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A path integral approach to the problem of the time-retarded interactions between tunneling states and
fermionic excitations in systems with strong electron-phonon coupling is presented. The full partition function
is derived up to third order in the coupling constant and the interaction strengths, which weigh both the
attractive and the repulsive forces, are renormalized as a function of temperature. The conditions for localiza-
tion of polarons in double well potentials related to the tunneling states are discussed. The model is applied to
evaluate the contribution to the electrical resistivity in systems with structural lattice instabilities.

I. INTRODUCTION

Quantum mechanical systems whose state belong to a
two-dimensional Hilbert space have been found in many
branches of the solid state physics.1 In dilute magnetic al-
loys, a single magnetic impurity of spin21/2 provides a
potential with an internal degree of freedom for exchange
scattering of conduction electrons.2 The time retarded inter-
action between two electrons via the impurity spin causes the
anomalous increase in the electrical resistivity observed at
low temperatures, the Kondo effect.3 In amorphous systems,
the atoms move back and forth between two equilibrium
positions separated by a potential barrier. These low-lying
energy excitations determine the low temperature properties
~acoustic attenuation, thermal conductivity, specific heat! of
amorphous insulators4 and, in amorphous metals, they are
the source of thenonmagnetic interactionwith conduction
electrons leading to the peculiar low-temperature resistivity
behavior.5,6 In A15 compounds, the high-temperature Pauli
susceptibility and saturating resistivity have been explained
by a model7 in which double well potentials~i.e., for the
vanadium atom in V3Si! arise as a consequence of strong
electron-phonon coupling and violation of Migdal’s theorem.
Recently, extended x-ray-absorption fine structure measure-
ments in high-Tc superconductors

8 have revealed the exist-
ence of two split positions for the apex oxygen atoms and
several investigations have pointed out the anharmonic char-
acter of the apex oxygen vibrations. The lattice instabilities
due to the high polarizability of the oxygen ions have been
related9,10 to the occurrence of the superconducting transition
and support polaronic theories for the normal state of the
high-Tc superconductors.

11 These motivations have led us to
study the general problem of the interaction between a
double well potential in its two-state configuration@two level
system~TLS!# and the fermionic excitation in a phonon bath
~polaron!. In this paper we apply a path integral formalism to
describe the coupling of the TLS to the polaron. This ap-
proach is particularly powerful to deal with the time-retarded
interactions for any value of the coupling constant.12 In Sec.
II the full partition function for the interacting system is
derived and in Sec. III, the renormalized coupling constants
are used to evaluate the electrical resistivity as a function of
temperature. The conclusions are drawn in Sec. IV.

II. THE MODEL

We assume to describe the tightly bound electronic states
of the system by the independent boson model~IBM ! in
which one fixed electron interacts with a set of phonons. A
fixed particle cannot respond to the changes in the potential
field due to the ionic motion and therefore the IBM simpli-
fies the physical situation. However, relaxation effects can be
suitably studied by taking into account the fluctuations in the
phonon cloud surrounding the electron: this is done
through the finite temperature Green’s function which can be
exactly obtained in the IBM. This is the advantage of the
model. Moreover, we notice that the one phonon self-energy
in the IBM coincides with the Rayleigh-Schro¨dinger ~RS!
perturbative theory if the electron kinetic energies can be
taken as a constant.13 Since the RS theory provides a good
description for the ground state polaron problem also for
intermediate values of the coupling constant, our model
should be reliable in the low-temperatures regime. The IBM
Hamiltonian is given by

H IBM5 ē c̃†c̃1(
q

v~q!aq
†aq ,

ē5e2(
q

Mq
2

v~q!
, ~1!

where c̃†,c̃ are the electronic creation and annihilation op-
erators andē is the renormalized energy for the electron
interacting with a set of phonons with frequencyv~q!. Mq is
the electron-phonon matrix element,e is the free electron
energy, andaq

† ,aq are the phononic creation and annihilation
operators, respectively. The spin variable is not taken into
account in the IBM. The one particle Green’s function re-
lated toH IBM can be derived exactly and the result is

G~0!~t !52@12nF~ ē !#e2tēe2f~t!,

f~t!5(
q

S Mq

v~q! D
2

@Nq~12ev~q!t!1~Nq11!

3~12e2v~q!t!#. ~2!

t is the time according to the Matsubara Green’s function
formalism.Nq is the phonon occupation factor andnF( ē) is
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the Fermi distribution. In the Einstein model,ē is given by
ē5e2gv0 where e is the free electron energy,v0 is the
frequency common to all phonons in the system, andg is the
effective electron-lattice coupling. Then,G~0!~t! can be re-
written as follows:

G~0!~t !5BeA cosh@v0~t2b/2!#e2tē,

B52@12nF~ ē !#e2g~2N011!,

A52g@N0~N011!#1/2,

g5(
q

S Mq

v~q! D
2

. ~3!

We consider the double well potential in the symmetric
ground state configuration which is represented by a two
level system~TLS! whose Hamiltonian matrix is

~HTLS!5S 0 D

D 0 D , ~4!

whereD is the tunneling energy between the minima of the
TLS. The dynamics of the TLS’s can be described by a path
integral approach that permits one to map the real space
quantum oscillations onto the time scale, where the time is
the above definedt. Then,D can be suitably expressed by
D5lQ wherel is the electron-phonon coupling constant for
the vibrational mode giving origin to the TLS andQ is the
one-dimensional~1D! atomic displacement which depends
linearly14 on t:

Q~t!52Q01
2Q0

t0
~t2t i !, ~5!

wheret0 is the hopping time between the minima of the TLS
which are located at6Q0 and t i is the instant at which the
i th-hop takes place. One path is characterized by the number
2n of hops, by the set oft i (0, i<2n), and by t0. This
particular form for the tunneling energy is physically plau-
sible and it allows one to introduce thet dependence of the
interaction HamiltonianH int~t! between the TLS and the po-
laron described byH IBM :

H int~t!522lQ~t!c̃†~t!c̃~t!. ~6!

We remark that~i! a single lattice site has been considered so
that intersite polaron-polaron interaction15 is not accounted
for by the present model.~ii ! The tightly bound electrons
interact with a potential having an internal degree of freedom
provided by the local lattice instability. This interaction is not
magnetic in origin since the spin variables have not been
considered.~iii ! The wave vector dependence of the po-
laronic operators inH int can be neglected only if elastic
s-wave scattering is assumed to be dominant. In general, the
directional dependence of the TLS in momentum space
should be taken into account: for instance, in high-Tc su-
perconducting systems, it could lead to an anisotropic gap
function via anisotropic effective electron-electron
interaction.16 By taking into account Eqs.~5! and~6!, the one
path contribution to the partition function of the system is
given by

Z~n,t i !5Z0K Tt expS 2E
0

b

dt H int~t! D L , ~7!

whereZ0 is the partition function related to the free Hamil-
tonian H05H IBM1HTLS , Tt is the ordering operator with
respect tot, b is the inverse temperature, and^ & denotes the
thermal average with respect to the free Hamiltonian. The
full partition function of the system will be obtained by in-
tegrating over the timest i and summing over all possible
even number of hops. Following the method outlined by
Hamann,14 we multiply lQ~t! by a fictitious coupling con-
stant s ~0<s<1! and, by differentiating with respect tos,
one derives the following expression:

ln@Z~n,t i !/Z0#522lE
0

1

dsE
0

b

dt Q~t! lim
t8→t1

G~t,t8!s ,

~8!

whereG(t,t8)s is the full propagator for polarons satisfying
the Dyson’s equation,

G~t,t8!s5G~0!~t2t8!

1sE
0

b

dt9G~0!~t2t9!lQ~t9!G~t92t8!

~9!

andG~0!~t2t8! is given in Eq.~3!. Then, to second order in
s, from Eqs.~8! and ~9!, we obtain

ln@Z~2!~n,t i !/Z0#522lE
0

b

dt Q~t!G~0!~t,t1!2l2E
0

b

dt Q~t!E
0

b

dt9G~0!~t2t9!Q~t9!G~0!~t92t1!

2
2

3
l3E

0

b

dt Q~t!E
0

b

dt9G~0!~t2t9!Q~t9!E
0

b

dt-G~0!~t92t-!Q~t-!G~0!~t-2t1!. ~10!

The time integrations will be carried out by taking into account that, for any functionf ~t!,
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E
0

b

dt Q~t! f ~t!52Q0~2n21!E
0

ts
dt f ~t!1

2Q0

t0
(
i51

2n E
t i

t i1t0
dt~t2t i ! f ~t!, ~11!

wherets ~the time one atom is sitting in a well! is determined by the closure condition: (2n21)ts12nt05b. The first order
term on the right-hand side of Eq.~10! describes TLS-polaron scattering. However, the propagator is essentially time inde-
pendent so that the polaron cannot see the internal degree of freedom of the TLS and no correlation effect arise in the system
by virtue of this nonretarded interaction term. Its explicit expression is derived by using Eqs.~3! and ~11!:

22lE
0

b

dt Q~t!G~0!~t,t1!52lQ0Be
A cosh~v0b/2!~b24nt0!. ~12!

The second and third order terms in Eq.~10! account for both the attractive and repulsive part of the retarded interaction
mediated by the lattice deformations. The details of the lengthy calculations are reported on in the Appendix. The final
expression for these two terms are respectively

2l2E
0

b

dt Q~t!E
0

b

dt9G~0!~t2t9!Q~t9!G~0!~t92t1!52~lQ0!
2B2e2AFv0

2t0
2(
i. j

2n

~ t i2t j !
21g~n,t0 ,v0 ,b!G ~13!

and

2
2

3
l3E

0

b

dt Q~t!E
0

b

dt9G~0!~t2t9!Q~t9!E
0

b

dt-G~0!~t92t-!Q~t-!G~0!~t-2t1!

52
2

3
~lQ0!

3B3e3AF3v0
2t0

2~2nt02b/2!(
i. j

2n

~ t i2t j !
21h~n,t0 ,v0 ,b!G . ~14!

The functionsg(n,t0 ,v0 ,b) andh(n,t0 ,v0 ,b) are given in
Eqs. ~A7! and ~A16!, respectively. Equations~13! and ~14!
have been derived under the very assumption that short range
interactions are dominant on the time scale governed by the
hopping timet0. This is consistent with thelocal nature of
the wave function in polaronic theories and permits one to
approximate the time dependent propagators as shown in
Eqs.~A2! and~A9!. Let us define byK ~2! andK ~3! the effec-
tive couplings for the two physical processes~polaron-
polaron attraction and TLS-polaron repulsion! described by
Eqs.~13! and~14!. The analytical expressions of the interac-
tion strengths are given by the dimensionless constants
which multiply the time-retarded terms:

K ~2!52~lQ0!
2B2e2Av0

2t0
4,

K ~3!522~lQ0!
3B3e3Av0

2t0
4~2nt02b/2!. ~15!

K ~2! has a negative sign and it is therefore related to the
attractive part of the interaction. An attraction between po-
larons can take place in the system as a consequence of the
self-trapping induced by the double well potential. We point
out that the attraction arises to second order inl and two
linear paths are involved but one single atom mediates the
interaction which is therefore local in the real space.K ~3!

depends on the number of hops in the path: if the inequal-
ity 2nt0.b/2 is fulfilled thenK ~3! is repulsive. Sincet0 cor-
responds to the inverse of the tunneling energy between the
minima of the TLS, it turns out that the condition
4nKBT.t0

21 is satisfied over a large temperature range. For
instance, by takingn53 ~6 hops in the path! and t0

21.10
meV, one getsK ~3!.0 at anyT.T*.10 K whereasK ~3!

becomes attractive belowT* . Paths with many hops tend to
favor repulsive scattering also in the low temperature region.
On the other hand, the closure condition for the path poses a
lower bound ont0

21, t0
21>2nKBT, where the equality is

satisfied in the limitts→0. As a consequence, oncet0 has
been fixed on the base of the physical problem, the subset of
relevant paths depends on the temperature range and paths
with an increasing number of hops are more effective at de-

FIG. 1. The ratio between the absolute value of the attractive
polaron-polaron coupling and the repulsive coupling constant ver-
sus temperature for four values of the overall electron-phonon cou-
pling constantg. The phonon frequencyv0 is 20 meV. The tunnel-
ing energylQ0 between the minima of the two level system is 6.5
meV. In the strong coupling cases, the arrows indicate the tempera-
tures at which attractive and repulsive forces are comparable.
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creasing temperatures. The temperature dependence ofK ~2!

andK ~3! is given by the combination of Bose factors through
the parametersA and B in Eq. ~3!. It turns out that both
renormalized couplings are increasing functions of tempera-
ture. Then, as we enhanceT, the dynamic of the TLS and the
motion of the charge carriers become more and more corre-
lated: the atom in the TLS sees only the surrounding fer-
mionic gas which screens the quantum motion between the

minima of the double well potential. As a consequence, the
atom tends to sit in a well rather than flipping back and forth
and the relevant paths are characterized by a low number of
hops. Because of the large amount of screening, the interac-
tion between pairs of TLS can be neglected at high
temperatures.17 The full partition function of the system is
obtained by integrating over the timest i and summing over
all possible even number of hops,

ZT5Z0(
n50

` E
0

b dt2n
t0

•••E
0

t22t0 dt1
t0

Z~2!~n,t i !

5 (
n50

`

expS 2lQ0Be
A cosh~v0b/2!~b24nt0!2~lQ0!

2B2e2Ag~n,t0 ,v0 ,b!

2
2

3
~lQ0!

3B3e3Ah~n,t0 ,v0 ,b!D E
0

b dt2n
t0

•••E
0

t22t0 dt1
t0

expF ~K ~2!1K ~3!!(
i. j

2n S t i2t j
t0

D 2G . ~16!

From Eq.~16! we see that the energyE(n,t i ,t0) for a path is given by

E~n,t i ,t0!5
1

b F2lQ0Be
A cosh~v0b/2!~4nt02b!1~lQ0!

2B2e2Ag~n,t0 ,v0 ,b!

1
2

3
~lQ0!

3B3e3Ah~n,t0 ,v0 ,b!2~K ~2!1K ~3!!(
i. j

2n S t i2t j
t0

D 2G ~17!

and, by minimizingE~t0!, one can determinet0 for the
dominant path. This would complete the fully renormalized
treatment of the interacting system and would permit one to
account for the effects of the polaron-TLS coupling on the
dynamics of the TLS.18 Hereafter we avoid this mathemati-
cally lengthy steps and treatt0 as a phenomenological pa-
rameter. Now we study the competition between attractive
and repulsive forces aboveT* up to room temperature. The
input parameters of our model areQ0, l, v0, t0, andg. We
assume that the two equilibrium positions in the TLS are
separated by 0.13 Å.8 l can be varied in the range 20–200
meV Å21 to ensure a bare tunneling energylQ0 between the
minima of the TLS of order 1.3–13 meV and the hopping
time t0 is set equal to~lQ0!

21. In Fig. 1, the ratiouK (2)u/K (3)

is reported on versusT for four values ofg. The bare tun-
neling energylQ0 is 6.5 meV andv0520 meV. Let us de-
fineTp the temperature at which the attraction starts to over-
come the repulsion: one sees that very strong electron-
lattice interactions~g52,3,4! provide a temperature range
belowTp in which attractive forces are relevant whereas, in
the caseg51, the repulsive TLS-polaron scattering domi-
nates throughout the whole temperature region.Tp is an in-
creasing function ofg. It should be remarked that these re-
sults pose a constraint to the validity of the perturbative
expansion in Eq.~10!: in fact, whenever the condition
K (3).uK (2)u is fulfilled higher order terms in thel parameter
should be taken into account. Our model is therefore consis-
tent with those values of the input parameters which allow
for uK (2)u.K (3) below Tp . In Fig. 2, uK (2)u/K (3) is plotted

versusT for the same values oflQ0 andg as in Fig. 1 but
with v0550 meV. Larger phonon frequencies imply, for a
giveng, larger electron-phonon matrix elements and polaron
coupling constant. Under these conditions localization of po-
larons is likely to occur in a wider temperature range. Ac-
cordingly,Tp is shifted upwards both forg53 andg54 with
respect to Fig. 1, whereas forg52, Tp is locked at.16 K
and it does not depend essentially on the phonon frequency.
This trend is even more evident in Fig. 3 where we set
v05100 meV: forg53 we getTp5250 K and forg54 the
attractive forces are dominant in the whole temperature

FIG. 2. As in Fig. 1 but withv0550 meV.
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range. By decreasingl, the hopping time gets longer and
also paths with a low number of hops give rise to repulsive
K ~3! at low temperatures: i.e.,l520 meV Å21 implies
K ~3!.0 at anyT.2 K for a 6 hops path. However, the mag-
nitude of both interaction constants grows with increasingt0
and no substantial changes inTp are observed.

III. RESULTS AND DISCUSSION

Hereafter we calculate the contribution to the electrical
resistivity r arising from the scattering mechanisms which
have been studied in the previous section. As noticed above,
a full calculation18 should take into account the effects of a
distribution of coupling constants: in fact, the subset of
paths which mostly contribute to the scattering properties
varies as a function of temperature through the parametersn
and t0. Here we simplify the procedure and evaluate the
resistivity by using theone path interaction strengthsshown
in Figs. 1–3. Assumings-wave scattering by the impurity
potential due to the TLS, one gets13

r5r0 sin
2 h,

r05
3ns

pe2vF
2~N0 /V!2\

, ~18!

wherens is the density of two level systems which act as
scatterers,vF is the Fermi velocity,V is the volume,e is the
electron charge, and\ is the Planck constant.h is the phase
shift to the electrons-wave function at the Fermi surface.h
is related to the depth of the double well potential and there-
fore to the interaction strengthsK ( i ) which have been derived
in the previous section by the following relation:19

h25
p2

8
~K ~2!1K ~3!! ~19!

and, expanding for large phase shift angles, from Eq.~18!,
one gets

r5r0~a1bh1ch2!,

a512
p2

4
~12p2/12!,

b5p~12p2/6!,

c5~p2/221!. ~20!

r0 is fixed according to the system through the parameters
ns , N0, andvF . For instance, in A15 compounds, we should
expectr0 in the range.100 mV cm,20 while in fully oxy-
genated high-Tc superconductors, the experimental out of
plane resistivity impliesr0.10 mV cm.21 In Fig. 4, the tem-
perature dependent resistivity is reported on for four values
of the electron-lattice coupling constant.r(T) is normalized
to r~T* ! with T*520 K, the order of the highest critical
temperature achievable in A15 superconductors. By taking
ns.631022 cm23, N0.831022 states eV21 cm23, and
vF.63107 cm sec21, we choose values that are compatible
with the system Nb3Ge and yield a residual resistivity
r0a.20 mV cm. The Einstein phonon frequency is set at 20
meV and the tunneling energy between the minima of the
TLS islQ056.5 meV. This value yields a hopping timet0 of
order of 10213 sec which is consistent with previous esti-
mates in A15 compounds.7 In the caseg51, r(T) saturates
with increasing temperatures, starting fromT.50 K. This
behavior implies that the relatively strong electron-phonon
scattering has reduced the electronic mean free path to the
order of the lattice constant. The experimental data published
by Testardiet al.20 for the Nb3Ge film withTc.23 K are also
reported on in Fig. 4. Note that our theory reproduces the
anomalous temperature dependence ofr first pointed out by
Woodward and Cody22 in Nb3Sn. These authors had found a
negative curvature inr starting at high temperatures and
down to.50 K with an inflection point and positive curva-
ture at lowerT. This behavior, general in A15 compounds, is
related to the presence of defects which strongly influence
the electron-phonon interactions and, moreover, are respon-
sible for the violation of the Matthiessen’s rule. The flatten-
ing in r(T) with increasingT predicted by our model is more
pronounced than that shown by experiments. This discrep-

FIG. 3. As in Fig. 1 but withv05100 meV.
FIG. 4. Electrical resistivity versus temperature for four values

of the g parameter by assumingv0520 meV andlQ056.5. The
experimental datah are taken from Ref. 20.
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ancy could be due to the fact that, forg51, the TLS-polaron
repulsive interaction is dominant and therefore higher order
terms in Eq.~10! should be taken into account to make the
model consistent. We expect18 that higher order interaction
strengths inl yield a positivedr/dT at highT, via Eqs.~19!
and ~20!. For g52, r(T) develops a minimum in the low-
temperature region and, by increasingg, the minimum shifts
at higherT. Note that above the minimum,r(T) shows a
linear contribution which is then obscured by logarithmic
like23 saturation effects. In the caseg52, the linearr(T) is
visible between 20 and 80 K and, above 80 K,dr/dT de-
creases but less rapidly than in the previous case. Many theo-
retical and experimental determinations of the electron-
phonon coupling constant in A15 compounds assessed thatg
should range between 1 and 2~Ref. 24! with values possibly
closer to 2~Ref. 25! for Nb3Ge. Our fit of the experimental
slope also suggests a couplingg about 2. Ther~T* ! values
grow withg. The low-temperaturer(T) that we obtain in the
very strong coupling cases~g53,4! reminds us of the typical
resistivity behavior encountered in amorphous metals.26 In
these systems the well settled presence of TLS acting as
scattering centers for the electrons yields a negativedr/dT
below a characteristic crossover temperature at which a reso-
nant state is built up.5 The crossover is usually in the region
.1–10 K for metallic glasses but in some cases27 the resis-
tivity minimum occurs at higherT~.50–100 K!, that is, in
the range predicted by our model. Here we see the analogy
between anomalousr(T) in amorphous metals and anoma-
lous r(T) in A15 compounds: the nature of the defects in
A15 superconductors seems connected to structural instabili-
ties which cause the loss of the translational symmetry of the
lattice. By increasing the number of defects, the critical tem-
perature is progressively suppressed, the Woodward-Cody
anomaly is lost, and the residual resistivity is enhanced.28

These features point to the formation of an amorphous struc-
ture with low lying energy excitations, the TLS. It is inter-
esting that both the normal state resistivity in A15 supercon-
ductors and the low temperaturer in amorphous systems can
be understood in the framework of the present model which
focuses on the role of the TLS. Theg parameter drives the
evolution of the resistivity from A15-like behavior~g51!
with saturation at high temperatures to the amorphouslike
behavior ~g53,4! with negativedr/dT below a crossover
temperature. The reason why, by increasingg, a negative
dr/dT arises at lowT is the following: strong electron-
phonon coupling implies that electrons become heavy and
their probability amplitude to propagate is reduced; in fact, at
low T, G~0!~t! decreases exponentially withg @see Eq.~3!#.
Then, tightly bound electrons can be easily trapped in the
double well potential and they can favor off-diagonal scat-
tering between the minima of the TLS. As a consequencer
increases with decreasingT. Our theory is consistent with
the observation29 that a negativedr/dT is associated to high
resistivity values~r>100mV cm!.

In Fig. 5,r(T) is reported on by assumingv05100 meV.
r(T) is normalized tor~T* ! with T*510 K, which is an
increasing function ofg. A higher phonon spectrum broadens
the temperature range in which our model is fully consistent
~see Fig. 3!. We take ns51.231022 cm23, N0.1.531022

states eV21 cm23 and vF.13107 cm sec21, that is values
peculiar of the high-Tc superconductor system YBa2Cu3O72d

which yield r0.6 mV cm as expected. We remark that any
comparison with the electrical resistivity in high-Tc super-
conductors can be here only qualitative and limited to
T>Tc.100 K since the occurence of the critical transition is
not accounted for by the present model. The most important
feature emerging from Fig. 5 is thatdr/dT changes from
positive ~g51,2! to negative ~g53,4! by increasing the
strength of the electron-lattice interaction. Localization of
polarons is possible in a very strong coupling regimeand in
the presence of local lattice instabilities~TLS! throughout a
wide temperature range. The enhancement of the character-
istic phonon frequency~with respect to Fig. 4! smears the
minimum inr(T) and extends the region of negativedr/dT,
an effect that is actually observed in some high-Tc
compounds.30 In these systems the high frequency vibrations
of the apical oxygen atoms~perpendicular to the CuO2!
planes produce anharmonic double well potentials which
could influence the out of plane electrical transport.19 The
questions related to the low-temperature semiconductorlike
behavior of thec-axis resistivity in high-Tc compounds are
currently a matter of intensive investigations.31 We point out
that our model predicts a change from metallic to nonmetal-
lic rc(T) accompanied by an increase ofrc above 10 mV cm
at low temperatures. This value agrees with the estimated21

Mott-Ioffe-Regel ~MIR! limit for metallic conductivity in
high-Tc systems. Also superconducting fluctuations tend to
increaserc on cooling in the critical region aboveTc .

32 This
contribution is believed to be relevant in highly anisotropic
layered cuprates as Bi-2:2:1:2.33 However, therc(T) depen-
dence and the highrc indicate that thec-axis mean free path
is of order of thec-axis lattice constant, i.e., the MIR crite-
rion for metallic transport is not fulfilled and this fact cannot
be ascribed to critical fluctuations alone. Recently, Zha
et al.34 have suggested a phenomenological model to account
for the experimentalrc in high-Tc systems. According to
these authors, the linearrc at high temperatures is deter-
mined by in plane electron scattering which makesrc pro-
portional to the in plane resistivityrab . At low T ~aboveTc!
the enhancedc-axis scattering rate arises from the out of
plane vibrations of the apical oxygen atoms. This picture
seems to be consistent with the here presented calculations.
My model neglects spin variables so that I am dealing with
dielectric polarons whose properties generally differ from

FIG. 5. As in Fig. 4 but withv05100 meV.
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those of spin polarons.35 However, Vigren36 suggested that
the diffusion coefficient of spin polarons does not depend on
temperature so that, in the presence of lattice instabilities,
spin polarons could be trapped. In this case, a nonmetallic
contribution to the electrical resistivity is expected37 and this
effect superimposes to that which we calculated in Fig. 5 for
the strongg regime. Then, our qualitative conclusions re-
garding the effect of the lattice instabilities onrc should not
be altered by inclusion of spin carriers. On the other hand,
spin effects are believed to influence the charge transport in
the CuO2 planes.

38,39 It should be added that also interlayer
disorder induced by a low hole concentration in underdoped
high-Tc compounds affectsrc .

40 In particular, a negative
drc/dT arises from boson assisted interlayer tunneling,
where the boson can be both a phonon or a spin excitation.

IV. CONCLUSIONS

In this paper I have studied the general problem of the
coupling between an atom in a two state configuration and
electronic excitations in a phonon bath~polarons!. The quan-
tum tunneling between the minima of the two level system
gives rise to a potential with an internal degree of freedom
which, in turn, causes time-retarded interactions in the fer-
mionic system. The path integral method allows one to map
the real space quantum oscillations onto the time scale so
that the time dependence of the interacting Hamiltonian can
be easily taken into account. The spinless polaron has been
described in the exactly solvable independent boson model
which provides an analytical expression for the polaron
Green’s function at finite temperature. We have written the
full partition function of the interacting system up to third
order inl, wherel is the coupling constant between double
well potential and polaron. An attractive polaron-polaron in-
teraction arises in the system to second order inl, as due to
the local lattice instability which favors the trapping of the

tightly bound electrons. The attractive forces compete with
the repulsive two level system-polaron scattering and, in a
very strong electron-lattice coupling regime, the attraction
overcomes the repulsion at low temperatures. Localization of
polarons is more likely to occur throughout a wide tempera-
ture range in systems with an high average phonon fre-
quency,v0.50–100 meV. The model has been applied to
calculate the contribution to the electrical resistivityr(T)
due to electron scattering by an impurity, where the impurity
is the two level system modeling the lattice instability. In
systems withv0.20–50 meV a saturatingr(T) is found at
high temperatures, a behavior typical of A15 compounds in
which a large electron-phonon coupling reduces the electron
mean free path to the order of the lattice constant. By in-
creasing the overall electron-phonon coupling to values
larger than one, we see an anomalousr(T), with negative
dr/dT, on the low-temperature side below a certain cross-
over temperature. This phenomenon, which is peculiar of
amorphous structures, is related to the electron trapping in
the double well potential provided by the local lattice insta-
bility. The trapped electrons can, in turn, favor off diagonal
scattering between the two wells so that many hops paths for
the two level system are expected to be dominant at low
temperatures. Finally, we suggest that the present model
could contribute to clarify the effects of the structural insta-
bilities on the electrical resistivity of the high-Tc supercon-
ductors.

APPENDIX

In this appendix we derive the second and third order
contribution to the one path partition function of the interact-
ing system given in Eq.~10!. Let us assume that the 1D
atomic displacement giving rise to the dynamical TLS de-
pends linearly on time. Then, by using Eq.~11! in the text,
thel2 term in Eq.~10! can be rewritten as

2l2E
0

b

dt Q~t!E
0

b

dt9G~0!~t2t9!Q~t9!G~0!~t92t1!52~2n21!2~lQ0!
2E

0

ts
dtE

0

ts
dt9G~0!~t2t9!G~0!~t92t1!

2S 2lQ0

t0
D 2(

i. j

2n E
t i

t i1t0
dt~t2t i !E

t j

t j1t0
dt9~t92t j !

3G~0!~t2t9!G~0!~t92t1!1
~2lQ0!

2

t0
~2n21!

3E
0

ts
dt(

i51

2n E
t i

t i1t0
dt9~t92t i !G

~0!~t2t9!G~0!~t92t1!.

~A1!

G~0!~t2t9! is the probability amplitude for the polaron to propagate fromt9 to t and, if the hopping timet0 is sufficiently
small, we can taket9.t j and t.t i , where t j and t i are the instants at which two hops take place. Note that the distance
between two successive hops cannot be shorter thatt0. Then, if short range interactions are dominant, it seems plausible to
assume thatt2t9 is of orderb/2, where the inverse temperatureb measures the length of the path. Under these conditions, the
product of two free propagators in the independent boson model can be approximated as follows:

G~0!~t2t9!G~0!~t92t!5B2 exp$A@cosh„v0~t2t92b/2!…1cosh„v0~t92t2b/2!…#%

.B2e2A@11~v0b/2!21v0
2~t2t9!2#. ~A2!
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By inserting Eq.~A2! in Eq. ~A1!, the three addenda can be analytically calculated. The first addendum in the right-hand
side of Eq.~A1! yields

2~2n21!2~lQ0!
2E

0

ts
dtE

0

ts
dt9G~0!~t2t9!G~0!~t92t1!52~b22nt0!

2~lQ0!
2B2e2AF11S v0b

2 D 21 v0
2

6 S b22nt0
2n21 D 2G ;

~A3!

the second addendum yields

2S 2lQ0

t0
D 2(

i. j

2n E
t i

t i1t0
dt~t2t i !E

t j

t j1t0
dt9~t92t j !G

~0!~t2t9!G~0!~t92t1!

52~lQ0t0!
2B2e2AF ~2n!2X11S v0b

2 D 21 v0
2t0

2

9
C1v0

2(
i. j

2n

~ t i2t j !
2G , ~A4!

where the following result has been used:

(
i. j

2n E
t i

t i1t0
dt~t2t i !E

t j

t j1t0
dt9~t92t j !~t2t9!25

t0
4

4 (
i. j

2n

~ t i2t j !
21~2n!2

t0
6

36
; ~A5!

and the third addendum in Eq.~A1! yields

~2lQ0!
2

t0
~2n21!E

0

ts
dt(

i51

2n E
t i

t i1t0
dt9~t92t i !G

~0!~t2t9!G~0!~t92t1!

5
~2lQ0!

2

t0
~b22nt0!B

2e2AF2nXt022 @11~v0b/2!2#1
~v0t0ts!

2

6
2

v0
2tst0

3

3
1

v0
2t0

4

4

1~2n21!t0
2 ~t01ts!

2 S 2t0
3

2
ts
2 D C1 t0

2

2
~t01ts!

2 (
j51

2n21

j 2G . ~A6!

Summing up the contributions given in Eqs.~A3!, ~A4!, and~A6!, we get

2l2E
0

b

dt Q~t!E
0

b

dt9G~0!~t2t9!Q~t9!G~0!~t92t1!52~lQ0!
2B2e2AFv0

2t0
2(
i. j

2n

~ t i2t j !
21g~n,t0 ,v0 ,b!G ,

g~n,t0 ,v0 ,b!5~2nt0!
2S 11

1

4
~v0b!21

v0
2t0

2

9 D 1~b22nt0!
2S 11

1

4
~v0b!21

v0
2

6 S b22nt0
2n21 D 2D 22t0~b22nt0!F2nX1

1
1

4
~v0b!22

2

3
v0
2t0ts1

v0
2t0

2

2
1

v0
2ts

2

3
1~2n21!S 43 t02tsD S t01ts

2 D C1~t01ts!
2 (
j51

2n21

j 2G . ~A7!

By taking into account Eq.~11! in the text, thel3 term in Eq.~10! can be rewritten as

2
2

3
l3E

0

b

dt Q~t!E
0

b

dt9G~0!~t2t9!Q~t9!E
0

b

dt-G~0!~t92t-!Q~t-!G~0!~t-2t1!

5F23 ~2n21!3~lQ0!
3E

0

ts
dtE

0

ts
dt9E

0

ts
dt-2

16

3 S lQ0

t0
D 3 (

i. j.k

2n E
t i

t i1t0
dt~t2t i !E

t j

t j1t0
dt9~t92t j !

3E
tk

tk1t0
dt-~t-2tk!24

~lQ0!
3

t0
~2n21!2E

0

ts
dt9E

0

ts
dt-(

i51

2n E
t i

t i1t0
dt~t2t i !

18
~lQ0!

3

t0
2 ~2n21!E

0

ts
dt9(

i. j

2n E
t i

t i1t0
dt~t2t i !E

t j

t j1t0
dt-~t-2t j !GG~0!~t2t9!G~0!~t92t-!G~0!~t-2t!.

~A8!

Following the same arguments which lead to Eq.~A2! we notice that the product of three propagators can be approximated
as
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G~0!~t2t9!G~0!~t92t-!G~0!~t-2t!.B3e3AF11
3

8
~v0b!21

v0
2

2
@~t2t9!21~t92t-!21~t-2t!2#G ~A9!

and, by means of Eq.~A9!, we evaluate the four addenda in the right-hand side of Eq.~A8!. The first addendum yields

2

3
~2n21!3~lQ0!

3E
0

ts
dtE

0

ts
dt9E

0

ts
dt-G~0!~t2t9!G~0!~t92t-!G~0!~t-2t!

5
2

3
~b22nt0!

3~lQ0!
3B3e3AF11

3

8
~v0b!21

v0
2ts

2

4 G . ~A10!

The second addendum yields

2
16

3 S lQ0

t0
D 3 (

i. j.k

2n E
t i

t i1t0
dt~t2t i !E

t j

t j1t0
dt9~t92t j !E
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tk1t0
dt-~t-2tk!G

~0!~t2t9!G~0!~t92t-!G~0!~t-2t!

52
2

3
~lQ0t0!

3B3e3AF ~2n!3S 11
3

8
~v0b!21
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2t0

2

6 D 12n
3v0

2

2 (
i. j

2n

~ t i2t j !
2G , ~A11!

where Eq.~A5! has been used. The third addendum yields

~A12!

where the following integral has been used:

(
i51

2n E
t i

t i1t0
dt~t2t i !E

0

ts
dt9~t2t9!252nt0tsF ts

2t0
6

2
tst0
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2

tst0
2 D (

i51

2n

t i1
t0
2 (

i51

2n
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2G ~A13!

and

(
i51

2n

t i52n~2n21!
t01ts
2

, (
i51

2n

t i
25~t01ts!

2 (
j5 i

2n21

j 2. ~A14!

The fourth addendum yields

~A15!

where Eqs.~A5!, ~A13!, and~A14! have been used. Summing the contributions in Eqs.~A10!–~A15!, one gets thel3 term:

2
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l3E

0

b

dt Q~t!E
0

b

dt9G~0!~t2t9!Q~t9!E
0

b

dt-G~0!~t92t-!Q~t-!G~0!~t-2t1!

52
2

3
~lQ0!

3B3e3AF3v0
2t0

2~2nt02b/2!(
i. j

2n

~ t i2t j !
21h~n,t0 ,v0 ,b!G ,
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