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A scaling form for the local susceptibility, derived from renormalization group arguments, is proposed. The
scale over which the uniform part of this scaling form varies can be viewed as a definition of the Kondo
“screening cloud” ~¢&x . The proposed scaling form interpolates between Ruderman-Kittel-Kasuya-Yosida
(RKKY) results in the high-temperature limiit>T, and Fermi liquid results in the low-temperature long-
distance limitT<Ty, r>§&, . The predicted form of the Knight shift is longer range at low temperatures,
where the screening cloud has formed, than at high temperatures, where it has not. Using weak and strong
coupling perturbation theory combined with large scale density matrix renormalization group results we study
the validity of the finite size version of the scaling formTat 0. We explicitly extract a length scale propor-
tional to the Kondo length scal§ . The numerical results are in good agreement with the proposed scaling
form and confirm the existence of the Kondo screening cloud.

[. INTRODUCTION linear in impurity concentration and these quantities seem to
fit theoretical expectations.

The Kondo effect is probably one of the most well-studied Comparatively little of the theoretical work on the Kondo
phenomena in condensed matter physics. The highly successffect has focused on spatial correlations. These seem to be
ful theoretical approaches include Wilson’s numerical renordifficult to obtain using Wilson's method and impossible
malization grougNRG) method® simpler and more physical from the Bethe ansatz. Perturbative calculations have been
renormalization groufRG) approaches of Andersbrand performed—®as have calculations using the “Nagoaka equa-
Nozigres and exact Bethe ansatz resdifEhus it is perhaps tions,” a type of mean field theofyRenormalization group
surprising that a fundamental aspect of this problem remain@pproaches have been developed by Géteal'° and Gar
mired in controversy. However, Chenet all° only consider short-range correla-

From the RG viewpoint, the Kondo effect is associatedtions, withr <& , and do not address the issue of the size of
with very large distance scaleg~ae'?, wherea is the the screening cloud. We incorporate the perturbative results
lattice spacingp the electronic density of states at the FermjNto our discussion of the renormalization groug) and scaling,
surface, andl the Kondo coupling. This scale is essentially but come to rather dn‘feren.t conclusions than about the
£c~ve | Te~aEsIT¢, wherevg is the Fermi velocityE scaling variables and the size of the screening cloud. Related

K=URlH I k=dEpl Tk, F =F

the Fermi energy, and, the Kondo temperature, is the theoretical work has addressed the screening cloud in the

X . . Anderson model using various approximate methidds
energy scale associated with the Kondo effect. Since Kond ome of the previous results has been reviewed in Refs. 14

temperatures are normally of order tens of degrees, this scal &d 15

is normally thousands of lattice spacinge., micrometers Experiments which have attempted to look for this large
A heuristic description of the RG results on the Kondo p,rOb'screening cloud have obtained mixed restit¥.In particu-

lem says that a clouq of el'ectrons.of this prder of.mggnltudepar' the NMR experiments of Boyce and SlicHfewere in-
surrounds the impurity spin, forming a singlet with it. The terpreted to indicate the absence of this cloud. This has led to
remaining low-energy electronic excitations outside thesome theoretical discussion about the circumstances under
screening cloud do not “feel” the impurity spin. Rather the which this cloud can be observed and even to some doubts
screened complex acts like a potential scatterer for thesgbhout its existence.

electrons, with a unitary limit phase shift af/2 right at the The purpose of this paper is to examine in more detail the
Fermi energy. The largeness of this Kondo length séal behavior of the Knight shiffi.e., the electronic spin polar-
experimental systems in which the Kondo effect is apparization by an applied fieldin the vicinity of a magnetic
ently observed is rather disconcerting. Even a very dilutempurity. In the next section we make a scaling hypothesis
system with 1 part per foof impurities has a typical inter- about this quantity based on standard RG arguments and as-
impurity separation of about 100 lattice spacings, muchsuming the existence of a large screening cloud. We point out
smaller thanéx . Thus each impurity has many other impu- the rather unintuitive result that the Knight shift is actually
rities inside its screening cloud and it is surprising that thelonger range at low temperatures, where the screening cloud
single-impurity Kondo effect is observed at all. Nonethelesshas formed, than at high temperatures, where it has not. We
the impurity resistivity, susceptibility, etc., are observed to beargue that the NMR experiments are not necessarily in con-
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tradiction with our scaling form. The basic problem with the
experiments, according to this view, is that they only probed Ximp:f dPrix(r) = p/2]+(UT)(StpSe- (2.4
very short distances<3a, whereasé, is presumably thou-
sands of times larger tham ] ]
We then test our scaling hypothesis numerically. This is-owest-order perturbation theory gives the RKKY result,
done using a one-dimensional tight-binding model. We dgVhich becomes, atkg>1,
not expect that the reduced dimensionality is important since
the Kondo problem is intrinsically one dimensional anyway

(1D). Taking a spherically symmetric dispersion relation and x(r,T)= g+ COSKr . (2.5

_ i i i - o 2mrT
as functlon Kondo interaction, we may decompo_se the elec 16r 2 gsint
tronic degrees of freedom into spherical harmonics. Only the UE

s wave interacts, and this corresponds to a one-dimensional
problem. The numerical method we use basically restricts u
to .T:O and a finite Iengt_h_s40—50. As W'”. be seen, this p the density of states per spin;is the dimensionless cou-
finite length plays essentially the role of an inverse temper Slin tant

. ) . - g constant,
ture in our scaling arguments. Both the reduced dimension-
ality and the finite length may be directly relevant to more
recent experimen’r& which have attempted to find the A=pJ. (2.6)
screening cloud using small samples with lengths of order
b or smallgr. Recent theoretical work has also addresseft e limit r <v /T [but still r>1/ke], this gives the well-

In Sec. Il we present the scaling form for the local sus—knOWn RKKY expression

ceptibility. Renormalization group arguments are given
bridging a high-temperature RKKY form with the low- p A
temperature long-distance form in a single scaling expres- X~ 57 3537 COSKr. (2.7
sion. Sections Il and IV briefly discuss the form of the mr
Hamiltonian we use in our numerical work and some details

of the numerical method. Weak and strong coupling pertur- A crycial feature of the Kondo problem is that, for anti-

bation results are presented in Secs. VI and VIl along witheromagnetic coupling, the Kondo coupling increases under

density matrix renormalization grouPMRG) results. Fi-  ranormalization as the energy scale is reduced. The lowest-
nally in Sec. VIII the crossover region is studied and thegqer renormalization group equation

scaling form is tested.

Fhe first term is the standard Pauli bulk susceptibility with

Il. RENORMALIZATION GROUP ARGUMENTS d\/d InA=—\? (2.9

We consider the standard Kondo model i ) .
is obtained. Here\ is the momentum space cutoff, or effec-

tive bandwidth. This gives the effective coupling at momen-
tum scaleA:

%
H= 2 Vet ISmp 2 L' g (2D

Here ¢y, is the annihilation operator for conduction elec-
trons of momentunk, spinea. In the following we suppress
spin indices which are implicitty summed oveS,, is the
impurity spin operator of magnitude=1/2. Theo®s are  Here A ~1/a is the bare cutoff and is the bare coupling
Pauli matrices, and we sét=1. The total spin operator is  (defined at that scaleThe Kondo length scale is defined
from the momentum scale at which the effective Kondo cou-

Sor=Smp™ ; ME D 2.2 pling constant diverges:

N
Nem(A) = TN n(ATAY IN(Ag/A)" (2.9

(We assume, for simplicity, equal factors for the impurity §K=vF/TK~Aalem‘. (2.10
spin and conduction electronsthe Knight shift is propor-

tional to the local susceptibility: . . .
P y Afinite temperature acts as an infrared cutoff on perturbation

o theory so that Eq2.9) with A replaced byl /v can be used
X(f,T)E(lfr)< ¢T(f)7¢(f)5fot>- (2.3 to define a temperature-dependent effective coupling.
Equation (2.5 is only valid at high temperatures and

This consists of a bulk part, the usual Pauli susceptibilityweak Kondo coupling. As the temperature is lowered, the
pl2, wherep is the density of states per spin, together with aeffective Kondo coupling increases, and so higher-order
local part arising from the impurity. The total change in theterms become important. The correction®f\?) has been
susceptibility due to the impurity, usually called the impurity calculated. From Eq(2.2), we see thaj/(r,T) is a sum of
susceptibility, imp, iS two terms:
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o z

x<r>=foﬁdr< v05 w<r>S.Zmp<r>>+f:dr< s Zuro | d3r'¢*<r',r>%w<r',r>>Exde(r>+xe<r>.
(2.1)

We have adopted the notation of Ref. 8. Note that the sum dfloting that a magnetic fieléH simply shifts the chemical
these correlation functions is independent-afince the total potential by=gugH/2 for spin down or spin up electrons,
spin is conserved, so that thdntegral simply gives a factor we obtain

of B. However, the individual correlation functions depend

nontrivially on 7. We could equally well add the equal time (rT)= 1 ﬂz L cog 2ker)
correlation functions and multiply bg, but we choose the X 4up dke 2 Amluer? P
above representation because both terms have been evaluated (2.15

explicitly in thg literature, in a conve.nient form. The RKKY Note thaty(r,T) is longer range at loW after the screening
term of O(X) in Eq. (2.4) comes entirely fromyge. In the o104 has formedyoc1/r2, than at highefT before it has
asymptotic regiontke>1, Eg/T>1, withr <ve /T, includ- tormeq yoc1/r% [Eq. (2.5)]. An analogous result occurs in
ing the correction oD(\?): spin chain systend.
X Corrections to Eq(2.15 can be derived by doing pertur-
x(r)— p_ %{Aﬂxz[ln(kﬁwrconsﬂ}. bation theory in the leading irrelevant operator. Part of the
2 32mr°T leading correction can be obtained by considering a field
(212 dependence of the phase sHift:

The Iogarithmic term comes entire_ly froppye. It was first 7= 72+ ohc/ Ty, 2.16
calculated in Refs. 6 and %, contributes only to the con-
stant in Eq.(2.12. [See Eq(B2) of Ref. 8] wherec is a dimensionless constant 6f1). Generalizing

Note, from Eq.(2.9), that the quantity in brackets in Eq. the Friedel oscillation formula of E¢2.14), the local density
(2.12 may be written\ o¢(r) +Ae(r)?+const, toO(A?).  of spino electrons become
This expression exhibits an infrared divergence at large 1
That is, for sufficiently large, r> ¢, the O()\Z)_ term ex- n,(r)= Mo _ ——5 cog2kZ(h)r+48°(h)]. (2.17
ceeds theO(\) term. Note, however, that this correction 2 Amr

term is at least finite a$—0, i.e.2, itishen(r) that appears, ypon differentiating with respect th to obtain the local
not A¢i(T). Thus, at least t®(A\7), a finiter is acting like  g,gceptibility, we now obtain an additional term
a cutoff on the infrared divergences of perturbation theory. It

is an important question whether or not this persists to higher c
orders in perturbation theory; i.e., is perturbation theory valid OX= Z237. CO2Ker). (2.18
for r< ¢y even forT< Ty, with the actual expansion param- K
eter beingh (r)? Based on an examination of higher-order Note that this term drops off more rapidly withthan the
terms Gaf has argued this not to be the case. He claims thatterm in Eq.(2.15 obtained from differentiatingZ(h) and is
higher-order terms diverge ds—0 for nonzerar and thatit  smaller forr> & . A very similar Fermi liquid calculation of
is therefore necessary to haVe< Ty for perturbation theory x(r), in the Anderson model, was performed in Ref. 13.
to be valid.(This point will be examined in detail in Ref. 20. However, this calculation effectively ignored the field depen-
In this case, it is probably more useful to rewrite E2.12 dence ofkZ, and hence only obtained the subdominant term
in terms of\ o¢(T). To O(A?), of Eq. (2.18, not the leading term of Eq2.15. Explicitly,

in Eq. (2.10 of Ref. 13, the free electron Green's function

p COSXKgr F.(iw)) must be evaluated in a finite magnetic field. Taking
x(r)— 2~ m{)‘eﬁ(n+Aeﬁ(T)z[ln(rT/”F)+C°nsﬂ}' this into account, we obtain our expression, Ej15.
(2.13 According to Fermi liquid theory, the impurity suscepti-
) bility, Ximp, defined in Eq(2.4) is O(1/Tk). This appears to
usingEr /ke~ve. ) arise from a short-range part g€r) which does not oscillate
At very low temperatures and large distancB& Ty,  at wave vector Re. However, since the impurity has been

r> &, we expecl(r) to be determined by the zero-energy «integrated out” to obtain the Fermi liquid theory, it is dif-
fixed point. Within the local Fermi liquid theotyf this fixed ficult to ascertain how much of;,,, comes fromx(r) and
point we can then estimajg(r). The zero-energy fixed point  how much comes from the impurity self-correlation function,
corresponds to a screened impurity which just acts as a pgn Eq. (2.4). It is also difficult to tell whether the contribu-
tential scatterer for the low-energy electronic degrees of freejon if any, from x(r) has a range of(&) or only of
dom, with a phase shift of/2 at the Fermi energy. The local O(l/kF), because the cutoff has been reduce@(d/éﬁK) to
susceptibility of a potential scatterer follows directly from gptain the Fermi liquid theory.

the formula for Friedel oscillations in the electron density, \we now wish to formulate a scaling hypothesis for
n(r), with ans-wave scatterer and &/2 phase shift. For y(r T) which we expect to be valid at arbitraryand T in
Ker>1, the scaling region;>a, T<Eg. For this purpose it is very
convenient to use the relativistic one-dimensional formula-
tion of the Kondo problem? The mapping to one dimen-

1
n(r)=no— Co4 2Ker + /2], (2.14 sional is exact for pura-wave scattering. The use of a re-

2ar3
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duced bandwidth and linear dispersion relation which lead&Vhen particle-hole symmetry is broken, as it is for a realistic
to the relativisitic model is expected to be valid in the scalingHamiltonian, we expeck . to have a phasef, which is
region. The three-dimensional electron field is expanded ifonzero but constant in the scaling region. This can be seen
spherical harmonics and then thavave part is written in  from spin-charge separation in the one-dimensional formula-
terms of left- and right-moving componenfise., incoming  tion of the Kondo problem. The Kondo interaction, which
and outgoiny produces the nontrivial scaling behavior, occurs entirely in
the spin sector. In the absence of particle-hole symmetry

1 . - . :
_ —ikgr _ aiker there is a marginal potential scattering term,
¥(x) 2\/§7rr[e du(r) = YR(r)] —0¢[(0)¢,_(0), which is a pure charge operator. Upon
bosonizing, this is linear in the charge boson and hence does
+ higher harmonics (2.19 not renormalizdis exactly marginal We can write)(zkF asa

product of spin and charge correlation functions. The charge
correlation function just contributes a constant faetrto
Xkg
P (0)=ur(0). (2.20 In the lowest two orders of perturbation theory, discussed
above, the functiony,, vanishes ar>1/kg. In fact, it is
possible to prove that this happens to all order in perturba-
tion theory?® This is also consistent with Fermi liquid theory,
given the uncertainties in that theory, discussed above, about
)= the origin of ximp-

(=X =R(X). (221 We expect the one-dimensional local susceptibility to
The one-dimensional Hamiltonian can be written obey scaling in the following sense. After extracting a factor
of 1/vg, X2k, could, in principle depend on three dimension-

H:,)Ff dr zp[(r)(id/dr)sz(r) less variables, which can be taken to Ww&/vg, N and
- D/T. Here D is the effective bandwidth in the one-
- dimensional theory, a quantity d(Eg). The scaling hy-
+UEN ¢E(o)_ #1.(0) - Snp- (2.22 pothesis asserts that the bare coupling constaand D/T
2 do not appear independently but only in the combination

x—pl2 can be expanded in spherical harmonics; only thénaking up the renormalized coupling constang(T). The
swave harmonic is nonzero. This can be written in terms ofdeépendence oRg;(T) may be exchanged for a dependence

The left- and right-moving fields, defined an~0 obey the
boundary condition:

We may flip the right-moving field to the negative axis, so
that we work with left movers only defined on the entire real
axis:

one-dimensional uniform andk2 susceptibilities: on T/Tk. To see that these two quantities are related, note,
from Eq@s.(2.9), and(2.10, valid at weak\ .,
1 :
—pl2=—— [xunt (e x5 _+cC.C)], (2.2
X~ pI2=g—73 [Xunt( X2k, )] 3 exp( ):T/TK. (2.2
Aer(T)

where c.c. denotes complex conjugate and ) ) ] ]
In the intermediate to strong coupling region, the value of

N \ei IS NONUNiversal, i.e., ambiguous. In this regime it is better
Xun(r, T)=(1/T) ( Yi(r)— gu(r) to useT/Ty as a measure of the dimensionless effective cou-
pling. This is in accord with the idea that Ty is the cou-
+ o’ , pling constant for the leading irrelevant operator at the low-
+ ‘ﬂL(_r)? (1) |Sr), temperature fixed point. As usual, we multiply by the
(2.24 effective cutoff, T, to form the dimensionless coupling con-
stant. Thus we write the scaling hypothesis as

kaF<r,T>E<1/T>< e ¢L<—r>8$>-

1

HereS; is the total spin in the one-dimensional theory Xoke = 0 F(rT/ve, T/Tw), (2.29

1 (= R wheref is a real universal scaling function. Using E8.23

STESmp_’_EJ‘ dr yi(r)7 u(r). (229  the equivalent statement for the three-dimensional suscepti-
o bility is
X2k, can be shown to be real using particle-hole symme- 1
try. This follows since under particle-hole symmetry X_p/2:8772—vr2 cod 2ker ) f(rT/vg, T/ Tk)
F

oYyl .
(=gl (r), (226 (r>1/ke; T, T<Eqp). (2.30

and hence
As we will see below, this is consistent with what is
Sr—Sr, (2.27) known about the behavior &t Ty from perturbation theory
: : ; T andT<Ty andr> &, from the local Fermi liquid description
L) op (=)= (=r)og (r)=[¢g () oy (—1)]". of the critical point. Note that this scaling hypothesises
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imply the existence of the large screening cloud, sincE if inside the screening cloud. It is possible thét,y) exhibits
<Ty, the length scale over whick(r) varies is at leasfx an approximately factorized form for'y<<1 and ally:
(apart from the Rp oscillations and the short-range paih

fact, this scaling hypothesis is perhaps the best definition of F(x y)%f(x/y) (2.3
what it means to have a screening cloud. Note that this scal- ’ y+1° ’

ing form does not include any anomalous dimension. We_, . . . .
expect this to be absent sin&, is conserved. The more SThis behavior Wpulo! explain the expeirmental results. Note
'@at such factorization could not also occur at large

eneral case, with unequal gyromagnetic ratios for electron : . . ;
9 qual gy 9 > &g if our assumed scaling and asymptotic behaviors are

nd impurity, involv nonconserv rator. This will . . ;
Zisdcussf);d ?r/] Re]f) 2((3)3 a nonconserved operato S becorrect. In this region, the t? behavior atT>Ty crosses

2 B :
The known results from perturbation theory and FermiVe' to 1i Ef‘t TﬁTK' More_expenm_ents at Iar.gercould

liquid theory, Eqs.(2.5), (2.13, (2.15, and (2.18), are all clarify the S|tuat|9n. Experiments in the region k;L/<§r

consistent with this scaling hypothesis and imply certain lim-=< ¢« may be feasible. These would probe the short-distance

iting forms for the scaling function. Equatici2.5) implies ~ P2" of the scali_ng function. A full study of the scaling func-
tha% 9 quatici@.5) imp tion would require going out to values ¥ &x. One point to

bear in mind is that, assuming the existence of a large screen-

w2 ing cloud, the average impurity separation is much less than
(2.32 &k so interimpurity interactions may be playing a large role.

This may make experimental observation of the screening

for y<1. Equation(2.13 gives a higher-order correction in cloud very difficult, at least until a better understanding of
1/Inyt0'f, whenx is élso small. Equation€.15 and(2.18 the effect of interimpurity interactions is obtained.
imply that, fory<1 andx/y>1,

f(x’y)AZ sinh(2m7x)In y’

Ill. TIGHT-BINDING MODEL

y In order to apply the density matrix renormalization group
f(x, 2+ const-. 2.3 i . 2
(y)—= X (232 (DMRG) method we rewrite Eq(2.1) in real space. This is
the standard-d Kondo model. The model is described by a

The functionf in the regimey<1, x/y=r/¢c<1 is of Spe-  tgnt-pinding Hamiltonian coupled to &= 1/2 impurity spin
cial interest. It describes the interior of the screening cloud asmp_

low T. One might naively suppose that a smafé would

also cut off the renormalization of the effective coupling so L-1

that deep inside the screening cloud we recover weak- H= —tz (B “bisrat l,/linl o) THk. (3.1
coupling behavior(for weak bare couplingeven at lowT. =1

As mentioned above, G&has argued, based on higher-order HereH,, describes the coupling to the impurity spin. For the
perturbation calculations, that this is not the case. It followsyy|k of our results we consider a single 1/2 impurity spin
that the scaling function would be nontrivial in this region. at the left end of an otherwise open chain. In this case the

Now let us consider the experiments of Boyce and Slichtoypling to the impurity spin described b takes the form
ter on Fe-doped Cu. They measured what they interpreted as
the Knight shift from five different shells of Cu atoms at s 1
distances up to fifth nearest neighbor. We note that for the Cu  Hx=JSmp" Iajl//l =§J[(¢L¢n— Wl 1)) Shnp
fcc lattice, assuming the Fe impurities occupy Cu lattice
sites, the fifth nearest neighbor is at a distance\6& + 1 Snpt UL ¥ Simp)- (3.2
~2.4a wherea is the nearest neighbor separation. The mea- . . . .
surements were taken from=300 K down to well below We also b”‘?“y consider the case Sl i ”f“p“”“es
what is believed to be the Kondo temperature of 29 K. The)Jocated at either end of the chain; correspondirigly be-
found the factorized form comes

f(r) _ W% .94
, (2.33 Hk=JS- ¢ 7‘#1""]3_'%_ 7%_. (3.3
T+ Tk

x(r,T)=
In all our results below we have useéd 1.
for some rapidly varying functionf(r) (which, in fact,
changes sign over the small range @onsideregl Note that
all meaurements are taken in the regim@/vg<<1,
rT/ve<<l. In fact the values of are so small that it is We use the density matrix renormalization group
unclear whether the scaling form of Eq8.30 holds at all.  (DMRG) method as developed by White and Nodtkor a
In particular, the short-range part gimay be contributing. If  detailed explanation of the method we refer the reader to
we assume is large enough that this can be ignored, and theRef. 23. The method is centered around calculating the den-
scaling form holds, then we may consider the short-distanceity matrix and its corresponding eigenvalues and eigenvec-
limit r<vg/T, ve/Tk of the scaling function. According to tors for two appropriately defined parts of the total system.
Garf the behavior off(x,y) is nontrivial in the lower tem- Usually this is done by simply considering the system as
perature range of the experimegtil, x/y<1, i.e.,, we do having a left and a right part. The eigenvalues of the density
not know the behavior of the scaling function at Idwleep  matrices can then be interpreted as the probability for the

IV. NUMERICAL METHOD
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subsystem to be in an eigenstate of the density matrix givespin and first site for the matrix, 1 At this step the expec-
the constraint that the total system is in a fixed “pure” eigen-tation values(S,,,) and(S]) are calculated since these ma-
state(usually the ground stakeFor stable fixed points of the trices are known exactly. The finite lattice method is then
DMRG method, it can be showhthat states in the thermo- uysed to generate 225 and 3 + 1y, at each step calculat-
dynamic limit_are well represented by “matrix product ing the expectation value of the electron spins at the sites
ground states %/ where the matrices are known exactly, i.e., at sites 2,3 and
In an iteration the density matrices for each half of the3 4 respectively. Then we use the finite system method to
system contain Xm states(including theS=1/2 impurity  generate 3+3g and the whole procedure is repeated. For
spin). Of these statem are kept to start the next iteration. large chain lengths this is exceedingly slow, but we have
We have usedn in the range 128-200. It is also extremely been able to treat chain lengths of up to 50 sites. This method
useful to use all the symmetries of the original Hamiltonianis exact out to the point where the matridés andNg have
and constrain the whole calculation to a subspace defined ki be truncated and it has the great merit of yielding the same
suitable quantum numbers. This increases the precision gfrecision for the expectation value of the spin components in
the method dramatically. For the Kondo Hamiltonian that wethe middle and at the end of the chain. This latter point is
consider here, in addition to the totalcomponent of the essential to our analysis of how the impurity spin is screened
spin, $7 (including both the impurity and electron spimnd  at each chain length.
the number of electrons we also have paRtyor reflection In all cases below we shall take=1 and we always take
around the midpoint of the chain ariRb,, a particle-hole L even. Furthermore, we shall usually work in the ground-
symmetry combined with a rotation that changes the sign o$tate subspace which for one impurity is given by the quan-
thez component of the spin. The first two are diagonal in thetum numbersS7=1/2, Rpy=1. For two impurities the
usual product basis and are thus trivial to implement,Rhe ground-state subspace is defined =0, Rpy=1, and
andRpy symmetries are nondiagonal, and a considerable efp= — 1.
fort has to be expended to implement these symmetries. The
parity P is standard and takes the two values 1, This is
only applicable when we consider two impurities since the
one-impurity model is not symmetric with respect to a reflec- Let us first consider the tight-binding model in the ab-
tion around the middle of the chain. TRy, symmetry is an  sence of any impurity:
on-site symmetry and can be used both for the one- and
two-impurity models that we consider. It is defined by

V. FREE CHAIN

L-1
| Hiee= ~t 2 (W “Wissat iiatha) (5D
Reri #hja— (= D19/P(0) ga
Here the subscript “free” denotes the free chain. Since we

Rpwi i “—(— 1)j(ox)“ﬁz,bj5; shall be concerned mainly with free boundary conditions for
the chain we introduce two “phantom sites” 0 amdt 1,
Rpw:|0)—|F). (4.1)  where we require thag(0)=(L+1)=0. This model can

be solved by transforming to Fourier space and we obtain, in
Here |0) is the empty state an{F) the completely filled units of the lattice spacina,

state. This is an exact symmetry of the Hamiltonian and it

commutes withP. We can then specify a state by the four N

quantum numbers, the filling factd®, P, andRpy,. In the Hiree= _2"; cogak) "ty (5.2
following we shall always work at half filling, but we chose

the remaining quantum numbers so as to select appropriatehere the allowed values for the wave vedtoare
states. For calculations performed on a system with an im-

purity at both ends we can use all four quantum numbers; for n

the case with only one impurity the chain no longer has kzmv n=1,...L, (5.3
reflection symmetry around the midpoint of the chain and

P is no longer a good quantum number. and thus B<k<w. We have now essentially two decoupled

The bulk of our results are obtained for the case of onlyFermi seas for up and down spin electrons, respectively. The
one impurity. In order to obtain optimal precision it is nec- energy is then given by the expression
essary to use a combination of the so-called “infinite” and
“finite” length DMRG methods?3 At each step of the infinite ki ki
chain method a complete run of the finite length method is Efee= — 2t E cos(akT)+E cogak!) |. (5.9
performed. This is done in the following way. We start by Kl k!
considering a two-site system in addition to the impurity .
spin. Using the infinite lattice method we generate a four-sité-le_re ki ke denotes the Fermi wave vector for up and dOW'."
system with matrices representing the impurity spin plus th pin EIG_C”O”S' We can now choose a simple representation
two left sites of the chain and another matrix representing thé?" the field operators:
two right sites. We denote this by 2 2z, where the impu-
rity spin is included in the matrix 2. The finite system = LZ sin(kj)a Y= iz sin(kj)aT
method is then used to arrive at a system consisting of '’ L+1% oo 7 L+1 ke
1, + 3g where the exact 8 8 matrix is used for the impurity (5.5
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We note that with this definition the field operators obey the § 1 (|_+2)7TJ
commutation relationgy; , ¢/} =5; . ($)=77|sir 2(L+1) +si ———— i | 67

This solution leads to the interesting fact that for a chain
with an odd number of sites at exactly half filling, i.e., one Equivalent results can be obtained for higher excited states.

electron per site, the magnetization per sttee expectation
value of thez component of the electron spi{SjZ)) is given
by the expression A.(S)

VI. WEAK COUPLING PERTURBATION

1 By considering the terrily in Eq. (3.1) as a perturbation
(S)= E(z/x}*z/;} z,bJ )= L+1sm2— (5.6)  we can do first order perturbation theory i{). We start
with a system at half filling with arvennumber of siteg
Thus the on-site magnetizatidf;), is nonzero only omdd ~ and we shall take the total component of the spin to be
sites, an artifact due to the open boundary conditions. Thig/2, S;=1/2. The impurity spin is at the far end of the chain
result can be reproduced by the DMRG method. at site 1. Here we consider only one impurity described by
For an even length chain, at half-filling, the on-site mag-Hy in Eq. (3.2). Since we are only considering first order
netization is always zero in the ground state wh8fe=0,  perturbation theory only the term involving in Hy will
since the expectation value of the electron spin is zero atontribute. Thus, we have for the unperturbed ground state
every site due to rotation symmetry. However, an excited
state withS;=1 will have unpaired spin up electrons in the bo=|P)meex|1)- (6.2)
states withk=L /(2L +2),(L+2)w/(2L +2). Redoing the Here|®)see is the half-filled sea described in the preceding
above calculation above for aevenlength chain in the section and]) denotes the spin up state of the impurity spin.
Sy=1 state we obtain The first order perturbation to the wave function is

1-P
)= —h 3 2 1 DI Breex 1): 6.2

Here P is the projection operator onto the ground state &qgl). WhenL is even all single-particle states with energy
g=— 2t cok below the Fermi energy at-=0kr= /2 are filled for the unperturbed chain. With this notation we can rewrite
Eq. (6.2 as

#9=7r S (@l a2l )l e ) 6.3
—(a . ar—a,, a ) .
' 2|'dl_zk k' 0e )0 EkT €K k19Kt Gk | 9kl free

Thus, the on-site magnetization becomes
J sinkj sink’j sink sink’

kk/,8k<0,£k’>0 Sk_{‘:kl

If we now setk’ =7 —k”, we see that, = — g, sirk’j=—(—1)'sink’j, and we can therefore rewrite the above equation as

L/2

J (1) sink,,Sink,Sink,j sink ]
Z
(S)= t(L+1)25 2 cok,+ coKp, ’ .5
|
where as above we hakg=7n/(L+1). Forj>1, Eq.(6.5 The above result, Eq6.5, can be compared to DMRG
can be analytically evaluated as results obtained for weak couplings. In Fig. 1 we show re-
sults for a 30-site system with one impurity at the left end.
.o (J1D) The circles denot¢S;) calculated with the DMRG method,
(S >—>—( 1. (6.6

while the crosses are E¢6.5). The dotted line indicates the
asymptotic form Eq(6.6). The calculation was performed
This formula is basically the 1D version of the RKKY for- keepingm=128 states in the ground-state subspace defined
mula, with 1¢° replaced by ¥/ for trivial dimensional rea- by Rpy=1, S3=1/2. Clearly there is a very good agreement
sons. Note that this expression only has a staggered part, noétween the perturbative results, £§.5), and the DMRG

a uniform part. The uniform part ©(J?). It is quite easy to  results.

see that the sum over ajl of Eq. (6.5 vanishes exactly. Equation(6.5 can also be compared to results obtained
(This is simply a consequence of the fact that the total elecusing the DMRG method with two impurities, one at either
tron spin of the unperturbed ground state, wltheven, is  end of the chain. In Fig. 2 we show the expectation value of
Zero) the z component of the electron spin as a function of chain
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index j for a Kondo couplingd of 0.05. In this calculation where we must be careful to include the correction to the

we have &= 1/2 impurity spin at each end of the chain. The ground-state wave-function normalization. In the ladge

total z component of the electron and impurity spin was cho-limit, replacing the sum by an integral, the integral has a

sen to beSi=1 so as to polarize the two impurity spins as logarithmic divergence. Thus the last term goes like. In

much as possiblen= 150 states were kept, and we fixed the In Fig. 3 we show DMRG results for thecomponent of

two remaining quantum numbeRe=1,P=1. As usual we the impurity spin as a function of chain lendth The results

work at half filling. The DMRG results are shown as the shown are for a very weak Kondo couplidg=0.05. One

circles in Fig. 2. In order to compare these results to Eqimpurity is present at the left end of the chain. The crosses

(6.5 we must sum the contribution from the impurity at both indicate the first order perturbation result, E§.8); the

ends of the chain. If we denote 8§ the result of Eq(6.5)  Circles denote DMRG results for the steg=1/2, Rpy=1.

for the contribution for one-impurity spin, we obtain A good agreement between the perturbative and numerical

results is evident.
z(2) _ cz(1) z(1)
SJ S' +SL7'+1' ®7 C. Correlation function

This expression 1S shown as the's in Fig. 2. As clearly It is also straightforward to obtain the correlation function

seen in Fig. 2 there is an excellent agreement between tQ%z
1

2 . . . .
perturbation results and the DMRG results for the chainI EPSJ'>4tO fws;ordeDr'\;lrIn:;]g. It 'SIS'TpIyZ 1/822t|m§s|Eq(f6.7).
lengthL =60 considered. n Fig. 4 we show results fq| mp j) (circles for a

50-site chain with impurities at both ends. The Kondo cou-
, pling is very weak J=0.05. Note that onljhalf the chain is
B. Simp shown. The calculation has been performed witk- 150
The expectation value o/, can also be evaluated in states in the subspa&=1, P=1, andS;=1. The crosses
first order perturbation theory. Using E(f.2) and remem- denote the results from E¢§6.5 multiplied by 1/2. We see
bering to include the contributions from tikeandy parts of  an excellent agreement between the DMRG and the pertur-

Kondo interaction, we obtain bative results.
(S V1 2 sink sink’ |2 69 VIl. STRONG COUPLING
St y~12— | ——Fr ———, (6.8
mP (L+1)] cdeero | € €k A. Energy
In the J=o0 limit the impurity traps an electron and forms
0.004 . . . . : a tightly bound singlet, leaving a free chain wlth-1 sites.
0.004 T T T T T
0.002 | 8 1
i
i | @ Q
i ? 0.002
iﬁ i AR R 229 ¢
0000 | |1 I ;’\‘x‘f\bf\v m
'R
A Y 0.000
9 ®
NA—
-0.002 E <@ ® [+
-0.002 E
-0.004 | J
-0.004 | E
o]
—0.006 Il Il 1 Il 'l R [
0 5 10 15 20 25 30
! ~0.006 I 1 1 1 1
0 10 20 30 40 50 60

FIG. 1. Thez component of the electron spin as a function of ]
site indexj, for a chain of length. = 30. At the left end of the chain
is an S=1/2 impurity spin. The Kondo coupling i3=0.05. The FIG. 2. Thez component of the electron spin as a function of
crosses indicate the first order perturbation result, ®c); the site indexj, for a chain of length. =60. Impurity spins are present
circles denote DMRG results for the statgf=1/2,Rpy=1. at both ends of the chain. The Kondo couplingJis 0.05. The
m=128 states were kept. The dotted line is the asymptotic resulcrosses indicate the first order perturbation result, 6d7); the
Eq. (6.6). circles denote DMRG results for the st&@g=1Rpy=1,P=1.
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0.000 | ®®®®®®®®®@
o) ®
A A ®
LB 0.49990 | X . 0
© e} N ®
x 9D
o X
-0.002 | .
o X
0 x
0.49985 | o X " 4
o X x
05 x -0.004 | ;
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FIG. 3. Thez component of the impurity spin as a function of :

chain lengthL. One impurity is present at the left end of the chain.  FIG. 4. The correlation functioS?,,S?) as a function of site

The Kondo coupling i9=0.05. The crosses indicate the first order jhdex j (circles, for a chain of length.=50. At both ends of the

perturbation result, E¢(6.8); the circles denote DMRG results for chain areS= 1/2 impurity spins. Onlyhalf the chain is shown. The

the stateS;=1/2 Rpi=1. Kondo coupling is J=0.050; m=150 states are kept with
Rpy=1,P=1, andS;=1. The circles denote the DMRG results.

For finite J the singlet can be polarized and we can do per-The crosses indicate the perturbation result, 1/2 times&§).

turbation theory in the hopping term between the first and

second sites. We thus take we denote by0)|F) the unperturbed ground state composed

of of the singlet and the free chain, we find
H=3Smp ¢ 5 i + Hied L=D)V,  (7.D)

22
V=t a3 0 0). (72 AE=— 332 (FI(0V]a){(a|V|0)|F)
Here Hy is the free chain Hamiltonian, Eq5.1), for 412
L —1 sites. In the following we shall regard the hopping term =— E<F|{¢;a’¢2“}|F>

V between sites 1 and 2 as the perturbation.

The strongly bound singlet on the first site of the chain 412
can be excited into any of the seven excited states shown in =— . (7.4
Fig. 5. The excited states form a quadruplet with energy 3J
3J/4 and a triplet with energy relative to the ground state.
The perturbationv has only nonzero matrix elements be- , . .
tween the ground state and the quadruplet. Calculating th\é\/e thug find for the total energy for one and two impurities,
partial matrix elements in the impurity part of the Hilbert respectively,
space we find

1 1 E 3Bl 4 (7.5
Vio=(1VI0)= vl Vo= (2VI0) =~ Sl vimpurty= = 79+ Ered L= 1) 33, (7
1 1 6 8t2
VSO:<3|V|O>:_E§[/£1 V4O:<4|V|O>:_EI/I%' E2impurity:_ZJ—’_Efree(L_z)_ﬁ-
(7.3

Following standard second order perturbation theory we caifhese perturbation results compare favorably with the
now calculate the energy shift due to the perturbationf DMRG results at sufficiently strong coupling.
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for the partial matrix elements in the impurity part of the

6 5 7 .
|/b>~}'ﬁ 0> et |0>+|¢>‘1{f 0>}V2 1> o> Hilbert space
V15:<1|V|5>:i 3 V25:<2|V|5>:i 3
1 : ) . ; 277 27
140> 1} >10> twttos >t ) o> T
344 1 1
Va5=(3|V|[5)=— —l#;, Va4s=(4|V|5)= _‘/fé-
: | 2 2
st ooy > 103 2 (7.7
We can now proceed to evaluate the expectation value of
FIG. 5. The eight states for the impurity site. 1, S5, Simp in perturbation theory:
B. Wave function C.C-Sf, Sinp
We can now calculate the wave function to second order We begin by considering the component of the electron
in perturbation theory. We find spin on the first siteS; . In the unperturbed systeBf must
at be zero since it is locked in a singlet with the impurity spin.

t The first nonzero contribution t8] is second order in/J.

|6)=[0)[F) = 352, Vaola)|F) : :
3Ja=1 Since
4(t)2 , 1
+313 Zl Vs, VaolB)F)+---. (7.6 Si|0y=-3I5), (7.8

For the calculations we shall consider here these are the onlye find that only the second term in E.6) will contribute
terms that will contribute. We need to calculatgs. We find  and we get

2(2) A2 A2 e
<Sl >:2<F|<0|51§(3) azl V5aVa0|5>|F>:_§<j) <F|‘//2 Y= ¢2|F>( )- (7.9

From this we can derive two results; if the stffe describes an unperturbed chain with-1 sites, we find from Eq(5.6)

21

K (7.10

8/t
I\

since in that case the matrix element in Eg9) is simply 2L. We can also consider the case whigtk describes a free chain
with L —2 sites but now in a state witBt= 1. This is convenient for comparing with results with 2 impurities where 2 sites
will be quenched out. It is in that case convenient to work in the state $§ithl. We then find

™72 G T (7.11)

Sir‘22(|_—1) 2L-1)|°

8(t\% 1
Z(2)y . _ | _
(S8 S(J) L-1

In a similar fashionslzrﬁé) can be calculated to second ordertid. We first consider the case with one impurity. Again
Sinp is zero in the unperturbed state. F&ff,, we find

1
S|Zmp|0>: §|5> (7.12

Thus we get the same term as before but with a different sign. However, Sﬁﬂpis nonzero in the quadruplet, we get an
additional term from the second term in E@.6). We then have

16/t)2.& 412 20(t)2
<Sfr‘n%>>=3(3) 2 <F|voavao|F><a|Sfmpla>+5(3) (Flysvo— MIF>=3(3) (Flud =3 w5l F) 2.
a=1
(7.13
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As before we can now obtain the results for the case where . 8
|F) describes a chain with —1 sites, i.e., when only one  G(L,j)= Y
impurity is present,

> sink sinkj)( > sink sinkj)
kg

K< =y

8 2
40(t\21 =———| > sink sinkj) . (7.19
(St = 3(3) o (7.14 (L+1)* e
] ] ] , As before we havek=azn/(L+1),n=1,...L. When
and equivalently for the state with—2 sites andSr=1  ;_5 \ye have to be somewhat more careful. Reanalyzing the
where we have the two-impurity case in mind, two terms in Eq(7.13 we find that due to the noncommu-
9 tativity of S5 andV we effectively get a sign change on the
(SH2)y = 40 E) ! Sir? m(L=2) +Sin27T_L ) first term and thus
P 91J L-1 2(L-1) 2(L-1)

(7.195

To this order in perturbation theory we have in addition the
following equality for the second order contribution to

(S5):

2 1/t 2
G(L—2,1)=§<—). (7.20

2t
2)_
<S|ZmpS§>( )_5(3 J

Furthermore, we must have that

(S57)=~(S{)~(Si. (716 (SmSD?=- 3" 37 (721

2 .
NoFe that for(S;) we still have the term yfrom Eq. (5.6 . for the case where we have only one impurity whAfg is
which we can apply here at strong coupling. These equations,

. o : .~ given by Eq.(7.4). Except for the first argument t& we
are opeyed to a _h|gh accuracy a}t sufficiently high CQUp“nggote that the above results for the correlation function do not
J. To illustrate this we show in Fig. 6 results for one impu-

rity with a Kondo coupling of =10 for L = 24. The calcu- depend in any essential way on whether we consider one or

lation is done keepingn=128 states withRpy=1 and two Impurities.

; ; ; ; 7 oz _
St=1/2. The circles denote the DMRG results {&) and sit(;/v(?h!iljnstfl;?ttﬁ ;Tllsir;wtl?ri? cgcs!)?rt]logngs '“QR% )kfor a13500
the squares deno%S’,,,). The crosses denote the results purtty '

4 . - . states and work in the ground-state subspace Rjth=1,
from Eq. (5.6) for a 23-site chain with the corrections from g P B

Egs.(7.11) and(7.16. The plus is the result fofS;,;) from
Eq.(7.14. From the results in Fig. 6 we find excellent agree- 0.06 - - T T
ment between the above perturbation results and our DMRG
results at strong coupling.

We note that the fact thgS;)—constL for j> &, and
thus in a sense is longer range than RKKLYf), is analogous
to the prediction thaj(r,T) should be longer range when ouf R ® ® @ ® @ 8 3 & & O]
the screening cloud has formgsdee discussion below Eq. '
(2.14] than when it has not.

D. Correlation function

It is also rather straightforward to calculate the correlation & 002 - ]
function (Sf,,,S/) to second order in/J. Again the unper-
turbed result is just zero for>1. Let us first consider the
case wherg>2, in which case we get from E@7.13

<S>

00Fre ® ® ® @ ® ® ® ® ® ® ®

20(t)2
<azmp8f><2>=g(3) (FISH 3" wo= w3 3)|F)

2
G(L-2j-1), j>2. (7.1D

"9 ( J
-0.02 1 1 1 1

Here we consider the case whéF® describes a free chain 0 5 10 15 20 25
with L—2 sites corresponding to two impurities, a@dis j
given by

FIG. 6. Thez component of the electron spin as a function of
G(L,))=(FI(y1 i — vl i) (] Tyl — gl t )| F). site indexj (circles, for a chain of length. = 24. At the left end of
(7.18 the chain is aS=1/2 impurity spin. The Kondo coupling is
o ] J=10, m=128 states are kept witRp,=1, St=1/2. The squares
For the states describing the free ch@rcan easily be cal-  denote the DMRG result for the impurity spin. The crosses indicate
culated. For the state that we consider here With2 sites  the perturbation result, Eq&.6), (7.11), and(7.16). The plus is the

andS;=0, we find result for (S, from Eq. (7.14.
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P=—1, andSt=0. We first consideS;,,,;S7). From the 0.002

DMRG we find(S{,,,S;) = —0.24636. This can be compared
with the result from Eq. (7.21) which gives
(ShpSt)®)=—0.24555 in good agreement. The results for 0.001 | -
j=2 are shown in Fig. 7. The circles denote the DMRG
results and the crosses the results from E@sl9 and
(7.20. Clearly the discrepancy is largest fp=2,3. As a 0.000 | ® ® ® ® g ® @ ®
function of chain lengthiL, we have observed that this dis- @

crepancy decreases. Overall the agreement with the perturba- @

tive results is very good. -0.001 | .

<S>

VIlIl. CROSSOVER REGIME _0.002 } 1

Having checked that the DMRG method yields the ex-
pected perturbation results in the strong and weak coupling
limit we now proceed to study the crossover behavior and -0.003 | © ]
the scaling predicted by E@2.29. Since the numerical re-
sults are all obtained &t=0 for finite systems, whergg is
a constant, the role played hyy= x(r,T,J)—p/2 is taken -0.004 |- x ]
by the the on-site magnetizatiorAS=(S;) (expectation
value of thez component of the electron spin at sitg.
Hence, a generalized finite size form of .29 should -0.005 = 00 15.0
apply to(S/) at T=0. Such a finite-size form, applicable to i
the numerical results for finite, is easily obtained; we sim-
ply substituteL for the thermal lengthy e T. In this way we FIG. 7. The correlation functiofS.,,,S/) as a function of site

: imp>j
getrT/vg—r/L andT/Tx— &kL. We note that in order t0  jhqexj (circles, for a chain of length_=30. At both ends of the
apply Eq.(2.29 which was derived for a susceptibiliffq.  chain ares=1/2 impurity spins. Onlyhalf the chain is shown. The
(2.3)], to the on-site magnetization we need to multiply®y  kondo coupling is J=10; m=150 states are kept with
We then obtain Rpy=1,P=—1, andS?=0. The circles denote the DMRG results.
The crosses indicate the perturbation result, Eg4.9 and(7.20.

Sz_l[f(L L) —1)+4
< j>_|— &k " €k (=g

where we have kept the finite-size equivalentygf, as well
as xzk.. We note that this form assures thal(S;)

~(&L) fdx 9(x,L/&k) is a function oféc/L only.

J_L) ] (8.1)  AsL becomes smalii.e., approaches)\ (L) approaches
&k’ &k the bare coupling constant Thus, for smallL, and weak
coupling, we have, by substituting 1/&(L) for (J/t),

L
i 4 In(& /L)’

perfectly consistent with scaling.
A. Scaling of L(S?) First we consideL(S{ ;). In this case the scaling function

We now proceed to test the above scaling form for theShould beé(l/z'L/gK(‘J)H(_1)L/2¥(1/2’L/§K(‘J))’ and we
an suppress the first argument. In addition since we only

finite systems we have been able to study numerically. wan < . . .
start by considering how the weak and strong coupling re_con5|der the case Whemsz Is even, the s_callng relation
sults of Secs. VI and VII can be cast into a form consistenfakezS the simpler form.(S; ;) =h(L/&x). In Fig. 8 we show
with Eq. (8.1). First we note that the strong coupling expres--(St2) for the coupling constants)=0.3,0.4,0.5,0.75,1,
sion Eq.(5.6) obviously obeys the scaling form. However, 1.5.1.8,2,2.5,3,3.5,4,10 as a function lof¢,, beginning
the asymptotic weak coupling result, E¢6.6), does not With L=2. Th_e data can be coIIa_ps_ed onto a single curve,
seem to obey the scaling form due to the explicit dependencélus determining(J) up to a multiplicative constant. If we
on J/t. Fortunately it is possible to remedy this by noting fix one of the .correla'uon Iengths, the rest of the correlation
that J/t~ 1/In(&/L). This we see in the following way: We 'engths are fixed by requiring that the scaling form be
can write our two scaling variables @ and & /L. Alter- _obey_ed._An excellent data colle_lpse is obtalne_d. All the results
natively, and perhaps better, we can replagdL by the N this figure are for the one-lmpurlty case in the grqund-
effective renormalized dimensionless Kondo coupling atState subspad@py=1,S7=1/2, withm=128 states. In prin-
scaleL. Here we define a dimensionless Kondo coupling a$iPle it is possible to obtain the Kondo length scgleas a

A=J/t. Combining Egs.(2.8) and (2.9 we get using function ofJ from this scaling plot. However, sing varies
A l=L quite rapidly withJ, one can essentially only obtain qualita-

tive results at weak couplings wheég is several thousand
lattice spacings or at strong couplings whefg is very
1 8.2 small. However, for a fair range of intermediate couplings
In(éc/L)’ ' &k can be extracted with a reasonable precision. Our results

L(S))—(—1)] (8.3

Nef=
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TABLE |. The values for the Kondo lengtlgy , used in Fig. 8

1.0 and shown in Fig. 1Zcircles.
J ék(J)
sl 10.0 0.031
' 4.0 0.27
3.0 0.6
25 1.0
2.0 2.0
o6 1.8 2.7
A 1.5 4.85
“u\; 1.0 23
- 0.75 100
04r 0.5 1200
0.4 7000
0.3 100 000
02|
L(Sip ~0.0456 for largeL. This can be compared to
0.0444 from Eq(7.14), in very good agreement.
T T T T R EANIET T C. &
Ligy

In the previous section we obtained numerical results for

FIG. 8. Logaritmic plot ofL(S{,) as a function of chain length ¢k(J) by requiring our numerical resul.ts to scale. We can
L/é& for a range of different coupling constants. The initial point NOW try to fit these results to expressions f obtained
corresponds in all cases to=4. The solid lines are guides to the from renormalization group arguments which to first order
eye. The strong coupling limit correspondsLt¢S? )~ 1. gives Eq.(2.9. Is this possible? The first point to realize is
that we can only expect the weak coupling RG formula to
are summarized in Table I. We note that Fig. 8 clearly dis-
plays the complete crossover from weak to strong coupling.
In the same manner we can looklatS/), but instead of
fixing j/L we can fixL/&x(J). The scaling form should then
beh(j/&«(J)), where we have suppressed the dependence on
L/ék(J). Using ék(J=2.5)=1.0,6k(J=3)=0.6, such a
data collapse is shown in Fig. 9 with=30,20 for o
J=2.5,3, respectively. Thus,/&c~32 is kept fixed. View- 1.0
ing &«(J=2.5) andé&x(J=3) as fixed from the previous
analysis this plot contains no free parameters. The collapse is
excellent. The same rescaling can also be performed at other
couplings. In Fig. 10 we show results far=1.5 and 0J=2.5, L=30
J=1.8 with &(J=1.5)~4.85 andéc(J=1.8)~2.7, where " 05 0.J=30, L=18
we usel. =36,20 forJ=1.5,1.8, respectively. Again we find
an excellent collapse of the data. The complete scaling
shown in Figs. 9 and 10 is a highly nontrivial test of the
scaling form Eq(8.1) and the fact that the numerical results
clearly follow the scaling form lends strong support to the
existence of the Kondo length scale. ' o

00 0 o om aoamem |

L<S%>

B. Scaling of L{Sf,,,)

We now turn to a discussion of our results for the expec-
tation value of the impurity spin. In Fig. 11 we show _05 s
L(St,) as a function ofL for J=0.5,1,1.518,1.9,2, 10 g
2.5,3,3.5,4,10, beginning with=2. As is clearly evident
L(Siwp) approaches a constant in the strong coupling limit. ¢ 9 | times the expectation value of taecomponent of the
At weak coupling the behavior is consistent With gjeciron spin(S?), as a function ofj/é(J). Two systems are
L(Slzmp)~L/2 for the values ot. accessible. From the results shown:J=2.5¢,=1.0,L.=30 andJ=3.0,6,=0.6,L=18 Thus in
in Fig. 11 we can also check the result Eq.14. For  both cases we have/é~30. Clearly the data collapse onto a
J=10.0 we find with the DMRG method that universal curve.
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FIG. 10. L times the expectation value of tlzkecomponent of
the electron spin(Sf), as a function ofj/¢x(J). Two systems are
shown:J=1.8,¢¢=2.7L=20 andJ=1.5,£,=4.85L =36 Thus in
both cases we havke/éc~7.4. Clearly the data collapse onto a
universal curve.

work for a range ofl such that X ¢&c<L. If & is too small,

20

20

FIG. 11. The scaledz component of the impurity spin,
L(Shp, as a function of chain length for a range of Kondo
couplingsJ. In all cases does the first point correspond.te?2.
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FIG. 12. The Kondo lengtk as a function of Kondo coupling
J. The circles denote the numerical DMRG results. The solid line
indicates a least squares fit of the results shown to the form Eq.
(8.8). The fitted parameters agg=1.76c=0.21.

then the coupling constant is too big, and so low-order per-
turbation theory does not work. By is too big, then finite
size effects will dominate.

We proceed by obtaining a higher-order expression for
£k (J) than the simple exponential relation Eg.9). To go to
one higher order, we first of all need to calculate the renor-
malized coupling taO[ (Jp)?], obtained by reducing the ef-
fective bandwidth(in momentum spagerom =/a to 2/&,,
where &, is some length scale much bigger than the
lattice spacing. This involves the integral

ml2a-1i¢, dk
fo Cog(amln[tar(zgo/a)]. (8.4
Thus
No=Jp+(Jp)?In[tan2&y/a)]. (8.5
Herep is the density of states,
p=1/2m7t. (8.6)

Next we need to integrate the function, to third order. The
B function g8

—dn/d InA=N%2-2\%/2. 8.7

We now integrate this equation, using the bare cutoff
Ao=1/&y, the bare coupling.y given above, the renormal-
ized coupling some number of O(1), and the newcutoff
1/, , the inverse correlation length. This gif&s



(8.9

12,
— 1Ng—1lc
k= TN T

This together with the equation above fog determinesty
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liquid form. In this picture the Knight shift is longer range at
low temperatures where the screening cloud has formed than
at high temperatures where it has not. The experimentally
observed behavior of the Knight shfftcan possibly be ex-

vs J to a better accuracy than the simple exponential formplained by a factorization of the scaling functions deep inside

We now have two free parameterswhich should be posi-
tive andO(1) and &y which should be>1 but <¢y. This
form should be valid for the range of where <& <L.
The corrections arising from the constantis presumably

the screening cloud which is the only region the experiments
probe.

Nontrivial tests of the scaling form have been performed
by numerically calculating the on-site magnetization at zero

only one of several equally important terms. We have in-temperature for finite systems. In all cases scaling behavior
cluded it here to improve the agreement with the numericatonsistent with the proposed form is observed. B&h,) as

results. In the limit A\(—0, Eqg. (8.8) reduces to &k
xel™o/\/\, in agreement with Ref. 30.

A least squares fit of the numerical results &(J), in
Table I, to the form Eq(8.8) is shown in Fig. 12. The circles
indicate the DMRG results while the solid line is E§.8)
with the fitted parameterg,=1.76c=0.21. Taking into ac-
count the sizable uncertainty ik at weak coupling the fit
works extraordinarily well.

IX. CONCLUSION

a function ofL and(S]) as a function ofj for fixed & /J
clearly show scaling. Numerical estimatesép{J) has been
extracted in good agreement with an estimaté&gf)) from
renormalization group calculations.
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