¹³C NMR of the organic ferromagnet TDAE-C₆₀

D. Arčon, J. Dolinšek, and R. Blinc

J. Stefan Institute, University of Ljubljana, Jamova 39, 61111 Ljubljana, Slovenia

(Received 20 June 1995)

The temperature dependence of the ¹³C NMR spectra and ¹³C spin-lattice relaxation time T_1 has been studied in powdered TDAE-C₆₀ (TDAE=tetrakis-dimethylaminoethylene). A motionally narrowed ¹³C NMR line has been observed at 188 ppm relative to tetramethylsilane (TMS) at room temperature which can be assigned to the C₆₀⁻ ion. A large line broadening has been observed on cooling below 150 K. The second moment of the line increases again below 50 K and reaches 250 kHz². This is rather close to the value of the second moment calculated for the static dipolar interaction between the ¹³C nuclei and the unpaired electron in the $2p_z$ state smeared out over all carbon sites in the C₆₀⁻ ion. The freeze-out of the "isotropic" rotation between 150 and 100 K is connected with a high field shift of the ¹³C line by 160 ppm which changes into a low field shift of 87 ppm below 50 K. The change in the sign of the shift may indicate that antiferromagneticlike correlations change into ferromagneticlike correlations at low temperatures.

I. INTRODUCTION

The discovery¹⁻³ of the possibly ferromagnetic transition at $T_c = 16$ K in the C₆₀ based charge transfer compound TDAE⁺-C₆₀⁻ (TDAE=tetrakis-dimethylamino-ethylene) has recently stimulated a lot of research but the detailed microscopic nature of the transition is still not well understood. ESR studies have shown that the unpaired electron spin should be mainly localized at the C₆₀⁻ ion⁴⁻⁶ as the *g* value is close to the one observed for the electrochemically prepared C₆₀⁻ ion. The fact that the magnetic transition is absent⁷ in TDAE⁺-C₇₀⁻ demonstrates the role of the spherical shape and high symmetry of the C₆₀⁻ ion for the existence of the long range ordered magnetic state below T_c .

It has been recently shown⁸ that the magnetic susceptibility χ and the ferromagnetic transition^{1,2} temperature $T_c \approx 16$ K of TDAE-C₆₀ depend on whether the sample is quenched or slowly cooled from room temperature down to 30 K, i.e., to a temperature well above T_c . In the quenched sample T_c is depressed and both the imaginary as well as the real part of the susceptibility are for $T < T_c$ significantly smaller than in the slowly cooled sample. The above results were obtained⁸ for the same cooling rate 0.3 K/min below 30 K.

In order to check whether the above effects are due to an orientational ordering transition of the C_{60}^- ions we decided to perform a ¹³C NMR study of powdered TDAE- C_{60}^- between room temperature and 4 K. We also hoped to throw some additional light on the molecular dynamics of this system.

An additional motivation for the study of the ¹³C NMR spectra of TDAE-C₆₀ comes from the fact that a Dzyaloshinsky-Moriya mechanism,⁹ based on superexchange, was recently proposed¹⁰ as the microscopic origin of the weak ferromagnetism in TDAE-C₆₀. Here the correlations between unpaired spins on neighboring C₆₀⁻ ions are of antiferromagnetic nature and weak ferromagnetism in a direction perpendicular to the *c* axis (i.e., the axis of the closest approach of the C₆₀⁻ ions) is the result of spin canting. In this connection it is worthwhile mentioning that some of the freshly grown crystals do not show a ferromagnetic transition at all but become antiferromagnetic at low temperatures. After some time or after some thermal cycling they do however show the ferromagnetic transition at 16 K.

II. EXPERIMENT

The Fourier transform ¹³C NMR spectra of powdered TDAE-C₆₀ were measured in a field of 6.34 T at a Larmor frequency $\omega_L/2\pi=67.925$ MHz. The cooling rate was 3 K/min. The ¹³C spin-lattice relaxation time has been measured by the 180° - τ -90° sequence. To check on the purity of the sample and the existence of the magnetic transition we as well performed X-band ESR measurements. The ESR intensity times temperature and the temperature dependence of the ESR linewidth are shown in Fig. 1. The existence of the magnetic transition is obvious. The shift of T_c from 16 K in zero field to 25 K in the ¹³C NMR experiment is due to the presence of a magnetic field of 6.34 T.

FIG. 1. The X-band ESR intensity times temperature in powdered TDAE-C₆₀. Inset: Peak to peak linewidth of the X-band ESR line in the same sample.

9137

© 1996 The American Physical Society

(4)

III. THEORY

A. Electron-nuclear coupling in paramagnetic systems

The electron-nuclear coupling in paramagnetic systems can be described by a coupling of the nuclear spin \mathbf{I} to a fictitious local magnetic field $\mathbf{h}(t)$

$$H = \gamma \hbar \mathbf{I} \cdot \mathbf{h}(t), \tag{1}$$

where

$$\mathbf{h}(t) = -\gamma_e \hbar \left(\frac{\mathbf{S}}{R^3} - \frac{3(\mathbf{R} \cdot \mathbf{S})\mathbf{R}}{R^5} \right) - \frac{A}{\gamma} \mathbf{S} = \mathbf{h}_D(t) + \mathbf{h}_C(t)$$
(2)

takes into account electron-nuclear dipole-dipole, $\mathbf{h}_D(t)$, as well as contact, $\mathbf{h}_C(t)$, hyperfine $(A \neq 0)$ interactions. Here **S** is the electronic spin and **R** the electron-nuclear radius vector. The paramagnetic shift δv of the center of the line (i.e., the first moment M_1) is determined by the time averaged values of the local field $\langle \mathbf{h}(t) \rangle$.

Above $T_c \, \delta v$ is proportional to the electronic susceptibility $\chi(0)$ and the external magnetic field H_0

$$\delta v \propto \langle \mathbf{h}(t) \rangle_{H \neq 0} \propto \langle \mathbf{S} \rangle_{H \neq 0} \propto \chi_{\text{static}}(0) H_0; \quad T > T_c, \quad (3a)$$

whereas below $T_c \delta v$ is proportional to the spontaneous magnetization *M*:

$$\delta \nu \propto \langle \mathbf{h}(t) \rangle_{H \neq 0} \propto M; \quad T < T_C.$$
 (3b)

In a powdered sample δv has to be averaged also over all possible angles between the internuclear vector **R** and the axis of quantization of **S**, i.e., the direction of the external field **H**₀. Thus we get

 $\delta \nu \propto \overline{\langle \mathbf{h}(t) \rangle} = \overline{\langle \mathbf{h}_{C}(t) \rangle}$

as

$$\overline{\langle \mathbf{h}_D(t) \rangle} = 0$$

B. Second moment of the ¹³C NMR line

Let us now evaluate the second moment of the ¹³C NMR spectra in detail. The Hamiltonian of our problem is

$$H = H_Z + H_D(C - C) + H_D(C - H) + H_D(C - e) + H_{\rm hf} + H_{\rm CS},$$
(5)

where $H_Z = -\gamma B_0 \Sigma_k I_{Z,k}$ is the Zeeman interaction, $H_D(C-C)$ is the dipolar interaction between ¹³C nuclei, $H_D(C-H)$ is the dipolar interaction between the ¹³C nuclei and the methyl protons on the TDAE molecule, $H_D(C-e)$ is the dipolar interaction between the ¹³C nuclei on the C₆₀ molecule and the unpaired transferred electron, $H_{\rm hf} = \mathbf{S} \cdot \Sigma_k \underline{A}_k \mathbf{I}_k$ is the Fermi contact interaction between the carbon nuclei and the unpaired electron, and finally $H_{\rm CS} = -\gamma \mathbf{B}_0 \cdot \boldsymbol{g} \cdot \mathbf{I}$ is the ¹³C chemical shift interaction.

For the calculation of the second moment of the ¹³C NMR line the only important terms are $H_D(C-e)$ and H_{CS} since the natural abundance of ¹³C is only 1.108% and therefore $H_D(C-C)$ as well as $H_D(C-H)$ are negligible. In addition the Fermi contact interaction can be dropped if we assume that the unpaired electron is in a π -type molecular orbital of the C₆₀⁻ ion, resulting in a hydrogenic $2p_z$ orbital around a given ¹³C nucleus.

We would like to compare the experimentally observed second moment of the ¹³C NMR line

$$M_2 = \frac{\int_{-\infty}^{\infty} (\omega - M_1)^2 f(\omega) d\omega}{\int_{-\infty}^{\infty} f(\omega) d\omega}$$
(6)

with the one calculated from the known Hamiltonian of our problem

$$M_2 = -\frac{1}{2\hbar} \operatorname{Tr}\{[H, I_x]^2\}.$$
 (7)

Here $f(\omega)$ is the observed ¹³C NMR line shape and M_1 is the first moment defined as

$$M_1 = \frac{\int_{-\infty}^{\infty} \omega f(\omega) d\omega}{\int_{-\infty}^{\infty} f(\omega) d\omega}.$$
 (8)

The second moment of our problem can be reduced to

$$M_2 = -\frac{1}{2\hbar} (\text{Tr}\{[H_D(C-e), I_x]^2\} + \text{Tr}\{[H_{\text{CS}}, I_x]^2\}), \quad (9)$$

since all the cross terms like $Tr\{[H_D(C-e), I_x][H_{CS}, I_x]\}$ are proportional to $Tr\{I_{Z,k}\}=0$.

The second moment of the chemical shift anisotropy term is given by

$$\langle \omega^2 \rangle_{\sigma} = \frac{1}{15} (\omega_0 \delta)^2 (3 + \eta^2), \qquad (10)$$

where $\delta = \sigma_{ZZ} - \frac{1}{3} \text{Tr} \sigma$ and $\eta = \sigma_{YY} - \sigma_{XX}/\delta$. Using for sake of simplicity the values for the chemical shift anisotropy of pure C_{60} ,¹¹ $\sigma_{XX} = 199$ ppm, $\sigma_{YY} = 188$ ppm, $\sigma_{ZZ} = 40$ ppm, one find that

$$\left\langle \left(\frac{\omega}{2\pi}\right)^2 \right\rangle_{\sigma} = 10.11 \text{ kHz}^2.$$
 (11)

We can estimate the magnitude of the second moment of the dipolar interaction between the ¹³C nuclei and the unpaired electron by assuming that each ¹³C nucleus is coupled to 1/60 of an electron in a hydrogenic $2p_z$ orbital centered at that nucleus. The second moment is given by the expression

$$\langle \omega^{2} \rangle_{H_{D}(C-e)} = 0.011 \times \frac{1}{3} \left(\frac{\mu_{0}}{4\pi} \right)^{2} \gamma_{C}^{2} \gamma_{e}^{2} \hbar^{2} S$$
$$\times (S+1) \frac{1}{N_{i=1}^{50}} \frac{(1-3\cos^{2}\theta_{i,e})^{2}}{r_{i,e}^{6}}, \quad (12)$$

where $\theta_{i,e}$ is the angle between the axis of quantization (e.g., the axis of the external magnetic field) and the radius vector between the *i*th carbon nuclei on the C₆₀ sphere and the unpaired electron, $r_{i,e}$ is the distance between *i*th carbon nuclei and the unpaired electron, 1.1×10^{-2} is the natural abundance of the ¹³C, and N=60.

The fact that the electronic probability density is given by the absolute value of the square of the $2p_z$ orbital wave function averages the ¹³C-electron dipolar interaction. Further averaging comes from the fact that we are dealing with a powder sample. Therefore we replace the dipolar interaction term in the above expression with

$$\frac{(1-3\cos^2\theta_{i,e})^2}{r_{i,e}^6} \Rightarrow \overline{\left(\left\langle\frac{(1-3\cos^2\theta_{i,e})}{r_{i,e}^3}\right\rangle^2\right)}, \quad (13)$$

where the bracket means averaging over the electron density $P(r_{i,e}, \theta_{i,e}, \varphi_{i,e})$ of the $2p_z$ orbital centered around a given ¹³C nuclei

$$\left\langle \frac{(1-3\cos^2\theta_{i,e})}{r_{i,e}^3} \right\rangle = \int_0^\infty r_{i,e}^2 dr_{i,e} \int_0^\pi \sin\theta_{i,e} d\theta_{i,e} \int_0^{2\pi} d\varphi$$
$$\times \frac{(1-3\cos^2\theta_{i,e})}{r_{i,e}^3} P(r_{i,e},\theta_{i,e},\varphi_{i,e}).$$
(14)

Here $P(r_{i,e}, \theta_{i,e}, \varphi_{i,e})$ is given by

$$P(r_{i,e}, \theta_{i,e}\varphi_{i,e}) = |\Psi_{2p_z}|^2 = \left|\sqrt{\frac{1}{60}}\sqrt{\left(\frac{Z}{a_B}\right)^3}\frac{1}{4\sqrt{2\pi}}\left(\frac{r_{i,e}}{a_B}Z\right) \times \exp\left(-\frac{r_{i,e}}{a_B}\frac{Z}{2}\right)\cos\theta_{i,e}\right|^2, \quad (15)$$

where Z is the effective ¹³C nuclear charge¹² and a_B is the Bohr radius. The bar indicates the powder average.

The calculated contribution of the dipolar interaction between the ¹³C nuclei of the C_{60}^{-} ion and the unpaired electron in $2p_z$ state uniformly distributed over the C_{60}^{-} ion is

$$\left\langle \left(\frac{\omega}{2\pi}\right)^2 \right\rangle_{H_D(C-e)} = 223.24 \text{ kHz}^2.$$
 (16)

Thus the total second moment is

$$\left\langle \left(\frac{\omega}{2\pi}\right)^2 \right\rangle = \left\langle \left(\frac{\omega}{2\pi}\right)^2 \right\rangle_{\sigma} + \left\langle \left(\frac{\omega}{2\pi}\right)^2 \right\rangle_{H_D(C-e)} = 233.35 \text{ kHz}^2$$
(17)

which is—as we shall see—in excellent agreement with the experiment where the second moment is 250 ± 20 kHz².

IV. RESULTS AND DISCUSSION

The ¹³C NMR powder spectra at 290, 100, and 7 K are shown in Fig. 2. The temperature dependences of the second and first moments of the ¹³C spectra are shown in Fig. 3. In view of the low natural abundance of the ¹³C nuclei and the fact that there are nearly ten times less TDAE than C₆₀ carbons, the observed ¹³C spectra can be safely assigned to the C₆₀⁻ ions. This is also confirmed by the observed ¹³C NMR lineshift with respect to tetramethylsilane (TMS) which amounts at room temperature 188 ppm. This agrees rather well with the value of 185 ppm observed for the electrochemically prepared C₆₀⁻ in solution. The shift for pure C₆₀ at room temperature, on the other hand, is 143 ppm.

The ¹³C spectra at room temperature are clearly motionally averaged by nearly isotropic rotation of the C_{60}^{-} ion. The motion probably consists of uniaxial rotation combined with a flipping of the axis of rotation as in pure C_{60} .¹¹ The

FIG. 2. ¹³C NMR spectra of powdered TDAE- C_{60} at 290, 100, and 7 K. The intensities are plotted in arbitrary units.

second moment M_2 amounts here to less than 1 kHz². The spectral shape does not change between room temperature and 170 K. Between 150 and 70 K a ¹³C linewidth transition takes place indicating a freeze-out of the C₆₀⁻⁻⁻ "isotropic" rotation on the NMR time scale. It is possible that—in analogy to pure C₆₀—the flipping of the rotational axes freezes out while uniaxial rotation still persists. The second moment M_2 increases to 160 kHz². The activation energy for the motion of the C₆₀⁻⁻ ions which freezes out in this temperature

FIG. 3. Temperature dependences of (a) the second moment and (b) the first moment of the ¹³C NMR spectra in powdered TDAE- C_{60} . The reference compound corresponding to $M_1=0$ is tetramethylsilane.

range amounts to $E_a \approx 130$ meV. The occurrence of a ¹³C linewidth transition around 170 K has been already seen by Ricco *et al.*¹³ It should be stressed that the ¹³C linewidth transition cannot be due to a change in the state of the motion of the TDAE methyl protons. The proton-¹³C contribution is not large enough to account for the observed increase in the ¹³C M_2 .

In Ref. 8 it was found that the rate of cooling the TDAE-C₆₀ sample through the temperature range around 150 K significantly influences the magnetic susceptibility and ferromagnetic transition temperature T_c . Below 150 K the rate of cooling has no effect on the magnetic properties of TDAE-C₆₀. The present results clearly show that an orientational ordering transition of the C₆₀ ions takes place below 150 K. It is thus natural to conclude that the depression of T_c and the decrease in the magnetic susceptibility in the rapidly quenched sample is connected with the incomplete orientational ordering of the C₆₀ ions when the sample is rapidly taken through the region of the orientational transition.

It should be noted that whereas the reorientational motion of the C₆₀ ions significantly affects the ¹³C NMR line shapes the ¹³C NMR powder spectra are not sensitive to static orientational disorder. The remaining static orientational disorder of the C₆₀ ions can be thus seen in the ¹³C line shapes only in single crystal experiments. In fact no correlation between the cooling rate and the ¹³C NMR powder line shapes has been observed below the motional transition. Evidence for the static disorder of the C₆₀ ions has been however obtained from the stretched exponential character of the ¹³C magnetization recovery in the ¹³C spin-lattice relaxation measurements. The reason for the sensitivity of the ¹³C magnetization recovery measurements to the static C₆₀ disorder is the fact that the ¹³C spins are relaxed via electronic spin fluctuations.

In this connection it is interesting to note that in the temperature range where the C_{60}^{-} pseudoisotropic rotation freezes out we also see a break in the ESR linewidth versus temperature relation (Fig. 1). The ESR linewidth decreases from 21 at room temperature to ≈ 12 G in a powder and to 2 G in a single crystal at 150 K indicating that the exchange narrowing is enhanced by orientational ordering of the C_{60}^{-} ions.

Between 90 and 50 K the ${}^{13}C M_2$ is nearly constant. Below 50 K there is another increase in M_2 . It reaches a value of $\approx 250 \text{ kHz}^2$ around 20 K. Below $T_c M_2$ increases again. The observed value of M_2 at 20 K is dominated by the static broadening of the ¹³C line due to dipolar interactions of the ${}^{13}C$ nucleus with the unpaired electron in the $2p_z$ state smeared out over all carbon sites in the C_{60}^{-} ion as shown by the close agreement of the experimental and theoretical M_2 values. The chemical shift anisotropy contribution which has been for sake of simplicity assumed to be the same as in pure C_{60} is less than 5% of the experimentally observed M_2 . The fact that the observed value of M_2 is dominated by the dipolar electron-nuclear interactions and not by the hyperfinecontact field demonstrates the predominant $2p_z$ character of the unpaired electron wave function. The unpaired electron spin density at the carbon sites in the C_{60} ion, which is due to the s component in the electronic wave function, is thus rather small.

This also agrees with the observed shifts of the center of

FIG. 4. Temperature dependence of the paramagnetic proton shift in powdered TDAE- C_{60} . Inset: the product of the shift times the temperature.

the ¹³C line (Fig. 3) which are small as compared to the observed paramagnetic proton shifts¹⁴ (Fig. 4). The TDAE methyl protons evidently feel a sizable hyperfine Fermi contact interaction with the unpaired electron spin density and the shifts reach 3700 ppm whereas the observed ¹³C shifts are less than 100 ppm. The existence of these ¹³C shifts nevertheless demonstrates a small but finite *s*-wave character of the transferred unpaired electron spin density of the C_{60}^{-1} ion.

The temperature dependence of the ¹³C NMR lineshift is also rather interesting. In the temperature range where motional narrowing takes place due to fast rotation of the C_{60}^{-1} ion, i.e., between room temperature and 150 K, the ¹³C NMR lineshift is almost temperature independent and amounts to 188 ppm at room temperature. The freeze-out of the "isotropic" rotation between 150 and 100 K is connected with a high field shift of the center of the ¹³C line by about 160 ppm. Below 50 K, on the other hand, we have a low field paramagnetic shift of about 87 ppm. In contrast to the ¹³C line the proton NMR line exhibits a continuous low field shift which follows above T_c a Curie-Weiss law. The fact that the internal field seen by the ¹³C nucleus changes its sign may indicate that antiferromagneticlike correlations exist which change into ferromagneticlike correlations at lower temperatures.

The above data thus clearly demonstrates the nearly isotropic rotation of the C_{60}^{-} ions above 150 K and the existence of the orientational ordering transition between 150 and 100 K. The question whether the resulting orientational order of the C_{60}^{-} ions is perfect or whether there is some residual orientational disorder at low temperatures cannot be answered by the ¹³C powder line shape data.

¹³C spin-lattice relaxation data, on the other hand, seem to demonstrate the existence of residual disorder. The recovery of the ¹³C spin magnetization after $180^{\circ}-\tau-90^{\circ}$ pulse sequence is definitely nonexponential. It is clear that we deal with a distribution of spin-lattice relaxation times

$$\frac{M(t) - M_0}{M_0} = \int \rho(T_1) \exp\left(-\frac{t}{T_1}\right) dT_1, \qquad (18a)$$

FIG. 5. Temperature dependence of (a) the ¹³C spin-lattice relaxation time parameter T_1 and (b) the stretched exponent α in TDAE-C₆₀.

which can be simulated by a stretched exponential function

$$\frac{M(t) - M_0}{M_0} \propto e^{-(t/T_1)^{\alpha}}.$$
 (18b)

The distribution of T_1 values $\rho(T_1)$ can be related to a local magnetization distribution

$$W(m) = \frac{1}{N} \sum_{i} \delta(m - \langle S_i^Z \rangle), \qquad (19)$$

which is characteristic for inhomogeneous ferromagnets or spin glasses

$$\frac{M(t) - M_0}{M_0} = \int \exp\left(-\frac{t}{T_1(m)}\right) W(m) dm$$
$$= \int \rho(T_1) \exp\left(-\frac{t}{T_1}\right) dT_1.$$
(20)

The temperature dependence of the parameters T_1 and α is shown in Fig. 5. The parameter T_1 is nearly temperature

- ¹P. M. Allemand, K. C. Khemani, A. Koch, F. Wudl, K. Holczer, S. Donovan, G. Gruner, and J. D. Thompson, Science **253**, 301 (1991).
- ²P. W. Stephens, D. Cox, J. W. Lauher, L. Mihaly, J. B. Miley, P. M. Allemand, A. Hirsch, K. Holczer, Q. Li, J. D. Thompson, and F. Wudl, Nature **355**, 331 (1992).
- ³A. Lappas, K. Prassides, K. Vavekis, D. Arčon, R. Blinc, P. Cevc,

independent down to T_c and amounts to ≈ 100 msec. Around T_c it increases demonstrating a slowing down of the electron spin fluctuations. The temperature dependence of T_1 can be in the simplest case described by

$$\left(\frac{1}{T_1}\right)_{13_{\rm C}} = K \int_{-\infty}^{\infty} \langle (S^Z(0)S^Z(t)) e^{i\omega_L t} dt, \qquad (21a)$$

where S^Z is the electronic spin and K measures the fluctuating part of the electron-dipolar interaction. A rough estimation of the constant K is given by

$$K = \left(\frac{\mu_0}{4\pi}\right)^2 (\gamma_C \gamma e)^2 \hbar^2 \left(\frac{1}{r^3}\right)^2, \qquad (21b)$$

where

$$\left\langle \frac{1}{r^3} \right\rangle = \int_V \frac{1}{r^3} |\psi_{2p_z}|^2 dV = \frac{Z^3}{2880\pi a_B^3}.$$
 (21c)

If the electron spin autocorrelation function

$$\left\langle S^{Z}(0)S^{Z}(t)\right\rangle \cong e^{-t/T_{1,e}} \tag{22}$$

decays exponentially with the electron spin-lattice relaxation time $T_{1,e}$ one finds

$$(T_1)_{^{13}\text{C}}^{-1} \approx K \frac{T_{1,e}}{1 + \omega_L^2 T_{1,e}^2}.$$
 (23)

The temperature dependence of $T_{1,e}$ in TDAE-C₆₀ has been already measured¹⁵ by pulsed ESR. The electronic spin lattice relaxation time is in fact exceptionally long and is of the order of 100 ns at 4 K. As $\omega_L T_{1,e} > 1$ one gets in the single correlation time approximation

$$(T_1)_{13} = T_{1,e} \omega_L^2 / K.$$
 (24)

Both the temperature dependence and the order of magnitude of the predicted $(T_1)_{1_{3_{c}}}$ qualitatively agree with the experiment.

The observed ¹³C T_1 stretched exponent α has a value of $\alpha \approx 0.6$ indicating the presence of a relatively broad T_1 distribution reflecting a local polarization function W(m) characteristic for inhomogeneous ferromagnets and spin glasses. This in turn indicates the presence of residual orientational disorder of the C_{60}^- ions. A similar conclusion has been obtained from the stretched exponential character of the remanent magnetization decay.¹⁶ The temperature dependence of the second moment of the ESR line which shows a behavior reminiscent of spin glasses rather than of a homogeneous ferromagnet also supports the existence of residual orientational disorder at low temperatures in TDAE-C₆₀.

- ⁴K. Tanaka, A. A. Zakhidov, K. Yoshizawa, K. Okahara, T. Yamabe, and K. Yasushi, Phys. Rev. B 47, 7554 (1993).
- ⁵R. Seshadri, A. Rastogi, S. V. Bhat, S. Ramasesha, and C. N. R. Rao, Solid State Commun. 85, 971 (1993).
- ⁶P. Venturini, D. Mihailović, R. Blinc, P. Cevc, J. Dolinšek, D.

A. Amato, R. Feyerherm, F. N. Gygax, and A. Schenck, Science **267**, 1799 (1995).

Abramič, B. Zalar, H. Oshio, P. M. Allemand, A. Hirsch, and F. Wudl, J. Mod. Phys. B 6, 3947 (1992).

- ⁷K. Tanaka, A. A. Zakhidov, K. Yoshizawa, K. Okahara, T. Yamabe, K. Yakushi, K. Kikuchi, S. Suzuki, I. Ikemoto, and Y. Achiba, Phys. Lett. A **164**, 221 (1992).
- ⁸D. Mihailović, D. Arčon, P. Venturini, R. Blinc, A. Omerzu, and P. Cevc, Science **268**, 400 (1995).
- ⁹I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958); T. Moriya, Phys. Rev. Lett. 4, 228 (1960).
- ¹⁰R. Blinc, K. Pokhodnia, P. Cevc, D. Arčon, A. Omerzu, D. Mihailović, P. Venturini, L. Golič, Z. Trontelj, J. Lužnik, Z. Jegličič, and J. Pirnat, Phys. Rev. Lett. **76**, 523 (1996).
- ¹¹R. Blinc, J. Seliger, J. Dolinšek, and D. Arčon, Phys. Rev. B 49, 4993 (1994).

- ¹²R. Tycko, G. Dabbah, D. W. Murphy, Q. Zhu, and J. E. Fischer, Phys. Rev. B 48, 9097 (1993).
- ¹³M. Ricco, L. Christofolini, R. De Renzi, and G. Ruani, in *Proceedings of the Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials*, edited by K. M. Kadish and R. S. Rodney, (The Electrochemical Society, Pennington, New Jersey, 1994), p. 1187.
- ¹⁴R. Blinc, J. Dolinšek, D. Arčon, D. Mihailović, and P. Venturini, Solid State Commun. **89**, 487 (1994).
- ¹⁵P. Cevc, R. Blinc, D. Arčon, D. Mihailović, P. Venturini, S. K. Hoffman, and W. Hilczer, Europhys. Lett. **26**, 707 (1994).
- ¹⁶R. Blinc, P. Cevc, D. Arčon, D. Mihailović, and P. Venturini, Phys. Rev. B 50, 13 051 (1994).