PHYSICAL REVIEW B VOLUME 53, NUMBER 14 1 APRIL 1996-II

Beyond the isotropic-model approximation in the theory of thermal conductivity
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By the use of an iterative method the linearized phonon-Boltzmann equation for a dielectric solid subjected
to a thermal gradient is solved in the frame of three-phonon interactions. In this way it is possible to calculate
the thermal conductivity of rare-gas solids starting from the pair potential and accounting for the real Brillouin
zone of the lattice. The numerical results are in full agreement with experiment and represent a considerable
improvement with respect to those previously deduced for an isotropic solid.

I. INTRODUCTION cylindrical coordinated),#,{ through the equations

In a previous papér,referred to as |, we outlined an it- 7= COY, =7 sSing, n3=¢, (1)
erative method to solve the linearized Boltzmann equatio%

for a system of interacting particles subjected to an extern one (BZ) in the SP ; :
) . o plane{=0 is defined by the equations
field. With respect to the variational approectiwhere the &yt 7,=314 and-+ =12, + 7,=1/2. In other words, with

answer is affected by the form adopted, generally withoufotarance to Fig. 1, it is the octagonal path with equation

justification, for the trial function, the above method presentsﬂb:H(e) where 7, is the value ofy corresponding to a
the advantage of being independent of any arbitrary assum%omt of tk’1e boundary an#i(6) the function represented in
tion, apart from the obvious requirement that the iterationTab|e |

procedure must be convergent. If from a ai . . - .
s . . given point(6,7) lying within the zone section
The reliability of the new method was checked in | with =0, we move along a parallel to theaxis, we cross the

reference to an isotropic solid subjected to a thermal gradi oundary of the BZ at a point witty, = + M (6, ), whereM
ent. In this paper we will apply the same procedure t0 a reg" jofined as the minimum among the absolute values of

crystal(namely, to a rare-gas solid described by the real BriI-attributed to the above point by the equations
louin zong and obtain in this way the solution of the trans- + 7,% mp+ 75=3/4 and= 7,=1/2: in other words

port problem in the frame of three-phonon interactions. Al-
though the numerical accuracy of the results is, in principle, 1
limited by the tremendous amount of time and financial sup- M(a,n):min( , EJ' 2
port required by the computer to perform the program con-

nected with the evaluation of the successive iterations, new-et V(r) be the pair potential describing the interaction be-
ertheless our calculations are sufficient to check thaween atoms of the crystal. Introducing the operator
convergence of the iteration procedure and consequently th®,=r ~'d/dr, we can write the eigenvalue equation for the
possibility of obtaining the true behavior of the phonon dis-phonon frequencies and polarization vectorsin the forn?
tribution function in the whole Brillouin zone. Moreover,
since the convergence is found in the whole temperature
range, our solution takes automatically into account, for any AN
temperature, the real roles played by normal and umklapp N2 ( ,%)
processes, being completely independent of assumptions
concerning the small ratio of the normal to the umklapp pho-

is easy to deduce that the boundary of the first Brillouin

3
7 + » cosp=+ 5 singd

non mean free path, as conversely invoked in the perturba- (%'%)

tive approaches discussed by Gufzimd Gureviclf For all "

these reasons we are led to believe that the iterative method 0 0

outlined in | represents a suitable approach to the solution of >

the Boltzmann equation for any kind of transport problems. N m
b

Il. THREE-PHONON SCATTERING PROCESSES IN A
FCC LATTICE

Let h, be the nearest-neighbor distance in a fcc lattice and
u; the unit vectors corresponding to Cartesian coordingtes
(i=1,2,3, chosen along the sizes of the periodic cube in the
direct space. Measuring the componaytsf any vectorg in
units of the sized=2mv2/h; of the periodic cube of the FIG. 1. Octagonal path describing the boundary of the BZ in the
reciprocal lattice, namely putting;=d7;, and introducing plane{=0.
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TABLE I. The functionH(6) describing the boundary of the BZ

in the planel=0. Trnl 017715):2 (1_COSEtS)(20'35nm+ Psxtsmxtsn)r )
s,t

0 H(6) one can easily reduce E¢p) to a linear homogeneous sys-

1 1 tem for the three componengs ,e,,e; of the vectore, giv-
O<g<tg! > > 0P ing rise to the following algebraic equation far.

1 3 — —) —2 2
-1-<g<tg! - - T11— 0)[(Tor— @) (Tzz— @) —T55] + T1 TosT

tg 2<0<tg 2 Z(cod+sind) (T1a (T2 )(T33 ) 23l 14 T23T13
tg~'2< ¢9<z+tg*1E L —T1ATag— @) ]+ T1d T12T 25— T1a(Top— @?)]=0.

2 2 2 sing
T 1 1 3 (10
—+tg los<fhsm-tg 'z —_ _ . ,
2 2 2 4(— cosf+sind) For each of the three roots, of the above equatiotdefin-
m—tg~! EseSWHgfl 1 o1 ing the three branch.es of the phonon specjrwa deduce

2 2 2 coy the components of, in the form
+t ‘11<0<3 t‘11 >

LR e A 4(co+sing) €p1=[T1sTos~ T2 Tos— @2)1/D,, (12)
3 1 3 1 1
sm—tg lssossm+tg o —— _
2 g : 27T 7 25ing €p2=[T1sT1o~ TodT11— @2)1/D,, (12
s mttg lo<f<27m—-tg il T — —
> THg 12 g "5 4(cos9l—sm0) epa=[(T1— wg)(-rzz_ wgz))_T%Z]/Dp’ (13)
27—tg~? 5 =0<2m > o9 where

Dp={[T1aT2s~ T1a(Toz— @) 1+ [T1sT 1o~ Tos(Toy— @) 12
; (1—cosq-h)[ yne+ Bn(h-e)h]=mw?, (3 +[(To— @2)(To— w5) — TH,12H2 (14)

Let us now consider a three-phonon scattering described by

wherey, =0V, B,=02V andm is the mass of each atom. the conservation equations

With reference to a Lennard-Jones potential
1 a*q'=q"+g, (15

ro\®
7) : 4) @p(Q) = (q") — wp(q") =0, (16)

it is convenient to define dimensionless parameteryvhereg is a reciprocal-lattice vector and the upper and the
o(h)=h%® 51y, and p(h)=h{d ;18 . In this way, col- lower sign refer to the procességp)+(q'p’)—(q"p") and
lecting together in the sum ovérthe contributions coming (AP)—(a’p")+(q"p"), respectively. Expressingin terms of
from all the neighbors belonging to the same shell, we retheu;’s (Ref. 9 and recalling Eq(1) we rewrite Eq.(15) in
write Eq.(3) as the form

o
V(r)=d, T

200 2 1
m ’ v 1"
1q)w e MED T 5 M= i (17)
0

ES Z (1—cogy-h)

oe+ % (hi-e) hf} =
1

(5)  wherev labels the shell of the reciprocal lattide the point

. .. of the reciprocal lattice belonging to this shell, and
where s runs over all the shells of neighbors, the position™, WLy nls are of the form(1,1,D, (—1,1,D,... for v—=1

vector of thetth neighbor in thesth shell(of radiush) being M k1 -
denoted byh®, ando,=o(hy), pe=p(hy). It is easy to see (first shel), (2,0,0, (0,2,0,... for v=2 (second shel| etc.

that vectorsh{ can be written as linear combinations of the Igr?sgaieeyn:tlo cvor_r(e)sponds t@=0 (normal processesand,
u;’s, in the form q Yrki=0.

For a given choice of#,,7,) and (5;,7;), that is of

h 3 (n,0) and(%',6'), we easily deduce from Eq@17) the length
hé= i > xu, (6)  and the direction of vectorsfju; + 775u,), through the rela-
V2 i=1 tions
wherex g, X5, X 55 are of the form(1,1,0, (1,0,D,... fors=1 "_ coh+ 7' cos’ —NZ1)2
(first sheld, (2,0,0, (0,2,0,... for s=2 (second shel| etc. 7' ={(7 =7 )
Defining the reduced frequencies + (7 sing= 7’ singd’ —\ )%}, (18)
_ 2m| 12 sind+ 5’ sing’ —\|,
w=h; ()T) w, (7 tg "= 7 7 kVZ, (19
0 7 COP* 7' coB’' — Ny
and the dimensionless quantities where\ ;= pu ¢i/2 and ¢’ belongs to the first, second, third,

s < s . fourth quadrant, according to the conditiofi$ D >0, N>0;
E0(0,7,0)=2m(gx{y cOH+ nXi, sSind+{x33),  (8)  (2) D<0, N>0; (3) D<0, N<O; (4) D>0, N<O, respec-
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tively, N andD being the numerator and the denominator of ano

the fraction appearing in Eq19). KgTVgp: VT — (ﬂ_
Hereafter we will use the notatiom,(6,7,{) to indicate

the angular frequency of thath branch corresponding to the

vectorq specified by the cylindrical coordinatésy,Z. In this = 2 2 Qq;;q’ o AV o= Varp— Vel
way from Eq.(16), owing to Eq.(17) written for i=3, we a’’ d'p
deduce o
+ = 2 2 Qq pLap [‘I,qrrprr'i"q,qrpr_\qup], (22)
q!p! quH
op(0,7,0) =0y (0", 7,0 )= wu( 8", 7", —Na). where the deviation functio¥, is defined in terms of the

(20) perturbed and unperturbed phonon distributiong and
n p respectively, according to the equation

an®

Expressingd” and " with the help of Eqs(18) and(19) we N =n° —\p - (23)
see that Eq(20) represents an equation to be solved far e ap I hwgp)
The jth solution of Eq.(20) satisfying the condition The probability rates for the phonon processes

E)qp)+(q’p’)ﬂ(q”p”) and (gp)—(q'p")+(q"p") are given

Yy
_ ’ NnN<g'< ’ '
M(0", 7" )<{'<M(6",7') (21) o n%nC, o (1+n%0,) o
PP T 1EMIN  wqpwq p Oqrpr (@gpt @qrpr

will simply be denoted by, (j): it obviously depends on the
variablesé,7,£,6',' and on the indices,k,p,p’,p". Corre- ~ Oqrp)- /qp a’p’.q"p" (24)

spondingly we will denote by{”(j) the quantities¢  and

+ Nia.
()N Q o h ngp(1+ng,p,)(1+n8”pn) 5
3 Wap™ @g'p’
16m N wqpa)q,p/(uqupn
IIl. TRANSPORT EQUATION FOR THE PHONON wq,,p,,)ﬁ P (25)
SYSTEM UNDER A THERMAL GRADIENT e ae

respectivelyN belng the total number of atoms in the crystal
The linearized Boltzmann equation for a solid subjectedand the factors2~ depending on the polarization vectors
to a thermal gradient can be written in the fdrin through the expressiofsee )

fq_pq PP ; {ah(h.eqp)(h.eq’P')(h'eq”p”)+Bh[(h'eqp)(eq’p"eq”p”)+(h'eq’p’)(eqp‘eq'rprr)

2

+(h-eypr) (€gp- €grp) 1} (€19 M= 1) (19 N—1)(e71"N—1)| | (26)

wherea,,=03V.

As in Eq.(5), it is convenient to transform the sum oJeinto a sum over all the shells of neighbors. For sfie shell we
define the reduced radiugs=hgh; where he=(h;/v2)[(x$)2+ (x5)%+(x$)?]Y2 and the dimensionless parameter
es=—h2&2aypg, with ag= a(hg). Owing to Egs.(6) and(26) we easily obtain

2

A+ Z(DO +12
A== [F7I% (27
1
where
+ 1 egps
Ffzz }t: > & (X5 €0) (X5 € ) (X~ €r) + Pl (X5 €) (€ ) + (X5 €51 (8- €r) + (XF - €y (8- €p1) ]
X{sinE{x &% —sin E;Fsin E{°}, (28
having writtenx - e,=X{1€p1+ X 2€p2+ X (3803, €tC., and= {=E§(6,%.0), E{*=E(6".%'.{').

Let us examine the right-hand sidens) of Eq. (22). One can transform the sum owvgt into a sum over the reciprocal-
lattice vectorsg (that is, overy,k) using the momentum conservation condititk®). Conversely, the sums ovey are
amenable to integrals over the BZ by the help of the substitution
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Q Q 2mV2 277 00"
N 3/ — ,
% (2m)° fd a (277)3( hy ) f f 7 d’?f O H)dé, (29

where(} is the crystal volume. The presence of th&unctions appearing in Eq§24) and(25) eliminates the integration over
', so that, setting =Q/N (lattice cell volume, one obtains

H(6")
Tao [
vk

vThv2

rhs of Eg. (22)=

0/ On 7 —n| -1
(1+n ) +12 n ’ Jo Jw
[ T |F | (P"=T'—1T) &_g'_ (7_€"
= (=0
1 H(o") n°(1+n%)(1+n%)
~ 2 J’ da f ’ , o rn
2 Tk ww' w
X|F7 (V" +¥ -V AL 30
|“( )&g, d : (30)
=" ()0"="(j)

where for each of the three functionB,o,n’° we have used the compact notatiows(6,7,0) =V, V,(¢',7',{' )=V,
Yo(6',9',¢")=V", and so on.
Since nowvy,=dwg,/dq we have, from Eq(7),

keT [ @0\ Y20  dwp, (9T
lhs of Eq. (22)—4—(—) 0_2. T o (31)
or also, from Eqgs(1) and (10)
kg [®o\ 12 _ gbop oT
Ihs of Eq. (22)—@ (H) bwp(eb“’p——l)z EI Api (9_)(| , (32
where
i CI)O 1/2
o~ ket om) %

Api(0,17,0)= {[(Tzz ®5)(Ta3— w5) = To3IN1; + [(T11— 05)(Tag— 5) = T3alNogj +[(T11— @5) (Too— @3) — T1,INa3;

+ 2[T12T13_ Tox(T11— wp)] N23j+2[To3T13— T1A T3z~ 5,2))] Nioj+2[T12T 23— T1a(T2o— 5,23)]'\'13;}, (34

N 2772 (SiN B3)(2068mnt pS xS XS, (35
Bp= 25p[3f7)3— 2(T1t T+ Taa) 5;2;_ (Tio+ Toat Toa TuaT oo~ T1iTag— TooT ). (36)
Equating(30) to (31) and setting
V= ), (37
P gpZyT P
b

“p WADWI: 0pm( 017]!§)1 (38)
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|Fi|2 ]
AL o en " (07740’77) (39)
! - 14 . . p p
( |Ap 3(0 17] vg ) Ap 3(0 !7] lg )| §,=§;(]);§"=§ZL(J) ]
we obtain
o _10((9T+0 Ty, [T
n( JLé’)—Q—p n1| ox, 02| ox, p3| ox,
0 0 ' roer 0 no_noen
1 2 Chey Np(0,72,0)n5, (0", 5", ") [1+n,(6",7",{")] S
+_EE daf Udﬂz{ — p— ’ ’ r_p "o moen [f”(a g)
p v,k 0 wp(avnag)wp’(e 7 lg )wp”(e 7 1§ )
_fp/(e,!nlagl)]} ) . K;’p//yj
= (=D
1 JHw {n&enmo[1+n&(w,nzr>11+ngxazﬂz:v]
da , — — TR o en
2QD Vk / o wp(alnlg)wp’(a /i L )wp"(0 7 4 )
x[fp,,(a",n",g")+fp,(a',n',g')]] O K (40)
=000 =000))
where
0 0 ’ roer 0 "onoen
ano=223f%wfw%ﬂﬁﬁ{wng%gJLHHTMHWIH K
S T 0 7L op(0m.0ep (000", 80 00" 8 g ey P
1 2m H(o’
#5333 [Tar [ yanS
2 5% gy Jo 0 ]
X[ no(6,7,)[1+n0,(6',7', §>11+n,xa'n"§w]} - -
(0 7" p'p”j
wp(e 7, é,)wp (0 n g )wp (0 n g ) = g (]) gu g"(l) !

Equation(40) is precisely of the form of Eq(11) in | and consequently can be solved through an iteration procedure. The
solution is seen to be

aT
fp=2l /p,(axl) (42)
where.7; is the limit for n— of the functions,?gi generated by the recurrence relation
0 0 ’ roer 0 "eonoen
1 2m H 0, n (017]!§)n '(0 177 Yé/ )[1+n "(0 !7] lg )]
Ta =5t > f mrf(>ﬁd¢§1fp_ = oy o (0L

Qp p Vk p'p” 0 0 j wp(eanvg)wp’(e /i 15 )wp”(a N 1§ ) P

~ T (8"’ zn] Koro

¢'=¢ (5" =¢" )

+ i dﬁ fH(H ) ' , [ ng(ﬂ,_77,§)[l+ nE,(0’1n71§r)][_]_+ng”( grr’nnlgn)] [bin/l'(eﬁ 7]” g”)
2Qp Vk p'p" 0 wp(aanig)wp’(a,ln,!é’l)wp”(a,lin”!g”) P , '

sl ’ 1ot -
+/p,|(0 i ,g )]] Kp’p",j' (43)
=" (ner="
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TABLE Il. Parameters of the interatomic potential as deduced

a0l ' ' ' . | from Wallace(Ref. 9.
3.5/ //-/,,-"""’._.Ji AL T Solid d, (10 B erg ro (R)
et ¢\
3.0 / ’/./"’ 1 Ar 0.583 56 3.4447
K o5 / /;e;e;a;a;ezwﬂ“ . 1 Kr 0.900 96 3.6621
iy
2.0t : , _
ber of points (/") used to sample the BZ. The choice
1.5¢ 1 J/"=2304 is clearly unsatisfactory: it produces to undue os-

cillations of the curve for high orders of iteration, showing
that a low density of points gives rise to numerical instability
during the iteration procedure. This is understandable, since
) o 11 we start with the evaluation 017&: 0,i/ Qp [see Eq.(43)]

FIG. 2. Theoretical conductivitin mW cm K™ forargonat i, the limited number of points corresponding to our sample:
80 K, evaluated in the nearest-neighbor approximation, as a funGs, the gther hand, the integral required by E4B) to obtain
tion of the order of iteration for different choices of the number -1 implies the knowledge 0f78i in the whole BZ[in

; L I 5i
of points used to sample the Brillouin zone!"=2304 (M), Pl . y e . .
1"=3240 (#), ./ =4400 (@), .1 '=7488 (O), and ./ =11 760 particular,Z’.(j) and{”.(j), as resulting from the solution of

0 5 10 15 20
Iteration order

). the energy and momentum conservation equations, corre-
spond to point which are not necessarily included in the
IV. EXPRESSION OF THERMAL CONDUCTIVITY AND sampld. The numerical integration is performed by assign-
COMPARISON BETWEEN THEORY AND ing to each point the value O?gi pertaining to the closest
EXPERIMENT point of the sample. Clearly, such an approximation gives
_ rise to errors which affect” rl,i, and can be amplified by the
The heat current density successive iterations. The resulting numerical instability de-
prives of any meaning the apparent saturation of the curve

1 1 ‘Qngp for iteration orders lower than-15. However, by inspection
“=a %} fogVaphan=~ % hogpVap I fiwqp) Yoo of the figure one notes that the above oscillations are pro-
(44) gressively reduced and finally disappear for increasing val-
ues of./: moreover, the asymptotic values corresponding to
different choices of/" become undistinguishable wheh”
nis large. This is interpreted as a good argument in favor of
the choice/'=7488, which will be considered in the follow-
ing (that is, in the real case where the interaction between
JT atoms is extended to all the effective neighb@s an accept-
Up= —Z Kni 55 (45  able compromise between the two different exigencies pre-
! ! viously discussed.
where In the frame of this choice we applied our method of
solution to solid argon and krypton, extending the Lennard-
ﬁ(I)S E vardafH(w d Jones interaction up to the third shell of neighbors and ac-
= ], 0 numn
bw

can now be easily evaluated by the help(29€), (37), and
(42). One obtains the following expression for théh com-
ponent ofU with respect to the Cartesian reference syste
with unit vectorsu, :

ki =163 mo kT2 counting for scattering processes referringzte0 (normal

processes and v=1 (umklapp processgs In fact we

M(6,7) e’“p _ checked, on one hand, the negligible role played by the in-
Xf d¢ P12 opApn7pi-  (46)  teraction terms connected with the fourth shell of neighbors;
My (€ ) on the other hand, the absence of any contribution from pro-
As already anticipated in the Introduction, the main obstacleeesses withv=2 (that is, from vectorgy pertaining to the
to the application of the theory developed in the previoussecond, third,... shell of the reciprocal latlic@he param-
sections is the time required by the computer to evaluateters®, andr, entering the pair potential were deduced from
with a sufficient degree of accuracy the functions involved inWallace’ and are reproduced in Table II.
each step of the iteration process. The problem is connected A first important result of our calculation is the possibility
with the number of points one can use to sample the BZ irof investigating the behavior of the deviation function along
order to perform the multiple integrations: this number mustany given direction emerging from the origin of the BZ.
be sulfficiently high to allow the substitution of each integral Writing
by a sum over a finite number of terms, but, on the other
hand, not so high to prevent us from arriving in an accept- W = —kghsFo(q) a VT
able time at the convergence of the iteration procedure. A ap N1 pld I
criterion for a reasonable choice is suggested in Fig. 2: here ) . )
we consider, for the sake of simplicity, the ideal case wherdVe have, in the particular case wishr parallel tox; axis
the interaction between argon atoms at 80 K is confined to
nearest neighbors=1) and bring the theoretical conductiv- - _ ﬂ
! g : A gth : ¥ qp=—kghiFp(Q) cosy, (48
ity vs the order of iteration, for various choices of the num- X3

, (47)
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values ofa, as deducible for Ar at 80 K from the 12th step of
LA A L A R AL the iteration process. Analogous curves are obtained for other
values ofé. The range(0,040 for the allowed values op
changes with the directiop,,,, representing the reduced dis-
tance from the origin of the zone boundary along the direc-
tion itself. We notice that for a givea, the case correspond-
ing to at+m, that is to »=—psina, {=—pcosa, can
formally be obtained by leaving unchanged and changipg
into —p, so that it is exactly described by functi¢f®) when
this is interpreted as an analytical functionmin the range
. wherep is negative. Consequently the two cases correspond-
ing to @ and e+ are automatically included in the same
figure when the analytical functio@9) is brought vsp in the
whole range—p.=p<pmax- It has also to be pointed out
that whenq approaches the direction lying in the plafe0
(normal toVT) the denominator of functio9) goes to zero
- because in this case—=/2, but also the numerator van-
ishes: in factA 3 —0 for {—0 and consequently, in this limit,
owing to Eqs(38) and(43), .733 vanishes at any step of the
iteration process. As a result the functiofys/cosa must be
substituted by

o

n n 1 3 il . I 1 e 1 I I3 1 I} n 1 n 1
05 -04 -03 02 -01 00 01 02 03 04 05

T T T T T T T T T T T

i p ||m 7p3(0!p-§)
o &

05 -04 03 02 -01 00 01 02 03 04 05 which has the symmetric behavior corresponding to the
e L L dashed curve of Fig. 3. The thick curves reproduce the pre-
dictions of the isotropic model, as deducible from the calcu-
lation performed in Kin this case the range ¢f| is extended
from 0 to Qp/d=0.492,Qp being the radius of the Debye
spherg. We notice the different scales used for longitudinal-
and transverse-branch diagrams, showing that the deviation
from the equilibrium distribution is especially important for
longitudinal branches.
i The numerical evaluation of expressidd$), as obtained
by leading the iteration process up to the 12th step, confirms,
as expected, that tensat,; is isotropic, that isk,;= kJy;
wherex can be interpreted as the thermal conductivity of the
crystal. The reason for which the off-diagonal components
P vanish is related to the behavior of functiofs,(6,7,{) and
Toi(0,1,0) as a consequence of a 180° rotation around a
_ _ _ coordinate axis: for instance, a rotation of this kind around
FIG. 3. Behgwor of funct!onsFL, FTI and Fr, in the plane  the X3 axis implies Ay —— Ay, Aja——Any, Ajg—Ans,
6=0, as a function of the radial coordingtethe temperature gra- hile T p3—7 3, SO that any produch,,,7 3 with n#3 is
dient being along the; axis. The continuous thin line refers to gn odd function with respect to the transformatipn 6+ ,
a=0, Fhe dotted line tax= 77{4 and thg dashed line @=7/2. The n—m, {—¢ and the corresponding integral in Ed6) (or in
_behaw_or of the gorrespondlng functions ev_aluated py means of thgiher words,s) is zero. Similar arguments, when applied to
isotropic model is represented by the continuous thick line. 180° rotations around the, andx, axis, would lead to the
conclusion that alsa,,; and«,, are zero, fon#1 andn#2,
respectively. The equality of the diagonal components
efxllz Kyo=K33) follows from the fact that the three coordi-
nate axes are perfectly equivalent from the point of view of
crystal symmetry: however, the numerical check of this
equality is not obvious at all, since in some way the use of
V%) cyIir_1dricaI coordin_ates_ in our calcula_tion amounts to intro-
872KoT Cosa T 03(0,1,0), ducing a preferential dlrect|o(rt1h(.ex3 axis) and consequently
B (49) the three axes are not treated in the same way. In more spe-
cific terms, the volume elementd»d#d{ does not contain
where 7=p sina, {=p cose, p being the radial coordinate the three variablesy,,7,,7; in a symmetric way. Such a
along the specified direction in units df Figure 3 repro- dissymmetry must obviously be immaterial when the density
duces the behaviors of functiorg, for =0 and different  of points used to sample the BZ is very high, since the value

v/

n 1 L 3 1 i | Sy 1 n 1
-05 -04 -03 -02 -01 00 01 02 03 04 05

wheree is the angle of the selected directi@m with the x;
axis. The second angle specifying this direction is, of cours
the angled previously introduced in the plarie=0. Equating
expression48) to (37) and accounting fof42), we deduce
(from the relatiorv = h3/v2)

Fp(q)EFp( 0,a;p)=
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TABLE IIl. Ratio (k33— k11)/k33 VS the number of points/”
used to sample the BZ.

v (K33~ K11)/ kg3
2304 0.05
4 400 0.03 K
7488 0.013 .
11760 0.006
of the multiple integral in(46) must be independent of the %0 10 20 30 20 50 60 70 80 % 100

system of coordinates used to describe the integration do-
main: nevertheless, errors introduced by the use of a finite
number of points are expected to engendre a difference be- L 1

tween the numerical value o5 and that of the two other _ F'G: 5 Thermal conductivityin mW cm K™ for krypton as
diagonal components. The magnitude of this difference re a function of temperature at room pressure, as resulting from the

resents an important tool to iudae the reliability of our Sam_present theoretical calculatidgnontinuous lingin comparison with
pling of thep BZ From !I'ab%e I Wherey the ratio the prediction of the isotropic modétlashed ling and with the

; . experimental data of White and Woo@Ref. 12 ((J) and of KMSS
(k33— Kk11)/ k33 IS brought vs the number of points, we deduce(Ref_ 14 (©).

that our previous choice/ " =7488 is fully satisfactory, the
above ratio being of the order of 18 and, consequently,
lower than the uncertainties affecting the experimental val
ues of k.

In Figs. 4 and 5 we give as a function of temperature at
room pressure for solid argon and krypton, and compare th
theoretical curve(full line) with experimental data from
literature'®~* The agreement turns out to be particularly
good if one makes reference to the recent data of Kostant

. : 14
nov, Manzhely, Strzhemechnyi, and SmimMSS), * as and an emerging role is attributed to normal collisitesms

also shown in a numerical form by Table IV. The rise «of : : PSR
. ) L . with »=0). The diagram ofk vs 7 (for Ar at 80 K) is given
for T—0 is obviously unrealistic, and depends on the Cir-ip, Fig. 8 and shows that becomes infinitely high fos—0.

cumstance that no boundary scattering has been considergﬂiS is in agreement with the basic requirement of any

in the present theory. Figures 6 and 7 refer to solid argon anﬂleory of thermal conductivity, since normal collisiofis a

give « as a function of the molar volume &t=75 K, and the perfect crystal without boundary effects or isotopic scatter-

ratio 1 W/T vs T at constant molar volumé22.53 m), ; )
W=1/« being the thermal resistivity: in both cases the agreelng) do not change the total momentum of the phonon sys

. . X ; tem, and consequently cannot be responsible for any resis-
ment between thgoretlcal _and_expenmental Gelfeis quite ._tance to the thermal flux. We find that the above condition is
satisfactory and its meaning is enhanced by a comparis

og . .
i 17 utomatically fulfilled by our theory, and corresponds to the
with the theory of Juliart! fact that the iteration process does not convergerfef.

Temperature (K)

Finally, as in I, we find it interesting to apply our method
of solution to an ideal case where all umklapp processes are
switched off, and phonon transport is determined\bpro-
cesses alone. Such a situation can be achieved by multiply-
ﬁﬁg each term withv=1 in Egs.(40) and (41) by a factoryn
smaller than unity and investigating the behavior xofor
7—0. In this way umklapp collisionéwhich are exactly de-
Scribed by terms of this kindare progressively extinguished

V. CONCLUSIONS

The present paper can be considered as an attempt to cal-
culate, without model approximations, the contribution of
three phonon interactions to the thermal resistivity of rare-
gas solids: the important work of Berfhon a variational

TABLE IV. Comparison of the results obtained by the present
theory and by the isotropic modéRef. 1) with the experimental
data of KMSS(Ref. 14 and of White and Wood6éWVW) (Ref. 19
for argon and krypton. Thermal conductivity is given in mW/

10770 20 30 20 50 60 70 80 90 100 (cm K).

Temperature (K)

Present
Solid T (K) theory Isotropic model KMSS data WW data

FIG. 4. Thermal conductivityin mW cm * K1) for argon as a

function of temperature at room pressure, as resulting from the\r 80 2.36 2.78 2.3 3804
present theoretical calculatigoontinuous lingin comparison with 20 16.6 27.2 17.0 17.0
the existing experimental datll, Ref. 10;0, Ref. 11;@, Ref. 12;  Kr 80 3.55 4.8 3.16 360.4
¢, Ref. 13; and®, Ref. 14 and with the curve obtained by means 20 19.3 33.7 18.9 9-12

of the isotropic mode({dashed ling
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FIG. 6. Thermal conductivityin mW cm = K™) of argon as a FIG. 8. Thermal conductivitfin mw cm *K~?) for argon at

function of the molar volume at 75 keontinuous lingin compari- 80 K, as a function of the parametgmeighting umklapp collisions
son with the prediction of the isotropic modedashed lineand  (see text the continuous line refers to the present theory and the
with the experimental data of BatcheldéRef. 15 (O) and of  gashed line to the isotropic modédRef. 1).

KMSS (Ref. 19 (O).

to conclude that, at least for argon, little space is left for four-

calculation of the thermal conductivity of solid argon led to or five-phonon contributions to the thermal resistiVig°At

numerical results which were unavoidably affected by theh. ht i h th hiah-ord h .
uncertainties connected with the use of the Debye model. Igh emperatures, where these high-order anharmonic con-

In principle, the knowledge of the three-phonon contriby-tributions should be more gffective, the discrepancy between
tion to the thermal resistivity allows one to deduce, by sub{n€ three-phonon contributions and the observed valu@g of
traction from the experimental value, information on otherfOr argon is probably within the experimental uncertainties
contributions like those due to isotope and impurity scatter{S€e Fig. 7, so that we have here an indirect proof of the
ing, four-phonon processes, etc. First of all, a comparisofiesult obtained by Ecsedy and Klemé&habout the negli-
between our theoretical results and the recent experimentgible role played by four-phonon processes. This amounts to
values of x obtained by KMSS(Ref. 14 shows that the saying that, if the discrepancy between KMSS Hatnd
agreement is quite good for argon, while for krypton ourClayton and Batchelder’s dafsis taken as a measure of the
conductivity at 80 K and room pressure is about 10% higheexperimental uncertainties, there is no experimental evidence
than the experimental value. A possible explanation is jusbf a significant deviation from th&x1/T law predicted at
provided by isotope scattering, which has not been considfixed volume by three-phonon interactions: such interactions,
ered in the present paper: actually, the role of such an effecherefore, as already pointed out by Batchelderppear to
is expected to be much more relevant in krypton than inbe fully sufficient to explain the numerical values of thermal
argon, according to the table of isotopic abundances given byonductivity, so that the basic mechanism of heat transport in
Zimarf (p. 311. In the absence of a detailed calculation onargon is precisely that suggested a long time ago by Péferls,
this point, which is left to a future work, we are in a position Klemens?® and Zimar? Only if a physical meaning is attrib-

uted to the small decrease W/T observed by KMSS at
fixed volume, some supplementary mechanism has to be in-
I - - T voked: this, however, could not be ascribed to four- or five-

5p el 1 phonon scattering procesdespected to produce an increase
’ of W/T), but ought to be sought, as suggested by KMSS, in
4 1 the anharmonic renormalization of phonon-dispersion

curves. Of course, the use of such renormalized curves be-
fore carrying the iterations would further increase the com-
plexity of our numerical calculations: in the absence of a
- definite experimental evidence, any reformulation of the
present theory in this direction appears to be unreasonable.
A final comment concerns the nearest-neighbor approxi-
) ) . . , mation which is usually adopted to describe the anharmonic
0 20 40 60 8 100 120 interactions as shown by Fig. 2, the thermal conductivity of
Temperature (K) solid argon at 80 K, as deducible under the above assumption
(2.73 mW cm K1) exceeds by about 15% the value cal-

FIG. 7. Temperature dependence of Wthermal resistivity ~ culated by eixltenidllng the interaction to all the neighbors
divided by temperatubeat fixed molar volume(22.53 m). The ~ (2.36 MW cm~K™%). Such a result means that any calcula-
present theorycontinuous lingis compared with the experimental tion of thermal conductivity based on the above approxima-
data of Clayton and BatcheldéRef. 16 (O) and the experimental tion is affected by errors decidly larger than the experimental
data of KMSS(Ref. 14 (@) and with the calculation performed in uncertaintiesat least at high temperatujeand this should
| by means of the isotropic modéiashed ling Also shown is the  be particularly true for ionic crystals, owing to the long range
behavior predicted by JuliagRef. 17 (dotted line. of the Coulomb interaction.
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