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A scaling form for the local susceptibility, derived from renormalization group arguments, is proposed. The
scale over which the uniform part of this scaling form varies can be viewed as a definition of the Kondo
‘‘screening cloud’’;jK . The proposed scaling form interpolates between Ruderman-Kittel-Kasuya-Yosida
~RKKY ! results in the high-temperature limitT@TK and Fermi liquid results in the low-temperature long-
distance limitT!TK , r@jK . The predicted form of the Knight shift is longer range at low temperatures,
where the screening cloud has formed, than at high temperatures, where it has not. Using weak and strong
coupling perturbation theory combined with large scale density matrix renormalization group results we study
the validity of the finite size version of the scaling form atT50. We explicitly extract a length scale propor-
tional to the Kondo length scalejK . The numerical results are in good agreement with the proposed scaling
form and confirm the existence of the Kondo screening cloud.

I. INTRODUCTION

The Kondo effect is probably one of the most well-studied
phenomena in condensed matter physics. The highly success-
ful theoretical approaches include Wilson’s numerical renor-
malization group~NRG! method,1 simpler and more physical
renormalization group~RG! approaches of Anderson2 and
Nozières3 and exact Bethe ansatz results.4 Thus it is perhaps
surprising that a fundamental aspect of this problem remains
mired in controversy.

From the RG viewpoint, the Kondo effect is associated
with very large distance scalesjK'ae1/rJ, wherea is the
lattice spacing,r the electronic density of states at the Fermi
surface, andJ the Kondo coupling. This scale is essentially
jK'vF /TK'aEF /TK , wherevF is the Fermi velocity,EF

the Fermi energy, andTK , the Kondo temperature, is the
energy scale associated with the Kondo effect. Since Kondo
temperatures are normally of order tens of degrees, this scale
is normally thousands of lattice spacings~i.e., micrometers!.
A heuristic description of the RG results on the Kondo prob-
lem says that a cloud of electrons of this order of magnitude
surrounds the impurity spin, forming a singlet with it. The
remaining low-energy electronic excitations outside the
screening cloud do not ‘‘feel’’ the impurity spin. Rather the
screened complex acts like a potential scatterer for these
electrons, with a unitary limit phase shift ofp/2 right at the
Fermi energy. The largeness of this Kondo length scalejK in
experimental systems in which the Kondo effect is appar-
ently observed is rather disconcerting. Even a very dilute
system with 1 part per 106 of impurities has a typical inter-
impurity separation of about 100 lattice spacings, much
smaller thanjK . Thus each impurity has many other impu-
rities inside its screening cloud and it is surprising that the
single-impurity Kondo effect is observed at all. Nonetheless,
the impurity resistivity, susceptibility, etc., are observed to be

linear in impurity concentration and these quantities seem to
fit theoretical expectations.

Comparatively little of the theoretical work on the Kondo
effect has focused on spatial correlations. These seem to be
difficult to obtain using Wilson’s method and impossible
from the Bethe ansatz. Perturbative calculations have been
performed5–8 as have calculations using the ‘‘Nagoaka equa-
tions,’’ a type of mean field theory.9 Renormalization group
approaches have been developed by Chenet al.10 and Gan.8

However, Chenet al.10 only consider short-range correla-
tions, withr!jK , and do not address the issue of the size of
the screening cloud. We incorporate the perturbative results
into our discussion of the renormalization group and scaling,
but come to rather different conclusions than Gan8 about the
scaling variables and the size of the screening cloud. Related
theoretical work has addressed the screening cloud in the
Anderson model using various approximate methods.11–13

Some of the previous results has been reviewed in Refs. 14
and 15.

Experiments which have attempted to look for this large
screening cloud have obtained mixed results.16,17 In particu-
lar, the NMR experiments of Boyce and Slichter16 were in-
terpreted to indicate the absence of this cloud. This has led to
some theoretical discussion about the circumstances under
which this cloud can be observed and even to some doubts
about its existence.

The purpose of this paper is to examine in more detail the
behavior of the Knight shift~i.e., the electronic spin polar-
ization by an applied field! in the vicinity of a magnetic
impurity. In the next section we make a scaling hypothesis
about this quantity based on standard RG arguments and as-
suming the existence of a large screening cloud. We point out
the rather unintuitive result that the Knight shift is actually
longer range at low temperatures, where the screening cloud
has formed, than at high temperatures, where it has not. We
argue that the NMR experiments are not necessarily in con-
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tradiction with our scaling form. The basic problem with the
experiments, according to this view, is that they only probed
very short distances,3a, whereasjK is presumably thou-
sands of times larger thana.

We then test our scaling hypothesis numerically. This is
done using a one-dimensional tight-binding model. We do
not expect that the reduced dimensionality is important since
the Kondo problem is intrinsically one dimensional anyway
~1D!. Taking a spherically symmetric dispersion relation and
a d-function Kondo interaction, we may decompose the elec-
tronic degrees of freedom into spherical harmonics. Only the
s wave interacts, and this corresponds to a one-dimensional
problem. The numerical method we use basically restricts us
to T50 and a finite lengthL<40–50. As will be seen, this
finite length plays essentially the role of an inverse tempera-
ture in our scaling arguments. Both the reduced dimension-
ality and the finite length may be directly relevant to more
recent experiments18 which have attempted to find the
screening cloud using small samples with lengths of order
jK or smaller. Recent theoretical work has also addressed
these issues.19

In Sec. II we present the scaling form for the local sus-
ceptibility. Renormalization group arguments are given
bridging a high-temperature RKKY form with the low-
temperature long-distance form in a single scaling expres-
sion. Sections III and IV briefly discuss the form of the
Hamiltonian we use in our numerical work and some details
of the numerical method. Weak and strong coupling pertur-
bation results are presented in Secs. VI and VII along with
density matrix renormalization group~DMRG! results. Fi-
nally in Sec. VIII the crossover region is studied and the
scaling form is tested.

II. RENORMALIZATION GROUP ARGUMENTS

We consider the standard Kondo model

H5(
k

ekck
†acka1JSimp(

k,k8
ck
†a

sa
b

2
ck8b . ~2.1!

Here cka is the annihilation operator for conduction elec-
trons of momentumk, spina. In the following we suppress
spin indices which are implicitly summed over.Simp is the
impurity spin operator of magnitudes51/2. Thesa’s are
Pauli matrices, and we set\51. The total spin operator is

Stot5Simp1(
k

ck
† s

2
ck . ~2.2!

~We assume, for simplicity, equalg factors for the impurity
spin and conduction electrons.! The Knight shift is propor-
tional to the local susceptibility:

x~r ,T![~1/T!K c†~r !
sz

2
c~r !Stot

z L . ~2.3!

This consists of a bulk part, the usual Pauli susceptibility,
r/2, wherer is the density of states per spin, together with a
local part arising from the impurity. The total change in the
susceptibility due to the impurity, usually called the impurity
susceptibility,ximp, is

x imp5E d3r @x~r !2r/2#1~1/T!^Simp
z Stot

z &. ~2.4!

Lowest-order perturbation theory gives the RKKY result,
which becomes, atrkF@1,

x~r ,T!5
r

2
1

l

16r 2vFsinh
2prT

vF

cos2kFr . ~2.5!

The first term is the standard Pauli bulk susceptibility with
r the density of states per spin;l is the dimensionless cou-
pling constant,

l[rJ. ~2.6!

In the limit r!vF /T @but still r@1/kF#, this gives the well-
known RKKY expression

x2
r

2
→

l

32pr 3T
cos2kFr . ~2.7!

A crucial feature of the Kondo problem is that, for anti-
ferromagnetic coupling, the Kondo coupling increases under
renormalization as the energy scale is reduced. The lowest-
order renormalization group equation

dl/d lnL52l2 ~2.8!

is obtained. HereL is the momentum space cutoff, or effec-
tive bandwidth. This gives the effective coupling at momen-
tum scaleL:

leff~L!5
l

12l ln~L0 /L!
. ~2.9!

HereL0'1/a is the bare cutoff andl is the bare coupling
~defined at that scale!. The Kondo length scale is defined
from the momentum scale at which the effective Kondo cou-
pling constant diverges:

jK5vF /TK'L0
21e1/l. ~2.10!

A finite temperature acts as an infrared cutoff on perturbation
theory so that Eq.~2.9! with L replaced byT/vF can be used
to define a temperature-dependent effective coupling.

Equation ~2.5! is only valid at high temperatures and
weak Kondo coupling. As the temperature is lowered, the
effective Kondo coupling increases, and so higher-order
terms become important. The correction ofO(l2) has been
calculated. From Eq.~2.2!, we see thatx(r ,T) is a sum of
two terms:
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x~r !5E
0

b

dt K c†~r ,0!
sz

2
c~r !Simp

z ~t!L 1E
0

b

dt K c†~r !
sz

2
c~r ,0!E d3r 8c†~r 8,t!

sz

2
c~r 8,t!L [xde~r !1xe~r !.

~2.11!

We have adopted the notation of Ref. 8. Note that the sum of
these correlation functions is independent oft since the total
spin is conserved, so that thet integral simply gives a factor
of b. However, the individual correlation functions depend
nontrivially on t. We could equally well add the equal time
correlation functions and multiply byb, but we choose the
above representation because both terms have been evaluated
explicitly in the literature, in a convenient form. The RKKY
term ofO(l) in Eq. ~2.4! comes entirely fromxde . In the
asymptotic region,rkF@1, EF /T@1, with r!vF /T, includ-
ing the correction ofO(l2):

x~r !2
r

2
5
cos2kFr

32pr 3T
$l1l2@ ln~kFr !1const#%.

~2.12!

The logarithmic term comes entirely fromxde . It was first
calculated in Refs. 6 and 5.xe contributes only to the con-
stant in Eq.~2.12!. @See Eq.~B2! of Ref. 8.#

Note, from Eq.~2.9!, that the quantity in brackets in Eq.
~2.12! may be writtenleff(r )1leff(r )

21const, toO(l2).
This expression exhibits an infrared divergence at larger.
That is, for sufficiently larger, r.jK, theO(l

2) term ex-
ceeds theO(l) term. Note, however, that this correction
term is at least finite asT→0, i.e., it isleff(r ) that appears,
not leff(T). Thus, at least toO(l

2), a finite r is acting like
a cutoff on the infrared divergences of perturbation theory. It
is an important question whether or not this persists to higher
orders in perturbation theory; i.e., is perturbation theory valid
for r!jK even forT!TK , with the actual expansion param-
eter beingleff(r )? Based on an examination of higher-order
terms Gan8 has argued this not to be the case. He claims that
higher-order terms diverge asT→0 for nonzeror and that it
is therefore necessary to haveT!TK for perturbation theory
to be valid.~This point will be examined in detail in Ref. 20.!
In this case, it is probably more useful to rewrite Eq.~2.12!
in terms ofleff(T). To O(l

2),

x~r !2
r

2
5
cos2kFr

32pr 3T
$leff~T!1leff~T!2@ ln~rT/vF!1const#%,

~2.13!

usingEF /kF'vF .
At very low temperatures and large distancesT!TK ,

r@jK , we expectx(r ) to be determined by the zero-energy
fixed point. Within the local Fermi liquid theory3 of this fixed
point we can then estimatex(r ). The zero-energy fixed point
corresponds to a screened impurity which just acts as a po-
tential scatterer for the low-energy electronic degrees of free-
dom, with a phase shift ofp/2 at the Fermi energy. The local
susceptibility of a potential scatterer follows directly from
the formula for Friedel oscillations in the electron density,
n(r ), with an s-wave scatterer and ap/2 phase shift. For
kFr@1,

n~r !5n02
1

2p2r 3
cos@2kFr1p/2#. ~2.14!

Noting that a magnetic fieldH simply shifts the chemical
potential by6gmBH/2 for spin down or spin up electrons,
we obtain

x~r ,T!5
1

4vF

dn

dkF
5

r

2
1

1

4p2vFr
2 cos~2kFr !.

~2.15!

Note thatx(r ,T) is longer range at lowT after the screening
cloud has formed,x}1/r 2, than at higherT before it has
formed, x}1/r 3 @Eq. ~2.5!#. An analogous result occurs in
spin chain systems.21

Corrections to Eq.~2.15! can be derived by doing pertur-
bation theory in the leading irrelevant operator. Part of the
leading correction can be obtained by considering a field
dependence of the phase shift:3

ds5p/21shc/TK , ~2.16!

wherec is a dimensionless constant ofO(1). Generalizing
the Friedel oscillation formula of Eq.~2.14!, the local density
of spin-s electrons become

ns~r !5
n0
2

2
1

4pr 3
cos@2kF

s~h!r1ds~h!#. ~2.17!

Upon differentiating with respect toh to obtain the local
susceptibility, we now obtain an additional term

dx5
c

4p2r 3TK
cos~2kFr !. ~2.18!

Note that this term drops off more rapidly withr than the
term in Eq.~2.15! obtained from differentiatingkF

s(h) and is
smaller forr@jK . A very similar Fermi liquid calculation of
x(r ), in the Anderson model, was performed in Ref. 13.
However, this calculation effectively ignored the field depen-
dence ofkF

s , and hence only obtained the subdominant term
of Eq. ~2.18!, not the leading term of Eq.~2.15!. Explicitly,
in Eq. ~2.10! of Ref. 13, the free electron Green’s function
Fr( iv l) must be evaluated in a finite magnetic field. Taking
this into account, we obtain our expression, Eq.~2.15!.

According to Fermi liquid theory, the impurity suscepti-
bility, ximp, defined in Eq.~2.4! is O(1/TK). This appears to
arise from a short-range part ofx~r! which does not oscillate
at wave vector 2kF. However, since the impurity has been
‘‘integrated out’’ to obtain the Fermi liquid theory, it is dif-
ficult to ascertain how much ofximp comes fromx~r! and
how much comes from the impurity self-correlation function,
in Eq. ~2.4!. It is also difficult to tell whether the contribu-
tion, if any, from x~r! has a range ofO(jK) or only of
O(1/kF), because the cutoff has been reduced toO(1/jK) to
obtain the Fermi liquid theory.

We now wish to formulate a scaling hypothesis for
x(r ,T) which we expect to be valid at arbitraryr andT in
the scaling region,r@a, T!EF. For this purpose it is very
convenient to use the relativistic one-dimensional formula-
tion of the Kondo problem.22 The mapping to one dimen-
sional is exact for pures-wave scattering. The use of a re-
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duced bandwidth and linear dispersion relation which leads
to the relativisitic model is expected to be valid in the scaling
region. The three-dimensional electron field is expanded in
spherical harmonics and then thes-wave part is written in
terms of left- and right-moving components~i.e., incoming
and outgoing!:

c~x!5
1

2A2pr
@e2 ikFrcL~r !2eikFrcR~r !#

1higher harmonics ~2.19!

The left- and right-moving fields, defined onr.0 obey the
boundary condition:

cL~0!5cR~0!. ~2.20!

We may flip the right-moving field to the negative axis, so
that we work with left movers only defined on the entire real
axis:

cL~2x![cR~x!. ~2.21!

The one-dimensional Hamiltonian can be written

H5vFE
2`

`

dr cL
†~r !~ id/dr !cL~r !

1vFlcL
†~0!

s

2
cL~0!•Simp. ~2.22!

x2r/2 can be expanded in spherical harmonics; only the
s-wave harmonic is nonzero. This can be written in terms of
one-dimensional uniform and 2kF susceptibilities:

x2r/25
1

8p2r 2
@xun1~e2ikFrx2kF

1c.c.!#, ~2.23!

where c.c. denotes complex conjugate and

xun~r ,T![~1/T!K S cL
†~r !

sz

2
cL~r !

1cL
†~2r !

sz

2
cL~2r ! DSTz L ,

~2.24!

x2kF
~r ,T![~1/T!K cL

†~r !
sz

2
cL~2r !ST

z L .
HereST is the total spin in the one-dimensional theory

ST[Simp1
1

2pE2`

`

dr cL
†~r !

s

2
cL~r !. ~2.25!

x2kF
can be shown to be real using particle-hole symme-

try. This follows since under particle-hole symmetry

cL~r !→sycL
†~r !, ~2.26!

and hence

ST→ST, ~2.27!

cL
†~r !scL~2r !→cL

†~2r !scL~r !5@cL
†~r !scL~2r !#†.

When particle-hole symmetry is broken, as it is for a realistic
Hamiltonian, we expectx2kF

to have a phase,u, which is
nonzero but constant in the scaling region. This can be seen
from spin-charge separation in the one-dimensional formula-
tion of the Kondo problem. The Kondo interaction, which
produces the nontrivial scaling behavior, occurs entirely in
the spin sector. In the absence of particle-hole symmetry
there is a marginal potential scattering term,
2ucL

†(0)cL(0), which is a pure charge operator. Upon
bosonizing, this is linear in the charge boson and hence does
not renormalize~is exactly marginal!. We can writex2kF

as a
product of spin and charge correlation functions. The charge
correlation function just contributes a constant factoreiu to
xkF

.
In the lowest two orders of perturbation theory, discussed

above, the functionxun vanishes atr@1/kF. In fact, it is
possible to prove that this happens to all order in perturba-
tion theory.20 This is also consistent with Fermi liquid theory,
given the uncertainties in that theory, discussed above, about
the origin ofximp.

We expect the one-dimensional local susceptibility to
obey scaling in the following sense. After extracting a factor
of 1/vF, x2kF

could, in principle depend on three dimension-

less variables, which can be taken to be,rT/vF, l and
D/T. Here D is the effective bandwidth in the one-
dimensional theory, a quantity ofO(EF). The scaling hy-
pothesis asserts that the bare coupling constant,l andD/T
do not appear independently but only in the combination
making up the renormalized coupling constant,leff~T!. The
dependence onleff~T! may be exchanged for a dependence
on T/TK. To see that these two quantities are related, note,
from Eqs.~2.9!, and~2.10!, valid at weakleff,

expS 1

leff~T! D5T/TK. ~2.28!

In the intermediate to strong coupling region, the value of
leff is nonuniversal, i.e., ambiguous. In this regime it is better
to useT/TK as a measure of the dimensionless effective cou-
pling. This is in accord with the idea that 1/TK is the cou-
pling constant for the leading irrelevant operator at the low-
temperature fixed point. As usual, we multiply by the
effective cutoff,T, to form the dimensionless coupling con-
stant. Thus we write the scaling hypothesis as

x2kF
5
1

vF
f ~rT/vF,T/TK!, ~2.29!

wheref is a real universal scaling function. Using Eq.~2.23!
the equivalent statement for the three-dimensional suscepti-
bility is

x2r/25
1

8p2vFr
2 cos~2kFr ! f ~rT/vF,T/TK!

~r@1/kF;T,TK!EF!. ~2.30!

As we will see below, this is consistent with what is
known about the behavior atT@TK from perturbation theory
andT!TK andr@jK from the local Fermi liquid description
of the critical point. Note that this scaling hypothesisdoes
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imply the existence of the large screening cloud, since ifT
<TK, the length scale over whichx(r ) varies is at leastjK
~apart from the 2kF oscillations and the short-range part!. In
fact, this scaling hypothesis is perhaps the best definition of
what it means to have a screening cloud. Note that this scal-
ing form does not include any anomalous dimension. We
expect this to be absent sinceStot is conserved. The more
general case, with unequal gyromagnetic ratios for electrons
and impurity, involves a nonconserved operator. This will be
discussed in Ref. 20.

The known results from perturbation theory and Fermi
liquid theory, Eqs.~2.5!, ~2.13!, ~2.15!, and ~2.18!, are all
consistent with this scaling hypothesis and imply certain lim-
iting forms for the scaling function. Equation~2.5! implies
that

f ~x,y!→
p2

2 sinh~2px!ln y
, ~2.31!

for y!1. Equation~2.13! gives a higher-order correction in
1/ln y to f, whenx is also small. Equations~2.15! and~2.18!
imply that, for y!1 andx/y@1,

f ~x,y!→21const
y

x
. ~2.32!

The functionf in the regimey<1, x/y5r /jK<1 is of spe-
cial interest. It describes the interior of the screening cloud at
low T. One might naively suppose that a smallr!jK would
also cut off the renormalization of the effective coupling so
that deep inside the screening cloud we recover weak-
coupling behavior~for weak bare coupling! even at lowT.
As mentioned above, Gan8 has argued, based on higher-order
perturbation calculations, that this is not the case. It follows
that the scaling function would be nontrivial in this region.

Now let us consider the experiments of Boyce and Slich-
ter on Fe-doped Cu. They measured what they interpreted as
the Knight shift from five different shells of Cu atoms at
distances up to fifth nearest neighbor. We note that for the Cu
fcc lattice, assuming the Fe impurities occupy Cu lattice
sites, the fifth nearest neighbor is at a distance ofA6a
'2.4a wherea is the nearest neighbor separation. The mea-
surements were taken fromT5300 K down to well below
what is believed to be the Kondo temperature of 29 K. They
found the factorized form

x~r ,T!5
f ~r !

T1TK
, ~2.33!

for some rapidly varying functionf (r ) ~which, in fact,
changes sign over the small range ofr considered!. Note that
all meaurements are taken in the regimerT/vF!1,
rTK/vF!1. In fact the values ofr are so small that it is
unclear whether the scaling form of Eqs.~2.30! holds at all.
In particular, the short-range part ofx may be contributing. If
we assumer is large enough that this can be ignored, and the
scaling form holds, then we may consider the short-distance
limit r!vF/T, vF/TK of the scaling function. According to
Gan8 the behavior off (x,y) is nontrivial in the lower tem-
perature range of the experiment,y!1, x/y!1, i.e., we do
not know the behavior of the scaling function at lowT deep

inside the screening cloud. It is possible thatf (x,y) exhibits
an approximately factorized form forx/y!1 and ally:

f ~x,y!'
f ~x/y!

y11
. ~2.34!

This behavior would explain the expeirmental results. Note
that such factorization could not also occur at larger, r
@jK if our assumed scaling and asymptotic behaviors are
correct. In this region, the 1/r 3 behavior atT@TK crosses
over to 1/r 2 at T!TK. More experiments at largerr could
clarify the situation. Experiments in the region 1/kF!r
!jK may be feasible. These would probe the short-distance
part of the scaling function. A full study of the scaling func-
tion would require going out to values ofr>jK. One point to
bear in mind is that, assuming the existence of a large screen-
ing cloud, the average impurity separation is much less than
jK so interimpurity interactions may be playing a large role.
This may make experimental observation of the screening
cloud very difficult, at least until a better understanding of
the effect of interimpurity interactions is obtained.

III. TIGHT-BINDING MODEL

In order to apply the density matrix renormalization group
~DMRG! method we rewrite Eq.~2.1! in real space. This is
the standards-d Kondo model. The model is described by a
tight-binding Hamiltonian coupled to as51/2 impurity spin
Simp .

H52t(
i51

L21

~c i
†ac i11,a1c i11

†a c i ,a!1HK . ~3.1!

HereHK describes the coupling to the impurity spin. For the
bulk of our results we consider a singles51/2 impurity spin
at the left end of an otherwise open chain. In this case the
coupling to the impurity spin described byHK takes the form

HK5JSimp•c1
†a

sa
b

2
c1

b5
1

2
J@~c1↑

† c1↑2c1↓
† c1↓!Simp

z

1c1↑
† c1↓Simp

2 1c1↓
† c1↑Simp

1 #. ~3.2!

We also briefly consider the case of twos51/2 impurities
located at either end of the chain; correspondinglyHK be-
comes

HK5JS1•c1
†a

sa
b

2
c1

b1JSL•cL
†a

sa
b

2
cL

b . ~3.3!

In all our results below we have usedt51.

IV. NUMERICAL METHOD

We use the density matrix renormalization group
~DMRG! method as developed by White and Noack.23 For a
detailed explanation of the method we refer the reader to
Ref. 23. The method is centered around calculating the den-
sity matrix and its corresponding eigenvalues and eigenvec-
tors for two appropriately defined parts of the total system.
Usually this is done by simply considering the system as
having a left and a right part. The eigenvalues of the density
matrices can then be interpreted as the probability for the
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subsystem to be in an eigenstate of the density matrix given
the constraint that the total system is in a fixed ‘‘pure’’ eigen-
state~usually the ground state!. For stable fixed points of the
DMRG method, it can be shown24 that states in the thermo-
dynamic limit are well represented by ‘‘matrix product
ground states.’’25–27

In an iteration the density matrices for each half of the
system contain 43m states~including theS51/2 impurity
spin!. Of these statesm are kept to start the next iteration.
We have usedm in the range 128–200. It is also extremely
useful to use all the symmetries of the original Hamiltonian
and constrain the whole calculation to a subspace defined by
suitable quantum numbers. This increases the precision of
the method dramatically. For the Kondo Hamiltonian that we
consider here, in addition to the totalz component of the
spin,ST

z ~including both the impurity and electron spin!, and
the number of electrons we also have parityP for reflection
around the midpoint of the chain andRPH, a particle-hole
symmetry combined with a rotation that changes the sign of
thez component of the spin. The first two are diagonal in the
usual product basis and are thus trivial to implement, theP
andRPH symmetries are nondiagonal, and a considerable ef-
fort has to be expended to implement these symmetries. The
parity P is standard and takes the two values 1,21. This is
only applicable when we consider two impurities since the
one-impurity model is not symmetric with respect to a reflec-
tion around the middle of the chain. TheRPH symmetry is an
on-site symmetry and can be used both for the one- and
two-impurity models that we consider. It is defined by

RPH:c ja→~21! jc j
†b~sx!ba ;

RPH:c j
†a→~21! j~sx!abc jb ;

RPH:u0&→uF&. ~4.1!

Here u0& is the empty state anduF& the completely filled
state. This is an exact symmetry of the Hamiltonian and it
commutes withP. We can then specify a state by the four
quantum numbers, the filling factor,ST

z , P, andRPH. In the
following we shall always work at half filling, but we chose
the remaining quantum numbers so as to select appropriate
states. For calculations performed on a system with an im-
purity at both ends we can use all four quantum numbers; for
the case with only one impurity the chain no longer has
reflection symmetry around the midpoint of the chain and
P is no longer a good quantum number.

The bulk of our results are obtained for the case of only
one impurity. In order to obtain optimal precision it is nec-
essary to use a combination of the so-called ‘‘infinite’’ and
‘‘finite’’ length DMRG methods.23At each step of the infinite
chain method a complete run of the finite length method is
performed. This is done in the following way. We start by
considering a two-site system in addition to the impurity
spin. Using the infinite lattice method we generate a four-site
system with matrices representing the impurity spin plus the
two left sites of the chain and another matrix representing the
two right sites. We denote this by 2L12R , where the impu-
rity spin is included in the matrix 2L . The finite system
method is then used to arrive at a system consisting of
1L13R where the exact 838 matrix is used for the impurity

spin and first site for the matrix 1L . At this step the expec-
tation valueŝ Simp

z & and ^S1
z& are calculated since these ma-

trices are known exactly. The finite lattice method is then
used to generate 2L12R and 3L11R , at each step calculat-
ing the expectation value of the electron spins at the sites
where the matrices are known exactly, i.e., at sites 2,3 and
3,4 respectively. Then we use the finite system method to
generate 3L13R and the whole procedure is repeated. For
large chain lengths this is exceedingly slow, but we have
been able to treat chain lengths of up to 50 sites. This method
is exact out to the point where the matricesNL andNR have
to be truncated and it has the great merit of yielding the same
precision for the expectation value of the spin components in
the middle and at the end of the chain. This latter point is
essential to our analysis of how the impurity spin is screened
at each chain length.

In all cases below we shall taket51 and we always take
L even. Furthermore, we shall usually work in the ground-
state subspace which for one impurity is given by the quan-
tum numbersST

z51/2, RPH51. For two impurities the
ground-state subspace is defined byST

z50, RPH51, and
P521.

V. FREE CHAIN

Let us first consider the tight-binding model in the ab-
sence of any impurity:

H free52t(
i51

L21

~c i
†ac i11,a1c i11

†a c i ,a!. ~5.1!

Here the subscript ‘‘free’’ denotes the free chain. Since we
shall be concerned mainly with free boundary conditions for
the chain we introduce two ‘‘phantom sites’’ 0 andL11,
where we require thatc(0)5c(L11)50. This model can
be solved by transforming to Fourier space and we obtain, in
units of the lattice spacinga,

H free522t(
k
cos~ak!ck

†ack,a , ~5.2!

where the allowed values for the wave vectork are

k5
pn

L11
, n51, . . . ,L, ~5.3!

and thus 0,k,p. We have now essentially two decoupled
Fermi seas for up and down spin electrons, respectively. The
energy is then given by the expression

Efree522tS (
k↑

kF
↑

cos~ak↑!1(
k↓

kF
↓

cos~ak↓!D . ~5.4!

HerekF
↑ ,kF

↓ denotes the Fermi wave vector for up and down
spin electrons. We can now choose a simple representation
for the field operators:

c j5A 2

L11(k sin~k j !ak , c j
†5A 2

L11(k sin~k j !ak
† .

~5.5!
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We note that with this definition the field operators obey the
commutation relations$c j ,c j

†%5d j ,l .
This solution leads to the interesting fact that for a chain

with an odd number of sites at exactly half filling, i.e., one
electron per site, the magnetization per site~the expectation
value of thez component of the electron spin,^Sj

z&) is given
by the expression

^Sj
z&5

1

2
^c j
↑†c j

↑2c j
↓†c j

↓&5
1

L11
sin2

p j

2
. ~5.6!

Thus the on-site magnetization^Sj
z&, is nonzero only onodd

sites, an artifact due to the open boundary conditions. This
result can be reproduced by the DMRG method.

For an even length chain, at half-filling, the on-site mag-
netization is always zero in the ground state whereST50,
since the expectation value of the electron spin is zero at
every site due to rotation symmetry. However, an excited
state withST51 will have unpaired spin up electrons in the
states withk5Lp/(2L12),(L12)p/(2L12). Redoing the
above calculation above for aneven length chain in the
ST51 state we obtain

^Sj
z&5

1

L11 Fsin2 Lp j

2~L11!
1sin2

~L12!p j

2~L11! G . ~5.7!

Equivalent results can be obtained for higher excited states.

VI. WEAK COUPLING PERTURBATION

A. ŠSj
z
‹

By considering the termHK in Eq. ~3.1! as a perturbation
we can do first order perturbation theory in (J/t). We start
with a system at half filling with anevennumber of sitesL
and we shall take the totalz component of the spin to be
1/2, ST

z51/2. The impurity spin is at the far end of the chain
at site 1. Here we consider only one impurity described by
HK in Eq. ~3.2!. Since we are only considering first order
perturbation theory only the term involvingSz in HK will
contribute. Thus, we have for the unperturbed ground state

f05uf& free3u↑&. ~6.1!

Here uf& free is the half-filled sea described in the preceding
section andu↑& denotes the spin up state of the impurity spin.
The first order perturbation to the wave function is

uf1&5
12P

E02H free

J

4
~c1

†↑c1
↑2c1

†↓c1
↓!uf& free3u↑&. ~6.2!

Here P is the projection operator onto the ground state Eq.~6.1!. When L is even all single-particle states with energy
«k522t cosk below the Fermi energy at«F50,kF5p/2 are filled for the unperturbed chain. With this notation we can rewrite
Eq. ~6.2! as

uf1&5
J

2L12 (
k,k8,«k^0,«k8&0

sink sink8

«k2«k8
~ak8↑

† ak↑2ak8↓
† ak↓!uf& free3u↑&. ~6.3!

Thus, the on-site magnetization becomes

^Sj
z&5

2J

~L11!2 (
k,k8,«k^0,«k8&0

sink j sink8 j sink sink8

«k2«k8
. ~6.4!

If we now setk85p2k9, we see that«k852«k9,sink8j52(21)jsink9j, and we can therefore rewrite the above equation as

^Sj
z&5

J

t

~21! j

~L11!2 (
n,m51

L/2
sinknsinkmsinknj sinkmj

coskn1coskm
, ~6.5!

where as above we havekn5pn/(L11). For j@1, Eq.~6.5!
can be analytically evaluated as

^Sj
z&→

~J/t !

4p j
~21! j . ~6.6!

This formula is basically the 1D version of the RKKY for-
mula, with 1/r 3 replaced by 1/r for trivial dimensional rea-
sons. Note that this expression only has a staggered part, not
a uniform part. The uniform part isO(J2). It is quite easy to
see that the sum over allj of Eq. ~6.5! vanishes exactly.
~This is simply a consequence of the fact that the total elec-
tron spin of the unperturbed ground state, withL even, is
zero.!

The above result, Eq.~6.5!, can be compared to DMRG
results obtained for weak couplings. In Fig. 1 we show re-
sults for a 30-site system with one impurity at the left end.
The circles denotêSj

z& calculated with the DMRG method,
while the crosses are Eq.~6.5!. The dotted line indicates the
asymptotic form Eq.~6.6!. The calculation was performed
keepingm5128 states in the ground-state subspace defined
by RPH51, ST

z51/2. Clearly there is a very good agreement
between the perturbative results, Eq.~6.5!, and the DMRG
results.

Equation~6.5! can also be compared to results obtained
using the DMRG method with two impurities, one at either
end of the chain. In Fig. 2 we show the expectation value of
the z component of the electron spin as a function of chain
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index j for a Kondo couplingJ of 0.05. In this calculation
we have aS51/2 impurity spin at each end of the chain. The
total z component of the electron and impurity spin was cho-
sen to beST

z51 so as to polarize the two impurity spins as
much as possible,m5150 states were kept, and we fixed the
two remaining quantum numbersRPH51,P51. As usual we
work at half filling. The DMRG results are shown as the
circles in Fig. 2. In order to compare these results to Eq.
~6.5! we must sum the contribution from the impurity at both
ends of the chain. If we denote byS1

z(1) the result of Eq.~6.5!
for the contribution for one-impurity spin, we obtain

Sj
z~2!5Sj

z~1!1SL2 j11
z~1! . ~6.7!

This expression is shown as the3 ’s in Fig. 2. As clearly
seen in Fig. 2 there is an excellent agreement between the
perturbation results and the DMRG results for the chain
lengthL560 considered.

B. Simp
z

The expectation value ofSimp
z can also be evaluated in

first order perturbation theory. Using Eq.~6.2! and remem-
bering to include the contributions from thex andy parts of
Kondo interaction, we obtain

^Simp
z &'1/22F J

~L11!G
2

(
ek^0,ek8&0

Fsink sink8ek2ek8
G2, ~6.8!

where we must be careful to include the correction to the
ground-state wave-function normalization. In the largeL
limit, replacing the sum by an integral, the integral has a
logarithmic divergence. Thus the last term goes like lnL.

In Fig. 3 we show DMRG results for thez component of
the impurity spin as a function of chain lengthL. The results
shown are for a very weak Kondo couplingJ50.05. One
impurity is present at the left end of the chain. The crosses
indicate the first order perturbation result, Eq.~6.8!; the
circles denote DMRG results for the stateST

z51/2, RPH51.
A good agreement between the perturbative and numerical
results is evident.

C. Correlation function

It is also straightforward to obtain the correlation function
^Simp

z Sj
z& to first order inJ/t. It is simply 1/2 times Eq.~6.7!.

In Fig. 4 we show DMRG results for̂Simp
z Sj

z& ~circles! for a
50-site chain with impurities at both ends. The Kondo cou-
pling is very weak,J50.05. Note that onlyhalf the chain is
shown. The calculation has been performed withm5150
states in the subspaceRPH51, P51, andST

z51. The crosses
denote the results from Eq.~6.5! multiplied by 1/2. We see
an excellent agreement between the DMRG and the pertur-
bative results.

VII. STRONG COUPLING

A. Energy

In theJ5` limit the impurity traps an electron and forms
a tightly bound singlet, leaving a free chain withL21 sites.

FIG. 1. Thez component of the electron spin as a function of
site indexj , for a chain of lengthL530. At the left end of the chain
is anS51/2 impurity spin. The Kondo coupling isJ50.05. The
crosses indicate the first order perturbation result, Eq.~6.5!; the
circles denote DMRG results for the stateST

z51/2,RPH51.
m5128 states were kept. The dotted line is the asymptotic result
Eq. ~6.6!.

FIG. 2. Thez component of the electron spin as a function of
site indexj , for a chain of lengthL560. Impurity spins are present
at both ends of the chain. The Kondo coupling isJ50.05. The
crosses indicate the first order perturbation result, Eq.~6.7!; the
circles denote DMRG results for the stateST

z51,RPH51,P51.
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For finite J the singlet can be polarized and we can do per-
turbation theory in the hopping term between the first and
second sites. We thus take

H5JSimp•c i
†a

sa
b

2
c i

b1H free~L21!1V, ~7.1!

V52t~c1
†ac2,a1c2

†ac1,a!. ~7.2!

Here H free is the free chain Hamiltonian, Eq.~5.1!, for
L21 sites. In the following we shall regard the hopping term
V between sites 1 and 2 as the perturbation.

The strongly bound singlet on the first site of the chain
can be excited into any of the seven excited states shown in
Fig. 5. The excited states form a quadruplet with energy
3J/4 and a triplet with energyJ relative to the ground state.
The perturbationV has only nonzero matrix elements be-
tween the ground state and the quadruplet. Calculating the
partial matrix elements in the impurity part of the Hilbert
space we find

V105^1uVu0&5
1

A2
c2
†↓ , V205^2uVu0&52

1

A2
c2
†↑ ,

V305^3uVu0&52
1

A2
c2
↑ , V405^4uVu0&52

1

A2
c2
↓ .

~7.3!

Following standard second order perturbation theory we can
now calculate the energy shift due to the perturbationV. If

we denote byu0&uF& the unperturbed ground state composed
of the singlet and the free chain, we find

DE52
4t2

3J (
a51

4

^Fu^0uVua&^auVu0&uF&

52
4t2

6J
^Fu$c2

1a ,c2a%uF&

52
4t2

3J
. ~7.4!

We thus find for the total energy for one and two impurities,
respectively,

E1 impurity52
3

4
J1Efree~L21!2

4t2

3J
, ~7.5!

E2 impurity52
6

4
J1Efree~L22!2

8t2

3J
.

These perturbation results compare favorably with the
DMRG results at sufficiently strong coupling.

FIG. 3. Thez component of the impurity spin as a function of
chain lengthL. One impurity is present at the left end of the chain.
The Kondo coupling isJ50.05. The crosses indicate the first order
perturbation result, Eq.~6.8!; the circles denote DMRG results for
the stateST

z51/2,RPH51.

FIG. 4. The correlation function̂Simp
z Sj

z& as a function of site
index j ~circles!, for a chain of lengthL550. At both ends of the
chain areS51/2 impurity spins. Onlyhalf the chain is shown. The
Kondo coupling is J50.050; m5150 states are kept with
RPH51,P51, andST

z51. The circles denote the DMRG results.
The crosses indicate the perturbation result, 1/2 times Eq.~6.5!.
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B. Wave function

We can now calculate the wave function to second order
in perturbation theory. We find

uf&5u0&uF&2
4t

3J(a51

4

Va0ua&uF&

1
4

3 S tJD
2

(
a51

4

V5aVa0u5&uF&1•••. ~7.6!

For the calculations we shall consider here these are the only
terms that will contribute. We need to calculateVa5 . We find

for the partial matrix elements in the impurity part of the
Hilbert space

V155^1uVu5&5
1

A2
c2
†↓ , V255^2uVu5&5

1

A2
c2
†↑ ,

V355^3uVu5&52
1

A2
c2
↑ , V455^4uVu5&5

1

A2
c2
↓ .

~7.7!

We can now proceed to evaluate the expectation value of
S1
z , S2

z , Simp
z in perturbation theory:

C. C–Sj
z , Simp

z

We begin by considering thez component of the electron
spin on the first site,S1

z . In the unperturbed systemS1
z must

be zero since it is locked in a singlet with the impurity spin.
The first nonzero contribution toS1

z is second order int/J.
Since

S1
zu0&52

1

2
u5&, ~7.8!

we find that only the second term in Eq.~7.6! will contribute
and we get

^S1
z~2!&52^Fu^0uS1

z 4

3 S tJD
2

(
a51

4

V5aVa0u5&uF&52
4

3 S tJD
2

^Fuc2
†↑c2

↑2c2
†↓c2

↓uF&~2!. ~7.9!

From this we can derive two results; if the stateuF& describes an unperturbed chain withL21 sites, we find from Eq.~5.6!

^S1
z~2!&52

8

3 S tJD
2 1

L
, ~7.10!

since in that case the matrix element in Eq.~7.9! is simply 2/L. We can also consider the case whereuF& describes a free chain
with L22 sites but now in a state withST

z51. This is convenient for comparing with results with 2 impurities where 2 sites
will be quenched out. It is in that case convenient to work in the state withST

z51. We then find

^S1
z~2!&52

8

3 S tJD
2 1

L21 Fsin2p~L22!

2~L21!
1sin2

pL

2~L21!G . ~7.11!

In a similar fashionSimp
z(2) can be calculated to second order int/J. We first consider the case with one impurity. Again

Simp
z is zero in the unperturbed state. ForSimp

z we find

Simp
z u0&5

1

2
u5&. ~7.12!

Thus we get the same term as before but with a different sign. However, sinceSimp
z is nonzero in the quadruplet, we get an

additional term from the second term in Eq.~7.6!. We then have

^Simp
z~2!&5

16

9 S tJD
2

(
a51

4

^FuV0aVa0uF&^auSimp
z ua&1

4

3 S tJD
2

^Fuc2
†↑c2

↑2c2
†↓c2

↓uF&5
20

9 S tJD
2

^Fuc2
†↑c2

↑2c2
†↓c2

↓uF&~2!.

~7.13!

FIG. 5. The eight states for the impurity site.
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As before we can now obtain the results for the case where
uF& describes a chain withL21 sites, i.e., when only one
impurity is present,

^Simp
z~2!&5

40

9 S tJD
2 1

L
, ~7.14!

and equivalently for the state withL22 sites andST
z51

where we have the two-impurity case in mind,

^Simp
z~2!&5

40

9 S tJD
2 1

L21 Fsin2p~L22!

2~L21!
1sin2

pL

2~L21!G .
~7.15!

To this order in perturbation theory we have in addition the
following equality for the second order contribution to
^S2

z&:

^S2
z~2!&52^S1

z~2!&2^S imp
z~2!&. ~7.16!

Note that for^S2
z& we still have the term 1/L from Eq. ~5.6!

which we can apply here at strong coupling. These equations
are obeyed to a high accuracy at sufficiently high coupling
J. To illustrate this we show in Fig. 6 results for one impu-
rity with a Kondo coupling ofJ510 for L524. The calcu-
lation is done keepingm5128 states withRPH51 and
ST
z51/2. The circles denote the DMRG results for^Sj

z& and
the squares denotêS imp

z &. The crosses denote the results
from Eq. ~5.6! for a 23-site chain with the corrections from
Eqs.~7.11! and~7.16!. The plus is the result for̂Simp

z & from
Eq. ~7.14!. From the results in Fig. 6 we find excellent agree-
ment between the above perturbation results and our DMRG
results at strong coupling.

We note that the fact that^Sj
z&→const/L for j@jK , and

thus in a sense is longer range than RKKY~1/r!, is analogous
to the prediction thatx(r ,T) should be longer range when
the screening cloud has formed@see discussion below Eq.
~2.14!# than when it has not.

D. Correlation function

It is also rather straightforward to calculate the correlation
function ^Simp

z Sj
z& to second order int/J. Again the unper-

turbed result is just zero forj.1. Let us first consider the
case wherej.2, in which case we get from Eq.~7.13!

^Simp
z Sj

z&~2!5
20

9 S tJD
2

^FuSj
z~c2

†↑c2
↑2c2

†↓c2
↓!uF&

5
10

9 S tJD
2

G~L22,j21!, j.2. ~7.17!

Here we consider the case whereuF& describes a free chain
with L22 sites corresponding to two impurities, andG is
given by

G~L, j !5^Fu~c1
†↑c1

↑2c1
†↓c1

↓!~c j
†↑c j

↑2c j
†↓c j

↓!uF&.
~7.18!

For the states describing the free chainG can easily be cal-
culated. For the state that we consider here withL22 sites
andST

z50, we find

G~L, j !5
8

~L11!2 S (
k,kF

sink sink j D S (
k.kF

sink sink j D
52

8

~L11!2 S (
k,kF

sink sink j D 2. ~7.19!

As before we havek5pn/(L11),n51, . . . ,L. When
j52 we have to be somewhat more careful. Reanalyzing the
two terms in Eq.~7.13! we find that due to the noncommu-
tativity of S2

z andV we effectively get a sign change on the
first term and thus

^Simp
z S2

z&~2!5
2

9 S tJD
2

G~L22,1!5
1

9 S tJD
2

. ~7.20!

Furthermore, we must have that

^Simp
z S1

z&~2!52
1

4
2

DE

3J
~7.21!

for the case where we have only one impurity whereDE is
given by Eq.~7.4!. Except for the first argument toG we
note that the above results for the correlation function do not
depend in any essential way on whether we consider one or
two impurities.

We illustrate this with a calculation of̂Simp
z Sj

z& for a 30-
site chain with an impurity at both ends. We keepm5150
states and work in the ground-state subspace withRPH51,

FIG. 6. Thez component of the electron spin as a function of
site indexj ~circles!, for a chain of lengthL524. At the left end of
the chain is aS51/2 impurity spin. The Kondo coupling is
J510,m5128 states are kept withRPH51, ST

z51/2. The squares
denote the DMRG result for the impurity spin. The crosses indicate
the perturbation result, Eqs.~5.6!, ~7.11!, and~7.16!. The plus is the
result for ^Simp& from Eq. ~7.14!.
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P521, andST
z50. We first consider̂ Simp

z S1
z&. From the

DMRG we find^Simp
z S1

z&520.24636. This can be compared
with the result from Eq. ~7.21! which gives
^Simp

z S1
z& (2)520.24555 in good agreement. The results for

j>2 are shown in Fig. 7. The circles denote the DMRG
results and the crosses the results from Eqs.~7.19! and
~7.20!. Clearly the discrepancy is largest forj52,3. As a
function of chain lengthL, we have observed that this dis-
crepancy decreases. Overall the agreement with the perturba-
tive results is very good.

VIII. CROSSOVER REGIME

Having checked that the DMRG method yields the ex-
pected perturbation results in the strong and weak coupling
limit we now proceed to study the crossover behavior and
the scaling predicted by Eq.~2.29!. Since the numerical re-
sults are all obtained atT50 for finite systems, whereStot

z is
a constant, the role played byDx[x(r ,T,J)2r/2 is taken
by the the on-site magnetizationDS[^Sj

z& ~expectation
value of thez component of the electron spin at sitej ).
Hence, a generalized finite size form of Eq.~2.29! should
apply to ^Sj

z& at T50. Such a finite-size form, applicable to
the numerical results for finiteL, is easily obtained; we sim-
ply substituteL for the thermal length,vFT. In this way we
get rT/vF→r /L andT/TK→jKL. We note that in order to
apply Eq.~2.29! which was derived for a susceptibility@Eq.
~2.3!#, to the on-site magnetization we need to multiply byT.
We then obtain

^Sj
z&5

1

L H f̃ S j

jK
,
L

jK
D ~21! j1g̃S j

jK
,
L

jK
D J , ~8.1!

where we have kept the finite-size equivalent ofxun as well
as x2kF

. We note that this form assures that( j^Sj
z&

'(jK/L)*dx g̃(x,L/jK) is a function ofjK/L only.

A. Scaling of L ŠSj
z
‹

We now proceed to test the above scaling form for the
finite systems we have been able to study numerically. We
start by considering how the weak and strong coupling re-
sults of Secs. VI and VII can be cast into a form consistent
with Eq. ~8.1!. First we note that the strong coupling expres-
sion Eq.~5.6! obviously obeys the scaling form. However,
the asymptotic weak coupling result, Eq.~6.6!, does not
seem to obey the scaling form due to the explicit dependence
on J/t. Fortunately it is possible to remedy this by noting
that J/t;1/ln(jK /L). This we see in the following way: We
can write our two scaling variables asj /L andjK /L. Alter-
natively, and perhaps better, we can replacejK /L by the
effective renormalized dimensionless Kondo coupling at
scaleL. Here we define a dimensionless Kondo coupling as
l[J/t. Combining Eqs. ~2.8! and ~2.9! we get using
L215L

leff5
1

ln~jK /L !
. ~8.2!

As L becomes small~i.e., approaches 1! leff(L) approaches
the bare coupling constantl. Thus, for smallL, and weak
coupling, we have, by substituting 1/ln(jK /L) for (J/t),

L^Sj
z&→~21! j

L

j

1

4p ln~jK /L !
, ~8.3!

perfectly consistent with scaling.
First we considerL^SL/2

z &. In this case the scaling function
should beg̃„1/2,L/jK(J)…1(21)L/2f̃ „1/2,L/jK(J)…, and we
can suppress the first argument. In addition since we only
consider the case whereL/2 is even, the scaling relation
takes the simpler formL^SL/2

z &5h(L/jK). In Fig. 8 we show
L^SL/2

z & for the coupling constantsJ50.3,0.4,0.5,0.75,1,
1.5,1.8,2,2.5,3,3.5,4,10 as a function ofL/jK , beginning
with L52. The data can be collapsed onto a single curve,
thus determiningjK(J) up to a multiplicative constant. If we
fix one of the correlation lengths, the rest of the correlation
lengths are fixed by requiring that the scaling form be
obeyed. An excellent data collapse is obtained. All the results
in this figure are for the one-impurity case in the ground-
state subspaceRPH51,ST

z51/2, withm5128 states. In prin-
ciple it is possible to obtain the Kondo length scalejK as a
function ofJ from this scaling plot. However, sincejK varies
quite rapidly withJ, one can essentially only obtain qualita-
tive results at weak couplings wherejK is several thousand
lattice spacings or at strong couplings wherejK is very
small. However, for a fair range of intermediate couplings
jK can be extracted with a reasonable precision. Our results

FIG. 7. The correlation function̂Simp
z Sj

z& as a function of site
index j ~circles!, for a chain of lengthL530. At both ends of the
chain areS51/2 impurity spins. Onlyhalf the chain is shown. The
Kondo coupling is J510; m5150 states are kept with
RPH51,P521, andST

z50. The circles denote the DMRG results.
The crosses indicate the perturbation result, Eqs.~7.19! and~7.20!.
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are summarized in Table I. We note that Fig. 8 clearly dis-
plays the complete crossover from weak to strong coupling.

In the same manner we can look atL^Sj
z&, but instead of

fixing j /L we can fixL/jK(J). The scaling form should then
beh„j /jK(J)…, where we have suppressed the dependence on
L/jK(J). Using jK(J52.5)51.0,jK(J53)50.6, such a
data collapse is shown in Fig. 9 withL530,20 for
J52.5,3, respectively. Thus,L/jK'32 is kept fixed. View-
ing jK(J52.5) and jK(J53) as fixed from the previous
analysis this plot contains no free parameters. The collapse is
excellent. The same rescaling can also be performed at other
couplings. In Fig. 10 we show results forJ51.5 and
J51.8 with jK(J51.5);4.85 andjK(J51.8);2.7, where
we useL536,20 forJ51.5,1.8, respectively. Again we find
an excellent collapse of the data. The complete scaling
shown in Figs. 9 and 10 is a highly nontrivial test of the
scaling form Eq.~8.1! and the fact that the numerical results
clearly follow the scaling form lends strong support to the
existence of the Kondo length scale.

B. Scaling ofL ŠSimp
z
‹

We now turn to a discussion of our results for the expec-
tation value of the impurity spin. In Fig. 11 we show
L^Simp

z & as a function of L for J50.5,1,1.5,1.8,1.9,2,
2.5,3,3.5,4,10, beginning withL52. As is clearly evident
L^Simp

z & approaches a constant in the strong coupling limit.
At weak coupling the behavior is consistent with
L^Simp

z &;L/2 for the values ofL accessible. From the results
in Fig. 11 we can also check the result Eq.~7.14!. For
J510.0 we find with the DMRG method that

L^Simp
z &;0.0456 for largeL. This can be compared to

0.0444 from Eq.~7.14!, in very good agreement.

C. jK

In the previous section we obtained numerical results for
jK(J) by requiring our numerical results to scale. We can
now try to fit these results to expressions forjK obtained
from renormalization group arguments which to first order
gives Eq.~2.9!. Is this possible? The first point to realize is
that we can only expect the weak coupling RG formula to

TABLE I. The values for the Kondo length,jK , used in Fig. 8
and shown in Fig. 12~circles!.

J jK(J)

10.0 0.031
4.0 0.27
3.0 0.6
2.5 1.0
2.0 2.0
1.8 2.7
1.5 4.85
1.0 23
0.75 100
0.5 1200
0.4 7000
0.3 100 000

FIG. 8. Logaritmic plot ofL^SL/2
z & as a function of chain length

L/jK for a range of different coupling constants. The initial point
corresponds in all cases toL54. The solid lines are guides to the
eye. The strong coupling limit corresponds toL^SL/2

z &'1.

FIG. 9. L times the expectation value of thez component of the
electron spin,^Sj

z&, as a function ofj /jK(J). Two systems are
shown:J52.5,jK51.0,L530 andJ53.0,jK50.6,L518 Thus in
both cases we haveL/jK'30. Clearly the data collapse onto a
universal curve.
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work for a range ofJ such that 1!jK!L. If jK is too small,

then the coupling constant is too big, and so low-order per-
turbation theory does not work. IfjK is too big, then finite
size effects will dominate.

We proceed by obtaining a higher-order expression for
jK(J) than the simple exponential relation Eq.~2.9!. To go to
one higher order, we first of all need to calculate the renor-
malized coupling toO@(Jr)2#, obtained by reducing the ef-
fective bandwidth~in momentum space! from p/a to 2/j0 ,
where j0 , is some length scale much bigger thana, the
lattice spacing. This involves the integral

E
0

p/2a21/j0 dk

coska
} ln@ tan~2j0 /a!#. ~8.4!

Thus

l05Jr1~Jr!2ln@ tan~2j0 /a!#. ~8.5!

Herer is the density of states,

r51/2pt. ~8.6!

Next we need to integrate theb function, to third order. The
b function is28

2dl/d lnL5l22l3/2. ~8.7!

We now integrate this equation, using the bare cutoff
L051/j0 , the bare couplingl0 given above, the renormal-
ized coupling some numberc of O(1), and the newcutoff
1/jK , the inverse correlation length. This gives29

FIG. 10. L times the expectation value of thez component of
the electron spin,̂Sj

z&, as a function ofj /jK(J). Two systems are
shown:J51.8,jK52.7,L520 andJ51.5,jK54.85,L536 Thus in
both cases we haveL/jK'7.4. Clearly the data collapse onto a
universal curve.

FIG. 11. The scaledz component of the impurity spin,
L^Simp

z &, as a function of chain lengthL for a range of Kondo
couplingsJ. In all cases does the first point correspond toL52.

FIG. 12. The Kondo lengthjK as a function of Kondo coupling
J. The circles denote the numerical DMRG results. The solid line
indicates a least squares fit of the results shown to the form Eq.
~8.8!. The fitted parameters arej051.76,c50.21.

9166 53ERIK S. SO”RENSEN AND IAN AFFLECK



jK5j0e
1/l021/cA122/l0

122/c
. ~8.8!

This together with the equation above forl0 determinesjK
vs J to a better accuracy than the simple exponential form.
We now have two free parameters:c which should be posi-
tive andO(1) andj0 which should be@1 but!jK . This
form should be valid for the range ofJ where 1!jK!L.
The corrections arising from the constantc is presumably
only one of several equally important terms. We have in-
cluded it here to improve the agreement with the numerical
results. In the limit l0→0, Eq. ~8.8! reduces to jK
}e1/l0/Al0, in agreement with Ref. 30.

A least squares fit of the numerical results forjK(J), in
Table I, to the form Eq.~8.8! is shown in Fig. 12. The circles
indicate the DMRG results while the solid line is Eq.~8.8!
with the fitted parametersj051.76,c50.21. Taking into ac-
count the sizable uncertainty injK at weak coupling the fit
works extraordinarily well.

IX. CONCLUSION

We have shown that the local susceptibility can be
brought into a unified scaling form linking a high-
temperature RRKY form and a low-temperature local Fermi

liquid form. In this picture the Knight shift is longer range at
low temperatures where the screening cloud has formed than
at high temperatures where it has not. The experimentally
observed behavior of the Knight shift16 can possibly be ex-
plained by a factorization of the scaling functions deep inside
the screening cloud which is the only region the experiments
probe.

Nontrivial tests of the scaling form have been performed
by numerically calculating the on-site magnetization at zero
temperature for finite systems. In all cases scaling behavior
consistent with the proposed form is observed. Both^SL/2

z & as
a function ofL and ^Sj

z& as a function ofj for fixed jK /J
clearly show scaling. Numerical estimates ofjK(J) has been
extracted in good agreement with an estimate ofjK(J) from
renormalization group calculations.
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