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We presentab initio calculations for the interlayer exchange coupling of magnetic Co~100! layers in Cu. The
calculations are based on a Korringa-Kohn-Rostoker Green’s function method for planar defects and apply the
frozen potential approximation, allowing a direct calculation of the interaction via single-particle energies.
Thus the subtraction of large total energies is avoided and efficient calculations for large layer thicknesses are
enabled. By dividing the two-dimensional Brillouin zone into areas around different stationary pointsqi , an
analysis of the asymptotic behavior is given. The different dependences of the short and long oscillation
periods on the thickness of the magnetic layers are explained by theqi- and symmetry-projected density of
states of the Co layers. The effects of roughness on the interlayer coupling are simulated, leading to a strong
reduction of the amplitudes and a suppression of the short-wavelength period. Our calculations are in good
agreement with experiments and give a consistent picture of interlayer coupling in Co/Cu~100!, as far as both
the dependence on the thickness of the magnetic layers as well as the dependence on roughness are concerned.

I. INTRODUCTION

Long-ranged magnetic coupling of magnetic layers was
first observed for Fe/Cr/Fe by Gru¨nberget al.,1 who detected
an antiferromagnetic coupling of the iron layers. Subse-
quently the coupling has been found to be of oscillatory na-
ture with varying nonmagnetic spacer thickness and has been
observed for a large variety of systems.2 This so-called inter-
layer exchange coupling~IXC! has attracted a lot of atten-
tion, mainly because of the close connection to the techno-
logically important giant magnetoresistance~GMR! effect.

Today there is strong evidence that the observed oscilla-
tion periods are in accordance with a RKKY picture.3 The
RKKY model predicts the different oscillation periods to
stem from extremal spanning vectors, so-called calipers, of
the Fermi surface of the spacer material.3,4 However, the ex-
istence of these oscillation periods does not rely on some of
the strong restrictions entering the original RKKY model,
like, e.g., the pointlikes-d exchange potential of the mag-
netic layer. Nevertheless, in the following we will adopt the
usual convention and refer to these oscillations as RKKY
oscillations.

Since the first experimental observations, the quality of
the experiments has improved continuously. A popular tech-
nique to observe the magnetic coupling is the magneto-
optical Kerr effect~MOKE! applied to samples grown in a
wedge geometry. This sample geometry makes it possible to
study at one and the same sample the coupling as a continu-
ously varying function of the spacer thickness.

Although successful, RKKY-like models have clear limi-
tations in that they can neither give the amplitudes nor the
phases of the oscillations and that they are only valid asymp-
totically at large interlayer distances. In order to make more
quantitative predictionsab initio calculations for realistic
systems must be performed.

Several different first-principles calculations have been

reported which have observed oscillatory behavior.5–8 These
calculations may be divided into two main categories. The
first category is concerned with calculations on supercells,5,6

i.e., for a periodic array of magnetic layers, and should there-
fore be comparable to experiments performed on multilayers.
The second one considers the interaction of two layers~bi-
layers! and corresponds more closely to the experiments on
wedge samples.7,8

It is the purpose of this paper to show that the exchange
coupling of bilayers can be calculated accurately up to rather
large distances within a first-principles approach, and that the
resulting energies are in good agreement with experiments.
The range of thicknesses in the calculations is so large that it
also allows one to discuss the asymptotic RKKY behavior
and its relation to the Fermi surface. Using the same method
we have already presented first results for Fe and Co
monolayers7 and for thicker Co layers in fcc Cu.9 In these
calculations we found oscillation periods in agreement with
those predicted by the RKKY model. Here, we give a more
detailed account of this work, stressing the asymptotic be-
havior and in particular the dependence of the oscillations on
the magnetic layer thickness which can strongly modify the
amplitude of the different oscillation periods. Moreover, we
explain in detail our method used for the calculation of the
IXC energies.

First, the calculational method for the interlayer exchange
coupling ~ILXC !, which was already used in previous
papers7,9 will be derived in Sec. II In Sec. III we will present
results for magnetic Co layers in the noble metal Cu for the
orientation~100! and discuss their relation to the Fermi sur-
face of Cu and the electronic structure of the Co layers. In
addition to these calculations on perfectly ordered layers, we
give a transparent discussion of the effect of steplike inter-
face roughness and show that roughness can strongly modify
the interaction. A detailed comparison with experiments con-
cludes this section.
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II. THEORETICAL METHOD

The system we aim to study consists of two parallel mag-
netic layers embedded in a nonmagnetic host and separated
by a variable number of atomic host layers~here up to 32!.
The magnetic layer consists of several atomic layers~here up
to 11!. The electronic structure for this system is calculated
using density functional theory and the Korringa-Kohn-
Rostoker~KKR! Green’s function method.12

For calculations within the local spin density approxima-
tion ~LSDA! of density functional theory the task is gener-
ally to solve the effective one-electron Schro¨dinger equation
given by a Hamiltonian

H52¹21Vs~r !. ~1!

The spin-dependent potentialVs(r ) is a functional of the
charger(r ) and magnetizationm(r ) densities, which in turn
are obtained from the occupied eigenfunctions. In the
Green’s function method the calculation of the eigenfunc-
tions is avoided. Rather one aims at directly calculating the
Green’s functionG5(«2H)21 of the system. As will be
discussed below, one views the difference of the potentials
from a known reference case as a perturbation. This leads to
a Dyson equation for the Green’s functions. The densities are
obtained from the imaginary part of this perturbed Green’s
function by integrating over all occupied energies. Whatever
procedure is used, Eq.~1! must always be solved self-
consistently by iteration.

We will now first review the KKR Green’s function
method,13 in particular its extension to layered systems.12

First, we treat a single perturbing layer and then the case of
two interacting layers. Especially the so-called Lloyd’s
formula14 for the change of the integrated density of states
will be discussed. The expression for the interlayer interac-
tion is subsequently derived7,9 by means of this formula. Al-
though this expression is only based on a calculation of
single-particle energies, we demonstrate its accuracy in cal-
culations for the exchange coupling of magnetic impurities.
Finally in this section the role of finite temperatures adopted
in this method is discussed. In the following most quantities
should carry in general a spin indexs56, which for con-
venience will be skipped when not absolutely necessary.

A. KKR Green’s function method

The basic concept within the KKR Green’s function
method13,12 is that for a crystal lattice potential
V(r )5(nVn(r ) the Green’s function corresponding to
Hamiltonian~1! can be written as

G~rn ,rn88 ;«!5Gn
s~r ,r 8;«!dn,n8

1(
LL8

RnL~r ;«!GnL,n8L8~«!Rn8L8~r 8;«!,

~2!

where the matrix elementsGnL,n8L8, the so-called structural
Green’s function~SGF!, describe the multiple scattering,
while Gn

s is the single-scattering Green’s function depending
only on the potential within the celln. Here we have used
cell-centered coordinatesrn5Rn1r , whereRn is a lattice

vector andr is only defined within the Wigner-Seitz cell of
this lattice point. The SGF is a matrix over combined indices
labeled by the atomic positionsn and the angular momenta
L5$l ,m% expanded aroundn. In the present paper we will
restrict ourselves to the atomic sphere approximation~ASA!
for the potential. In this approximation we assume spheri-
cally symmetric potentials in each Wigner-Seitz sphere,
which slightly overlap, i.e., Vn(r )5Vn(r ). Then
RnL(r ;«)5Rnl (r ;«)YL( r̂ ), whereRnl (r ;«) is the regular
solution of the following radial equation within the celln:

S 2
d2

dr2
1
l ~ l 11!

r 2
1Vn~r !2« D rRnl ~r ;«!50. ~3!

The single-scattering Green’s function is given in terms of
the regular,RnL , and the irregular,HnL , solutions within the
sphere,

Gn
s~r ,r 8;«!5A«(

L
RnL~r< ;«!HnL~r. ;«!, ~4!

wherer, is the one ofr andr 8 which is closest to the origin
and r. is the complement. By constructing the full Green’s
function one is always able to calculate the charge and mag-
netization densitiesr(r ) and m(r ) through the imaginary
part,

r~r !52
1

pE2`

`

f ~«!Im@G1~r ,r ;«!1G2~r ,r ;«!#d«,

~5a!

m~r !52
1

pE2`

`

f ~«!Im@G1~r ,r ;«!2G2~r ,r ;«!#d«.

~5b!

These integrals extend over all occupied states, with the oc-
cupation described by the Fermi-Dirac distributionf («). The
reason for introducing a finite temperature into the calcula-
tion will be discussed below in Sec. II F.

Starting with a known structural Green’s functionG0 as
reference one can get the SGF for a system with different
potentials, but with the same underlying lattice, via a Dyson
equation

G~«!5G0~«!1G0~«!Dt~«!G~«!. ~6!

For finite matrices this equation can be solved by matrix
inversion. HereDt(«) is the difference between thet matri-
ces of the real system,t(«), and the reference system,
t0(«). It is diagonal in the$nL% indices and is given by

DtnL,n8L8~«!5dnL,n8L8$tn,L~«!2tn,L
0 ~«!%

5dnL,n8L8E
0

Sn
r 2 j l ~rA«!$Vn~r !Rnl ~r ;«!

2Vn
0~r !Rnl

0 ~r ;«!%dr, ~7!

whereSn is the radius of the atomic sphere andj l (rA«) is a
spherical Bessel function. This procedure of introducing ref-
erence states will be repeatedly used in the following. For
instance, as will be discussed below, the SGF of the host will
be considered as the perturbed SGF in the first step and as
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the reference SGF in the next one. In the following we will
consistently denote quantities belonging to the proper refer-
ence state with a 0 as superscript.

If the change of the potential is localized to a certain
region in space, the Dyson equation can be solved in real
space by matrix inversion, sinceDt vanishes outside this
perturbed region. This method has been used extensively for
studying, e.g., magnetic impurities in metals.13,15 On the
other hand, if the perturbed potential has some sort of trans-
lational invariance, Eq.~6! has to be solved in reciprocal
space, i.e., by Fourier transformation. For instance, to obtain
the SGF for the noble metal crystal, which represents the first
step in our method, we consider as a reference system free
electrons (V050) within a fcc lattice for which the SGF is
known analytically. Now making use of the translational in-
variance, the Dyson equation~6! is solved separately for
eachk point in the three-dimensional~3D! Brillouin zone
~BZ!,

G~k;«!5G0~k;«!1G0~k;«!t~«!G~k;«!. ~8!

Here the matrices have only angular momentum indices
L,L8. The real-space SGF is then obtained via a Fourier
transform,

GnL,n8L8~«!5VBZ
21E

BZ
GL,L8~k;«!exp$ ik•~Rn2Rn8!%dk,

~9!

whereVBZ is the volume of the 2D BZ andRn is a lattice
vector.

B. One magnetic layer

As the second step we consider a crystal being perturbed
by one layer~which, however, may consist of several atomic
layers!. The three-dimensional translational invariance is
then broken and only the two-dimensional periodicity in the
layer plane remains. This means that the symmetry label is
reduced fromk5ki1k' to ki , and the appropriate reference
SGF will have a mixed real and reciprocal space representa-
tion. Hence we have to transform the SGF of the ideal crystal
which now serves as the reference SGF into this representa-
tion by integrating overk' ,

GiL ,i 8L8
0

~ki ;«!5
d

2pE2p/d

p/d

GL,L8
0

~k;«!

3exp$ ik•~Ri2Ri 8!%dk' . ~10!

Here thei index denotes the atomic layers within the crystal
andd the distance between adjacent monolayers. The divi-
sion ofk into ki andk' depends of course on the orientation
of the layers. For the orientation@100# the 2D BZ forki has
the form of a square as shown in Fig. 1, and by definition
k' is normal to the plane of this 2D BZ.

The SGF for the perturbed system is now obtained from
the Dyson equation

G~ki ;«!5G0~ki ;«!1G0~ki ;«!Dt~«!G~ki ;«!, ~11!

where the matrices have$ iL % indices. By Fourier transform-
ing back into real space and adding the single-scattering
Green’s function the total Green’s function can be calculated

and hence the densities through Eq.~2!. These densities are
used to calculate a new potentialV(r ), which gives a new
Dt through Eq.~5! and which then enters into Eq.~11!. This
procedure is iterated until self-consistency is reached.

Besides the charge and magnetization densities also the
density of states~DOS! may be obtained directly from the
imaginary part of the Green’s function,

n~«!52
1

pE ImG~r ,r ;«!dr . ~12!

However, generally in multiple-scattering methods the differ-
ence in the energy integrated DOS~IDOS! due to the pertur-
bation,DN(«), can be expressed as a Lloyd’s formula.14 In
the following we will use the form suggested by Drittler
et al.16 properly generalized to the case of 2D translation
symmetry,

DN~ki ;«!5
1

p
@ Im ln det$a0~«!a21~«!%

2Im ln det$12G0~ki ;«!Dt~«!%#. ~13!

Thea0 anda matrices in the first term describe the single-
site scattering at the unperturbed and perturbed potentials,
respectively, as has been described in detail in Ref. 16. As we
will see later this term is of no importance for the interaction.
Instead one should concentrate on the second term where the
unperturbed SGF matrix and the self-consistently calculated
Dt matrix of the perturbation occur. This term takes care of
all multiple scattering within the perturbed region. The de-
terminants in Eq.~13! have only to be taken over the per-
turbed layer, i.e., whereDt differs from zero. Since the
imaginary part of the logarithm of a complex quantity is the
same as the argument of this complex quantity, the right-
hand side of Eq.~13! represents a phase factor. That the
IDOS is connected to a phase factor is well known for im-
purities. This is expressed by Friedel’s sum rule, which is in
fact just a special case of Lloyd’s formula.

FIG. 1. Two-dimensional Brillouin zone for the@100# orienta-
tion. Shown also are the positions of the five stationary points, the
two inequivalent ones of which are located atq1505Ḡ and
q25(1.08,0)p/a. The dashed line indicates the subdivision of the
2D BZ into areasAi ( i51,2) around the stationary points~Sec.
II E!.
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C. Two magnetic layers

When finally two layers, separated by an essentially un-
perturbed spacer layer in between, are considered we can still
use the same technique as for one layer, treating the two
layers and the intermediate region as a single perturbed en-
tity. However, if the two layers are well separated, such a
calculation would require an immense computing effort, due
to the size of the matrices entering the Dyson equation. Ad-
ditionally several separate calculations have to be performed
for all the different spacer thicknesses in between the layers.
For each calculation a very good convergence in the densi-
ties is necessary in order to obtain the needed accuracy of the
total energy.

Instead we calculate in the present paper only the single-
layer case self-consistently. The further change in the elec-
tronic structure when the two individual layers are allowed to
interact is then calculated within the frozen potential ap-
proximation ~FPA!,17 which is also known as the ‘‘force
theorem.’’ In this approximation the potentials of each one of
the magnetic layers or the spacer layer in between are sup-
posed not to change in any significant way by the presence of
the other layer. However, the corresponding change in charge
and magnetization densities is implicitly taken into account
in the calculation of the interaction energies, although in a
non-self-consistent way. This is expected to be a sound ap-
proximation when calculating IXC energies for spacers like
Cu where, in contrast to transition metals like Cr or Pd,
enhancement effects of the magnetization density are very
small.18 Additionally, the magnetic moments are well satu-
rated for Co layers in Cu, so that the Co potential is insen-
sitive to small changes in the environment and nothing dra-
matic would occur in an iteration procedure. Care should,
however, be taken when this approximation is applied to
other systems.

The adoption of the frozen potential approximation has
two major numerical advantages, besides the gain in comput-
ing efforts. First, as will be discussed later on, the total en-
ergies are easily calculated with the help of the so-called
force theorem.17 Second, as now will be shown, a manipula-
tion of Lloyd’s formula~13! gives a direct expression for the
change in the IDOS solely due to the interaction of the two
layers, thus avoiding the problem of the numerical subtrac-
tion of large energies. Moreover, it allows a transparent dis-
cussion of the asymptotic behavior, as demonstrated in Sec.
III.

D. Interacting IDOS

The change of the IDOS due to the interaction of the two
layers 1 and 2 is given by

DNint~ki ;«!5DN112~ki ;«!2DN1~ki ;«!2DN2~ki ;«!,
~14!

whereDN112 refers to the change of the IDOS with respect
to the host crystal as a reference when both layers are em-
bedded in the crystal, and whereDN1 and DN2 give the
corresponding changes for the single layers 1 and 2, respec-
tively. The subtraction of these contributions guarantees that
DN int only refers to the changes arising from the interaction
of the two layers. Since Eq.~13! for DN(«) is valid for an
arbitrary perturbationDt, we can apply this equation both to

the case of two layers, by settingDt5Dt11Dt1 , as well as
to the single-layer cases, settingDt5Dt1 or Dt5Dt2 . Due
to the frozen potential approximation, thet matricesDt1 and
Dt2 are the ones self-consistently determined for the single
layers and as such are not changed by the interaction. Since
the same is also true for thea matrices in Eq.~13!, these
single-site contributions cancel directly when inserting into
Eq. ~14!, so thatDNint is only determined by the multiple-
scattering parts,

DNint~ki ;«!52
1

p
Im@ ln det$12G0~Dt11Dt2!%2 ln det$1

2G0Dt1%2 ln det$12G0Dt2%#. ~15!

Using some standard algebraic identities—i.e., the sum of
logarithms is the logarithm of the product—
det(A)det(B)5det(AB) and $det(A)%215det(A21), we ar-
rive at the expression

DNint~ki ;«!52
1

p
Im ln det$M ~ki ;«!%, ~16!

where the matrixM , describing only the interaction effects,
is given by

M ~ki ;«!5~12G0Dt1!
21$12G0~Dt11Dt2!%

3~12G0Dt2!
21. ~17!

Now, the expression within the curly brackets can be written
as

12G0~Dt11Dt2!5~12G0Dt1!~12G0Dt2!

2G0Dt1G
0Dt2 , ~18!

so thatM (ki ;«) is given by

M ~ki ;«!512~12G0Dt1!
21G0Dt1G

0Dt2~12G0Dt2!
21.
~19!

SinceG0Dt1 commutes with (12G0Dt1)
21, the final result

is

M ~ki ;«!512G0t1G
0t2 ~20!

and correspondingly

DNint~ki ;«!52
1

p
Im ln det~12G0t1G

0t2!. ~21!

Here thet matrix

t i~ki ;«!5Dt i~«!$12G0~ki ;«!Dt i~«!%21~ for i51,2!
~22!

describes all the scattering processes within the single layer
i and depends, contrary to the atomict matrix Dt i(«), in
addition to the energy« also onki .

Equation ~21! represents the central result of this section.
The determinant is of the ordermLmax, wherem is the num-
ber of atomic layers within one magnetic layer. Thus the
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numerical effort involved in evaluatingDNint is independent
of the number of atomic spacer layersn separating the two
layers.

The SGF’s which explicitly enter Eq.~21! connect the two
layers, while the ones enteringt i in Eq. ~22! are localized
within each layer. Therefore Eq.~21! can be viewed as aris-
ing due to the interference of Bloch electrons scattering be-
tween the two layers. The propagation of the electrons
through the spacer layer is described by the nonlocal SGF
G0 while the scattering at each layer is described by thet
matrix t of this layer. Note that these two quantities are

calculated self-consistently from first principles. The layer
SGFG0(ki ;«) is calculated from the crystal SGF through
Eq. ~10! and Dt(«) is calculated from the self-consistent
potential of the layer through Eq.~7!. Further it is clear that
if, as in the present paper, one considers two magnetic layers
in a nonmagnetic metal, all spin dependence enters through
the spin-dependent potential of the magnetic layer, i.e.,
throughDt or t.

In the case of relatively weak scattering the logarithm in
Eq. ~21! can be expanded in a power series. Since
ln det(A)5Tr ln(A), we can write

DNint~ki ;«!52
1

p
Im Tr ln~12G0t1G

0t2!

5
1

p
Im Tr(

n51

`
1

n
~G0t1G

0t2!
n ~ for iG0t1G

0t2i,1!

'
1

p
Im TrG0t1G

0t2 ~when iG0t1G
0t2i!1!, ~23!

where the double vertical lines indicate a matrix norm.

E. Interaction energy

To study the interaction energy we will work with the
grand canonical functionV to take the advantage of using
finite temperatures in the numerical calculation~see below!.
Formally the density functional theory has been generalized
to finite temperatures by Mermin.19 In principle we follow
that work, but since the temperature effect on the LSDA
potential is very small for the temperatures used in this study,
we ignore this contribution. So in principle the temperature
is only introduced in the single-particle spectrum. When cal-
culating the grand canonical function it is natural to divide it
into a single-particle partVs and a double-counting part
VDC, V tot5Vs1VDC. The single-particle contribution is
usually written as an integral over the DOSn(«),

Vs52kTE
2`

`

ln@11exp$~m2«!/kT%#n~«!d«, ~24!

wherem is the chemical potential,k Boltzmann’s constant,
andT the temperature. By a partial integration this can be
rewritten as an integral over the IDOSN(«),

Vs52E
2`

`

f ~«!N~«!d«. ~25!

This formula differs from Eq.~3! in Ref. 7 which we used
in previous calculations. At finite temperatures the grand ca-
nonical functionVs has the desired extremal properties for
accurate total-energy calculations20 and is also numerically
more easily evaluated than the single-particle energies alone
@Eq. ~3! in Ref. 7#. Now we want to calculate the interaction
energyDV of the two magnetic layers. The single-particle
contributionDVs is obtained by directly inserting the corre-
sponding IDOS, properly integrated over the 2D BZ and
summed over the spin directions. Thus

DVs5
21

ABZ
E

2`

`

d« f ~«!E
BZ
dki(

s
DNint

s ~ki ,«!, ~26!

whereABZ is the area of the 2D BZ. An additional contribu-
tion from the double-counting energiesVDC would arise,
which is neglected in the frozen potential approximation
~FPA!. The validity of this approximation for the exchange is
discussed in the next subsection. The interlayer exchange
energyEIXC is defined as the difference inDV between the
ferromagnetic and antiferromagnetic configuration of the two
layers,EIXC5DVF2DVAF . Thus in FPA we only need to
evaluate the interacting IDOSDNint

F andDNint
AF for the two

configurations. The final expression for the interlayer ex-
change coupling is

EIXC5
1

pABZ
E

2`

`

d« f ~«!E
BZ
dkiIm ln

det~12G0t1
1G0t2

1!det~12G0t1
2G0t2

2!

det~12G0t1
1G0t2

2!det~12G0t1
2G0t2

1!
. ~27!
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Here the spin indices1 and2 denote the local majority and
minority states, respectively. Since the two layers are of the
same type, the spin-dependentt matrices of the isolated lay-
ers entering Eq.~27! are actually equal. The numerator refers
to the ferromagnetic configuration and the denominator to
the antiferromagnetic one. In the case of weak scattering this
expression for the IXC energy can be approximated in the
same way as in Eq.~23!. So in this limit the exchange energy
becomes

EIXC>
21

pABZ
E

2`

`

d« f ~«!E
BZ
dkiImTrG

0Dt1G
0Dt2 ,

~28!

whereDt i5t i
12t i

2 is the exchange splitting of thet matrix
of layer i . This limit is essentially the RKKY picture: The
spin-asymmetry potential of layer 1 induces a magnetization
at layer 2, throughG0Dt1G

0, which interacts with the local
spin-asymmetry potentialDt2 .

It can be shown that the integrand in Eq.~27! oscillates
rapidly in both variables« and ki for large interlayer dis-
tances. This leads to huge cancellations within the integrals.
With a stationary-phase approximation it has been shown3

that asymptotically for large distances there will only be con-
tributions to the integrals arising from the Fermi energy
«F , respectively, from special points in the 2D BZ where the
integrand is stationary, so-called stationary points~Fig. 1!.
These points correspond to the Fermi surface calipers3,4 of
the RKKY theory.

F. Single-particle energies versus total energies

Here we want to demonstrate that within the frozen po-
tential approximation the single-particle energies alone allow
a reliable calculation of the interlayer exchange coupling, so
that the double-counting contributions can be neglected.
Thus no new self-consistent calculations for the system of
two interacting magnetic layers are necessary. This does not
only lead to a large saving of computer time, but also allows
a very transparent discussion of the asymptotic behavior of
the IXC as presented in Sec. III B.

Since for larger distances the interaction energies are very
small, the frozen potentials of the single layers represent very
good trial potentials to calculate the interaction in a varia-
tional approach. However, unfortunately the double-counting
terms cannot be neglected in general. For instance, Gautier
et al.21 have shown that for the case of interacting impurities
the double-counting contributions are significant and that,
e.g., the single-particle contribution alone does not reproduce
the correct result in the limit of weak potentials. Then the
interaction of the screened potential of one impurity with the
bare potential of the other one determines the interaction
energies, while in the single-particle energies both potentials
are screened. On the other hand, Oswaldet al.18 have shown
that due to the extremal properties of the double-counting
terms theexchange interactionof two magnetic impurities is
well given by the single-particle energies alone, provided
that the polarization and exchange enhancement of the host
are sufficiently small, which should be well satisfied for the
noble metals. The same arguments can be applied for the
exchange interaction of two magnetic layers.

In the following we pursue the statement of Oswald
et al.18 in numerical calculations for the exchange interaction
of two Co impurities in Cu. Table I shows the calculated
exchange interaction energiesDE5EF2EAF in the FPA
~FPA1 and FPA2! and in a fully self-consistent calculation
~full scf!. Analogously to the previous discussion for the lay-
ers, also in the impurity case the interaction is calculated
from the single-particle energies using Lloyd’s formula@see
Eq. ~15!#, with the atomict matrix of the impurities as de-
termined in a self-consistent calculation for a single Co im-
purity. In FPA1 thist matrix is calculated in the single-site
approximation, by neglecting perturbations of the neighbor-
ing Cu atoms. In contrast to this in the FPA2 the Cot matrix
is determined by allowing also potential and density pertur-
bations of these Cu atoms which is analogous to the proce-
dure used in the IXC calculations. The ‘‘full scf’’ data refer
to fully self-consistent calculations for the two interacting
impurities including charge and magnetization disturbances
of the neighboring Cu atoms. Self-consistent calculations
have been performed for both the ferromagnetic and the an-
tiferromagnetic configurations and the resulting total-energy
difference EF2EAF is evaluated, including all double-
counting contributions. As one can see the FPA2 values
agree very well with the self-consistent results, and also the
FPA1 values give the correct trend, e.g., a strong ferromag-
netic interaction for nearest neighbor pairs and a weak anti-
ferromagnetic interaction for second neighbors. The im-
provements of the FPA2 values as compared to FPA1 are due
to the improved description of the impurity potential, allow-
ing for charge and magnetization disturbances of the neigh-
boring atoms. Thus we have demonstrated that, in agreement
with Oswaldet al.,18 the exchange coupling can be reliably
calculated from the single-particle energies only.

G. Reason for using finite temperatures

It is known that a strong gain in numerical effort can be
made by transforming the energy integral in, e.g., Eq.~27!
into a contour integral in the complex plane,12,22,23which for
zero temperature would look like

E«F
g~«!d«5 R g~z!dz2E

C
g~z!dz52E

C
g~z!dz,

~29!

whereg(z) is an arbitrary function~for instance the Green’s
function! which is analytic on the physical sheet of complex
energiesz. The closed-loop integral disappears due to the

TABLE I. Exchange interactionEF2EAF ~in meV! for two Co
impurities in Cu as a function of the separation. The values FPA1
and FPA2 refer to two different frozen potential approximations and
are compared with total-energy results from fully self-consistent
calculations~see text!.

FPA1 FPA2 Full scf

First neighbor~110! 292.6 272.3 277.1
Second neighbor~200! 9.8 15.5 15.1
Third neighbor~211! 22.4 24.2 24.5
Fourth neighbor~220! 3.7 6.1 6.7
Eighth neighbor~400! 21.6 22.4 22.7
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analyticity of the integrand within its boundaries. In our
Green’s function calculations the contourC starts at the real
energy axis below the minimum of the valence band, goes
out in the complex plane, and returns to the real axis at the
Fermi energy«F . The gain arises from the fact that for real
energies the Green’s functionG(z)5(z2H)21 is strongly
structured due to poles and branch points. This structure be-
comes quickly smoother when leaving the real axis. But
since for zero temperature the contourC returns to the real
axis at«F , the same problem still exists at this energy. While
typically the integral along the real axis requires for an ac-
curate evaluation about 1000 energy points, only about 30–
50 energy points, of which about one-half have to be placed
close to«F , are sufficient for the complex contourC.

On the other hand for finite temperatures the integrand
has poles in the complex plane, the so-called Matsubara
poles of the Fermi-Dirac function at
zp5m1(2p61)p ikT, pP$1,2, . . .%, where m is the
chemical potential,

E`

g~«! f ~«!d«5 R g~z! f ~z!dz2E
C8
g~z! f ~z!dz

52p i(
p
Resg~zp!2E

C8
g~z! f ~z!dz.

~30!

Now the closed loop contains a fixed number of Matsubara
poles and the contourC8 returns to the real axis only at
infinity. The most effort is connected with the calculation of
the residues at the poleszp . While these approach the real
axis forT→0, for finiteT the pole closest to the real axis is
located atm1 ipkT. Thus a finite temperature gives the pos-
sibility of introducing a smearing of the structured integrand
in a very controlled way, since it never has to be evaluated
for real energies. The most important advantage is, however,
that theki integration converges for complex energies rather
fast, so that only a moderate number ofki points is needed.

H. Numerical details

Three different integrations have to be performed for the
calculation of the IXC energy, thek' integration ~10! to
obtain the Green’s function in the planar representation and
theki and the complex energy integration for the interaction
energies, Eq.~27!.

For carrying out thek' integration in Eq.~10! an ex-
tended trapezoidal integration method with about 300 mesh
points in the interval@2p/d,1p/d# was used.

Before the complex energy integration in Eq.~27! is per-
formed, aki integration is carried out for each energy point
in the complex plane. As previously mentioned the Green’s
functionGiL ,i 8L8

0 and, with it, the integrand in Eq.~10! be-
come smoother with larger distance from the real axis. Only
at the chemical potentialm does the integrand approach the
real axis in steps of 2pkT from one Matsubara pole to the
next. For the poles close to the real axis theki integral in Eq.
~27! must be carried out with high accuracy because of the
stronger structure of the Green’s function at these points. For
this reason we have adjusted theki mesh to the location of
the energy points in the complex plane. For the two Matsub-

ara poles closest to the real axis, at the complex energies
z5m1 ipkT and z5m1 i3pkT, respectively, and for a
temperature of T5473 K, we use a special-point
method24–26and take 465ki points in the irreducible wedge
of the 2D zone. For the next poles 120ki points turn out to
be sufficient. Five poles have been used in total. The other
energy points, being located along the complex contour, can
be calculated with 45ki points.

Another reason for taking so manyki points at the last
two Matsubara poles is the oscillatory behavior of the
Green’s functionGiL ,i 8L8

0 , varying very rapidly in energy and
ki space for large layer separations. Since only areas around
the stationary points on the Fermi surface determine the be-
havior of the IXC for large spacer thicknesses, these areas
have to be well resolved in theki integration, with a mesh
being capable of giving the correct curvature of the Fermi
surface at these points; otherwise, it is not possible to get the
right asymptotic behavior of the IXC energy.

The fact that mainly the electronic states at the Fermi
surface are important for the IXC shows up in the individual
contributions of the different energy points. Actually for
large spacer thicknesses and a temperature ofT5473 K the
two poles closest to the chemical potentialm give the major
contribution.

III. CALCULATIONS FOR Co/Cu/Co „100…

In this section we present the results for the interlayer
coupling of ~100! Co layers in Cu. For several reasons this
system is a very suitable model system. First, Cu is one of
the simplest possible spacer materials due to its relatively
simple Fermi surface and the fact that no large Stoner en-
hancement effects are expected within the spacer layer. Sec-
ond, the magnetic properties of cobalt are rather insensitive
to the thickness of the cobalt layer since the majority spin
states are filled and the local magnetic moments are more or
less saturated. For instance a single monolayer~ML ! of Co
embedded into Cu has a moment of 1.54mB , whereas the
moments for a Co layer of 3 ML are 1.55mB , 1.57mB , and
1.55mB . Also thicker Co layers have only slightly different
moments. A Co layer with the thickness of 7 ML, e.g., has
the moments 1.54mB , 1.58mB , 1.61mB , 1.60mB , 1.61mB ,
1.58mB , and 1.54mB . Third, the structural misfits are known
to be small between fcc Co and fcc Cu, and last, fcc Co/
Cu/Co is one of the experimentally best studied systems
which makes a quantitative comparison with experimental
data possible.

The system which we present consists of two Co layers
perfectly embedded in a Cu host and separated by a variable
number of Cu monolayers~up to 32!. The thickness of the
Co layers is varied from 1 to 11 monolayers. The misfit of
the Co atoms and the resulting small tetragonal distortion of
these layers are neglected.

A. Results and discussion

As a typical example of our results, Fig. 2 shows the
calculated IXC energy as a function of the Cu spacer thick-
ness for three different thicknesses of the Co layers, i.e., 1
ML Co ~dashed line!, 5 ML Co ~dotted line!, and 7 ML Co
~solid line!. The definition of the IXC energy as the differ-
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enceEF2EAF between the ferromagnetic and the antiferro-
magnetic coupling energies means that for positive IXC val-
ues antiferromagnetic coupling is preferred while for
negative values the ferromagnetic alignment is stable.

As can be seen from Fig. 2 the results for 5 and 7 ML Co
are very similar, but differ strongly from the results for 1
ML. In fact our calculations show that for Co thicknesses
larger than 3 ML always very similar results are obtained, so
that only the values for 1 and 2 ML Co are exceptional. For
1 ML Co, Fig. 2 shows antiferromagnetic maxima at 7, 12,
17, and 22 ML Cu. In contrast to this the results for 5 and 7
ML Co show additional antiferromagnetic peaks at 9, 14–15,
and 20 ML Cu. In addition we also obtain two strong anti-
ferromagnetic peaks at shorter distances~2 and 4 ML! which
are not presented in Fig. 2. Due to pinhole effects, antiferro-
magnetic peaks usually cannot be observed at shorter dis-
tances.

These results for the IXC as a function of the spacer
thickness will be discussed and explained in detail in the
following subsections. Here we will concentrate on the de-

pendence on magnetic layer thickness which can also be
shown in a different way. In Fig. 3 the coupling strength is
given as a function of the Co layer thickness for fixed spacer
thicknesses of 7, 9, 12, and 15 ML Cu, corresponding to the
first antiferromagnetic peaks in Fig. 2. As can be seen the
coupling varies strongly from 1 to 3 ML Co, but for larger
Co thicknesses only small oscillations around a stationary
asymptotic value are found. This result is in accordance with
predictions of Bruno10 and a free electron model study of
Barnaś.11 In the experimental work of Qiuet al.27 no depen-
dence of the IXC on the Co thickness is found for thick-
nesses larger than 8 ML Co. Recently Bloemenet al.28 have
carried out measurements for smaller thicknesses, where they
find a fastly decreasing coupling strength with decreasing
number of Co ML. For larger Co thicknesses up to 10 ML
they observe a similar oscillatory behavior as found here,
with a period of 3.3 ML. Thus the experimental results are in
good agreement with our calculations, even if, as our calcu-
lations show, the behavior for 1 and 2 Co ML is more com-
plicated. It should be noted that due to roughness the inter-

FIG. 2. Calculated exchange coupling~IXC!
energies for Co/Cu~100! as a function of the Cu
spacer thickness for three different thicknesses of
the Co layers, i.e., 1 ML Co~dashed line with
triangles!, 5 ML Co ~dotted line with open
squares!, and 7 ML Co ~solid line with solid
squares!.

FIG. 3. Exchange coupling energies of Co/
Cu~100! as a function of the number of Co layers
for Cu thicknesses of 7, 9, 12, and 15 ML.
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pretation of the experimental results seems to be more
complicated than initially assumed.29 A detailed comparison
of our results with experiments is postponed to Sec. III D,
since a meaningful comparison requires the discussion of
roughness effects.

B. Asymptotic analysis

The RKKY formulation of the IXC~Refs. 3,4! is, as men-
tioned above, only valid for large interlayer distances. Within
this model, being equivalent to the second-order expression
~28!, the IXC energy is expressed by the superposition of
several independent oscillations stemming from extremal
spanning vectors, so-called calipers, of the Fermi surface of
the spacer material,

ERKKY5(
i
Aisin~2pz/l i1f i !/z

2. ~31!

Thus the contribution of each caliper is characterized by
three parameters, the wavelengthl i , the amplitudeAi , and
the phase shiftf i . For Cu in the~100! orientation there are
two different oscillation periods corresponding to the shorter
and longer vertical calipers of the ‘‘dogbone’’ of the Cu
Fermi surface. Therefore, for large Cu interlayer thicknesses
our results in~100! orientation should be representable as a
superposition of these two oscillations. In order to under-
stand the drastic changes in the interlayer coupling when
going from 1 ML Co to thicker magnetic layers of 3 ML and
more we have performed least squares fits of our calculated
data to the RKKY expression of Eq.~31!. As a representative
for thick magnetic layers, we take the result for 5 ML Co.
The fitting parameters are the wavelengthslS andlL and the
corresponding amplitudes (AS , AL) and phases (fS , fL) of
the short and long periods, respectively. We fit our calculated
data between 8 and 22 ML Cu and find that both curves are
actually superpositions of the same two oscillations with
wavelengthslS52.6060.02 ML andlL55.960.4 ML, re-
spectively. These two oscillation periods correspond closely
to values estimated from de Haas–van Alphen data.3 The
crucial difference between a thin and thick Co layer is the
relative magnitude of the amplitudes of the two oscillations,
AS andAL . For 1 ML Co the amplitudes are about of the
same order,AS /AL50.74, with the amplitude of the 6 ML
wavelength oscillation being somewhat larger, but for 5 ML
Co the short-wavelength oscillation totally dominates,
AS /AL>10. @These numbers depend somewhat on the details
of the fits, like the number of Cu layers taken into account
and the estimated starting values of the fitting parameter. In
addition the calculated results, based on the exact expression
~27! instead of~28!, include also contributions from higher
harmonics of the wavelengthsl i , which cannot be repre-
sented by Eq.~31!. The ratioAS /AL517 given in Ref. 9
resulted from a less accurate fit over a too large Cu interval.#
Thus by changing the Co thickness from 1 ML to thicker
layers, we observe a dramatic redistribution of weight be-
tween the two oscillation periods, such that for larger Co
thicknesses the long period is strongly suppressed.

As already discussed in Refs. 7 and 9, a good fit to the
calculated data is only obtained for spacer distances larger
than 8–10 ML Cu. Thus the asymptotic analysis is restricted

to rather large distances. Nevertheless, also for shorter dis-
tances the calculated results show a qualitative similarity to
the asymptotic behavior.

In Ref. 9 we have analyzed the different oscillations in the
IXC energy by dividing theki integration over the 2D BZ in
Eq. ~27! into a sum of integrals over nonoverlapping areas
centered around a stationary point as shown in Fig. 1. For Cu
there exist five stationary points within the 2D BZ, with the
two inequivalent ones situated atq1505Ḡ and
q25(1.08,0)p/a wherea is the lattice constant. They corre-
spond to the calipers giving rise to the long- (q1) and short-
(q2) period oscillations, respectively.

As discussed in Ref. 9 theq2 contribution is strikingly
insensitive to Co layer thickness. This can also be seen in
Fig. 3. There the open circles connected by the dashed line
represent theE(q2) contribution as a function of the number
of magnetic monolayers for a Cu interlayer thickness at 7
ML ~first antiferromagnetic peak in Fig. 2!. They clearly
show no oscillatory behavior. Or, to formulate it in another
way, the oscillations in the IXC energyEIXC in Fig. 3 for
large magnetic layer thicknesses are caused by theq1 contri-
bution alone.

C. Interaction with Co d states

As we have seen in the last two sections, the two inde-
pendent IXC contributionsE(q1) and E(q2) show a very
different dependence on the magnetic layer thickness. In par-
ticular for thicker Co layers the short-wavelength contribu-
tion E(q2) clearly dominates. Thiski dependence of the cou-
pling should be caused by the local electronic structure of the
embedded Co layer and its interaction with those Cu states
relevant for the IXC.

Due to the nearly saturated spin moment of Co, the Co
potential for the majority spin states is very close to the Cu
potential, whereas the Co minority potential is more repul-
sive. Therefore the Bloch states of Cu scatter strongly at the
minority potential, but only weakly at the majority one. As a
consequence of this, for an antiferromagnetic coupling of the
Co layers, the Cu Bloch states scatter for each spin direction
always weakly at one of the two interfaces, so that the IXC is
expected to be weak for the antiferromagnetic configuration.
In contrast to this, for a ferromagnetic alignment a strong
scattering is expected in the minority spin channel at both
interfaces, so that a strong contribution to the IXC is ex-
pected. This is confirmed by the calculations. Figure 4 shows
the two individual contributionsEF andEAF to the interlayer
exchange couplingEIXC5EF2EAF for the ferromagnetic
(EF) and antiferromagnetic alignment (EAF) with a Co thick-
ness of 3 ML. The antiferromagnetic coupling contribution is
clearly much smaller than the ferromagnetic one. One can
also show that the interaction in the ferromagnetic configu-
ration is dominated by the minority spin states which are
strongly scattered at both Co layers.

Thus when studying the importance of the electronic
structure of the~100! Co layers for the interlayer coupling,
one can concentrate on the minority~spin down! states. In
addition one knows from the asymptotic RKKY theory3 that
for large spacer thicknesses only states withqi values close
to the stationary pointsq1 andq2 and with energies close to
«F can affect the interlayer coupling.
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Finally a further selection rule exists arising from the
symmetry of the Cu states at«F . Figure 5 shows the band
structureEn(ki ,kz) of Cu as a function ofkz for the two
stationaryki valuesq1 @Fig. 5~a!# andq2 @Fig. 5~b!#. For the
q150 case the Cu states at«F areD1 states with a strong
pz contribution. TheD1 states are invariant under all cubic
symmetry operations which transform thez axis into itself.
In the Co layers, only states with the sameD1 symmetry can
couple to these Cu electrons. Analogously for theq2 point
the Cu states withk5(q2 ,kz) near«F ~solid line! are invari-
ant under a specular reflection at thex-z plane and can there-
fore only couple to Co states having this symmetry. Summa-
rizing, only minority Co states with energies at«F , ki equal
to q1 or q2 , and with the same symmetry as the relevant Cu
states can affect the interlayer coupling for large distances.

It is therefore important to look at the number of states
available in the Co layer which satisfy these selection rules.
When no such states exist at all, then a Cu Bloch wave
cannot enter into the Co layer and is totally reflected at the

interface. In this case the IXC should be optimally strong.
On the other hand, if many Co states satisfy the selection
rule, then a Cu Bloch wave can propagate into the Co layer,
so that the interaction is strongly reduced. Figure 6~a! shows
the relevant partial DOSDn(ki ,«) for ki50 and projected
to D1 symmetry as a function of the energy and for various
Co thicknesses. HereDn refers to the changes of the minor-
ity DOS induced by a single Co layer in bulk Cu and is
obtained by differentiating the corresponding partial IDOS
given by Lloyd’s formula@Eq. ~13!#. For 1 ML Co we obtain
a single resonance, a ‘‘virtual bound state,’’ arising from a
dz2 state being centered below the Fermi energy.

Forn ML Co then dz2 states interact and formn hybrides
ranging from bonding to antibonding states. For large Co
thicknesses the part of the DOS shown in Fig. 6~a! represents
the highest-lying antibonding states. This explains the fact
that theE(q1) contribution is reduced for thicker Co layers,
as was shown in Fig. 4: The Cu Bloch states at the Fermi
energy can propagate through the Co layer via thed states of

FIG. 4. The individual contributionsEF and
E AF to the interlayer exchange coupling
EIXC5EF2EAF for the ferromagnetic (EF , solid
line! and antiferromagnetic (E AF , dotted line!
configurations as a function of the spacer thick-
ness. The thickness of the Co layer is 3 ML.

FIG. 5. Band structureEn(ki ,kz) of Cu as a
function of kz for the two stationaryki values
q150 ~a! and q25(1.08,0)p/a ~b!. The solid
line in ~a! refers to states withD1 symmetry, in
~b! to states being invariant to a specular reflec-
tion at thex-z plane. In both cases these are the
states prevailing at the Fermi energy.
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Co. The oscillation of the IXC with respect to the magnetic
layer thickness was explained by Bruno10 as due to interfer-
ence of Bloch states scattering at the front and the back in-
terfaces of the Co layer. Another, complementary, picture is
that the Cu states scatter at the size-quantizedd states in the
Co layer. Since the energy position of these states varies with
the Co thickness, this effect gives rise to a magnetic layer
dependence in theE(q1) coupling. For thick Co layers these
d states evolve into theD1 band close to theG point which is
shown in Fig. 7~a! below. However, even for rather large
thicknesses the individual resonances are well resolved and
do not overlap. The above discussion is slightly different
from Bruno’s arguments that the magnetic layer thickness
oscillations should arise from the«F crossing closest to the
X point, i.e., the moresp-like part of the band.

Figure 6~b! shows the corresponding partial DOS
Dn(q2 ,«) with proper symmetry for theq2 point. For 1 ML
Co we observe a similar behavior as for the stationary point
q1 , i.e., a single virtual bound state below«F . However, for
larger Co thicknesses the higher-lying states either center
well above or below the Fermi energy, thus effectively open-

ing a gap at the Fermi energy. This is indeed what happens
for thicker Co layers resembling the behavior of bulk Co.
Figures 7~a! and 7~b! show the band structuresEn(ki ,kz)
for minority electrons of bulk fcc Co as a function ofkz by
fixing the ki value to q1 @Fig. 7~a!# and q2 @Fig. 7~b!#.
Whereas forq1 one obtains a band of ‘‘allowed’’D1 symme-
try ~solid lines! at EF , for the q2 point only states of ‘‘for-
bidden’’ symmetry~dashed lines! exist at«F , which cannot
couple to the relevant Cu states. Thus the partial DOS of
allowed states has indeed a gap at«F which explains the
behavior of the IXC contributionE(q2) discussed in Ref. 9.
Compared to 1 ML Co, the interaction energyE(q2) in-
creases since a gap opens up in the Co layer. Since this gap
is rather large, already for moderate Co thickness the Cu
Bloch waves can no longer easily penetrate the Co layer and
are almost totally reflected, thus explaining the insensitivity
of E(q2) with respect to the Co thickness.

As we have seen the properly symmetry-projected and
ki-dependent Co DOS can be substantially different for the
two stationary pointsq1 andq2 and can change drastically
with Co thickness, despite the fact that the overall electronic

FIG. 6. Partial andki projected density
Dn(ki ,E) for minority electrons in the Co layer
for the stationaryki valuesq150 ~a! andq2 ~b!.
The dashed line refers to 1 ML Co, the dotted one
to 5 ML, and the solid line to 7 ML Co. In~a!
only states withD1 symmetry are given, in~b!
only states with specular reflection symmetry at
the x-z plane.
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structure of the Co layer does not vary appreciably. The for-
mation of bands and gaps at the two stationary points leads
to the observed strong redistribution of weights between the
two oscillations when the Co thickness is varied.

D. Simulation of interface roughness

It is well known that interface roughness can appreciably
affect the IXC. In particular short-period oscillations tend to
be suppressed. Here we introduce a model to describe the
‘‘macroscopic’’ roughness introduced by steps: We assume
that a spacer layer with an average thicknessx consists of
large patches withn, n61, andn62 ML thicknesses. Let
Pn(x) be the probability to find a spacer thickness of exactly
n ML when x is the average~noninteger! thickness. Then the
average IXC energyĒ(x) is given by

Ē~x!5(
n

EnPn~x!, ~32!

whereEn are the ideal IXC energies for spacers withn ML.
The thickness distribution functionsPn(x) have to satisfy the
relations

(
n

Pn~x!51, (
n

nPn~x!5x, ~33!

where the first one describes the normalization and the sec-
ond one the definition of the average thicknessx.

For the case of ideal growth the functionPn(x)
5Pn

(0)(x) increases linearly in the intervaln21<x<n from
0 to 1 and then decreases again from 1 to 0 for
n<x<n11, as shown in Fig. 8. Therefore the IXC function
Ē(0)(x) attains the valuesEn ,En11 , . . . at theinteger dis-
tances x5n,n11, . . . while for noninteger distancesx
neighboringEn values are linearly interpolated. Thus for
ideal growth theĒ(x) function is identical to the curves
shown in Fig. 1, consisting of piecewise straight lines con-
necting neighboringEn values.

In order to simulate roughness we assume first that the
width of the distributionPn(x) is independent of the thick-
ness, i.e.,Pn(x)5p(z), wherez5n2x describes the devia-
tion from the average thicknessx. This approximation can
only be valid in a certain range of thicknesses. We then in-
troduce broadened distribution functionsp( i )(z) by a recur-
sion relation

p~ i11!~z!5
1

4
$p~ i !~z21!12p~ i !~z!1p~ i !~z11!%, i>0.

~34!

It is easy to show that this relation preserves the normaliza-
tion conditions~34!. Analogous to the distributionp(0)(z) for
ideal growth~shown in Fig. 8!, all functionsp( i )(z) consist
of straight line segments connecting neighboring values
p( i )(z) for integer z values. As an example the first three
broadened distributionsp(1)(z), p(2)(z), and p(3)(z) are
shown in Fig. 9 together with the ‘‘ideal’’ distribution
p(0)(z) of Fig. 8. The progressive broadening seen in Fig. 9
is related to the fact that the variance increases linearly with
i ,

^m2&[(
m

m2p~ i !~m!5
i

2
, ~35!

FIG. 7. Band structureEn(ki ,kz) of minority
electrons in bulk Co as a function ofkz for
q150 ~a! andq2 ~b!. The solid and dashed lines
have the same meaning as in Figs. 5~a! and 5~b!.

FIG. 8. The thickness distribution functionsPn(x) versus the
average thicknessx for ideal growth.
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which follows from Eq.~34!. The solution of~34! can also
be written in a closed form,

p~ i !~m!5
1

22i
~2i !!

~ i2m!! ~ i1m!!
, ~36!

and approaches a Gaussian for largei . Given these broaden-
ing functionsp( i )(m) we can calculate the average IXC en-
ergiesĒ( i )(x). Since these also show a straight line behavior,
only the values for the integerx have to be evaluated. The
first averages are

Ē~1!~n!5
1

4
~En2112En1En11!,

Ē~2!~n!5
1

16
~En2214En2116En14En111En12!,

~37!

Ē~3!~n!5
1

64
~En2316En22115En21120En115En11

16En121En13!,

and correspond to the broadened distribution functions
shown in Fig. 9 which according to Eq.~35! have variances
of 1/2, 1, and 3/2, respectively. Scanning tunnel microscope
~STM! studies of the surfaces of Co layers deposited on Cu
~100! show that these surfaces consist of patches and islands
of different heights, with an average roughness of several
monolayers. Thus our roughness model should be well suited
for this system.

In Fig. 10 therefore we have averaged our results for ideal
interfaces, as given in Fig. 2, in the described way assuming
a constant Co thickness of 7 ML. Even forĒ(1)(x), corre-
sponding to a modest roughness, the amplitudes of the IXC
oscillations are decreased by a factor of 5 and further de-
creases are seen forĒ(2) andĒ(3). However, equally impor-

FIG. 9. The model distribution functionp( i )

3(z), i51,2,3, describing the effect of rough-
ness. The variance ofp( i )(z), as defined by Eq.
~35!, is equal toi /2.

FIG. 10. The average IXC energiesĒ(1)(x)
and Ē(2)(x) and Ē(3)(x), averaged with the dis-
tribution functionsp( i )(z) of Fig. 9 to describe
the effect of steplike roughness, as a function of
the average spacer thicknessx. These results for
Co/Cu~100! have to be compared with the values
of Fig. 2 calculated for ideal interfaces.
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tant is the fact that the amplitudes of the short period are
more strongly reduced than the ones of the long period.
While the energy curveĒ(1)(x) still shows weak peaks at 7,
12, and 17 ML, resembling the short-wavelength oscillation,
the further broadened curvesĒ(2)(x) and Ē(3)(x) are totally
dominated by the long period. In contrast to these broadened
curves the behavior of ideal interfaces~Fig. 2! is dominated
by the short period. Thus depending on the degree of rough-
ness, we observe, together with a reduction of the ampli-
tudes, a crossover from short-period to long-period oscilla-
tions. In line with this is a shift of the peak positions to 5, 10,
15, and 20 ML, representing the maxima of theE(q1) con-
tribution.

The present roughness simulations fit very well to experi-
mental observations. Johnsonet al.30 find strong antiferro-
magnetic peaks at 6.6 ML, 12 ML, and 17.3 ML, and addi-
tional, but somewhat weaker, peaks at about 14.5 and 17
ML. From a RKKY fit to the measured data they estimate the
relative amplitude of the short period to long period as 1.25,
much smaller than in our calculations for the ideal interface.
They do not find the~weaker! antiferromagnetic peak at
about 9 ML. As suggested by the authors, this peak is pre-
sumably shifted by pinhole effects into the ferromagnetic
region. Note that for the same reason no antiferromagnetic
peaks are observed for smaller distances, while our calcula-
tions yield additional peaks at 2 and 4 ML which are not
shown in Fig. 2.

Qiu et al.27 only find the strong antiferromagnetic peaks
at about 6, 11.5, and 17 ML. Thus the roughness of their
sample seems to be larger than the one of Johnsonet al.,30

since the short period is totally suppressed, in the same way
as our results are changed with the introduction of the distri-
butionsp(2) andp(3) in Fig. 10.

Using an improved technique with three magnetic layers
Bloemenet al.31 were able to study also the interaction in the
region of ferromagnetic coupling. They indeed find the
‘‘missing’’ antiferromagnetic peak as a strong dip in the fer-
romagnetic coupling curve. Recently Bloemenet al.28 have
presented IXC data in connection with their observation of
oscillations arising from magnetic layer thickness. The data
in Fig. 1 of their paper resemble very well our broadened
E(1)(x) curve shown in Fig. 10, as far as both the strength of
the additional weak antiferromagnetic peaks as well as the
positions of all peaks are concerned. The shift of the whole
curve by 2 ML to smaller distances as compared to Johnson
et al.30 they attribute to experimental problems. Since we
observe the same shift between our unbroadened results in
Fig. 2 and the broadenedĒ(1)(x) curve in Fig. 10, it seems to
be likely that this effect is a consequence of the somewhat
larger roughness in the samples of Bloemenet al.28

A quantitative comparison of the measured and calculated
IXC values is made in Table II. Listed are the amplitudes of
the first and second strong antiferromagnetic peaks~in
mJ/m2), with the values in the brackets denoting the peak
position. Three ‘‘theoretical’’ results are given, the calculated
onesE(0)(n) of Fig. 2 and the averaged valuesĒ(1)(n) and
Ē(2)(n) of Fig. 10 for the thickness distributionsp(1)(x) and
p(2)(x) of Fig. 9. Thus while the calculated values are much
larger than the experimental results, the dataĒ(1) corrected
for roughness with the distributionp(1)(x) are in good agree-
ment with the data of Refs. 28, 30, and 31 for intermediately
rough interfaces, while theĒ(2) values for the broader distri-
butionp(2)(x) agree well with the data of Ref. 27 for rougher
interfaces.

In conclusion our simple simulations give a remarkably
consistent picture of the large effects of roughness on IXC in
Co/Cu~100!. They explain the strong reduction of the ampli-
tudes, the suppression of the short period, and the shift of the
peak positions, all effects being observed experimentally.

After the paper was finished we obtained two preprints
relevant to this work. Mathonet al.32 calculated the ex-
change coupling of two semi-infinite Co crystals separated
by Cu layers in~100! orientation. While qualitatively their
results are similar to ours, in detail important differences
exist. The calculated exchange interaction for the first anti-
ferromagnetic peak is about a factor 2~or 4, if the asymp-
totic expression is used! smaller than our value for thicker
Co layers. Moreover the authors obtain an extremely large
amplitude ratioAS /AL of about 100–200~Refs. 32,33! so
that practically no long-period contribution exists. While
Mathon et al. stress the good agreement of the calculated
coupling energies with experimental values, we believe that
this agreement is accidental and will disappear when realistic
corrections for interface roughness, as discussed in Sec.
III D, are applied. The average valuesĒ(x) are then much
too small and in particular contain no long-period contribu-
tion.

Using spin-polarized scanning electron microscopy Weber
et al.34 studied exchange coupling in Co/Cu~100! as well as
in related asymmetrical systems like Fe/Cu/Co and Ni/Cu/
Co. In Co/Cu samples of varying quality they observe both
long- as well as short-period oscillations. For their ‘‘best’’
sample showing a pronounced short period they estimate an
amplitude ratioAS /AL.7. The appearance of the short-
period oscillation and the large-amplitude ratio agree well
with our calculations and, according to Sec. III D, point to a
good quality of the sample.

Lee and Chang35 presented recently tight-binding~TB!
calculations~based on an asymptotic analysis! for the inter-

TABLE II. Comparison of the calculated and experimentally determined exchange coupling constantsJ
for Co/Cu~100! for the first and second strong antiferromagnetic peaks~in mJ/m2). The values in brackets
give the exact peak positions in Cu ML.J(0) results from the calculated values shown in Fig. 2 for a Co
thickness of 7 ML Co and is given byJ5

1
2(EF2EAF)/A2D , whereA 2D is the unit surface area.J(1) and

J(2) are the values obtained for the roughness distributionsp(1) andp(2), respectively as shown in Fig. 10.

J(0) J(1) J(2) Ref. 30 Ref. 31 Ref. 28 Ref. 27

Peak 1 1.42~7! 0.39 ~5! 0.13 ~5! 0.40 ~6.6! 0.39 ~5.2! 0.24 ~5.2! 0.16 ~6!

Peak 2 0.68~12! 0.16 ~10! 0.08 ~10! 0.14 ~12! 0.15 ~10.3! 0.09 ~10.3! 0.06 ~11.8!

53 9105Ab initio CALCULATIONS OF INTERACTION ENERGIES . . .



action of two semi-infinite Co crystals. For Co/Cu~001! these
authors obtain an extremely small intensity of the long pe-
riod, with an amplitude ratioAS /AL' 320, in qualitative
agreement with Mathonet al.,32 but in disagreement with our
results and with the experiments. Recent calculations by
Kudrnovskyet al.36,37 seem to show the reason for this dis-
crepancy. While we have only treated Co layers up to thick-
nesses of 11 Co ML, these authors performed calculations
based on the TB linear muffin-tin orbital~LMTO! method for
up to 25 Co ML as well as for the case of infinite Co thick-
ness. While in the range of smaller Co thicknesses good
qualitative agreement with our results is obtained, i.e., a
strong short period and a moderately strong long period, for
large Co thicknesses beyond 15–20 Co ML the intensity of
the long period seems to decrease appreciably, in qualitative
agreement with the above results for the infinite Co thick-
ness. Note that the experiments are performed in the region
of small Co thicknesses treated in our calculations.

IV. SUMMARY AND CONCLUSIONS

In summary we have presented calculations for the ex-
change coupling in Co/Cu~100! by applying a KKR Green’s
function method for planar perturbations. The use of the fro-
zen potential approximation allows a direct calculation of the
interlayer exchange coupling in terms of the single-particle
energies, thus avoiding new self-consistent calculations for
the interacting system and the subtraction of large total-
energy values. In this way efficient calculations can be per-
formed for large distances. In addition the asymptotic behav-
ior of the oscillations can be analyzed by subdividing the 2D
Brillouin zone into areas around the different stationary
pointsqi .

Our results for Co/Cu~100! show that for thick magnetic
layers the coupling is dominated by the short wavelength of
the RKKY oscillation, whereas for a Co monolayer the

longer period is more important. We explain this behavior in
terms of the electronic structure of the single Co layer, in
particular theki-dependent and symmetry-projected DOS of
the Co minority electrons. For the stationary pointq150,
determining the longer-period oscillation, a band of Cod
states evolves with increasing Co thickness at the Fermi en-
ergy, enabling the Cu Bloch electrons to propagate through
the Co layer and thus reducing the interaction. In contrast to
this, for the stationary pointq2 , being responsible for the
shorter period, a band gap opens up at«F for thicker Co
layers, thus leading to the dominance of the short-period
contribution to the IXC.

In order to compare with experiments we simulate rough-
ness caused by steps by introducing distribution functions for
the spacer thickness. The inclusion of roughness in our cal-
culation strongly reduces the interaction in general and espe-
cially the short-period oscillation. This is in accordance with
experimental work on different samples of varying qualities.
For rougher samples27 only the long period is observed while
for the intermediate roughness, present in the samples of the
Philips group,28,30,31both periods are observed with about the
same strength.

In total we obtain good agreement with experiments and a
consistent picture of the interlayer exchange coupling in Co/
Cu~100!.
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