

The radiation in atomic systems is usually treated by the
slow-varying-amplitude approximation which is somewhat
similar to the averaging method although the latter is more
regular and mathematically grounded.

For the system of nuclear spins, the complication comes
from the necessity of taking into account local random fields
without which it is impossible to describe several important
regimes, e.g., such as pure spin superradiance. Also, there is
an additional equation, the Kirchhoff equation, characteriz-
ing the coupling between the spin sample and a resonant
electric circuit. This coupling, for a correct description of
spin relaxation, cannot be reduced to a simple proportionality
of the sample magnetization to the resonator field. The
method developed in the present paper seems to be the most
adequate for considering the spin relaxation in nonequilib-
rium magnets with resonators.
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APPENDIX A: EVOLUTION EQUATIONS

The evolution equations~40! and ~41! are derived in the
following way.

Expressing the spin operatorsSi
x5 1

2(Si
21Si

1) and
Si
y5 i /2 (Si

22Si
1) through the ladder operators

Si
25Si

x2 iSi
y andSi

15Si
x1 iSi

y , we may cast the dipole in-
teraction energy~27! into the form

Hi j5ai j SSizSjz2 1

2
Si

1Sj
2D1bi j Si

1Sj
11bi j*Si

2Sj
2

12~ci j Si
11ci j*Si

2!Sj
z ,

in which the interaction coefficients are

ai j[
m2

r i j
3 ~123 cos2q i j !,

bi j[2
3m2

4r i j
3 sin

2q i jexp~2 i2w i j !,
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ci j[2
3m2

4r i j
3 sin~2q i j !exp~2 iw i j !,

whereq i j and w i j are the spherical angles ofnW i j . These
interaction coefficients enjoy the symmetry property

ai j5aji , bi j5bji , ci j5cji .

With the commutation relations@Si
z ,Sj

6#56d i j Si
6 and

@Si
1 ,Sj

2#52d i j Si
z we have the Heisenberg equations of mo-

tion

i\
d

dt
Si

25 (
j ~Þ i !

N H ai j SSi2Sjz1 1

2
Si
zSj

2D22bi j Si
zSj

1

1ci j ~Si
2Sj

122Si
zSj

z!1ci j*Si
2Sj

2J 2mH0Si
2

1mHSi
z ,

i\
d

dt
Si
z5 (

j ~Þ i !

N H ai j4 ~Si
2Sj

12Si
1Sj

2!1bi j Si
1Sj

12bi j*Si
2Sj

2

1~ci j Si
12ci j*Si

2!Sj
zJ 1

m

2
H~Si

22Si
1!

2 i\g1~Si
z2z i !,

which are supplemented by a term taking into account spin-
lattice interactions leading to the longitudinal dampingg1 ,
andz i being a stationary value of the spinz component.

Of course, the evolution equations could be written
shorter, invoking some tensor notation. However, we need
here their explicit form in order to separate different parts of
dipole spin interactions. As analysis shows, these different
interaction terms play principally different physical role.

Averaging the above equations of motion, in the frame-
work of the corrected mean-field approximation, yields

i
dui
dt

52~v01 ig2!ui1g3hsi1
1

\ (
j ~Þ i !

N H ai j2 ~siuj12uisj !22bi j siuj*1ci j ~uiuj*22sisj !1ci j* uiuj J ,
i
dsi
dt

5
1

2
g3h~ui2ui* !1

1

\ (
j ~Þ i !

N

$ai j ~uiuj*2ui* uj !1bi j ui* uj*2bi j* uiuj1~ci j ui*2ci j* ui !sj%2 ig1~s2z i !.

From here, for the arithmetic averages~37!, with the local
fields ~38! and ~39!, we obtain~40! and ~41!.

APPENDIX B: FAST VARIABLES

The formal solution of the last equation in~51! can be
written as the sumh5hs1hf in which the first term is a
feedback field induced in the resonator by moving spins and
the second term is a resonator field formed by driving forces.
The resonator feedback field may be presented either as the
convolution

hs524a0E
0

t d

dt
x~ t2t!W~t!dt

or as the Stieltjes integral

hs524a0E
0

t

W~ t2t!dx~t!,

and the resonator forcing field is given by the convolution

hf5g3E
0

t

W~ t2t! f ~t!dt,

where the transfer function is

W~ t !5S cosv3t2
g3

v3
sinv3t De2g3t,

with v3[Av22g3
2.

The action of the resonator fieldh on the spin system
involves, as follows from~51!, the small parameterg3 . Ne-
glecting this parameter reduces the first two equations in~51!
to the system

dx

dt
>2g2x1vwy2w2z,

dy

dt
>2vwx2g2y1w1z.

The solution to the latter is

x>~a0cosvwt1b0sinvwt !e
2g2t1

w1

vw
z,

y>~b0cosvwt2a0sinvwt !e
2g2t1

w2

vw
z,

where

a05x02
w1

vw
z, b05y02

w2

vw
z.

Employing this gives the feedback field

hs52
2

g3
Fa1

dx

dt
1a2vwS x2

w1

vw
zD G ,

in which
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a15
a0g3~g22g3!

~g22g3!
21~D1w0!

2 @e~g22g3!t21#,

a25
a0g3~D1w0!

~g22g3!
21~D1w0!

2 @e~g22g3!t21#.

If in the expression forhs we puta150,a25 const, we
return to the static-coupling approximation, while if we put
a15const, a250, then we get the dynamic-coupling
approximation.9 However, in general, a15a1(t) and
a25a2(t) are nonzero functions of time. The temporal de-
pendence of the coupling functions portrays the retardation
due to a gradual switching on of the coupling between the
spins and resonator. Really, as is seen, at the initial moment
the coupling is absent,

a1~0!5a2~0!50.

Using the first of the equations in~51! for hs yields

hs5
2

g3
@~a1g22a2vw!x2a1vwy1~a1w21a2w1!z#.

Substituting this back into~51! reduces the system of three
integro-differential equations to the system of two ordinary
differential equations

dx

dt
52g2x1vwy2w2z,

dy

dt
52~vw22a1g2z12a2vwz!x2~g212a1vwz!y

1~w112a1w2z12a2w1z1g3hf !z

for the fast variables.
There is no problem in solving the latter system, which

gives

x5~a1cosVwt1b1sinVwt !e
2Gwt1xw1xf ,

y5~a2cosVwt1b2sinVwt !e
2Gwt1yw1yf ,

where the first parts describe the spin oscillations with the
effective frequency

Vw5vw~12a1
2z212a2z!1/2,

effective attenuation

Gw5g21a1zvw ,

and coefficients

a15x02xw , a25y02yw ,

b15
vw

Vw
~y01a1zx0!2

vwz

Vw
21Gw

2 F ~112a2z!
Gw

Vw
w1

1S Vw

vw
1a1z

Gw

Vw
Dw2G ,

b252
vw

Vw
@~112a2z!x01a1zy0#

1
vwz

Vw
21Gw

2 H ~112a2z!S Vw

vw
1a1z

Gw

Vw
Dw1

1F2a1zS Vw

vw
1a1z

Gw

Vw
D2~112a2z!

Gw

Vw
Gw2J ;

the terms

xw5
vwz

Vw
21Gw

2 F ~112a2z!w12S Gw

vw
2a1zDw2G ,

yw5
vwz

Vw
21Gw

2 H ~112a2z!S Gw

vw
2a1zDw1

1F112a2z12a1zS Gw

vw
2a1zD Gw2J ~B1!

are originated by the local random fields, and the last terms

xf5g3E
0

t

G1~ t2t!hf~t!dt,

yf5g3E
0

t

G2~ t2t!hf~t!dt ~B2!

are due to the resonator forcing field, the Green functions
being

G1~ t !5z
vw

Vw
sinVwte

2Gwt,

G2~ t !5zcosVwte
2Gwt2a1zG1~ t !.

In this way, the fast variableu, defined by Eq.~42!, takes
the form of ~54! where

c15
1

2
~a12b2!2

i

2
~b11a2!,

c25
1

2
~a11b2!1

i

2
~b12a2!.

To find an explicit expression foruf , induced by an elec-
tromotive forceEf , entering into the right-hand side of the
Kirchhoff equation~30!, we need to concretize the form of
Ef . Accepting for the latter the standard expression
Ef5E0cosvt for the driving force~32! we have~53!. Then
the convolution forhf gives

hf5
f 0
2 S cosvt2 g3

v
sinvt D ~12e2g3t!.

Substituting the resonator forcing fieldhf into xf andyf , we
get

xf5~ f 1e
ivt1 f 1* e

2 ivt!~12e2g3t!,

yf5~ f 2e
ivt1 f 2* e

2 ivt!~12e2g3t!,

where the coefficients are
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f 152
f 0vwg3z

8Vw~Dw
21Gw

2 !
~Dw1 iGw!,

f 25 f 1S i Vw

vw
2a1zD ,

and the effective detuning isDw[v2Vw . Therefore
uf5xf2 iy f transforms to~57! with the coefficients

d15 f 1S 11
Vw

vw
1 ia1zD ,

d25 f 1* S 12
Vw

vw
1 ia1zD .

APPENDIX C: SLOW VARIABLES

Here we present the basic formulas for the averages de-
fined in~62! and used in Sec. IV when deriving the equations
for slow variables.

For the stochastic fields, with the Gaussian distribution in
mind, we have

^^w0&&5^^w1&&5^^w2&&50,

^^w0
2&&5^^w1

2&&5^^w2
2&&5g

*
2 .

Note that, instead of defining a particular distribution, we
could postulate the above properties of random fields.

In the following expressions the averaging~62! is accom-
panied by expansions in powers of small parameters~46!:

^^e2Gwt&&.12
pG

v0
,

^^ei ~Vw1 iGw!t&&.
V2v01 iG

v0
,

^^e~ iD2g2!t&&.11
p

v0
~ iD2g2!,

^^eivt~12e2g3t!&&.2 i
g3

v0
,

^^eiDt~12e2g3t!&&.p
g3

v0
,

^^ei ~v1Vw1 iGw!t~12e2g3t!&&.2 i
g3

2v0
,

^^~12e2g3t!2&&.
4p2g3

2

3v0
2 ,

^^e2ivt~12e2g3t!2&&.~122p i !
g3
2

2v0
2 ,

whereVw andGw are defined in Appendix B, andV andG
are given in~64!.

We emphasize the importance of the factor (12e2g3t)
responsible for the retardation effects.
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