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By the use of an iterative method the linearized phonon-Boltzmann equation for a dielectric solid subjected
to a thermal gradient is solved in the frame of three-phonon interactions. In this way it is possible to calculate
the thermal conductivity of rare-gas solids starting from the pair potential and accounting for the real Brillouin
zone of the lattice. The numerical results are in full agreement with experiment and represent a considerable
improvement with respect to those previously deduced for an isotropic solid.

I. INTRODUCTION

In a previous paper,1 referred to as I, we outlined an it-
erative method to solve the linearized Boltzmann equation
for a system of interacting particles subjected to an external
field. With respect to the variational approach,2–6 where the
answer is affected by the form adopted, generally without
justification, for the trial function, the above method presents
the advantage of being independent of any arbitrary assump-
tion, apart from the obvious requirement that the iteration
procedure must be convergent.

The reliability of the new method was checked in I with
reference to an isotropic solid subjected to a thermal gradi-
ent. In this paper we will apply the same procedure to a real
crystal~namely, to a rare-gas solid described by the real Bril-
louin zone! and obtain in this way the solution of the trans-
port problem in the frame of three-phonon interactions. Al-
though the numerical accuracy of the results is, in principle,
limited by the tremendous amount of time and financial sup-
port required by the computer to perform the program con-
nected with the evaluation of the successive iterations, nev-
ertheless our calculations are sufficient to check the
convergence of the iteration procedure and consequently the
possibility of obtaining the true behavior of the phonon dis-
tribution function in the whole Brillouin zone. Moreover,
since the convergence is found in the whole temperature
range, our solution takes automatically into account, for any
temperature, the real roles played by normal and umklapp
processes, being completely independent of assumptions
concerning the small ratio of the normal to the umklapp pho-
non mean free path, as conversely invoked in the perturba-
tive approaches discussed by Gurzhi7 and Gurevich.8 For all
these reasons we are led to believe that the iterative method
outlined in I represents a suitable approach to the solution of
the Boltzmann equation for any kind of transport problems.

II. THREE-PHONON SCATTERING PROCESSES IN A
FCC LATTICE

Let h1 be the nearest-neighbor distance in a fcc lattice and
ui the unit vectors corresponding to Cartesian coordinatesxi
~i51,2,3!, chosen along the sizes of the periodic cube in the
direct space. Measuring the componentsqi of any vectorq in
units of the sized52p&/h1 of the periodic cube of the
reciprocal lattice, namely puttingqi5dh i , and introducing

cylindrical coordinatesu,h,z through the equations

h15h cosu, h25h sinu, h35z, ~1!

it is easy to deduce that the boundary of the first Brillouin
zone ~BZ! in the planez50 is defined by the equations
6h16h253/4 and6h151/2,6h251/2. In other words, with
reference to Fig. 1, it is the octagonal path with equation
hb5H(u), wherehb is the value ofh corresponding to a
point of the boundary andH~u! the function represented in
Table I.

If from a given point~u,h! lying within the zone section
z50, we move along a parallel to thez axis, we cross the
boundary of the BZ at a point withzb56M (u,h), whereM
is defined as the minimum among the absolute values ofz
attributed to the above point by the equations
6h16h26h353/4 and6h351/2: in other words,

M ~u,h!5minH U346h cosu6h sinuU, 12 J . ~2!

Let V(r ) be the pair potential describing the interaction be-
tween atoms of the crystal. Introducing the operator
Or5r21d/dr, we can write the eigenvalue equation for the
phonon frequenciesv and polarization vectorse in the form5

FIG. 1. Octagonal path describing the boundary of the BZ in the
planez50.
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(
h

~12cosq•h!@ghe1bh~h•e!h#5mv2e, ~3!

wheregh5OhV, bh5Oh
2V andm is the mass of each atom.

With reference to a Lennard-Jones potential

V~r !5F0F S r 0r D 122S r 0r D 6G , ~4!

it is convenient to define dimensionless parameters
s(h)5h 1

2F 0
21gh and r(h)5h 1

4F 0
21bh . In this way, col-

lecting together in the sum overh the contributions coming
from all the neighbors belonging to the same shell, we re-
write Eq. ~3! as

(
s

(
t

~12cosq•ht
s!Fsse1

rs
h1
2 ~ht

s
•e!ht

sG5
h1
2mv2

F0
e,

~5!

wheres runs over all the shells of neighbors, the position
vector of thetth neighbor in thesth shell~of radiushs! being
denoted byh t

s, andss5s(hs), rs5r(hs). It is easy to see9

that vectorsh t
s can be written as linear combinations of the

ui ’s, in the form

ht
s5

h1

&

(
i51

3

xti
sui , ~6!

wherex t1
s ,x t2

s ,x t3
s are of the form~1,1,0!, ~1,0,1!,... for s51

~first shell!, ~2,0,0!, ~0,2,0!,... for s52 ~second shell!, etc.
Defining the reduced frequencies

v̄5h1S 2mF0
D 1/2v, ~7!

and the dimensionless quantities

J t
s~u,h,z!52p~hxt1

s cosu1hxt2
s sinu1zxt3

s !, ~8!

Tmn~u,h,z!5(
s,t

~12cosJ t
s!~2ssdnm1rsxtm

s xtn
s !, ~9!

one can easily reduce Eq.~5! to a linear homogeneous sys-
tem for the three componentse1 ,e2 ,e3 of the vectore, giv-
ing rise to the following algebraic equation forv̄:

~T112v̄2!@~T222v̄2!~T332v̄2!2T23
2 #1T12@T23T13

2T12~T332v̄2!#1T13@T12T232T13~T222v̄2!#50.

~10!

For each of the three rootsv̄p of the above equation~defin-
ing the three branches of the phonon spectrum! we deduce
the components ofep in the form

ep15@T12T232T13~T222v̄p
2!#/Dp , ~11!

ep25@T13T122T23~T112v̄p
2!#/Dp , ~12!

ep35@~T112v̄p
2!~T222v̄p

2!2T12
2 #/Dp , ~13!

where

Dp5$@T12T232T13~T222v̄p
2!#21@T13T122T23~T112v̄p

2!#2

1@~T112v̄p
2!~T222v̄p

2!2T12
2 #2%1/2. ~14!

Let us now consider a three-phonon scattering described by
the conservation equations

q6q85q91g, ~15!

v̄p~q!6v̄p8~q8!2v̄p9~q9!50, ~16!

whereg is a reciprocal-lattice vector and the upper and the
lower sign refer to the processes~qp!1~q8p8!→~q9p9! and
~qp!→~q8p8!1~q9p9!, respectively. Expressingg in terms of
theui ’s ~Ref. 9! and recalling Eq.~1! we rewrite Eq.~15! in
the form

h i6h i82
1

2
mki

n 5h i9 , ~17!

wheren labels the shell of the reciprocal lattice,k the point
of the reciprocal lattice belonging to this shell, and
m k1

n ,m k2
n ,m k3

n are of the form~1,1,1!, ~21,1,1!,... for n51
~first shell!, ~2,0,0!, ~0,2,0!,... for n52 ~second shell!, etc.
The casen50 corresponds tog50 ~normal processes! and,
consequently,m ki

n 50.
For a given choice of~h1,h2! and (h18 ,h28), that is of

~h,u! and~h8,u8!, we easily deduce from Eq.~17! the length
and the direction of vector (h19u11h29u2), through the rela-
tions

h95$~h cosu6h8 cosu82lk1
n !2

1~h sinu6h8 sinu82lk2
n !2%1/2, ~18!

tg u95
h sinu6h8 sinu82lk2

n

h cosu6h8 cosu82lk1
n , ~19!

wherel ki
n 5m ki

n /2 andu9 belongs to the first, second, third,
fourth quadrant, according to the conditions~1! D.0,N.0;
~2! D,0, N.0; ~3! D,0, N,0; ~4! D.0, N,0, respec-

TABLE I. The functionH~u! describing the boundary of the BZ
in the planez50.

u H~u!

0<u<tg21
1

2

1

2 cosu

tg21
1

2
<u<tg212

3

4(cosu1sinu)

tg212<u<
p

2
1tg21

1

2

1

2 sinu
p

2
1tg21

1

2
<u<p2tg21

1

2

3

4(2cosu1sinu)

p2tg21
1

2
<u<p1tg21

1

2
2

1

2 cosu

p1tg21
1

2
<u<

3

2
p2tg21

1

2
2

3

4(cosu1sinu)
3

2
p2tg21

1

2
<u<

3

2
p1tg21

1

2
2

1

2 sinu
3

2
p1tg21

1

2
<u<2p2tg21

1

2

3

4(cosu2sinu)

2p2tg21
1

2
<u<2p

1

2 cosu
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tively, N andD being the numerator and the denominator of
the fraction appearing in Eq.~19!.

Hereafter we will use the notationvp~u,h,z! to indicate
the angular frequency of thepth branch corresponding to the
vectorq specified by the cylindrical coordinatesu,h,z. In this
way from Eq.~16!, owing to Eq.~17! written for i53, we
deduce

v̄p~u,h,z!6v̄p8~u8,h8,z8!5v̄p9~u9,h9,z6z82lk3
n !.

~20!

Expressingu9 andh9 with the help of Eqs.~18! and~19! we
see that Eq.~20! represents an equation to be solved forz8.
The j th solution of Eq.~20! satisfying the condition

2M ~u8,h8!<z8<M ~u8,h8! ~21!

will simply be denoted byz68 ( j ): it obviously depends on the
variablesu,h,z,u8,h8 and on the indicesn,k,p,p8,p9. Corre-
spondingly we will denote byz69 ( j ) the quantities z
6z68 ( j )2lk3

n .

III. TRANSPORT EQUATION FOR THE PHONON
SYSTEM UNDER A THERMAL GRADIENT

The linearized Boltzmann equation for a solid subjected
to a thermal gradient can be written in the form2,3

kBTvqp•¹T
]nqp

0

]T

5 (
q8p8

(
q9p9

Qqp,q8p8
q9p9 @Cq9p92Cq8p82Cqp#

1
1

2 (
q8p8

(
q9p9

Qqp
q8p8,q9p9@Cq9p91Cq8p82Cqp#, ~22!

where the deviation functionCqp is defined in terms of the
perturbed and unperturbed phonon distributionsnqp and
nqp
0 respectively, according to the equation

nqp5nqp
0 2Cqp

]nqp
0

]~\vqp!
. ~23!

The probability rates for the phonon processes
~qp!1~q8p8!→~q9p9! and ~qp!→~q8p8!1~q9p9! are given
by

Qqp,q8p8
q9p9 5

p\

16m3N

nqp
0 nq8p8

0
~11nq9p9

0
!

vqpvq8p8vq9p9
d~vqp1vq8p8

2vq9p9!Rqp,q8p8,q9p9
1 ~24!

and

Qqp
q8p8,q9p95

p\

16m3N

nqp
0 ~11nq8p8

0
!~11nq9p9

0
!

vqpvq8p8vq9p9
d~vqp2vq8p8

2vq9p9!Rqp,q8p8,q9p9
2 , ~25!

respectively,N being the total number of atoms in the crystal
and the factorsR6 depending on the polarization vectors
through the expression~see I!

Rqp,q8p8,q9p9
6

5U(
h

$ah~h•eqp!~h•eq8p8!~h•eq9p9!1bh@~h•eqp!~eq8p8•eq9p9!1~h•eq8p8!~eqp•eq9p9!

1~h•eq9p9!~eqp•eq8p8!#%~e
iq•h21!~e6 iq8•h21!~e2 iq9•h21!U2, ~26!

whereah5Oh
3V.

As in Eq. ~5!, it is convenient to transform the sum overh into a sum over all the shells of neighbors. For thesth shell we
define the reduced radiusjs5hs/h1 where hs5(h1/&)[(x t1

s )21(x t2
s )21(x t3

s )2] 1/2, and the dimensionless parameter
es52h 1

2j s
2as/rs , with as5a(hs). Owing to Eqs.~6! and ~26! we easily obtain

R65
2F0

2

h1
6 uF6u2, ~27!

where

F65(
s

(
t

H 2
1

2

esrs
js
2 ~xt

s
•ep!~xt

s
•ep8!~xt

s
•ep9!1rs@~xt

s
•ep!~ep8•ep9!1~xt

s
•ep8!~ep•ep9!1~xt

s
•ep9!~ep•ep8!#J

3$sin~J t
s6J t8

s!2sin J t
s7sin J t8

s%, ~28!

having writtenx t
s
•ep5x t1

s ep11x t2
s ep21x t3

s ep3, etc., andJ t
s5J t

s(u,h,z), J t8
s5J t

s(u8,h8,z8).
Let us examine the right-hand side~rhs! of Eq. ~22!. One can transform the sum overq9 into a sum over the reciprocal-

lattice vectorsg ~that is, overn,k! using the momentum conservation condition~15!. Conversely, the sums overq8 are
amenable to integrals over the BZ by the help of the substitution
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(
q8
→

V

~2p!3
E d3q85

V

~2p!3 S 2p&

h1
D 3E

0

2p

du8E
0

H~u8!
h8dh8E

2M ~h8,u8!

M ~u8,h8!
dz8, ~29!

whereV is the crystal volume. The presence of thed functions appearing in Eqs.~24! and~25! eliminates the integration over
z8, so that, settingv5V/N ~lattice cell volume!, one obtains

rhs of Eq. ~22!5
vp\&

mh1
5 F(n,k (

p8,p9
E
0

2p

du8E
0

H~u8!
h8dh8

3(
j H n0n08~11n09!

v̄v̄8v̄9
uF1u2~C92C82C!U]v̄8

]z8
2

]v̄9

]z9
U21J

z85z
18 ~ j !;z95z

19 ~ j !

1
1

2 (
n,k

(
p8,p9

E
0

2p

du8E
0

H~u8!
h8dh8(

j H n0~11n08!~11n09!

v̄v̄8v̄9

3UF2u2~C91C82C!U]v̄8

]z8
2

]v̄9

]z9
U21J

z85z
28 ~ j !;z95z

29 ~ j !

G , ~30!

where for each of the three functionsC,v̄,n0 we have used the compact notationsCp~u,h,z!5C, Cp8~u8,h8,z8!5C8,
Cp9~u9,h9,z9!5C9, and so on.

Since nowvqp5]vqp /]q we have, from Eq.~7!,

lhs of Eq. ~22!5
kBT

4p S F0

m D 1/2 ]np
0

]T (
i

]v̄p

]h i
S ]T

]xi
D ~31!

or also, from Eqs.~1! and ~10!

lhs of Eq. ~22!5
kB
4p S F0

m D 1/2bv̄p

ebv̄p

~ebv̄p21!2
(
i
ApiS ]T

]xi
D , ~32!

where

b5
\

h1kBT
S F0

2mD 1/2, ~33!

Api~u,h,z!5
1

Bp
$@~T222v̄p

2!~T332v̄p
2!2T23

2 #N11,i1@~T112v̄p
2!~T332v̄p

2!2T13
2 #N22,i1@~T112v̄p

2!~T222v̄p
2!2T12

2 #N33,i

12@T12T132T23~T112v̄p
2!#N23,i12@T23T132T12~T332v̄p

2!#N12,i12@T12T232T13~T222v̄p
2!#N13,i%, ~34!

Nmn,i52p(
s,t

~sin J t
s!~2ssdmn1rsxtm

s xtn
s !xti

s , ~35!

Bp52v̄p@3v̄p
422~T111T221T33!v̄p

22~T12
2 1T23

2 1T13
2 2T11T222T11T332T22T33!#. ~36!

Equating~30! to ~31! and setting

Cqp52
F0h1

4

8p2vT
f p~u,h,z!, ~37!

v̄p

ebv̄p

~ebv̄p21!2
Apm5upm~u,h,z!, ~38!
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H uF6u2

uAp83~u8,h8,z8!2Ap93~u9,h9,z9!u J
z85z

68 ~ j !;z95z
69 ~ j !

5Kp8p9, j
6

~u,h,z;u8,h8!, ~39!

we obtain

f p~u,h,z!5
1

Qp
Fup1S ]T

]x1
D 1up2S ]T

]x2
D 1up3S ]T

]x3
D G

1
1

Qp
(
n,k

(
p8p9

E
0

2p

du8E
0

H~u8!
h8dh8(

j
H np0~u,h,z!np8

0
~u8,h8,z8!@11np9

0
~u9,h9,z9!#

v̄p~u,h,z!v̄p8~u8,h8,z8!v̄p9~u9,h9,z9!
@ f p9~u9,h9,z9!

2 f p8~u8,h8,z8!#J
z85z

18 ~ j !;z95z
19 ~ j !

Kp8p9, j
1

1
1

2Qp
(
n,k

(
p8p9

E
0

2p

du8E
0

H~u8!
h8dh8(

j
H np0~u,h,z!@11np8

0
~u8,h8,z8!#@11np9

0
~u9,h9,z9!#

v̄p~u,h,z!v̄p8~u8,h8,z8!v̄p9~u9,h9,z9!

3@ f p9~u9,h9,z9!1 f p8~u8,h8,z8!#J
z85z

28 ~ j !;z95z
29 ~ j !

Kp8p9, j
2 , ~40!

where

Qp~u,h,z!5(
n,k

(
p8p9

E
0

2p

du8E
0

H~u8!
h8dh8(

j
H np0~u,h,z!np8

0
~u8,h8,z8!@11np9

0
~u9,h9,z9!#

v̄p~u,h,z!v̄p8~u8,h8,z8!v̄p9~u9,h9,z9!
J

z85z
18 ~ j !;z95z

19 ~ j !

Kp8p9, j
1

1
1

2 (
n,k

(
p8p9

E
0

2p

du8E
0

H~u8!
h8dh8(

j

3H np0~u,h,z!@11np8
0

~u8,h8,z8!#@11np9
0

~u9,h9,z9!#

v̄p~u,h,z!v̄p8~u8,h8,z8!v̄p9~u9,h9,z9!
J

z85z
28 ~ j !;z95z

29 ~ j !

Kp8p9, j
2 . ~41!

Equation~40! is precisely of the form of Eq.~11! in I and consequently can be solved through an iteration procedure. The
solution is seen to be

f p5(
i
F piS ]T

]xi
D , ~42!

whereF pi is the limit for n→` of the functionsF pi
n generated by the recurrence relation

F pi
n115

1

Qp
upi1

1

Qp
(
n,k

(
p8p9

E
0

2p

du8E
0

H~u8!
h8dh8(

j
H np0~u,h,z!np8

0
~u8,h8,z8!@11np9

0
~u9,h9,z9!#

v̄p~u,h,z!v̄p8~u8,h8,z8!v̄p9~u9,h9,z9!
@F p9 i

n
~u9,h9,z9!

2F p8 i
n

~u8,h8,z8!#J
z85z

18 ~ j !;z95z
19 ~ j !

Kp8p9, j
1

1
1

2Qp
(
n,k

(
p8p9

E
0

2p

du8E
0

H~u8!
h8dh8(

j
H np0~u,h,z!@11np8

0
~u8,h8,z8!#@11np9

0
~u9,h9,z9!#

v̄p~u,h,z!v̄p8~u8,h8,z8!v̄p9~u9,h9,z9!
@F p9 i

n
~u9,h9,z9!

1F p8 i
n

~u8,h8,z8!#J
z85z

28 ~ j !;z95z
29 ~ j !

Kp8p9, j
2 . ~43!
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IV. EXPRESSION OF THERMAL CONDUCTIVITY AND
COMPARISON BETWEEN THEORY AND

EXPERIMENT

The heat current density

U5
1

V (
qp

\vqpvqpnqp52
1

V (
qp

\vqpvqp
]nqp

0

]~\vqp!
Cqp

~44!

can now be easily evaluated by the help of~29!, ~37!, and
~42!. One obtains the following expression for thenth com-
ponent ofU with respect to the Cartesian reference system
with unit vectorsui :

Un52(
i

kni

]T

]xi
, ~45!

where

kni5
\F0

2

16p3mvkBT
2 (

p
E
0

2p

duE
0

H~u!

hdh

3E
2M ~u,h!

M ~u,h!

dz
ebv̄p

~ebv̄p21!2
v̄pApnF pi . ~46!

As already anticipated in the Introduction, the main obstacle
to the application of the theory developed in the previous
sections is the time required by the computer to evaluate
with a sufficient degree of accuracy the functions involved in
each step of the iteration process. The problem is connected
with the number of points one can use to sample the BZ in
order to perform the multiple integrations: this number must
be sufficiently high to allow the substitution of each integral
by a sum over a finite number of terms, but, on the other
hand, not so high to prevent us from arriving in an accept-
able time at the convergence of the iteration procedure. A
criterion for a reasonable choice is suggested in Fig. 2: here
we consider, for the sake of simplicity, the ideal case where
the interaction between argon atoms at 80 K is confined to
nearest neighbors~s51! and bring the theoretical conductiv-
ity vs the order of iteration, for various choices of the num-

ber of points ~N ! used to sample the BZ. The choice
N 52304 is clearly unsatisfactory: it produces to undue os-
cillations of the curve for high orders of iteration, showing
that a low density of points gives rise to numerical instability
during the iteration procedure. This is understandable, since
we start with the evaluation ofF pi

0 5upi/Qp @see Eq.~43!#
in the limited number of points corresponding to our sample:
on the other hand, the integral required by Eq.~43! to obtain
F pi

1 implies the knowledge ofF pi
0 in the whole BZ @in

particular,z68 ( j ) andz69 ( j ), as resulting from the solution of
the energy and momentum conservation equations, corre-
spond to point which are not necessarily included in the
sample#. The numerical integration is performed by assign-
ing to each point the value ofF pi

0 pertaining to the closest
point of the sample. Clearly, such an approximation gives
rise to errors which affectF pi

1 , and can be amplified by the
successive iterations. The resulting numerical instability de-
prives of any meaning the apparent saturation of the curve
for iteration orders lower than;15. However, by inspection
of the figure one notes that the above oscillations are pro-
gressively reduced and finally disappear for increasing val-
ues ofN : moreover, the asymptotic values corresponding to
different choices ofN become undistinguishable whenN
is large. This is interpreted as a good argument in favor of
the choiceN 57488, which will be considered in the follow-
ing ~that is, in the real case where the interaction between
atoms is extended to all the effective neighbors! as an accept-
able compromise between the two different exigencies pre-
viously discussed.

In the frame of this choice we applied our method of
solution to solid argon and krypton, extending the Lennard-
Jones interaction up to the third shell of neighbors and ac-
counting for scattering processes referring ton50 ~normal
processes! and n51 ~umklapp processes!. In fact we
checked, on one hand, the negligible role played by the in-
teraction terms connected with the fourth shell of neighbors;
on the other hand, the absence of any contribution from pro-
cesses withn>2 ~that is, from vectorsg pertaining to the
second, third,... shell of the reciprocal lattice!. The param-
etersF0 andr 0 entering the pair potential were deduced from
Wallace9 and are reproduced in Table II.

A first important result of our calculation is the possibility
of investigating the behavior of the deviation function along
any given direction emerging from the origin of the BZ.
Writing

Cqp52kBh1Fp~q!S q

uqu
• ¹TD , ~47!

we have, in the particular case with¹T parallel tox3 axis

Cqp52kBh1Fp~q!S ]T

]x3
D cosa, ~48!

FIG. 2. Theoretical conductivity~in mW cm21 K21! for argon at
80 K, evaluated in the nearest-neighbor approximation, as a func-
tion of the order of iteration for different choices of the numberN

of points used to sample the Brillouin zone:N 52304 ~j!,
N 53240 ~l!, N 54400 ~d!, N 57488 ~h!, and N 511 760
~s!.

TABLE II. Parameters of the interatomic potential as deduced
from Wallace~Ref. 9!.

Solid F0 ~10213 erg! r 0 ~Å!

Ar 0.583 56 3.4447
Kr 0.900 96 3.6621
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wherea is the angle of the selected direction~q! with thex3
axis. The second angle specifying this direction is, of course,
the angleu previously introduced in the planez50. Equating
expression~48! to ~37! and accounting for~42!, we deduce
~from the relationv5h1

3/&!

Fp~q![Fp~u,a;r!5
F0&

8p2kBT cosa
F p3~u,h,z!,

~49!

whereh5r sina, z5r cosa, r being the radial coordinate
along the specified direction in units ofd. Figure 3 repro-
duces the behaviors of functionsFp for u50 and different

values ofa, as deducible for Ar at 80 K from the 12th step of
the iteration process. Analogous curves are obtained for other
values ofu. The range~0,rmax! for the allowed values ofr
changes with the direction,rmax representing the reduced dis-
tance from the origin of the zone boundary along the direc-
tion itself. We notice that for a givena, the case correspond-
ing to a1p, that is to h52r sina, z52r cosa, can
formally be obtained by leavinga unchanged and changingr
into 2r, so that it is exactly described by function~49! when
this is interpreted as an analytical function ofr in the range
wherer is negative. Consequently the two cases correspond-
ing to a and a1p are automatically included in the same
figure when the analytical function~49! is brought vsr in the
whole range2rmax<r<rmax. It has also to be pointed out
that whenq approaches the direction lying in the planez50
~normal to¹T! the denominator of function~49! goes to zero
because in this casea→p/2, but also the numerator van-
ishes: in factAp3→0 for z→0 and consequently, in this limit,
owing to Eqs.~38! and~43!, F p3

n vanishes at any step of the
iteration process. As a result the functionF p3/cosa must be
substituted by

r lim
z→0

F p3~u,r,z!

z
,

which has the symmetric behavior corresponding to the
dashed curve of Fig. 3. The thick curves reproduce the pre-
dictions of the isotropic model, as deducible from the calcu-
lation performed in I~in this case the range ofuru is extended
from 0 toQD/d50.492,QD being the radius of the Debye
sphere!. We notice the different scales used for longitudinal-
and transverse-branch diagrams, showing that the deviation
from the equilibrium distribution is especially important for
longitudinal branches.

The numerical evaluation of expressions~46!, as obtained
by leading the iteration process up to the 12th step, confirms,
as expected, that tensorkni is isotropic, that iskni5kdni
wherek can be interpreted as the thermal conductivity of the
crystal. The reason for which the off-diagonal components
vanish is related to the behavior of functionsApn~u,h,z! and
F pi~u,h,z! as a consequence of a 180° rotation around a
coordinate axis: for instance, a rotation of this kind around
the x3 axis impliesAp1→2Ap1, Ap2→2Ap2, Ap3→Ap3,
while F p3→F p3, so that any productApnF p3 with nÞ3 is
an odd function with respect to the transformationu→u1p,
h→h, z→z and the corresponding integral in Eq.~46! ~or in
other words,kn3! is zero. Similar arguments, when applied to
180° rotations around thex1 andx2 axis, would lead to the
conclusion that alsokn1 andkn2 are zero, fornÞ1 andnÞ2,
respectively. The equality of the diagonal components
~k115k225k33! follows from the fact that the three coordi-
nate axes are perfectly equivalent from the point of view of
crystal symmetry: however, the numerical check of this
equality is not obvious at all, since in some way the use of
cylindrical coordinates in our calculation amounts to intro-
ducing a preferential direction~thex3 axis! and consequently
the three axes are not treated in the same way. In more spe-
cific terms, the volume elementhdhdudz does not contain
the three variablesh1,h2,h3 in a symmetric way. Such a
dissymmetry must obviously be immaterial when the density
of points used to sample the BZ is very high, since the value

FIG. 3. Behavior of functionsFL , FT1
and FT2

in the plane
u50, as a function of the radial coordinater, the temperature gra-
dient being along thex3 axis. The continuous thin line refers to
a50, the dotted line toa5p/4 and the dashed line toa5p/2. The
behavior of the corresponding functions evaluated by means of the
isotropic model is represented by the continuous thick line.
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of the multiple integral in~46! must be independent of the
system of coordinates used to describe the integration do-
main: nevertheless, errors introduced by the use of a finite
number of points are expected to engendre a difference be-
tween the numerical value ofk33 and that of the two other
diagonal components. The magnitude of this difference rep-
resents an important tool to judge the reliability of our sam-
pling of the BZ. From Table III, where the ratio
~k332k11!/k33 is brought vs the number of points, we deduce
that our previous choiceN 57488 is fully satisfactory, the
above ratio being of the order of 1022 and, consequently,
lower than the uncertainties affecting the experimental val-
ues ofk.

In Figs. 4 and 5 we givek as a function of temperature at
room pressure for solid argon and krypton, and compare the
theoretical curve~full line! with experimental data from
literature.10–14 The agreement turns out to be particularly
good if one makes reference to the recent data of Kostanti-
nov, Manzhely, Strzhemechnyi, and Smirnov~KMSS!,14 as
also shown in a numerical form by Table IV. The rise ofk
for T→0 is obviously unrealistic, and depends on the cir-
cumstance that no boundary scattering has been considered
in the present theory. Figures 6 and 7 refer to solid argon and
givek as a function of the molar volume atT575 K, and the
ratio 102 W/T vs T at constant molar volume~22.53 ml!,
W51/k being the thermal resistivity: in both cases the agree-
ment between theoretical and experimental data15,16 is quite
satisfactory and its meaning is enhanced by a comparison
with the theory of Julian.17

Finally, as in I, we find it interesting to apply our method
of solution to an ideal case where all umklapp processes are
switched off, and phonon transport is determined byN pro-
cesses alone. Such a situation can be achieved by multiply-
ing each term withn>1 in Eqs.~40! and ~41! by a factorh
smaller than unity and investigating the behavior ofk for
h→0. In this way umklapp collisions~which are exactly de-
scribed by terms of this kind! are progressively extinguished
and an emerging role is attributed to normal collisions~terms
with n50!. The diagram ofk vs h ~for Ar at 80 K! is given
in Fig. 8 and shows thatk becomes infinitely high forh→0.
This is in agreement with the basic requirement of any
theory of thermal conductivity, since normal collisions~in a
perfect crystal without boundary effects or isotopic scatter-
ing! do not change the total momentum of the phonon sys-
tem, and consequently cannot be responsible for any resis-
tance to the thermal flux. We find that the above condition is
automatically fulfilled by our theory, and corresponds to the
fact that the iteration process does not converge forh50.

V. CONCLUSIONS

The present paper can be considered as an attempt to cal-
culate, without model approximations, the contribution of
three phonon interactions to the thermal resistivity of rare-
gas solids: the important work of Benin18 on a variational

TABLE IV. Comparison of the results obtained by the present
theory and by the isotropic model~Ref. 1! with the experimental
data of KMSS~Ref. 14! and of White and Woods~WW! ~Ref. 12!
for argon and krypton. Thermal conductivity is given in mW/
~cm K!.

Solid T ~K!
Present
theory Isotropic model KMSS data WW data

Ar 80 2.36 2.78 2.3 3.060.4
20 16.6 27.2 17.0 17.0

Kr 80 3.55 4.8 3.16 3.660.4
20 19.3 33.7 18.9 9–12

TABLE III. Ratio ~k332k11!/k33 vs the number of pointsN
used to sample the BZ.

N ~k332k11!/k33

2 304 0.05
4 400 0.03
7 488 0.013
11 760 0.006

FIG. 4. Thermal conductivity~in mW cm21 K21! for argon as a
function of temperature at room pressure, as resulting from the
present theoretical calculation~continuous line! in comparison with
the existing experimental data~j, Ref. 10;s, Ref. 11;d, Ref. 12;
l, Ref. 13; and:, Ref. 14! and with the curve obtained by means
of the isotropic model~dashed line!.

FIG. 5. Thermal conductivity~in mW cm21 K21! for krypton as
a function of temperature at room pressure, as resulting from the
present theoretical calculation~continuous line! in comparison with
the prediction of the isotropic model~dashed line! and with the
experimental data of White and Woods~Ref. 12! ~h! and of KMSS
~Ref. 14! ~:!.
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calculation of the thermal conductivity of solid argon led to
numerical results which were unavoidably affected by the
uncertainties connected with the use of the Debye model.

In principle, the knowledge of the three-phonon contribu-
tion to the thermal resistivity allows one to deduce, by sub-
traction from the experimental value, information on other
contributions like those due to isotope and impurity scatter-
ing, four-phonon processes, etc. First of all, a comparison
between our theoretical results and the recent experimental
values ofk obtained by KMSS~Ref. 14! shows that the
agreement is quite good for argon, while for krypton our
conductivity at 80 K and room pressure is about 10% higher
than the experimental value. A possible explanation is just
provided by isotope scattering, which has not been consid-
ered in the present paper: actually, the role of such an effect
is expected to be much more relevant in krypton than in
argon, according to the table of isotopic abundances given by
Ziman2 ~p. 311!. In the absence of a detailed calculation on
this point, which is left to a future work, we are in a position

to conclude that, at least for argon, little space is left for four-
or five-phonon contributions to the thermal resistivity.19,20At
high temperatures, where these high-order anharmonic con-
tributions should be more effective, the discrepancy between
the three-phonon contributions and the observed values ofW
for argon is probably within the experimental uncertainties
~see Fig. 7!, so that we have here an indirect proof of the
result obtained by Ecsedy and Klemens21 about the negli-
gible role played by four-phonon processes. This amounts to
saying that, if the discrepancy between KMSS data14 and
Clayton and Batchelder’s data16 is taken as a measure of the
experimental uncertainties, there is no experimental evidence
of a significant deviation from thek}1/T law predicted at
fixed volume by three-phonon interactions: such interactions,
therefore, as already pointed out by Batchelder,15 appear to
be fully sufficient to explain the numerical values of thermal
conductivity, so that the basic mechanism of heat transport in
argon is precisely that suggested a long time ago by Peierls,22

Klemens,23 and Ziman.2 Only if a physical meaning is attrib-
uted to the small decrease ofW/T observed by KMSS at
fixed volume, some supplementary mechanism has to be in-
voked: this, however, could not be ascribed to four- or five-
phonon scattering processes~expected to produce an increase
of W/T!, but ought to be sought, as suggested by KMSS, in
the anharmonic renormalization of phonon-dispersion
curves. Of course, the use of such renormalized curves be-
fore carrying the iterations would further increase the com-
plexity of our numerical calculations: in the absence of a
definite experimental evidence, any reformulation of the
present theory in this direction appears to be unreasonable.

A final comment concerns the nearest-neighbor approxi-
mation which is usually adopted to describe the anharmonic
interactions:6 as shown by Fig. 2, the thermal conductivity of
solid argon at 80 K, as deducible under the above assumption
~2.73 mW cm21 K21! exceeds by about 15% the value cal-
culated by extending the interaction to all the neighbors
~2.36 mW cm21 K21!. Such a result means that any calcula-
tion of thermal conductivity based on the above approxima-
tion is affected by errors decidly larger than the experimental
uncertainties~at least at high temperatures! and this should
be particularly true for ionic crystals, owing to the long range
of the Coulomb interaction.

FIG. 6. Thermal conductivity~in mW cm21 K21! of argon as a
function of the molar volume at 75 K~continuous line! in compari-
son with the prediction of the isotropic model~dashed line! and
with the experimental data of Batchelder~Ref. 15! ~s! and of
KMSS ~Ref. 14! ~:!.

FIG. 7. Temperature dependence of WT21 ~thermal resistivity
divided by temperature! at fixed molar volume~22.53 ml!. The
present theory~continuous line! is compared with the experimental
data of Clayton and Batchelder~Ref. 16! ~s! and the experimental
data of KMSS~Ref. 14! ~:! and with the calculation performed in
I by means of the isotropic model~dashed line!. Also shown is the
behavior predicted by Julian~Ref. 17! ~dotted line!.

FIG. 8. Thermal conductivity~in mW cm21 K21! for argon at
80 K, as a function of the parameterh weighting umklapp collisions
~see text!: the continuous line refers to the present theory and the
dashed line to the isotropic model~Ref. 1!.
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