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We presenab initio calculations for the interlayer exchange coupling of magnetid @@ layers in Cu. The
calculations are based on a Korringa-Kohn-Rostoker Green’s function method for planar defects and apply the
frozen potential approximation, allowing a direct calculation of the interaction via single-particle energies.
Thus the subtraction of large total energies is avoided and efficient calculations for large layer thicknesses are
enabled. By dividing the two-dimensional Brillouin zone into areas around different stationary goirdaa
analysis of the asymptotic behavior is given. The different dependences of the short and long oscillation
periods on the thickness of the magnetic layers are explained by trend symmetry-projected density of
states of the Co layers. The effects of roughness on the interlayer coupling are simulated, leading to a strong
reduction of the amplitudes and a suppression of the short-wavelength period. Our calculations are in good
agreement with experiments and give a consistent picture of interlayer coupling in(Co0C s far as both
the dependence on the thickness of the magnetic layers as well as the dependence on roughness are concerned.

[. INTRODUCTION reported which have observed oscillatory behavi8iThese
calculations may be divided into two main categories. The
Long-ranged magnetic coupling of magnetic layers wadirst category is concerned with calculations on supercélls,
first observed for Fe/Cr/Fe by Grherget al,! who detected i.e., for a periodic array of magnetic layers, and should there-
an antiferromagnetic coupling of the iron layers. Subsefore be comparable to experiments performed on multilayers.
guently the coupling has been found to be of oscillatory na-The second one considers the interaction of two layeis
ture with varying nonmagnetic spacer thickness and has bedayerg and corresponds more closely to the experiments on
observed for a large variety of systefishis so-called inter- wedge sample&®

layer exchange couplindXC) has attracted a lot of atten- It is the purpose of this paper to show that the exchange
tion, mainly because of the close connection to the technoeoupling of bilayers can be calculated accurately up to rather
logically important giant magnetoresistan@@&MR) effect. large distances within a first-principles approach, and that the

Today there is strong evidence that the observed oscillaresulting energies are in good agreement with experiments.
tion periods are in accordance with a RKKY pictdr@he  The range of thicknesses in the calculations is so large that it
RKKY model predicts the different oscillation periods to also allows one to discuss the asymptotic RKKY behavior
stem from extremal spanning vectors, so-called calipers, odnd its relation to the Fermi surface. Using the same method
the Fermi surface of the spacer matefidAHowever, the ex- we have already presented first results for Fe and Co
istence of these oscillation periods does not rely on some ahonolayer$ and for thicker Co layers in fcc Culn these
the strong restrictions entering the original RKKY model, calculations we found oscillation periods in agreement with
like, e.g., the pointlikes-d exchange potential of the mag- those predicted by the RKKY model. Here, we give a more
netic layer. Nevertheless, in the following we will adopt the detailed account of this work, stressing the asymptotic be-
usual convention and refer to these oscillations as RKKYhavior and in particular the dependence of the oscillations on
oscillations. the magnetic layer thickness which can strongly modify the

Since the first experimental observations, the quality ofamplitude of the different oscillation periods. Moreover, we
the experiments has improved continuously. A popular techexplain in detail our method used for the calculation of the
nigue to observe the magnetic coupling is the magnetokXC energies.
optical Kerr effect(MOKE) applied to samples grown in a First, the calculational method for the interlayer exchange
wedge geometry. This sample geometry makes it possible tooupling (ILXC), which was already used in previous
study at one and the same sample the coupling as a continpaper$® will be derived in Sec. Il In Sec. Ill we will present
ously varying function of the spacer thickness. results for magnetic Co layers in the noble metal Cu for the

Although successful, RKKY-like models have clear limi- orientation(100) and discuss their relation to the Fermi sur-
tations in that they can neither give the amplitudes nor thdace of Cu and the electronic structure of the Co layers. In
phases of the oscillations and that they are only valid asympaddition to these calculations on perfectly ordered layers, we
totically at large interlayer distances. In order to make moregive a transparent discussion of the effect of steplike inter-
guantitative predictionsab initio calculations for realistic face roughness and show that roughness can strongly modify
systems must be performed. the interaction. A detailed comparison with experiments con-

Several different first-principles calculations have beercludes this section.
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Il. THEORETICAL METHOD vector andr is only defined within the Wigner-Seitz cell of
The system we aim to study consists of two parallel magj[hls lattice point. The SGF is a matrix over combined indices

netic layers embedded in a nonmagnetic host and separatéPeled by the atomic positioms and the angular momenta
by a variable number of atomic host layetere up to 32 - =1/,m} expanded around. In the present paper we will
The magnetic layer consists of several atomic layeese up ~ eStrict ourselves to the atomic sphere approximatiBA)

to 11). The electronic structure for this system is calculated© the potential. In this approximation we assume spheri-

using density functional theory and the Korringa-Kohn-Cally symmetric potentials in each Wigner-Seitz_sphere,

Rostoker(KKR) Green’s function methotf which  slightly —overlap, i.e., Vq(r)=Vy(r). Then
For calculations within the local spin density approxima-RnL(r3€) =Rn(r;€)Y.(r), whereR,(r;e) is the regular

tion (LSDA) of density functional theory the task is gener- solution of the following radial equation within the cell

ally to solve the effective one-electron Sctimger equation @ S/

given by a Hamiltonian - d_rz+ ﬁ2—+vn(r)—g rR,(r;e)=0. (3
— 2 o

H=—-Vo+Vo(r). @ The single-scattering Green’s function is given in terms of

the regularR,, , and the irregulatd,, , solutions within the

The spin-dependent potentig’(r) is a functional of the
pi p p i&7(r) i unctl sphere,

chargep(r) and magnetizatiom(r) densities, which in turn
are obtained from the occupied eigenfunctions. In the

Green's function method the calculation of the eigenfunc- Gﬁ(r,r’;g)z\/ZE Ro(re;e)Hu(r=e), 4
tions is avoided. Rather one aims at directly calculating the L

’ H — -1 1 . . . ..
Green's functionG=(e—H) "~ of the system. As will be ~ \yherer _ is the one of andr’ which is closest to the origin
discussed below, one views the difference _of the _potentlalandr> is the complement. By constructing the full Green’s
from a known reference case as a perturbation. This leads 3nction one is always able to calculate the charge and mag-

a Dyson equation for the Green’s functions. The densities argatization densitiesr(r) and m(r) through the imaginary
obtained from the imaginary part of this perturbed Green’

function by integrating over all occupied energies. Whatever

procedure is used, Eql) must always be solved self- 1 (= . -
consistently by iteration. P(F)=—;j f(e)Im[G™(r,r;e)+ G (r,r;e)]de,
We will now first review the KKR Green’s function " (53

method® in particular its extension to layered systetfis.

First, we treat a single perturbing layer and then the case of 1 (e

two interacting layers. Especially the so-called Lloyds m(r)=— —f f(e)Im[G*(r,r;e)—G(r,r;e)]de.
formulat for the change of the integrated density of states mJ oo

will be discussed. The expression for the interlayer interac- (5b)

tion is subsequently deriveéd by means of this formula. Al-  These integrals extend over all occupied states, with the oc-
though this expression is only based on a calculation ofypation described by the Fermi-Dirac distributic@). The
single-particle energies, we demonstrate its accuracy in Caleason for introducing a finite temperature into the calcula-
culations for the exchange coupling of magnetic impurities tjon will be discussed below in Sec. Il F.

Finally in this section the role of finite temperatures adopted Starting with a known structural Green's functi@? as

in this method is discussed. In the following most quantitiesigference one can get the SGF for a system with different

should carry in general a spin index= =, which for con-  potentials, but with the same underlying lattice, via a Dyson
venience will be skipped when not absolutely necessary. gquation

A. KKR Green'’s function method G(e)=G%e)+G%e)At(e)G(e). (6)

The basic concept within the KKR Green’s function For finite matrices this equation can be solved by matrix
method®!? is that for a crystal lattice potential inversion. HereAt(e) is the difference between thematri-
V(r)=2,V,(r) the Green’s function corresponding to ces of the real systent(e), and the reference system,

Hamiltonian(1) can be written as t%e). It is diagonal in thegnL} indices and is given by
G(rn,rr'v ;s)=Gﬁ(r,r’;s)5n'n, AtnL,n’L’(E):‘SnL,n’L’{tn,L(“'J')_tg,L(S)}
Sno o
+ 2 Ru(r;€) G (8)Ry(1'38), :5nL,n’L’fo 12 A1 Je){Va(NRA(152)
LL'
¥ —Va(R)/(r;e)}dr, )

where the matrix elements,, .+, the so-called structural whereS, is the radius of the atomic sphere apdr \/E) is a
Green’s function(SGP, describe the multiple scattering, spherical Bessel function. This procedure of introducing ref-
while G;, is the single-scattering Green’s function dependingerence states will be repeatedly used in the following. For
only on the potential within the celf. Here we have used instance, as will be discussed below, the SGF of the host will
cell-centered coordinates,=R,+r, whereR,, is a lattice be considered as the perturbed SGF in the first step and as
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the reference SGF in the next one. In the following we will
consistently denote quantities belonging to the proper refer-
ence state with a 0 as superscript.

If the change of the potential is localized to a certain
region in space, the Dyson equation can be solved in real
space by matrix inversion, sinc&t vanishes outside this
perturbed region. This method has been used extensively for
studying, e.g., magnetic impurities in metals® On the
other hand, if the perturbed potential has some sort of trans- g
lational invariance, Eq(6) has to be solved in reciprocal
space, i.e., by Fourier transformation. For instance, to obtain -
the SGF for the noble metal crystal, which represents the first
step in our method, we consider as a reference system free L
electrons Y°=0) within a fcc lattice for which the SGF is
known analytically. Now making use of the translational in-
variance, the Dyson equatioff) is solved separately for
eachk point in the three-dimensiondBD) Brillouin zone
(B2),
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=
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FIG. 1. Two-dimensional Brillouin zone for tHel0O] orienta-
tion. Shown also are the positions of the five stationary points, the
two inequivalent ones of which are located ¢4=0=I" and
0,=(1.08,0)7/a. The dashed line indicates the subdivision of the

G(k;s)zGo(k;s)+G0(k;8)t(£)G(k;8). (8) ﬁDE)BZ into areasA; (i=1,2) around the stationary poin{Sec.
Here the matrices have only angular momentum indices

L,L". The real-space SGF is then obtained via a Fouriegng hence the densities through E2). These densities are

transform, used to calculate a new potentM(r), which gives a new
At through Eq.(5) and which then enters into E¢L1). This
GnL’anr(g):nglf G (k;e)explik- (R,—Rpy)}dk, procedure is iterated until self-consistency is reached.
BZ Besides the charge and magnetization densities also the

(9 density of stateDOS) may be obtained directly from the
where Qg is the volume of the 2D BZ an®, is a lattice imaginary part of the Green’s function,
vector.

1
B. One magnetic layer n(e)=— ;f ImG(r,r;e)dr. (12)

As the second step we consider a crystal being perturbed ) . . .
by one layeKwhich, however, may consist of several atomic However, generally in multiple-scattering methods the differ-

layer9. The three-dimensional translational invariance is€NCe in the energy integrated DA®OS) due to the pertur-

then broken and only the two-dimensional periodicity in thePation, AN(e), can be expressed as a Lloyd's formEﬂap

layer plane remains. This means that the symmetry label &€ flo6llowmg we will use the form suggested by Drittler

reduced fronk=k;+k, tokj, and the appropriate reference et al=® properly generalized to the case of 2D translation

SGF will have a mixed real and reciprocal space represent&yMMety,

tion. Hence we have to transform the SGF of the ideal crystal

which now serves as the reference SGF into this representa- 1

tion by integrating ovek, , P AN(kj;e)=—[ImIn defag(e)a”'(2)}
d [m/d —Im Indef{1— GOk ;e)At(e)}]. (13

G?L‘i,L,(kH;s)=ZJ_W/dGE’L,(k;a) { [ }

The ¢ and a matrices in the first term describe the single-
xXexplik-(R—R;/)}dk, . (20 site scattering at the unperturbed and perturbed potentials,
respectively, as has been described in detail in Ref. 16. As we
will see later this term is of no importance for the interaction.
Instead one should concentrate on the second term where the

sifor;] Oflk into kll andhkl dgpends;f coErS(;SnBt;(? oLierr\]tation unperturbed SGF matrix and the self-consistently calculated
of the layers. For the orientatiqi00] the orky Nas At matrix of the perturbation occur. This term takes care of

the form of a square as shown in Fig. 1, and by definitiony tiple scattering within the perturbed region. The de-
k, is normal to the plane of this 2D BZ.

. . terminants in Eq(13) have only to be taken over the per-

The SGF for t_he perturbed system is now obtained fromturbed layer, i.g.(, v3herét dif?/ers from zero. Since tF;le
the Dyson equation imaginary part of the logarithm of a complex quantity is the
ceY— (O L O/l - i same as the argument of this complex quantity, the right-
Glkyie)=G(kj:2)+Gkye)Ate)Glkyie), (D) hand side of Eq(13) represents a phase factor. That the
where the matrices havéL } indices. By Fourier transform- IDOS is connected to a phase factor is well known for im-
ing back into real space and adding the single-scatteringurities. This is expressed by Friedel's sum rule, which is in

Green'’s function the total Green’s function can be calculatedact just a special case of Lloyd’s formula.

Here thei index denotes the atomic layers within the crystal

andd the distance between adjacent monolayers. The divi
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C. Two magnetic layers the case of two layers, by settilg=At,;+At,, as well as

When finally two layers, separated by an essentially uni0 the single-layer cases, settidg=At, or At=At,. Due
perturbed spacer layer in between, are considered we can sift the frozen potential approximation, thenatricesAt, and
use the same technique as for one layer, treating the twal2 are the ones self-consistently determlned for the smgle
layers and the intermediate region as a single perturbed efY€rs and as such are not changed by the interaction. Since
tity. However, if the two layers are well separated, such dhe same is also true for the matrices in Eq(13), these
calculation would require an immense computing effort, dueSingle-site contrlbutlons cancel d|rec_tly when inserting into
to the size of the matrices entering the Dyson equation. AdEQ: (14), so thatAN;, is only determined by the multiple-
ditionally several separate calculations have to be performedcattéring parts,
for all the different spacer thicknesses in between the layers. 1
For each calculation a very good convergence in the dens"ANint(kH re)=——Im[In def1— GO(At,+At,)} —In def 1
ties is necessary in order to obtain the needed accuracy of the ™
total energy. _~0 _ _ ~0

Instead we calculate in the present paper only the single- G Aty}~Indef1-G Aty}]. (15)
layer case self-consistently. The further change in the eledJsing some standard algebraic identities—i.e., the sum of
tronic structure when the two individual layers are allowed tologarithms is the logarithm of the product—
interact is then calculated within the frozen potential ap-det(A)det(B)=det(AB) and{det(A)} '=det(A" 1), we ar-
proximation (FPA),” which is also known as the “force rive at the expression
theorem.” In this approximation the potentials of each one of
the magnetic layers or the spacer layer in between are sup- 1
posed not to change in any significant way by the presence of ANjni(kj;€)=——=ImIn de{M(k;e)}, (16
the other layer. However, the corresponding change in charge m
and magnetization densities is implicitly taken into accouniwhere the matrixM, describing only the interaction effects,
in the calculation of the interaction energies, although in gs given by
non-self-consistent way. This is expected to be a sound ap-

roximation when calculating IXC energies for spacers like DN 0 1 0

?:u where, in contrast to trgnsition mgtals IikepCr or Pd, M(kjie)=(1=G Aty) {1~ G(At +Aty)}
enhancement effects of the magnetization density are very X (1—-GOAt,) L. (17
small*® Additionally, the magnetic moments are well satu- ) o )
rated for Co layers in Cu, so that the Co potential is insenNow, the expression within the curly brackets can be written
sitive to small changes in the environment and nothing dra@s
matic would occur in an iteration procedure. Care should,
however, be taken when this approximation is applied to 1-GO(At;+At,)=(1— G At,)(1—GOAt,)
other systems. 0 0

The adoption of the frozen potential approximation has —G AL G AL, (18)
two major numerical advantages, besides the gain in compuksy thatm (k;;€) is given by
ing efforts. First, as will be discussed later on, the total en-
ergies are easily calculated with the help of the so-called ) _ _
force theorent! Second, as now will be shown, a manipula- M(kj;2)=1— (1~ G Aty) "G At;G°Aty(1- G Aty) 119'
tion of Lloyd’s formula(13) gives a direct expression for the (19
change in the IDOS solely due to the interaction of the twoSinceG°At; commutes with (+ G°At,) 1, the final result
layers, thus avoiding the problem of the numerical subtracis
tion of large energies. Moreover, it allows a transparent dis-
ﬁlljssion of the asymptotic behavior, as demonstrated in Sec. M (K -6)=1—G%r,Gr, (20)

and correspondingly

D. Interacting IDOS

The change of the IDOS due to the interaction of the two . Co) — i — 0. =0
layers 1 and 2 is given by ANin(kj ;€)== ZImIn det1-G'r,G rp). (21

ANint(kH ;S)ZAN1+2(|(|| ;s)-ANl(kH ;e)-ANZ(kH ;8), Here ther matrix
(14)

Ca)— O, - -1 P

whereAN, . , refers to the change of the IDOS with respect Ti(ky8) =Ati(e){1-G (k) ;e)Ati(e)}"(for i=1,2)

(22)
to the host crystal as a reference when both layers are em-
bedded in the crystal, and wheteN; and AN, give the describes all the scattering processes within the single layer
corresponding changes for the single layers 1 and 2, respec-and depends, contrary to the atontienatrix At;(g), in
tively. The subtraction of these contributions guarantees thaddition to the energg also onk; .
AN only refers to the changes arising from the interaction Equation (21) represents the central result of this section.
of the two layers. Since Eq13) for AN(¢g) is valid for an  The determinant is of the orderL,,,,, wherem is the num-
arbitrary perturbatiorAt, we can apply this equation both to ber of atomic layers within one magnetic layer. Thus the
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numerical effort involved in evaluatingN;, is independent ~calculated self-consistently from first principles. The layer
of the number of atomic spacer layarsseparating the two SGF G%(k; ;&) is calculated from the crystal SGF through
layers. Eqg. (10) and At(e) is calculated from the self-consistent
The SGF'’s which explicitly enter E§21) connect the two  potential of the layer through Eq7). Further it is clear that
layers, while the ones entering in Eq. (22) are localized if, as in the present paper, one considers two magnetic layers
within each layer. Therefore E¢R1) can be viewed as aris- in a nonmagnetic metal, all spin dependence enters through
ing due to the interference of Bloch electrons scattering bethe spin-dependent potential of the magnetic layer, i.e.,
tween the two layers. The propagation of the electronghroughAt or 7.
through the spacer layer is described by the nonlocal SGF In the case of relatively weak scattering the logarithm in
G° while the scattering at each layer is described bytthe Eq. (21) can be expanded in a power series. Since
matrix 7 of this layer. Note that these two quantities areln det(A)=Tr In(A), we can write

AN (K =—£| Trin(1-G°7,G°
int( Has) ﬂ_m rIn( .G 7y)

1 1
=M TrY, ~(G°nG%r)" (for [|G°riGOmy)<1)
n=1

1 0 0 0 0
~ ;lm TrG T]_G T2 (When ||G T]_G 7'2||<1), (23)
|
where the double vertical lines indicate a matrix norm. This formula differs from Eq(3) in Ref. 7 which we used
in previous calculations. At finite temperatures the grand ca-
E. Interaction energy nonical function{)4 has the desired extremal properties for

accurate total-energy calculatidAsand is also numerically
more easily evaluated than the single-particle energies alone
[Eq. (3) in Ref. 7. Now we want to calculate the interaction
(inergyAQ of the two magnetic layers. The single-particle

ontributionA ()4 is obtained by directly inserting the corre-
ponding IDOS, properly integrated over the 2D BZ and
ummed over the spin directions. Thus

To study the interaction energy we will work with the
grand canonical functiofi) to take the advantage of using
finite temperatures in the numerical calculatisee belowy
Formally the density functional theory has been generalize
to finite temperatures by Mermif.In principle we follow s
that work, but since the temperature effect on the LSDAS
potential is very small for the temperatures used in this study,
we ignore this contribution. So in principle the temperature
is only introduced in the single-particle spectrum. When cal- 4
culating the grand canonical function it is natural to divide it AQ=— dgf(g)f dk”E ANG (K ,e), (26)
into a single-particle parf)l; and a double-counting part Agz) = BZ o
Qpe, Q=0+ Qpc. The single-particle contribution is
usually written as an integral over the D@%e), whereAg; is the area of the 2D BZ. An additional contribu-

tion from the double-counting energi€3,c would arise,
% which is neglected in the frozen potential approximation
- ij In[1+exp{(n—e)/kT}tIn(e)de, (24)  (FPA). The validity of this approximation for the exchange is
o discussed in the next subsection. The interlayer exchange
where o is the chemical potentiak Boltzmann’'s constant, energyExc is defined as the difference () between the
and T the temperature. By a partial integration this can beferromagnetic and antiferromagnetic configuration of the two

Q=

rewritten as an integral over the IDO¥¢), layers,Eixc=AQ—AQpr. Thus in FPA we only need to
) evaluate the interacting IDOSN', and ANA® for the two
Qs:_f f(£)N(s)de. (25) configurations_. The final expression for the interlayer ex-
— change coupling is

E : F def f dkIm | de(1-G%7; G%75 )de(1-Gr; Gr;) 2
IXC_IBZ — sf(e) BZ i'm nde(l—GOTIGOTZ_)de'(l_GOTl_GOT;). @0
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Here the spin indices- and— denote the local majority and TABLE |. Exchange interactiofEr— Er (in meV) for two Co
minority states, respectively. Since the two layers are of thémpurities in Cu as a function of the separation. The values FPAL
same type, the spin-dependenmatrices of the isolated lay- and FPA2 refer to two different frozen potential approximations and
ers entering Eq27) are actually equal. The numerator refers are compared with total-energy results from fully self-consistent
to the ferromagnetic configuration and the denominator tgalculations(see text

the antiferromagnetic one. In the case of weak scattering this

expression for the IXC energy can be approximated in the FPAL FPA2 Full scf

same way as in Eq23). So in this limit the exchange energy First neighbor(110) —926 —72.3 ~771

becomes Second neighbof200) 9.8 155 15.1
Third neighbor(211) —-2.4 —-4.2 —-4.5

-1 (= Fourth neighbo(220) 3.7 6.1 6.7
= 0 0 g . . .
Exc= wABZJ_mde(S) fszdk”lmTrG ArGAT, Eighth neighbor(400 ~16 24 27
(28)

of layeri. This limit is essentially the RKKY picture: The et al.”® in numerical calculations for the exchange interaction

spin-asymmetry potential of layer 1 induces a magnetizatio! W0 Co impurities in Cu. Table | shows the calculated

at layer 2, througlG°A =,G°, which interacts with the local €Xchange interaction energi€sE=Eg—E,e in the FPA
spin-asymmetry potential 7, . (FPA1 and FPAR and in a fully self-consistent calculation

It can be shown that the integrand in E&7) oscillates (full scf). Analogqusly t_o the previoug discu;sion_ for the lay-
rapidly in both variables: and k; for large interlayer dis- ers, also in the impurity case the _|nteract|o’n is calculated
tances. This leads to huge cancellations within the integralg.rorn the single-particle energies using Lloyd's f_ormgme
With a stationary-phase approximation it has been sfownEd: (19], with the atomict matrix of the impurities as de-
that asymptotically for large distances there will only be con-t€rmined in a self-consistent calculation for a single Co im-
tributions to the integrals arising from the Fermi energyPurity. In FPA1 thist matrix is calculated in the single-site
er, respectively, from special points in the 2D BZ where the@PProximation, by neglecting perturbations of the neighbor-

integrand is stationary, so-called stationary poifftg. 7). N9 Cu atoms. In contrast to this in the FPA2 the Quoatrix
These points correspond to the Fermi surface cafifers S détermined by allowing also potential and density pertur-
the RKKY theory. bations of these Cu atoms which is analogous to the proce-

dure used in the IXC calculations. The “full scf” data refer
. . ) . to fully self-consistent calculations for the two interacting
F. Single-particle energies versus total energies impurities including charge and magnetization disturbances
Here we want to demonstrate that within the frozen po-0of the neighboring Cu atoms. Self-consistent calculations
tential approximation the single-particle energies alone allovhave been performed for both the ferromagnetic and the an-
a reliable calculation of the interlayer exchange coupling, sdiferromagnetic configurations and the resulting total-energy
that the double-counting contributions can be neglecteddifference Er—Eae is evaluated, including all double-
Thus no new self-consistent calculations for the system o¢ounting contributions. As one can see the FPA2 values
two interacting magnetic layers are necessary. This does négree very well with the self-consistent results, and also the
only lead to a large saving of computer time, but also allows=PAl values give the correct trend, e.g., a strong ferromag-
a very transparent discussion of the asymptotic behavior ofetic interaction for nearest neighbor pairs and a weak anti-
the IXC as presented in Sec. IIl B. ferromagnetic interaction for second neighbors. The im-
Since for larger distances the interaction energies are vergrovements of the FPA2 values as compared to FPA1 are due
small, the frozen potentials of the single layers represent vertp the improved description of the impurity potential, allow-
good trial potentials to calculate the interaction in a varia-Ing for charge and magnetization disturbances of the neigh-
tional approach. However, unfortunately the double-countingPoring atoms. Thus we have demonstrated that, in agreement
terms cannot be neglected in general. For instance, Gauti#fith Oswaldet al,'® the exchange coupling can be reliably
et al?* have shown that for the case of interacting impuritiescalculated from the single-particle energies only.
the double-counting contributions are significant and that,
e.g., the single-particle contribution alone does not reproduce G. Reason for using finite temperatures
the correct result in the limit of weak potentials. Then the
interaction of the screened potential of one impurity with the
bare potential of the other one determines the interactio
energies, while in the single-particle energies both potential
are screened. On the other hand, Osveildl'® have shown
that due to the extremal properties of the double-counting eF
terms theexchange interactionf two magnetic impurities is J g(e)de= ég(z)dz—f g(z)dz:—J g(2)dz
well given by the single-particle energies alone, provided ¢ c 29)
that the polarization and exchange enhancement of the host
are sufficiently small, which should be well satisfied for thewhereg(z) is an arbitrary functior{for instance the Green's
noble metals. The same arguments can be applied for tHenction) which is analytic on the physical sheet of complex
exchange interaction of two magnetic layers. energiesz. The closed-loop integral disappears due to the

It is known that a strong gain in numerical effort can be
made by transforming the energy integral in, e.g., &7)
ihto a contour integral in the complex platfe?>*which for
Zero temperature would look like
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analyticity of the integrand within its boundaries. In our ara poles closest to the real axis, at the complex energies
Green'’s function calculations the contdDrstarts at the real z=u+i7kT and z=pu+i37kT, respectively, and for a
energy axis below the minimum of the valence band, goetemperature of T=473 K, we use a special-point
out in the complex plane, and returns to the real axis at thenethod*-*®and take 465 points in the irreducible wedge
Fermi energyer . The gain arises from the fact that for real of the 2D zone. For the next poles 1RPpoints turn out to
energies the Green's functioB(z)=(z—H) ! is strongly  be sufficient. Five poles have been used in total. The other
structured due to poles and branch points. This structure besnergy points, being located along the complex contour, can
comes quickly smoother when leaving the real axis. Butbe calculated with 4% points.
since for zero temperature the contdireturns to the real Another reason for taking so marky points at the last
axis ateg, the same problem still exists at this energy. Whiletwo Matsubara poles is the oscillatory behavior of the
typically the integral along the real axis requires for an ac-Green’s functiorGiOI_ .+, varying very rapidly in energy and
curate evaluation about 1000 energy points, only about 30, space for large layer separations. Since only areas around
50 energy points, of which about one-half have to be placeghe stationary points on the Fermi surface determine the be-
close toer, are sufficient for the complex conto(r. havior of the IXC for large spacer thicknesses, these areas
On the other hand for finite temperatures the integranghave to be well resolved in thie| integration, with a mesh
has poles in the complex plane, the so-called Matsubargeing capable of giving the correct curvature of the Fermi

poles  of  the Fermi-Dirac  function at surface at these points; otherwise, it is not possible to get the
zp=p+(2p=1)mkT, pe{l,2,...}, where u is the right asymptotic behavior of the IXC energy.
chemical potential, The fact that mainly the electronic states at the Fermi
surface are important for the IXC shows up in the individual
J'mg(s)f(s)ds= fﬁg(z)f(z)dz_f 9(2)f(2)dz contributions of the different energy points. Actually for
c’ large spacer thicknesses and a temperature=o473 K the

two poles closest to the chemical potengiabive the major
=27i ), Resg(zp)—f g(2)f(2)dz contribution.
P c’

(30) [1l. CALCULATIONS FOR Co/Cu/Co (100

Now the closed loop contains a fixed number of Matsubara |n this section we present the results for the interlayer
poles and the contou€’ returns to the real axis only at coupling of (100) Co layers in Cu. For several reasons this
infinity. The most effort is connected with the calculation of system is a very suitable model system. First, Cu is one of
the residues at the poleg. While these approach the real the simplest possible spacer materials due to its relatively
axis for T—0, for finite T the pole closest to the real axis is simple Fermi surface and the fact that no large Stoner en-
located afu+i7kT. Thus a finite temperature gives the pos- hancement effects are expected within the spacer layer. Sec-
sibility of introducing a smearing of the structured integrandond, the magnetic properties of cobalt are rather insensitive
in a very controlled way, since it never has to be evaluatedo the thickness of the cobalt layer since the majority spin
for real energies. The most important advantage is, howevestates are filled and the local magnetic moments are more or
that thek integration converges for complex energies ratheless saturated. For instance a single monolalr) of Co
fast, so that only a moderate numberkgfpoints is needed. embedded into Cu has a moment of 1534 whereas the
moments for a Co layer of 3 ML are 1.5, 1.57ug, and
H. Numerical details 1.55ug. Also thicker Co layers have only slightly different
moments. A Co layer with the thickness of 7 ML, e.g., has
%he moments 1.545, 1.5845, 1.61ug, 1.6Qus, 1.61ug,
.58ug, and 1.54¢5 . Third, the structural misfits are known
be small between fcc Co and fcc Cu, and last, fcc Co/

Three different integrations have to be performed for th
calculation of the IXC energy, th&, integration(10) to
obtain the Green’s function in the planar representation an

thek and the complex energy integration for the mteractlonCu/CO is one of the experimentally best studied systems

energies, Eq(27). which mak ntitativ mparison with experimental
For carrying out thek, integration in Eqg.(10) an ex- ﬁat; posiibelz @ quantitative compariso th experimenta

tended trapezoidal integration method with about 300 mes The system which we present consists of two Co layers

points in the interval — 7r/d,+7/d] was us.ed. . perfectly embedded in a Cu host and separated by a variable
Before th_e compl_ex energy integration in E@7) is per- . nhumber of Cu monolayer&ip to 32. The thickness of the
formed, ak| integration is carried out for each energy point Co layers is varied from 1 to 11 monolayers. The misfit of

In thg corr?)plex plane. AS preVqust menthned the Green'sthe Co atoms and the resulting small tetragonal distortion of
function G _;,, and, with it, the integrand in Eq10) be-  these layers are neglected.

come smoother with larger distance from the real axis. Only
at the chemical potentigk does the integrand approach the
real axis in steps of kT from one Matsubara pole to the
next. For the poles close to the real axis kjéntegral in Eq. As a typical example of our results, Fig. 2 shows the
(27) must be carried out with high accuracy because of thealculated IXC energy as a function of the Cu spacer thick-
stronger structure of the Green’s function at these points. Faness for three different thicknesses of the Co layers, i.e., 1
this reason we have adjusted tkemesh to the location of ML Co (dashed ling 5 ML Co (dotted ling, and 7 ML Co

the energy points in the complex plane. For the two Matsub¢{solid line). The definition of the IXC energy as the differ-

A. Results and discussion
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enceEg— Er between the ferromagnetic and the antiferro-pendence on magnetic layer thickness which can also be
magnetic coupling energies means that for positive IXC valshown in a different way. In Fig. 3 the coupling strength is
ues antiferromagnetic coupling is preferred while forgiven as a function of the Co layer thickness for fixed spacer
negative values the ferromagnetic alignment is stable. thicknesses of 7, 9, 12, and 15 ML Cu, corresponding to the
As can be seen from Fig. 2 the results for 5 and 7 ML Cdfirst antiferromagnetic peaks in Fig. 2. As can be seen the
are very similar, but differ strongly from the results for 1 coupling varies strongly from 1 to 3 ML Co, but for larger
ML. In fact our calculations show that for Co thicknessesCo thicknesses only small oscillations around a stationary
larger than 3 ML always very similar results are obtained, sasymptotic value are found. This result is in accordance with
that only the values for 1 and 2 ML Co are exceptional. Forpredictions of Brun® and a free electron model study of
1 ML Co, Fig. 2 shows antiferromagnetic maxima at 7, 12,Barnas' In the experimental work of Qiet al?’ no depen-
17, and 22 ML Cu. In contrast to this the results for 5 and 7dence of the IXC on the Co thickness is found for thick-
ML Co show additional antiferromagnetic peaks at 9, 14—15nesses larger than 8 ML Co. Recently Bloene¢ral 28 have
and 20 ML Cu. In addition we also obtain two strong anti- carried out measurements for smaller thicknesses, where they
ferromagnetic peaks at shorter distan¢@and 4 ML which ~ find a fastly decreasing coupling strength with decreasing
are not presented in Fig. 2. Due to pinhole effects, antiferronumber of Co ML. For larger Co thicknesses up to 10 ML
magnetic peaks usually cannot be observed at shorter dithey observe a similar oscillatory behavior as found here,
tances. with a period of 3.3 ML. Thus the experimental results are in
These results for the IXC as a function of the spacergood agreement with our calculations, even if, as our calcu-
thickness will be discussed and explained in detail in thdations show, the behavior for 1 and 2 Co ML is more com-
following subsections. Here we will concentrate on the de-plicated. It should be noted that due to roughness the inter-

FIG. 3. Exchange coupling energies of Co/
Cu(100) as a function of the number of Co layers
for Cu thicknesses of 7, 9, 12, and 15 ML.

r — Ear [107°mRy]

| I I I I
2 4 8 8 10
number of Co ML
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pretation of the experimental results seems to be moréo rather large distances. Nevertheless, also for shorter dis-
complicated than initially assumé&dA detailed comparison tances the calculated results show a qualitative similarity to
of our results with experiments is postponed to Sec. Il D,the asymptotic behavior.
since a meaningful comparison requires the discussion of In Ref. 9 we have analyzed the different oscillations in the
roughness effects. IXC energy by dividing thek; integration over the 2D BZ in
Eq. (27) into a sum of integrals over nonoverlapping areas
centered around a stationary point as shown in Fig. 1. For Cu
there exist five stationary points within the 2D BZ, with the
two inequivalent ones situated atq;=0=I" and
»,=(1.08,0)r/a wherea is the lattice constant. They corre-
ond to the calipers giving rise to the longh) and short-
d,) period oscillations, respectively.
As discussed in Ref. 9 thg, contribution is strikingly
sensitive to Co layer thickness. This can also be seen in
Fig. 3. There the open circles connected by the dashed line
represent th&(g,) contribution as a function of the number
of magnetic monolayers for a Cu interlayer thickness at 7
ML (first antiferromagnetic peak in Fig.).2They clearly
show no oscillatory behavior. Or, to formulate it in another
Thus the contribution of each caliper is characterized byway, the oscillations in the IXC energyxc in Fig. 3 for
three parameters, the wavelength the amplituded;, and large magnetic layer thicknesses are caused by{lwntri-
the phase shifty; . For Cu in the(100) orientation there are bution alone.
two different oscillation periods corresponding to the shorter
and longer vertical calipers of the “dogbone” of the Cu
Fermi surface. Therefore, for large Cu interlayer thicknesses
our results in(100 orientation should be representable as a As we have seen in the last two sections, the two inde-
superposition of these two oscillations. In order to underpendent IXC contribution€(qg;) and E(q,) show a very
stand the drastic changes in the interlayer coupling wheulifferent dependence on the magnetic layer thickness. In par-
going from 1 ML Co to thicker magnetic layers of 3 ML and ticular for thicker Co layers the short-wavelength contribu-
more we have performed least squares fits of our calculatetion E(q,) clearly dominates. Thik; dependence of the cou-
data to the RKKY expression of E(B1). As a representative pling should be caused by the local electronic structure of the
for thick magnetic layers, we take the result for 5 ML Co. embedded Co layer and its interaction with those Cu states
The fitting parameters are the wavelengtksand\, and the relevant for the IXC.
corresponding amplitude®\§, A,) and phasesds, ¢,) of Due to the nearly saturated spin moment of Co, the Co
the short and long periods, respectively. We fit our calculategbotential for the majority spin states is very close to the Cu
data between 8 and 22 ML Cu and find that both curves arpotential, whereas the Co minority potential is more repul-
actually superpositions of the same two oscillations withsive. Therefore the Bloch states of Cu scatter strongly at the
wavelengths\s=2.60+0.02 ML and\| =5.9+0.4 ML, re-  minority potential, but only weakly at the majority one. As a
spectively. These two oscillation periods correspond closelgonsequence of this, for an antiferromagnetic coupling of the
to values estimated from de Haas—van Alphen dafhe  Co layers, the Cu Bloch states scatter for each spin direction
crucial difference between a thin and thick Co layer is thealways weakly at one of the two interfaces, so that the IXC is
relative magnitude of the amplitudes of the two oscillations,expected to be weak for the antiferromagnetic configuration.
Ag andA, . For 1 ML Co the amplitudes are about of the In contrast to this, for a ferromagnetic alignment a strong
same orderAg/A =0.74, with the amplitude of the 6 ML scattering is expected in the minority spin channel at both
wavelength oscillation being somewhat larger, but for 5 MLinterfaces, so that a strong contribution to the IXC is ex-
Co the short-wavelength oscillation totally dominates,pected. This is confirmed by the calculations. Figure 4 shows
Ag/A =10.[These numbers depend somewhat on the detailhe two individual contribution& andE 4 to the interlayer
of the fits, like the number of Cu layers taken into accountexchange couplingg;xc=Er—Esr for the ferromagnetic
and the estimated starting values of the fitting parameter. IGEF) and antiferromagnetic alignmer£g) with a Co thick-
addition the calculated results, based on the exact expressimess of 3 ML. The antiferromagnetic coupling contribution is
(27) instead of(28), include also contributions from higher clearly much smaller than the ferromagnetic one. One can
harmonics of the wavelengths;, which cannot be repre- also show that the interaction in the ferromagnetic configu-
sented by Eq(31). The ratioAg/A =17 given in Ref. 9 ration is dominated by the minority spin states which are
resulted from a less accurate fit over a too large Cu intdrval.strongly scattered at both Co layers.
Thus by changing the Co thickness from 1 ML to thicker Thus when studying the importance of the electronic
layers, we observe a dramatic redistribution of weight bestructure of the(100) Co layers for the interlayer coupling,
tween the two oscillation periods, such that for larger Coone can concentrate on the minoriigpin dowrn states. In
thicknesses the long period is strongly suppressed. addition one knows from the asymptotic RKKY thedthat
As already discussed in Refs. 7 and 9, a good fit to thdor large spacer thicknesses only states wijtlvalues close

calculated data is only obtained for spacer distances largdo the stationary pointg; andg, and with energies close to
than 8—10 ML Cu. Thus the asymptotic analysis is restricted: can affect the interlayer coupling.

B. Asymptotic analysis

The RKKY formulation of the IXC(Refs. 3,4 is, as men-
tioned above, only valid for large interlayer distances. Within
this model, being equivalent to the second-order expressio
(28), the IXC energy is expressed by the superposition o
several independent oscillations stemming from extremal
spanning vectors, so-called calipers, of the Fermi surface qh
the spacer material,

Erkky =2, Asin27z/\+ ¢,)/22. (31)
I

C. Interaction with Co d states
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FIG. 4. The individual contribution& and
E s to the interlayer exchange coupling
Exc=Egr— Ef for the ferromagneticEg, solid
line) and antiferromagneticH -, dotted ling
configurations as a function of the spacer thick-
ness. The thickness of the Co layer is 3 ML.
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Finally a further selection rule exists arising from the interface. In this case the IXC should be optimally strong.

symmetry of the Cu states at . Figure 5 shows the band
structureE, (k| ,k,) of Cu as a function ok, for the two
stationaryk| valuesq; [Fig. 5@] andq, [Fig. 5(b)]. For the
g;=0 case the Cu states af are A; states with a strong
p, contribution. TheA; states are invariant under all cubic
symmetry operations which transform theaxis into itself.
In the Co layers, only states with the sathe symmetry can
couple to these Cu electrons. Analogously for thepoint
the Cu states witlk=(q,,k,) neareg (solid line) are invari-
ant under a specular reflection at the plane and can there-

On the other hand, if many Co states satisfy the selection
rule, then a Cu Bloch wave can propagate into the Co layer,
so that the interaction is strongly reduced. Figuke) 6hows

the relevant partial DOAn(kj,e) for kj=0 and projected

to A; symmetry as a function of the energy and for various
Co thicknesses. Hern refers to the changes of the minor-
ity DOS induced by a single Co layer in bulk Cu and is
obtained by differentiating the corresponding partial IDOS
given by Lloyd’s formulg Eq. (13)]. For 1 ML Co we obtain

a single resonance, a “virtual bound state,” arising from a

fore only couple to Co states having this symmetry. Summasel,2 state being centered below the Fermi energy.

rizing, only minority Co states with energiesat, k| equal

Forn ML Co then d,2 states interact and formhybrides

to g; or g,, and with the same symmetry as the relevant Cuanging from bonding to antibonding states. For large Co
states can affect the interlayer coupling for large distances.thicknesses the part of the DOS shown in Fi@) 8epresents

It is therefore important to look at the number of statesthe highest-lying antibonding states. This explains the fact
available in the Co layer which satisfy these selection rulesthat theE(q;) contribution is reduced for thicker Co layers,
When no such states exist at all, then a Cu Bloch wavas was shown in Fig. 4: The Cu Bloch states at the Fermi
cannot enter into the Co layer and is totally reflected at theenergy can propagate through the Co layer viatistates of

Cu

Cu

FIG. 5. Band structur&, (k| ,k,) of Cu as a
function of k, for the two stationaryk; values

E, (q1.k;) —Epgryr [eV]

g;=0 (@ and q,=(1.08,0)r/a (b). The solid
line in (a) refers to states with; symmetry, in
(b) to states being invariant to a specular reflec-
tion at thex-z plane. In both cases these are the
states prevailing at the Fermi energy.
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Co. The oscillation of the IXC with respect to the magneticing a gap at the Fermi energy. This is indeed what happens

layer thickness was explained by Brdfias due to interfer- for thicker Co layers resembling the behavior of bulk Co.

ence of Bloch states scattering at the front and the back inFigures Ta) and qb) show the band structures,(k ,k,)

terfaces of the Co layer. Another, complementary, picture igor minority electrons of bulk fcc Co as a function kf by

that the Cu states scatter at the size-quantizethtes in the fixing the k; value to g, [Fig. 7(@)] and g, [Fig. 7(b)].

Co layer. Since the energy position of these states varies wittWhereas foq; one obtains a band of “allowedA ; symme-

the Co thickness, this effect gives rise to a magnetic layetry (solid lineg at Eg, for the g, point only states of “for-

dependence in thE(q;) coupling. For thick Co layers these bidden” symmetry(dashed lingsexist ateg, which cannot

d states evolve into th&; band close to th& point whichis  couple to the relevant Cu states. Thus the partial DOS of

shown in Fig. 7a) below. However, even for rather large allowed states has indeed a gapeat which explains the

thicknesses the individual resonances are well resolved artsehavior of the IXC contributiofE(q,) discussed in Ref. 9.

do not overlap. The above discussion is slightly differentCompared to 1 ML Co, the interaction enerfq,) in-

from Bruno's arguments that the magnetic layer thicknessreases since a gap opens up in the Co layer. Since this gap

oscillations should arise from the- crossing closest to the is rather large, already for moderate Co thickness the Cu

X point, i.e., the moresp-like part of the band. Bloch waves can no longer easily penetrate the Co layer and
Figure @b) shows the corresponding partial DOS are almost totally reflected, thus explaining the insensitivity

An(qg,,e) with proper symmetry for the, point. For 1 ML of E(q,) with respect to the Co thickness.

Co we observe a similar behavior as for the stationary point As we have seen the properly symmetry-projected and

di, i.e., asingle virtual bound state belaw . However, for  k-dependent Co DOS can be substantially different for the

larger Co thicknesses the higher-lying states either centdwo stationary pointsj; and g, and can change drastically

well above or below the Fermi energy, thus effectively openwith Co thickness, despite the fact that the overall electronic
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Co minority bands Co minority bands

FIG. 7. Band structur& (k; ,k,) of minority
electrons in bulk Co as a function d, for
g,=0 (8 andq, (b). The solid and dashed lines
have the same meaning as in Fig&)&and gb).
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structure of the Co layer does not vary appreciably. The for- In order to simulate roughness we assume first that the
mation of bands and gaps at the two stationary points leadsidth of the distributionP(x) is independent of the thick-
to the observed strong redistribution of weights between thaess, i.e.P,(x) =p(z), wherez=n—x describes the devia-

two oscillations when the Co thickness is varied. tion from the average thickness This approximation can
only be valid in a certain range of thicknesses. We then in-
D. Simulation of interface roughness troduce broadened distribution functiop&)(z) by a recur-
sion relation

It is well known that interface roughness can appreciably
affect the IXC. In particular short-period oscillations tend to 1
be suppressed. Here we introduce a model to describe the i+1),_\ _ i i i :
“macrggcopic” roughness introduced by steps: We assume%( (2)= Z{p( (z-1)+2p" (@ +p(z+ 1)}, 1=0.
that a spacer layer with an average thicknessonsists of (34
large patches wittn, n+1, andn®2 ML thicknesses. Let
Pn(x) be the probability to find a spacer thickness of exactlylt is easy to show that this relation preserves the normaliza-
n ML whenx is the averagénonintegey thickness. Then the  tion conditions(34). Analogous to the distributiop®)(z) for
average IXC energ§(x) is given by ideal growth(shown in Fig. 8, all functionsp(’(z) consist
of straight line segments connecting neighboring values
— p()(z) for integerz values. As an example the first three
E(X):En: EnPa(X), (32 proadened distributiond®(z), p@(2), and p®(z) are
shown in Fig. 9 together with the “ideal” distribution
whereE,, are the ideal IXC energies for spacers withiL.  p{®)(2) of Fig. 8. The progressive broadening seen in Fig. 9
The thickness distribution functior,(x) have to satisfy the is related to the fact that the variance increases linearly with
relations I

S P0-1, T 0Py (33 ()= mipl(m) =+, 35

where the first one describes the normalization and the sec-
ond one the definition of the average thickngss

For the case of ideal growth the functioR,(x)
=P)(x) increases linearly in the interval- 1<x=<n from
0 to 1 and then decreases again from 1 to 0 for
n=x=<n+1, as shown in Fig. 8. Therefore the IXC function
E©(x) attains the value&,,E,.1,... at theinteger dis-
tancesx=n,n+1,... while for noninteger distances
neighboring E,, values are linearly interpolated. Thus for n-o
ideal growth theE(x) function is identical to the curves
shown in Fig. 1, consisting of piecewise straight lines con- FIG. 8. The thickness distribution functior®,(x) versus the
necting neighborinde,, values. average thickness for ideal growth.

n-1 n n+1 n+2 X
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+ P@)

FIG. 9. The model distribution functiop®”
X(z), i=1,2,3, describing the effect of rough-
ness. The variance qi)(z), as defined by Eq.
(35), is equal tai/2.

-4 -3 3 4 z
which follows from Eq.(34). The solution 0f(34) can also = 1
be written in a closed form, E®(n)= 64 (En-at6En_p+15E, 1+ 20E,+ 1564
1 (2i)! +6En+2tEnta),

(D ) —
P (M) = 577 : , (36)
2 —m)!(i+m)! o .
(I—mi(+m) and correspond to the broadened distribution functions

and approaches a Gaussian for larg&iven these broaden- Shown in Fig. 9 which according to E(35) have variances
ing fun_ctionsp(')(m) we can Ca'cu|ate the average |XC en- Of 1/2, l, and 3/2, I’espectlve|y. Scann|ng tunnel mICI’OSCOpe

ergiesE()(x). Since these also show a straight line behavior(STM) studies of the surfaces of Co layers deposited on Cu
only the values for the integer have to be evaluated. The (100 show that these surfaces consist of patches and islands

first averages are of different heights, with an average roughness of sevgral
monolayers. Thus our roughness model should be well suited
_ 1 for this system.

EX(n)==(E,_1+2E,+Eps1), In Fig. 10 therefore we have averaged our results for ideal
4 interfaces, as given in Fig. 2, in the described way assuming

a constant Co thickness of 7 ML. Even fBfY(x), corre-
sponding to a modest roughness, the amplitudes of the IXC
oscillations are decreased by a factor of 5 and further de-

(37)  creases are seen f&f%) andE®). However, equally impor-

_ 1
E@(n)= 1_6(En—2+4En—1+ 6E,+4E, 1t Epnyo),

- FIG. 10. The average IXC energi&®)(x)

A . andE@(x) andE®)(x), averaged with the dis-
e A tribution functionsp’(z) of Fig. 9 to describe
the effect of steplike roughness, as a function of
- the average spacer thicknessThese results for
Co/Cu(100 have to be compared with the values
of Fig. 2 calculated for ideal interfaces.

Ep — B [107°mRy]

| I I I
5 10 15 20
number of Cu ML
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TABLE Il. Comparison of the calculated and experimentally determined exchange coupling codstants
for Co/CU100) for the first and second strong antiferromagnetic pdaksnJ/n?). The values in brackets
give the exact peak positions in Cu MI'?) results from the calculated values shown in Fig. 2 for a Co
thickness of 7 ML Co and is given by=3(Er— Ear)/Asp, WhereA ,p is the unit surface ared™ and
J® are the values obtained for the roughness distributiisand p(®, respectively as shown in Fig. 10.

J© Jo J@ Ref. 30 Ref. 31 Ref. 28 Ref. 27

Peak 1 1.427) 0.39(5) 0.13(5) 0.40(6.6) 0.39(5.2 0.24(5.2 0.16(6)
Peak 2 0.6812 0.16(10) 0.08(100 0.14(12 0.15(10.3 0.09(10.3 0.06(11.8

tant is the fact that the amplitudes of the short period are A quantitative comparison of the measured and calculated
more strongly reduced than the ones of the long periodlXC values is made in Table Il. Listed are the amplitudes of
While the energy curv&™)(x) still shows weak peaks at 7, the first and second strong antiferromagnetic peéks
12, and 17 ML, resembling the short-wavelength oscillationmJ/m?), with the values in the brackets denoting the peak
the further broadened curv&$?)(x) andE®)(x) are totally  position. Three “theoretical” results are given, the calculated
dominated by the long period. In contrast to these broadeneghese(®)(n) of Fig. 2 and the averaged value$"(n) and
curves the behavior of ideal interfacesig. 2) is dominated  E(2)(n) of Fig. 10 for the thickness distributios®)(x) and

by the short period. Thus depending on the degree of rough)(yy of Fig. 9. Thus while the calculated values are much

ness, we observe, together with a reduction of the ampli: —

; . " larger than the experimental results, the dat® corrected
tudes, a crossover from short-period to long-period oscilla

tions. In line with this is a shift of the peak positions to 5, 10, OF foughness with the distributigef)(x) are in good agree-
15, and 20 ML, representing the maxima of #&g;) con- ment with the data of Refs. 28, 30, and 31 for intermediately
tribution. rough interfaces, while thE®) values for the broader distri-
The present roughness simulations fit very well to expeributionpt®(x) agree well with the data of Ref. 27 for rougher
mental observations. Johnse al° find strong antiferro-  interfaces.
magnetic peaks at 6.6 ML, 12 ML, and 17.3 ML, and addi- In conclusion our simple simulations give a remarkably
tional, but somewhat weaker, peaks at about 14.5 and 1@onsistent picture of the large effects of roughness on IXC in
ML. From a RKKY fit to the measured data they estimate theCo/Cu100. They explain the strong reduction of the ampli-
relative amplitude of the short period to long period as 1.25tudes, the suppression of the short period, and the shift of the
much smaller than in our calculations for the ideal interfacepeak positions, all effects being observed experimentally.
They do not find the(weakej antiferromagnetic peak at After the paper was finished we obtained two preprints
about 9 ML. As suggested by the authors, this peak is prerelevant to this work. Mathoret al3? calculated the ex-
sumably shifted by pinhole effects into the ferromagneticchange coupling of two semi-infinite Co crystals separated
region. Note that for the same reason no antiferromagnetiby Cu layers in(100) orientation. While qualitatively their
peaks are observed for smaller distances, while our calculaesults are similar to ours, in detail important differences
tions yield additional peaks at 2 and 4 ML which are notexist. The calculated exchange interaction for the first anti-
shown in Fig. 2. ferromagnetic peak is about a factor(@r 4, if the asymp-
Qiu et al®’ only find the strong antiferromagnetic peaks totic expression is us¢dmaller than our value for thicker
at about 6, 11.5, and 17 ML. Thus the roughness of theiCo layers. Moreover the authors obtain an extremely large
sample seems to be larger than the one of Johesah®  amplitude ratioAg/A, of about 100—20QRefs. 32,33 s0
since the short period is totally suppressed, in the same waat practically no long-period contribution exists. While
as our results are changed with the introduction of the distriMathon et al. stress the good agreement of the calculated
butionsp‘® andp® in Fig. 10. coupling energies with experimental values, we believe that
Using an improved technique with three magnetic layershis agreement is accidental and will disappear when realistic
Bloemenet al3! were able to study also the interaction in the corrections for interface roughness, as discussed in Sec.
region of ferromagnetic coupling. They indeed find thelll D, are applied. The average valug$x) are then much
“missing” antiferromagnetic peak as a strong dip in the fer-too small and in particular contain no long-period contribu-
romagnetic coupling curve. Recently Bloemenal?® have  tjon.
presented IXC data in connection with their observation of Using spin-polarized scanning electron microscopy Weber
oscillations arising from magnetic layer thickness. The datat al3* studied exchange coupling in Co/CL00) as well as
in Fig. 1 of their paper resemble very well our broadenedn related asymmetrical systems like Fe/Cu/Co and Ni/Cu/
E®(x) curve shown in Fig. 10, as far as both the strength oiCo. In Co/Cu samples of varying quality they observe both
the additional weak antiferromagnetic peaks as well as thiong- as well as short-period oscillations. For their “best”
positions of all peaks are concerned. The shift of the whol&ample showing a pronounced short period they estimate an
curve by 2 ML to smaller distances as compared to Johnsoamplitude ratioAg/A, >7. The appearance of the short-
et al®® they attribute to experimental problems. Since weperiod oscillation and the large-amplitude ratio agree well
observe the same shift between our unbroadened results yith our calculations and, according to Sec. Ill D, point to a
Fig. 2 and the broadendff)(x) curve in Fig. 10, it seems to good quality of the sample.
be likely that this effect is a consequence of the somewhat Lee and Chantj presented recently tight-bindingrB)
larger roughness in the samples of Bloene¢ml 28 calculations(based on an asymptotic analysisr the inter-
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action of two semi-infinite Co crystals. For Co/001) these  longer period is more important. We explain this behavior in
authors obtain an extremely small intensity of the long peterms of the electronic structure of the single Co layer, in
riod, with an amplitude raticAg/A_ ~ 320, in qualitative particular thek-dependent and symmetry-projected DOS of
agreement with Mathoat al.? but in disagreement with our the Co minority electrons. For the stationary point=0,
results and with the experiments. Recent calculations bgetermining the longer-period oscillation, a band of €o
Kudrnovskyet al3¢3" seem to show the reason for this dis- states evolves with increasing Co thickness at the Fermi en-
crepancy. While we have only treated Co layers up to thickergy, enabling the Cu Bloch electrons to propagate through
nesses of 11 Co ML, these authors performed calculationthe Co layer and thus reducing the interaction. In contrast to
based on the TB linear muffin-tin orbitdlMTO) method for  this, for the stationary point,, being responsible for the
up to 25 Co ML as well as for the case of infinite Co thick- shorter period, a band gap opens upeatfor thicker Co
ness. While in the range of smaller Co thicknesses goothyers, thus leading to the dominance of the short-period
gualitative agreement with our results is obtained, i.e., aontribution to the IXC.

strong short period and a moderately strong long period, for In order to compare with experiments we simulate rough-
large Co thicknesses beyond 15-20 Co ML the intensity ohess caused by steps by introducing distribution functions for
the long period seems to decrease appreciably, in qualitativiie spacer thickness. The inclusion of roughness in our cal-
agreement with the above results for the infinite Co thick-culation strongly reduces the interaction in general and espe-
ness. Note that the experiments are performed in the regiocially the short-period oscillation. This is in accordance with

of small Co thicknesses treated in our calculations. experimental work on different samples of varying qualities.
For rougher samplé5only the long period is observed while
IV. SUMMARY AND CONCLUSIONS for the intermediate roughness, present in the samples of the

, Philips group?®3%3thoth periods are observed with about the
In summary we have presented calculations for the exgzme strength.

change coupling in Co/C(L00) by applying a KKR Green's In total we obtain good agreement with experiments and a

function method for planar perturbations. The use of the froggnistent picture of the interlayer exchange coupling in Co/
zen potential approximation allows a direct calculation of theg,, 100.

interlayer exchange coupling in terms of the single-particle
energies, thus avoiding new self-consistent calculations for
the interacting system and the subtraction of large total-
energy values. In this way efficient calculations can be per-
formed for large distances. In addition the asymptotic behav- P.L. thanks the German Academic Exchange Service
ior of the oscillations can be analyzed by subdividing the 2D(DAAD) for financial support, and the Brookhaven National
Brillouin zone into areas around the different stationaryLaboratory and in particular Dr. M. Weinert for their hospi-
pointsq; . tality. L.N. thanks the Swedish Natural Science Research

Our results for Co/C00) show that for thick magnetic Council for financial support. The calculations were per-
layers the coupling is dominated by the short wavelength oformed on the CRAY computers of the elustleistungsrech-
the RKKY oscillation, whereas for a Co monolayer the enzentrum(HLRZ) and the Forschungszentruniligh.
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