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We have constructed and relaxed over 200 different finite structure models for the quasiefystalbased
on decorations of the “canonical-cell tiling.” We adopteth initio-based pair potentials with strong Friedel
oscillations, which reproduce the phase diagram of real Al-Mn intermetallic crystal structures fairly well. Our
various decoration rules encompass cases with face-centered icosaR@lyadymmetry and with simple
icosahedra(Sl) symmetry, and include additional variations in the occupancy and/or chemistry of certain site
types. Each decoration was applied to 11 distinct periodic approximants of the tiling. We four(@) thet
relaxed atomic positions of each site type can be closely approximated by fixed positions on each tile type,
even though the environmer(tseyond the first neighbpare inequivalent(ii) Models with simple icosahedral
(SI) space-group symmetry were better than those with face-centered icosdaRr€raipace-group symmetry.
(iii) “Loose” decorations, containing voids almost large enough for an atom, were better than the “dense”
decorations which were suggested by packing consideratiom<Our results depended on using the realistic
potentials;shortrange potentials favor the “dense” structures, and many details depend on the second or
further oscillations in the potential§év) For our best model, there is relatively little variation of the energy
when tiles are rearranged, i.e.random-tiling models a good zero-order description of the system.

[. INTRODUCTION fraction fitting (guided also by geometric intuition based
upon known crystalline approximants combinedwith op-
Quasicrystals raise at least two interesting questions: timization of the total energy — here represented by pair
(i) What causes the atoms to adopt these aperiodic, ygtotentials — to discover where the atoms are. In this paper
ordered structures? How can the quasicrystal structure havevee carry out a prototype of the second part of this program,
lower free energy than any competing crystalline one fory exploring the structural energies of a family of atomic
certain compositions, as IRAIPdMn? models fori-AlMn, which is descended from the model of
(i) Where do the exotic electronic transport propertiesRef. 7.
come from? Experiments find an extremely high resistivity, Structural models for icosahedral quasicrystals are com-
which is ascribed to localized states or possibly to “spiky” monly represented as cuiat irrational orientationsthrough
features of the density of statés densities which are periodic in a six-dimensio(&D) hyper-
Answers to both questions require electronic-structurespace. For this paper, however, we adopted the alternate for-
calculations. These are inherently difficult, not only due tomalism of cluster-based decoration models, based in this
the absence of a finite unit cell, but also because the elecase on the canonical-cell tilingCT).2 A decoration model
tronic structure of Al-transition met&AI-TM ) alloys is tech-  consists of a geometrical framewofknost often a tiling,
nically difficult to model, owing to the combination agfp  and a set of local rules for decorating this framework with
and d bands near the Fermi level. In addition, electronic-atoms(detailed definitions are found in paper I, Seg¢. We
structure calculations demand knowledge of the atomic pohave adopted the decoration approach because
sitions, which are nontrivial to describe. A perfect quasiperi- (i) we wished to explore an alternative to the “six-
odic structure requiregin principle) an infinite number of dimensional” technology;
parameters to specify the positions of its atoms; moreover, if (i) it permits the systematic study of the energy changes
a quasicrystal phase are stabilized by entfbpyhen its  due to tile rearrangements;
structure is intrinsically random. (iii) this approach appears to be more convenient when
In a companion pap&thenceforth called “paper I\, we  we wish to make many variations of the modés herg
argued that many electronic calculations depend on having a We have studied two general families of decorations
reasonably correct local geometry arowewiry atoma level  which we have called “dense” and “loose.” This paper con-
of perfection which cannot be delivered by structural refine-centrates on the “loose” family since they turn out to be
ments of diffraction data. We proposed instead a unified aproticeably superior in energy to the “dense” models. The
proach to quasicrystal structure determination, in which dif-specific models here were presented in detail in paper | as
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were the general concepts of systematic tile-decoration modsignificant in selecting among structures.
els which in the present work were found useful for under- A final objective of this project was to initiate the study of
standing the interplay between potentials, geometry, and thdile Hamiltonian” (Sec. IX), a reduced Hamiltonian defined
resulting energiesin Secs. IV and Il of paper |, respec- in terms of the tile degrees of freedom; calculating this is the
tively.) bridge from the microscopic to the macroscopic level. Our
All known stable, highly ordered quasicrystalg.g., preliminary result_s_ on the tile Hamiltonian support _the va}lid-
i-AIPdMn) belong to ternary systems; in this paper, however/ty of & random tiling as the zeroth-order description, since
we consider only Al-Mn structures. Our reasons for imposingdifférent arrangement of tiles have almost the same energies.
this rather severe restriction are the following: he conclusiongSec. X recapitulate the most important re-
(i) The parameter space of a binary phase diagtam sults and outline promising directions for extending or im-

T=0) can be explored by tuning a single parameter, théroVing our calculation.
manganese concentratiag, . There are some precedents for our approach. Some years

(i) In the Al-Mn system of alloys, we may be guided by 29°; Lanon and Billard studied the stability of the Duneau-

the many crystalline phases with solved structures, that ar guey modéP for i-AlMn (Si), 'and two'varilar)ts. thereof, un-
similar in their composition and in their local atomic order to 9€" the influence of Morse pair rﬁ)tentlgls, similar relaxations
the (metastablgi-AlMn phase were carried out by Rottet al.™ for i-AlZnMg (in the
(iii) Realistic pair potentials have not yet, to our knowl- I "AICULi family). Our present work differs from theirs in
edge, been computed for any Al-transition-metal ternary sysinat We used realistic, microscopically derived pair poten-
tem tials, with no free parameters; that was previously d@ne

The paper is organized as follows. In Sec. II, we describdn® |-All(é‘,uL| rather than thei-AIMn family) by Krajd and
in detail the pair potentials used in this study — the first of1&fner,~but they did not vary the models. A precursor of the
the two essential inputs to our calculation. In particular, wePresent caIt_:uIaUdﬁ incorporated a computational scheme
comment on the derivation of the potentials and provide g'hich_admitted variations, but did not actually pursue

13 . e .
critical analysis of their expected virtues and drawbacksthem-~ Widom, Phillips, and collaborators have made inves-

This is followed by a sketch of the coupling between geo_f[igations similar in sairli; to_ ours for deqagonal qua;icrystals
metrical motifs and the shape and character of the potentiaf the Al-Co systent,"'® with some variations of different
as well as a description of the techniques we have used fyodels. However, no previous work has studied a collection
carry out structural relaxations. In Sec. Ill, we test the valid-Of Models nearly as extensive as reported here.

ity of pair potentials as a tool for structural discrimination by

applying them to a variety of real and hypothetical crystal- Il. PAIR POTENTIALS

line structures in the Al-Mn system indeed, we obtain a Present computational resources allowdbrinitio calcu-

”?OS“V correct picture of the AI—anerq—temperatuD_q)hase lations only for systems of up to about 500 atotfiSince we
diagram around the quasicrystal forming compositions. Sec-

. . felax structures with %10* atoms, we approximate the
tion IV summarizes the models used, the second of the tWQi  ctural energy by a sum of interatomic potentials
essential inputs for this work. We also outline the diagnostic '
criteria which helped us to systematically identify and repair 1

“problem sites” in the decoration so as to improve the total ECOhZEiEj Vii(rij), (1)

energy.(This was one of several technical objectives of the

present work, which is intended as a “prototype” for future wherer ; is the distance between atoinand;. The shape of
studies) _ o ] _the potentiaV;;(R) depends only on the speciesindj.

The prime objective of our study was to determine which  f oyr quasicrystals were alloys of simple metésich as
of the families we studiedincluding “dense” FCI, “dense”  a|) with sp orbitals, these potentials could be derived from a
S, and “loose” SI modelshad the optimal energy, and 10 nearly-free-electron picture based upon pseudopotentials.
ascertain how significant the long-range interatomic interacypig approach has been applied to fRAICuLi family of
tions are. Thus the heart of the paper is Sec. V, which repo”ﬁuasicrystalé?*”
the results of our systematic comparison of various compet- o the other hand, if our quasicrystals included only tran-
ing models, which differ in their symmetdf-Cl vs S) and  gjtion metals, the binding would be dominated dyrbitals
in the tightness of their packingdense vs loose In this 504 could be approached from a tight-binding approxima-
section we also accomplish a technical objective, by verifysion. This approach was applied to quasicrystals of the
ing that a decoration model can accurately model the trug. Tjmn family.1® But Al-transition-metal alloys, the case we
relaxed positions of all atoms using a moderate number Ofre studying, present technical difficulties since both tightly

real parameters. Section VI provides a brief summary of oupgund d” bands and also free-electron-likep bands are
parallel work on relaxing models defined within the 6D-cut present.

framework. Section VIl presents further tests of the stability
of our models and its origins — mostly, it consists of explo-
rations of additional ways in which potentials can be varied.
Section VIII gathers the insights of previous sections and We use effective pair potentials that have been developed
attempts to justify our observation that loose structures wittfor Al-rich AIMn compounds, using a combined pseudopo-
S| symmetry are favored. Our total experience shows that itential and Green's-function method for the Mn-Mn and
is essential to have the correct potentials and the corredl-Mn potentials, and conventional pseudopotential-based
model; the second well of the oscillating potentials is quiteperturbation theory for Al-Al pairs(Details of the construc-

A. Construction of pair potentials
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tion may be found in Ref. 19; see also Refs. 20 and 21. The

analogous potentials for Al-Co compounds are described in
Ref. 14) We will call our potentials “realistically oscillat-
ing” because their outstanding feature is the strong Friedel 0.2
oscillations and, furthermore, the wavelength and magni- 8'%
tudes of the oscillations are calculated using microscopically 0.1
based approximatiorfg. ‘
Such potentials depend parametrically on the density of ':_>"
conduction electrons, which is given simply by )
Per=Nal v A= (VA= Umin) Xmn]- 2 o,
The valencesnumber of electrons contributed to the con- 9 8'%
duction bandl are % 01
oa=3, vyn=15 ® 7’
for Al and Mn, respectively. Equatiof2) may be used to
computepg for the various structures we studied from the
values of n; and xy, given in our tables. The value 0.1
vmn=1.5 comes from augmented-spherical-wa(&SW) 0.0
calculation§® on an ordered fcc solid solution Afn in -0.1
which the number ofl electrons per Mn was determined to -0.2

be 5.5, leaving 7-5.5 1.5 free electrons per Mn.

Note that we donot adopt the effectivenegativev y,
which was hypothesized on empirical grounds during the
1950's,(in the context of a Hume-Rothery pictyrdt would
be hard to credit a real charge transfer of such a magnitude, g 1. The three pair potentials f¢a) Al-Al, (b) Al-Mn, and
but there is theoretical support for negative valence behaviog) mn-mn atoms. With each potential is shown the pair-
withouta large shift ind electron numbet**°References 24 distribution function for the corresponding types of pairs, for the
and 25 present different scenarios: the former sayskpat “loose” CCT decoration LS1.2(in the 5/3 approximant tiling
should be calculated using the usbsitive) valences, but  T8). The solid(dashedl line shows the results using truncation 11
the latter implies thab y,~ — 1 ought to be usetf A (6.2 A). Note the good match between the peaks of the PDF and

For this work, we always use potentials calculated for thehe small wells from the Friedel oscillations.
particular reference density of conduction electféns

3 real system. The reasons for these doubts are listed below.
po=0.17792 A, (4) (An even more detailed discussion of some of these difficul-
ties is found in Ref. 14.But in fact, as we shall see below

ec. I, our potentials give a reasonable account of the
[-Mn phase diagram, as long ag, is not too far from

The Al-Al potential (see Fig. 1 has only a shallow and
rather narrow minimum at 2.8 A, and then a deep and broa:
secondneighbor well at about 4.4 A’ whereas the Mn-Mn : : . : :
potential h%s a strong second-neighbor well at 4.7 A Theso'20 (as in a typical quasmry;tal 90_rnposﬂ)qand Pel 1S

; ; ) . ST Elose topg. Therefore, we believe it is plausible that they
pair potentials also show quite large Friedel oscillations, €710 give correct answers for manv details of tRAIMN
pecially in the Mn-Mn potential. The asymptotic form of struct%re y
Friedel oscillationgneglecting effects of disordeis )

V(r)occog 2ker + ¢)/r3, (5) 1. Electron density
The forms of the potentials, and in particular the radii at

where ¢ is some phase angle. which they have wells, depend upon the conduction-electron

Thus, pair |nteract|or_15 between gecond, third, or fqurt ensitypg . (The most obvious reason is that the wavelength
neighbors might determine the atomic structure. The Friede f Friedel oscillations is 142-.) This is worrisome sincéas

Rotheryrlones: phenamenon in Ecutier Spabe, which i 10120 SbouB our potentiels shauld be vald any for the
lieved }c/o be im IC:thant for stabilizing the iréosa’hedral haseconduction—electron donsverpo, but we use them in
p g P tructures which may have,# po .

and in Zgroducmg a pseudogap in the electronic _deq3|ty °§ Of course, the value g also depends on the quasilattice
states-?* It has even been suggestatiat such oscillating, .
: : . DT constant, . In the present work, unless otherwise noted, the
long-range potentials might suffice to forcegaasiperiodic . ; .
: ; unit cell dimensions were chosen so tagt=4.60 A as ob-
ground state, without the need for local matching rules. . o . 28
served experimentally in-AlIMnSi.=® It would have been

more precise to adopt instead the experimental value for
i-AIMn, which is a;~4.65 A? Had we done so, we would
We would not expech priori that our pair potentials will also avoid the concern about using# pg, for in fact
account for the relative cohesive energy of various structurege=po Would be reproduced bgp,~4.64 A for a typical
with enough precision to predict which ones are stable in théoose model, ora,~4.67 A for the densest of the dense

B. Drawbacks of pair potentials
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models, close to the observed value iAlMn. to the final ones that different relaxation algorithms give
In any case, for the lattice constants we use and the AlMidentical result9. We adopt the convention that superscript
compositions of interest to ugy lies within ~2% of pg. “(0)" refers to energies or positions before relaxation. Initial

Since thep, values are uncertain anyhow by a comparablecoordinates will be called “ideal” when they are linear com-
amount(due to the~*+0.1 uncertainty irvy,,), we feel this  binations of the icosahedral basis vectors with integer or

is not a serious problem. half-integer coefficients. Here we describe, not only our
. setup for relaxation computations, but also the use of calcu-
2. Structure-independent terms lated quantities relating to individual sites as criteria for the

A further, more fundamental deficiency in our total ener-physical validity of the arrangements around those sites.
gies is that they actually include only the structure-dependent
terms; we omit the much larger contributions to the cohesive
energy(call their sumU,) which dependthrough the jel-
lium total energy, a function of the electron density, and the To make the pair potentials more computationally trac-
pseudopotential core radjusn the density and stoichiom- table, we introduced a cutoff at a certain radiyg. As in
etry of the cores, buhot on their arrangemenf. Thus our  Ref. 9, each pair potential/(r) was smoothed so that
computed energy differences are correct only when we comV'(r) and V”(r) were continuous everywhere and
pare two structures with exactly the same composition an®/(r)=V'(r)=V"(r)=0 forr=r.
density. Realistically, for each structure considered, we ought Models produced from 3/2 approximants and larger tilings
to optimize the lattice constant to minimize the sumlpf  (see Sec. IV Bare large enough thatising our truncations
and the structure energy, and then use the results to construt® atom ever interacts with multiple images of another atom
tie lines and determine the phase diagram. Fortunately, aghder the periodic boundary conditions; for smaller tilings,

1. Truncation of potentials

just noted, we are mostly comparing structures of similarand for the real crystal structures of Sec. Ill, we form a
stoichiometry. sufficiently large supercell by joining copies of the unit cell.
Our preferred cutoff radius was,,=11 A.3* However,
3. Validity of pair form relaxations of large modeléover 13 atoms/unit cell re-

The calculation upon which our potentials were baseoqmred. excessive compute_r time with this cutoff thus.the
Jnajority of our relaxations were performed using

went up to, but no further than, second order in perturbatio S : .
P P if cut= 6.2 A, which is chosen to just include the second-

theory. As a result, our cohesive energy includes onl aif cut . ;
y 9y y p 6ﬂelghbor well, andunless otherwise notgthe results in our

r]iables and figures are from this truncation.
In many cases, we can partially relax a structure using

(a) Nearest-neighbor Mn contacts are taken into accounteut™ 6.2 A and then pomplete the rglaxatlon using
only via an indirect hopping term mediated by the back-"cut™ 11 A'.Wh'Ch results in Very small readjustments. How-
ground electron se¥.Thus, our potentials are somewhat un- 8/€T» certain dense models which webarely stable with

trustworthy for Mn pairs and quite dubious for Mn triples. Feut= 6:2 A, became unstable V_Vimlf 11 A, and the en-
Fortunately, such clusters are rare in most of our structure£r9Y differences between certain variants of the loose deco-

since the Mn atoms tend to be spread out uniformly in spacd@tions(Sec. IV) changed sign. The small but significant dif-
but for certain models with highy,,, our structural energy erences between the results with 6.2 and 11 A will be
may be far from the true one. discussed in Sec. VII C.

(b) Where a structure contains large perturbations such as
vacancies, it is unreasonable to stop at second-order pertur- 2. Relaxation algorithm
bation theory*? Indeed, one explanation for the stability of
the “Mackay icosahedron® and in particular for the vacant
site at its center, uses a type of “glue” approximation, in
which the structural energy has an additional term of th
form

bonding. There are at least two kinds of local atomic patter
for which this assumption is obviously questionable:

Apart from a few molecular-dynamics ruriseported in
Sec. VII A, below, all of our computations consisted of re-
laxations performed at zero temperature. Our relaxations
Svere performed using a standard conjugate-gradient algo-
rithm, except that the space group of the particular model
was directly incorporated into the relaxation program, by
Ecor=> Filp(x), (6)  constraining all symmetry-related atoms to relax together.

i For a structure of high symmetry, the number of independent
variables was thereby reduced by a factor of 10 or nmidze.
prawback of incorporating space-group symmetry into the
relaxation is that spontaneous symmetry breaking cannot be
detected.

_ The maximum time to relax one of our models wad h
C. Relaxation procedures CPU time on an IBM RISC-6000 workstatidfor the Pa3

For each model, we relaxed the initial configuration to a“8/5” approximants. The criterion for convergence of the
state of mechanical equilibrium with respect to the forcesconjugate-gradient relaxation was that the energy change in
derived from the pair potentials. Models are “topologically one iteration be less thafE=10"2 eV per atom. The con-
equivalent” if they relax to exactly the same atomic struc-vergence rate can be a useful continuous diagnostic of sta-
ture. (It is assumed that the initial positions are close enouglbility, independent of the deviations from initial positions:

wherep(x;) =2 .ipj(R;;) represents the sum of the contri-
butions of neighboring atoms to the electron density nea
atomi, andF() is anonlinearfunction.
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models which take exceptionally long to relax are often onif a certain atom displaces so far that the model must be

the edge of instability. deemed “unstable,” that atortor one of its neighbojsis a
prime candidate to be changed. Howewer, should be in-
3. Stability criteria terpreted with caution, since it depends on darbitrary)

choice of “ideal” coordinates.

A common criterion for the stability of a model is that its Another simple but useful diagnostic is the “site energy”

structure does not amorphize upon relaxation, i.e., that the
(angularly averagedpair-distribution function retains sharp
peaks out to arbitrarily large distances, indicating that long- 1

range order is maintained. This criterion has been applied to Ei:zzj: Vij(Rij), @)
assess the stability of 6D modélsThe criterion that we
adopt, however, is much stricter: we deem a model to be . . .
stable only ifeveryatom stays within the sphere that is in- .e., the part of the total pair energ$) assigned to atorm

scribed in its Voronoi polyhedroteach such sphere is thus in Note t?at tia(t:h ﬁ'te _enlergy S.hOl_“d b.? c\(l)Emrﬁaredbwnh the
contact with its nearest neighb@rsThis criterion is moti- average for that chemical species; a site visthiar above

vated by our desire to obtain “crystallographically correct” this average is a prime candidate for a change in occupancy.

; : ; To be precise, the site energy must be equal to or lower than
ration model [ in . of ri S : ) . .
decoration modelgas discussed in Sec. Il of papg the chemical potential for that species; otherwise the site

would want to be empty. Consider the values
D. Important motifs

A major objective of this paper is to understand the rela- AE{(A)=Ei(A)—ua, ®)
tionship between the form of the potentials and the atomic
arrangements they favor. Some of these motifs are familiar i
la—AIMnS| and other cry?tallmeﬁl-TM pfllases,_suchhasdregu-on that site, with no additional relaxations. We can also con-
ar Mn-Mn spacings of~4.6 A, or Al,,Mn icosahedra. gjger A= vacancy as another possible “species,” such that

These motifs, which influenced the proposed decorationsAE_ (vacancy}=0. Then the occupation adopted for site
i .

were_rewewed in paper | and are ratlonallzed below in Ap-Ought to be the choice‘\imi” that gives the minimum of
pendix A. After we present the relaxation results, we shall

further discuss the relationship between the potentials anéEi(A) Ovrfif] aI_I A the that changing from some other
the patterns favored by them. option to A" will certainly lower total energy, and this can

We next define our terms for three important structuralOnly be 'Iowergd further when. the system is re-relaxed to
allow neighboring atoms to adjust to the change.

thereEi(A) means the site energy if specidsvere placed

features.
(i) The Mackay icosahedraiMl) consists of a Al, icosa-
hedron around a ce_ntral vacancy, with an outer shell com- IIl. SMALL CRYSTAL STRUCTURES
posed of a large My icosahedron and an icosidodecahedron
of 30 Al atoms near the edges of that icosahedron. Before describing the main relaxations which were per-

(i) All of our AI-Mn models include “mini” Bergman formed on CCT decoration models, we consider relaxations
clusters, each of which consists of an,Mn icosahedron done using the same potentials and proced(asxplained
plus an outer shell of 20 Al/Mn atonigach centered over an in Sec. ), but applied to known crystal structures. In this
icosahedron fage section, we test the potentials on various crystal structures

A “pseudovacancy” is a site with a negative vacancy for- which are either Al-Mn alloys known from crystallographic
mation energy: i.e., it is vacant in the ground state, but ocrefinements, or else structures arising in alloys of Al and
cupying it by an atom does not change the topology of thedther transition metals which have similar local order. Their
other bonds, does not make the model unstable, and does nit cells are “small” only in comparison to the “approxi-
force physically impossible bond lengthéBy contrast, a mants” which we treat in Sec. V; by any other crystallo-
“vacancy” denotes adefectwhich costs energy relative to graphic standard in condensed-matter physics, their unit cells
the ground statg.Pseudovacancies are frequent in knownwould be considered rather large. Besides thé\IMnSi
Al-Mn crystal structures’ a well-known example of a structure, which is the simplest approximant of our icosahe-
pseudovacancy is the MI center im-AlMnSi and dral Al-Mn decoration models, a number of these “small”
a-AlFeSi. They are the most important type of variation crystalline structures are known to be decagonal quasicrystal
among closely related structure models, and are responsibfgproximants.
for the lowered density in our loose family of models. The purpose of the calculations on the Al-Mn phase dia-
gram is to yield a level of confidence in the application of
these potentials to structure determination in the quasicrystal
problem. Explaining a phase diagram should mean not only

While revising our models to improve their energiesd  accounting for the existence of the observed stable phases,
eliminating those models which were unstable under relaxbut also for the nonexistence of the unobserved phases. Thus
ation, or too high in energy we developed diagnostics to we included some real Al-Co and Al-Fe structures; since they
identify “problem” atoms and to compare alternate ways of have the same local motifs as Al-Mn structures, they are
resolving the uncertainties of extending the decoration. Thexpected to have a better priori chance of being low-
displacementD; of atomi from its initial position in the energy than other unphysical structures we might devise
relaxation process serves as a diagnostic in practice: after alle.g., a solid solution

E. Diagnostics: displacements and site energies
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TABLE |. Relaxation results for small crystal structures.

Structure Source Xun pat (atoms/R) E° (eV/ad E,o (eV/ab D max (A)
Al 1,Mn Ref. 49 0.0769 0.06238 0.1993 0.1656 0.115
Al gMn Ref. 48 0.1428 0.06427 0.0533 0.0418 0.100
“a-AlgMn” @ Ref. 46 0.1739 0.06801 -0.0263 -0.0730 0.251
DF1.1 0.1739 0.06801 0.1516 -0.0733 0.303
DS3.1 0.1818 0.06505 0.0563 -0.1228 0.314
DF1.3 0.2174 0.06801 0.0532 -0.1937 0.381
Al Co, Ref. 41 0.1818 0.06699 0.5788 b
u-Al 4,Mn Ref. 44 0.1957 0.06589 -0.1731 -0.1982 0.296
Al sMn Ref. 39 0.2308 0.06765 -0.2475 -0.2817 0.396
Al ;oMn 4 Ref. 45 0.2308 0.06681 -0.2822 -0.2907 0.090
Al 15Co, Ref. 40 0.2353 0.07044 -0.1906 -0.2702 0.532
Al ;Co Ref. 15 0.2553 0.06778 -0.2712 -0.2855 0.121
Al 1Mn, Ref. 43 0.2667 0.06919 -0.3272 -0.3437 0.271

&The “a-AlMn” structure can be represented as a decoration of the pArdiling (tiling T1), thus versions
of it are associated with the corresponding decoration labels.
bUnstable.

A. The structures B. Results of relaxations

We test our pair potentials on realistic structures taken Our potentials give a decent account of the Al-Mn phase
from both the AIMn and the AlCo systems, focusing on thosediagram: they give a nearly correct picture of which phases
that give rise to the low concentrations of Mn for which the are stable and which are not.
pair potentials are applicable. Many of these phasesare However, the version ok phase favored by our potentials
stable in the Al-Mn system; however, they have local ordetis unphysical, in that it has Mn instead of a vacancy at the
similar to the Al-Mn phases, and differ only slightly in en- MI cluster center. Furthermore it has all of thesites vacant
ergy per atom from the real Al-Mn phases. Our aim is to(implying bcc symmetry; whereas the reat-AIMnSi struc-
determine whether theignsof these small differences agree ture has alternating occupanéynplying sc symmetry. We
with the real phase diagram, which was uncergjoriori in suspect that the first difference is an artifact of the deficien-
the light of some doubts about these potentials. This apeies in our interatomic potentialsee Sec. Il B the second
proach is similar to that taken by Ref. 14 in the Al-Co case difference might be correct for a binary Al-Mn alloy — per-

The structures we cho¥kare listed in Table 1, along with haps ternary or pseudobinary potentials adapted to Al-Mn-Si
the Mn fractionxy,, and the atomic density,;, from which  would have given a different answer.
the electron density may be computed (2. For all struc- For each structure, Table | gives the initial and figa-
tures except AlCo we used the real reported lattice constantlaxed energy per atom and the maximum displacement
since this gave an electron density close to the valugg D ax Of an atom from its initial position under relaxation.
for which our potentials are valid. In the case o®@b, p,;  The majority of sites suffer only minor relaxations, but in
would be~7% lower thanp,; thus in our results we chose some structures certain rogue atoms exhibit large displace-
a lattice constant so that,=p,.>° Where the refinement ments and/or changes in site energy; this indicates that the
indicated partial occupancy for an orbit, we tested only de-atomic arrangement in the vicinity is poorly matched with
terministic variants in which that orbit was either all filled or our potentials.

all vacant. . . )
Several of these structures are approximants to decagonal 1. Comparison with refinements
phases. Hiraga’s AMn (Ref. 40 and the A}];Co, phasé! There are three observations on the correlation between

are good approximants — although the decagonal correthe behavior of structures under relaxation and the goodness
sponding to AJ;Co, (Ref. 15 was discovered only recently. of their refinements. First, the symmetry of a structure seems
Also, AlgCo,** Al;;Mn,, 34 1 (AIMN),* and the AlgMn;  to be inversely correlated with the atomic displacements;
phasé® may be viewed as imperfect approximants to decagoe.g., they are smallabout 0.1 A for Al 1oMn, AlgMn, and
nals. Al;Mns, which are all highly symmetric structures with
The a(AIMnSi) phasé’ is an approximant to an icosahe- relatively few sites per unit cel(This is not simply an arti-
dral quasicrystal, and as such it has been listed in later se€act of our relaxation code, since we used supercells for all of
tions also as an approximant. The reaphase exists only our small structures.Presumably the high symmetry has
with Si, but in our atomic model we replaced Si Al. We  prevented atomic displacements in some directions.
did calculations for several variations of this structure, which  Second, in the structures for which partial occupations
were actually constructed by different decorations of tilingwere quoted, we observed that a change in the occupancy of
T1 (pure “A” cells). Finally, the AkMn (Refs. 48 and 40  just one site can produce drastic changes in the energy and
and Al;,Mn (Refs. 50 and 5lphases are not approximants stability of the model. The optimum deterministic choice for
in any meaningful way. filling such sites relaxed almost as stably as did other struc-
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Phase Diagram of small structures Al;Mn. But since AjgMn; is the equilibrium phase at higher
0.20 w w , . . temperatures, the difference of the true cohesive energy be-
* AloMN tween these phases must be small.

We have omitted drawing a tie line to the ,AMn struc-
ture, which would have incorrectly implied Aln was un-
stable; we suspect the AMn energy is unphysically low,
since this structure has the most extreme valug,gf. We
cannot just dismiss AlMn, however, since it is within 1%

- of the targep . and contains no dangerous Mn-Mn pairs. We
would rather expect the potentials to be unrealistic at the
Mn-rich end, the fact that our AMn, energy looks reason-
able cannot be given much weight.

Figure 2 indicates the typical scale for energy differences
between competing good structures. Stable phases lie below,
and unstable phases lie above the tie line between competing
L (Al4Mn) ] phases, by 0.01-0.05 eV, exactly as in the Al-Co phase
diagram**

In conclusion, although the details in Fig. 2 are not per-

e AI3Co fect, the overall pattern of behavior suggests our potentials
are realistic, and increases our confidence in their subsequent
application (in Sec. V, below to icosahedral structures in
which we have no other way to discover the details.

— tieline

Al6Mn

0.00 -

Average energy per site (eV)

-0.20

Al13Co4
Al3Mn

Al10Mn3

Alt1Mn4

~0.40 . . . . : . .
000 005 0.10 015 020 025 030 035 040
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IV. DECORATION MODELS

FIG. 2. Energy Versusgy, for possib|e Crysta”ine phases_ Here We reIaXed at |eaSt ten diﬁerent Variations fOI’ thl’ee fami'
“ a(A15Mn)” denotesa(AIMnSi) with Si—Al. “Al ;Co” lattice pa-  lies of MI-based decoration rule presented in papdodse
rameters are rescaled to give the correct electron depgity Sl, dense FCI, and dense)SlVe attempted to systematically
consider all possible decoration rules, within this narrow
tures whose refinements quoted no partially occupied site§lass. We did not test grossly different arrangements, e.g.,
For the cases in which the refinement showed several orbifglacing Al and Mn atoms into a-AlCuLi-type structure
with partial occupancies, we found that filling all of them (which would almost surely be unstahle
gave an Overpacked structure, yet zero occupancy was too Our variations all arise from the small set of “problem
loose. The best results were obtained when some but not diaces” discussed in paper I. Most of the variations simply
of the orbits were occupied. This suggests that our conclu-consisted of changing the occupancy or chemistry of a site
sions on the vacancy formation energies are roughly right ofi-€., is it Al, Mn, or empty. Variations might also entail
average for these alloy3. changing the structure topologically, by the alternation of
Third, our calculations of relaxed positions could be con-0ne atom with a pair or triple of atoms; we found only one
sidered as implementing the “synthetic” approach to struc-Stable choice of this typéhe yzy alternation in dense mod-
ture determination suggested in paper I, in the sense th&l9-
diffraction data and energy calculations are combined. In In the course of testing our models, we tried many other
particular, in some cases we have taken a circa 1955 refingariants involving either other chemistry/occupancy combi-
ment(which is topologically correct as to the atom arrange-hations in the variable places mentioned here, or variations
ment, but comparatively inaccurate in coordinjtemd re- in places other than mentioned hefén example of the
laxed it to obtain a “synthesized” structure model. Indeed, latter would be replacing Al¢zp) by 3 Al(y) atoms] How-
our relaxed version was always closer to “realitigls repre-  €ver, most of these adjustments were discarded on the
sented by a more modern refinement of the same stryctur@rounds that they were unstable, or led to unacceptably high
than the old structure was. This is a success for our poterfite energies.
tials, but we do not know whether other potenti@dsy., the
Morse potentialsmight be equally successfiih correcting A. Definitions

he cruder refinem . . .
the cruder refinements By “model” we mean a combination of a particular tiling

and a particular decoratiofiFor six-dimensional models, it
means a particular cut through a particular 6D hypercrystal.

The resulting energies are plotted in Fig. 2. The solid line In this paper, we focus on decoration models: in a “deco-
is the tie line between thermodynamically stable phases. ration,” atoms are placed on tiling objects such that both

The a-AlMn and Al;;Co, structures are predicted to be (i) every object of a given type is decorated in the same
energetically unstable, while the-Al,Mn, AlsMn, and  way (just like a unit cell in ordinary crystallographyand
Al;oMn3 phases are predicted to be stable. All these predic- (ii) the point-group symmetry of a decorated tiling object
tions are correct except for the last:fMn; was wrongly is the same as that of the “bare” tiling object before decora-
computed to have a slightly lower relaxed energy thartion.

2. Phase diagram
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TABLE Il. Approximant tilings used for decoration.

Code Tiling Space group Nnode Na Ng? Np Ng?
T1 PureA Im3 2 12 0 0 0
T2 PureEC R3m 1 0 0 0 1
T3 PureD P3m1 1 0 0 2 0
T4 “«73 OR"P R3m 3 6 3 1 0
T5 Cubic 2/1 Pa3 8 24 0 0 4
T6 Cubic 3/2 Pa3 32 72 24 8 4
T7 Cubic 5/3 P2,2,2, 136 312 88 32 24
T8 Cubic 5/3 P2,3 136 312 48 32 44
T9 Cubic 5/3 R3 138 348 60 24 38
T10 Cubic 8/5 Pa3 576 1320 312 136 132
T11 Cubic 8/5 Pa3 592 1608 216 72 180
Ne=Ng+2Ng.

bName used in Ref. 8.

An “atomic site” is a position in space to which a “chem- Lastly, the 8/5 tilings are from Ref. 55; these were discov-
istry” is associated(See Sec. Il A of paper)lAtomic sites ered as the final states of Monte Carlo annealing simulations,
that decorate a given tiling object are said to be “bound” tothat attempted to maximize the packing fraction. When deco-
that tiling object. Conditior(ii) above forces atomic sites to rated with atoms, the largest modéttecorations of the “8/
lie in discrete orbits, generated by the point-group symmetnb” tilings) contain~43 000 atoms each.
of the objects to which they are bound. The association of Our large “5/3” and “8/5 "tilings were judiciously cho-
these orbits to tiling objects is called a “binding.” The spe- sen to have high symmetijas demanded by the relaxation
cific coordinates of atoms, generated in this fashion, will beprocedure®) and to vary the following degrees of freedom:
called the “canonical positions” for that model and binding. (i) The variance of the perp-sp&éeoordinate of the til-

Our decoration models are based on the “canonical-celing nodes. This should be smallest in a true approximant of
tiling” (CCT).2 This is built out of four kinds of cells, de- the (as yet unknowh ideal quasiperiodic CCT. The perp-
noted “A, B, C, D,” such that their verticeg“nodes”) are  variance is low for tilingsT7, T9, andT10, and is high for
joined by a network of “linkages” in both twofold and three- tilings T8 andT11.
fold directions. The former linkages are calledlinkages, (i) The relative fraction of space occupied bycells (at
the latter are calle@ linkages. The three different sorts of the expense of cells).>® The number density of nodgand
faces are labeled by the lettefs Y, andZ. In this work, we  hence of MI' increases with the density & cells; if the
treat the threefold symmetric pair 8f cells as an additional nodes were decorated by identical spheres, their packing
cell “E.” Together, these comprise a set of “tile objects” for fraction would range from 0.600 to 0.62%or icosahedral
the CCT.(The objects are seen in Fig. 1 of paper I. symmetric structurgs*®° Tilings T9 andT11 were chosen

to have high density.

B. CCT approximants

As periodic boundary conditions are preferable for doing C. Families of decoration rules
simulations/relaxationgdue to the absence of surface ef- |n paper I, we presented four basic families of sensible
fects we use large periodic packings of canonical cellSCCT decoration rules. In resolving the most problematic
called “approximants.” These approximate the correspondsites, we identified several possible resolutions, thus creating
ing extended, icosahedrally symmetric quasicrytalhe  a number of variants within each family. The results of the
small approximants are very imbalanced with regard to tilepresent paper derive from relaxing and comparing these vari-
content; and even the larger approximants, owing to theignts.
high symmetry, under-represent some of the ways two tiles We have labeled the different decoration rules as e.g.,
can adjoin. Since a given trial decoration might be good forDF n.x:” here the first letter is “D” or “L” for “dense” or
some of these ways and bad for others, we therefore need tihose” family of decorations, the second letter is “F” or
test out our decoration models on a broad selection ofs” for “FCI” or “SI” symmetry decorations. Within each
canonical-cell approximants. of these four families, we have independent ways of varying

We selected the 11 reference canonical-cell tilings of cathe density and the chemistry of atomic orbits. The number
nonical cells listed in Table Il. The labelingp/q” means  n labels variants with different total number density and the

that the unit cell is the same size as a “trug/q approxi-  number “x” labels variants of differenty, .
mant of the(as yet hypotheticalicosahedral canonical-cell
tiling.” The first (and smallestsix approximants appear in
Ref. 8, Table VII. The 5/3 tilings are taken from the known
exhaustive list of all 30 inequivalent 5/3 approximants, dis- Based on the problem sites identified in paper I, Sec. IV,
covered through exact enumeration, reported in Ref. 54we adopted variants of loose S| models as listed in Table IlI.

1. Loose model variants



53 ICOSAHEDRAL QUASICRYSTAL ... . I ... 9029

TABLE lII. Variant decorations. The chemical variations were performed on a certain sub-
: set of § sites which reasonably allows either Al or Mn. These
Decoration 8y Al(y2)? Y3 were thed, sites on oddb linkages that fell withinB and
LS11 Al 6/6 Mn D ceI[s [to be calleds,(B) and 5b(D)], as w'eII as thedp
LS1.2 Mn 6/6 Mn sites in theD cell. The two chemical variants are then
' x=1 and x=2, which, respectively, assign the above-
LS2.1 Al 4/e Mn o entioneds sites to be either all Al or all Mn
LS2.2 Mn 4/6 Mn entionedo sites 1o be € :

A “modified” DF2.1 rule differs from the casen=2

::2;2 ,GI j,//Z ':ll above in setting alb,(D) sites vacant(This was found nec-

L53'1 " 4/6 M essary to stabilize the puf@ tiling under Morse potential
: n relaxations.

LS3.2 4/6 Al

aSite vy, is always Al. 3. Dense Sl variants

All density and chemical variations were on thesites.
The “problem sites,” which we recall are candidates for 9 Sites may occur it linkage, Y face, andD cell. In dense

modifications, occur in three orbits: S| models, as outlined in paper I, we are forced to differen-
(i) one “ysp” near the center of each cell; tiate three kinds ob linkage, namelyb(A,), b(A,), and
(i) one “8y” near the center of eacl face; b(Acc)- . - .
(iii) six * y," sites form a ring around the center of each Our density variations involve the occupancy of the

7 face, (which straddles the face. op(A) and &y type sites, but never the occupiég sites:

“ . . . n=1 sets all§,(A) occupied and alby vacant.
.t:]-hﬁ. 7h3eD ?gigzenzrrop;emclsg.ens 3:2 :\r/]||f:itetr(]\?\,:|h2\t,is n=2 is the densest, with alby, and mosts,(A) being
\r/1v(|)t aIII(?weZ valtriationsg\l/viﬁl)i(n Ltjhé I%)II Thus trlle; are prom occupied, and only théi,(Acc) being left vacant.
L o ) =3 is the | t, i IS, (A
ising places to try some other occupation. Indeed, $4g] n=3 is the loosest, occupying onidy(A,) and

; > > ) . 0p(Acc). This differs from then=1 option only through
gle\xsa?;el\irr:ggg/ similar to Mm§, which we have assumed is making thes,(A,) site vacant.

The six “Al( y,)" sites decorate not only th& faces on Sgimslg?sl \g’lyllgast:?ensstgrzl;mplemented only on theites:
D cells, but also are found around the center of eatel x=2 sets only thes,(A,) sites to Al, and the rest of the
(which can be considered as having an interdaface. ccupieds sites to Mn
When all six Al atoms are present, they have the highest AP P '
site energieqoutside of the M]. We concluded that this
configuration was slightly overpacked, so we tried variants in
which some of those sites were vacant, labeled “6/6,” “5/6,” It is possible(paper ) to generate loose CCT models with
and “4/6” by how many sites are occupied. Trials with small FCI order, which would be analogs of the quasiperiodic
models indicated that the “4/6” arrangement was considermodified-Katz-Gratias KGme) model studied in Ref. 64.
ably better than the “6/6” variant, and this was later con- (Such models may be a good starting point for CCT models

4. Loose FCI models

firmed in our systematic comparisofis®® of alloys with FCI order such aisAlPdMn.)
The “48y” site was sensitive to the truncation of the po-  We did not include any FCI loose models in our system-
tential — the Mn() site energy islower than that of atic study. A few examples were checked in passgsubsets

Mn(v), but with the shortened cutoff,,=6.2 A, Mn(5) of even § sites were occupigd From these we confirmed

came outhigher. (The results and explanation are discussedhat the results of FCI and Sl loose models differ in just the

in Sec. V A 2 and Sec. VII C; example site-energy results aressame way that those of their 6D anald§<l KGme model

in Table V) and S| Duneau-Ogue§pO) model did; in particular, the SI
models had lower energy.

2. Dense FCI variants

In dense models the density variation is associated purely D. Procedures and diagnostics for variants
with the ysy«< 3 alternation, as noted in paper |. These are  Each of the model variants was systematically applied to
Yy Sites associated with tredd Y faces; they can occur in  each of the 11 CCT “approximant” tilings to generate a
odd B, evenD, or E cells. (In all our models, there was no model. Average behavior across the 11 tilings suggest prop-
such freedom for the;p sites) We decided orthreedensity  erties intrinsic to the variant decoration. Since we focus on

variations that independently treat these locations: atomic orbits rather than individual atoms, we elaborate on
n=1 is the loosest, assigning a single M) atom in  our methods for evaluation of orbits and consequently deco-
every case. rations.
n=2 is the densest, with three Alf atoms replacing the RMS deviationsAfter each relaxation of a decoration
3y Sites in every case. model, we computed the “canonical position&ee defini-

n=3 tries to account for the local atomic density, assign-tions in paper |, Sec. )JIfrom the relaxed coordinates for
ing a single Al(yzy) when the site falls in an eved cell, but  each orbit of atoms. This means that, for each site of an orbit
replacing the site by 3 Aly) when it is in an oddB or an  bound to tiling objects of typ®, we apply the inverse space
E cell. operation which maps its object back onto the reference tile
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of type O; then the canonical position is the mean of the
cloud of these points, and the canonical rms is their standard
deviation®®

Note that this rms is invariant if the initial structure is
changed, as long as it is topologically equivalent; in particu-
lar, it has nothing to do with our choice of “ideal coordi-
nates.” On the other hand, the rms is specific to a particular
“binding” of the sites; making the “binding” more elaborate
(thus increasing the number of fitting parameketscreases

the rms, even when the actual relaxed structure is unchanged.

It should be noted that the distortions of the tiles themselves
(equivalently, displacements of the centroids of clusters
decorating the tile nodésontribute an additional term to the
canonical rms value of every orbit.

In contrast to stability under relaxatid®ec. Il Q or the
single-site energySec. Il B, the rms is not a physical crite-
rion for how well the orbit in question reduces the total struc-
tural energy. Rather, it is a criterion for the usefulness of the
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binding chosen for that orbit; the overall mean rms estimates
the validity of a decoration picture at all, measuring the com-
ponents of the{relaxed ato”.‘ positions whicltannotbe ac- relaxed(bottom and from “canonical” to relaxedtop) atomic po-
counted for in the decoration model. A small value for thegins Solid line: Loose model LS1.2 under 11 A cutoff. Dotted
rms (for a simple enough bindingneans that the atom po- |ine: pense model DF2.1 under 6.2 A cutoff. Dashed line: Dense
sitions can be adequately represented without much “contexhogel DF2.1 under 11 A cutoff. The histogram includes Al and Mn
dependence,” i.e., they are not strongly dependent on thgioms together. The bin resolution on thaxis is 0.008,. Vertical
surrounding tile configurations. bars mark the rms displacements of the MI cent&€T nodey

There is one way in which the rms can indirectly guide uswhich limits the crystallographic accuracy of the CCT model.
to a reduction of energy. If the rms is large, it suggests there

are qualitatively different kinds of sites in the orbit. Then it
may be advantageous to “rebindSee paper)lthe orbit, i.e.,

to differentiate it into two or more distinct new orbits. Then
it is possible for the new orbits to have different occupations,
which may improve the energy.

FIG. 3. Distribution of atomic displacemenB from ideal to

V B). On the other hand, in the case of the dense models,
none of the just-mentioned findings is valiBec. V Q.

A. Results of loose models

Using the long-range potentials with,=11 A, all deco-
ration rules(and variants were relaxed for tilingsT1-T6,

) ) ) ) and furthermore rules LS1.2 and LSAvhich seem to be
This section gives the core results of our relaxations. Fopptimal) were relaxed with the 5/3 approximanttlings
each group of models reported on, we will first discuss ther7 _t9). However, since our relaxations with the shorter
stability (or lack thereof of the atomic positions under the cutoff r ,=6.2 A were more systematic and complete, most

relaxation. Then we turn to the main issue, the energies, oW ihe data presented here are taken with that cutoff.
main concern being which variant model is optimal, i.e.,

which one lies closest to the convex tie line in a plot of .
Xwin, Versus energy. We correlate these energies with the many 1. Stability
directions in our parameter space: some of these concern the Our results demonstrate clearly the plausibility of MI-
decoration rule — either the overall familidense/loose, based models under realistic pair potentials. To our surprise,
FCI/SI), or the variations on specific sitéaffectingn,,and  every model in the loose family was found to be remarkably
Xmn); Other directions concern the potentials in use — in thisstable, as seen in Fig. 3. Indeed, the peaks in the pair-
section, this means changing the truncation radiys As  distribution function(PDF) at larger;; are just as sharp in
noted in Sec. Il, it is more correct to usg,=11 A, but large tilings as in small ones. The Mn-Mn correlatidisee
most of our systematic comparisons usg=6.2 A since it Fig. 4) are especially strikin§®
is too costly to relax all the models with the longer cutoff. Furthermore, the typical rms displacement of the relaxed
Left to later sectiongVI and VII) are yet other directions positions from the “canonical” positions for each orbit was
in the parameter space, which have been explored less thasnly 0.08—0.09 A for the largest tilings studied; a sample
oughly. We have also left most of the discussion of theséiistogram is included in Fig. 3. Table IV compares the con-
results to later sections, in particular Sec. VIII. Our mainfigurations before and after relaxation, for the atom types in
finding is that loose models are good, in having energieshe two-shell Mackay icosahedron. The displacements for
offset by a small constant above the equilibrium tie line,Mn(0) (which is occupied in all these modgksnd the inner
comparable to the energy difference among crystalline strucAl( @) shell are presumably following rigid motions of the
tures seen in Sec. lll, and that different loose variants haventire clusterresponding to phonon-phason coupling — see
rather similar behavior. We also have found that a decoratio®ec. VII B). Since our sort of decoration model has no way
approach accounts rather well for the relaxed positi@es. to describe a net displacement of an entire MI, we must hope

V. RESULTS
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FIG. 4. The Mn-Mn pair distribution function for various CCT

decoration modelqa) Loose 5/3 T4 LS1.Zsolid line 11 A cutoff,
dashed 6.2 & (b) Dense 5/3T4 DF2.1 (solid line 11 A cutoff,
dashed 6.2 & (c) the same a$a), but under Morse potentialéc)

the same agb), under Morse potentials.

that these are small and indeed

0,~0.03 A.
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TABLE V. Site frequencies and site energies.

Site? Percentage r(,=6.2 A) (reu=11.0 A)
Mn(0) 1.31 -2.0155 -1.7975
Mn( ) 15.74 -1.4390 -1.6643
Mn(vy) 1.62 -1.3307 -1.4190
Mn(vp + 3p) 1.23 -1.4000 -1.5873
Mn(4) 1.62 -1.1001 -1.5546
Al( @) 15.74 0.2463 0.1994
Al(B) 39.35 0.1019 0.0899
Al( y5) 6.71 0.1001 0.0681
Al( ) 15.74 -0.0289 -0.0499
Al( yp) 0.93 -0.2188 -0.2535
Al(8y)° 1.62 0.1395

All Mn (combined  21.53 -1.4382 -1.6413
All Al (combined 78.47 0.1007 0.0779

¥Decoration LS1.2 on tiling’8.

bThis site energy is from decoration LS1.1, since model LS1.2 has
no S(Al) sites. (The other site energies in LS1.1 are similar to
those shown above, the largest differences being at the immediate
neighbors of thedy site)

variance follows the trend of the canonical rms: it is largest
for the outermost and most distorted B) shell]

Figure 5 plots thdrelaxed energy/atom againsty,,, for
the different models. The overall slope in such a plot just
shows the difference between the Al and Mn chemical po-

the table showéentials. To help compare models with differirg,, content,

we have drawn thésolid) tie line (same as in Fig.)2and a

The expansion/contraction of the M, relative to “ideal” (dashed reference line.

positions,

is similar to the experimental finding for
i-AIMnSi.%” The inner Al(@) and outer Mnf) icosahedra

expand, while the icosidodecahedron formed bylcon-

tracts relative to the ideal positions.

2. Energies

The site energies for the different orbits, are shown in
Table V. It may be seen that the Mn site energiesease
from the MI center towards the third shell and the tile inte-

rior regions,[along the sequence NB), Mn(u), Mn(v),

Mn(5)]. On the other hand, the Al site energies typically
decreasealong the sequence Al), Al( B), Al(y), i.e., inside
to outside.[In the MI, as Table IV shows, the site energy

TABLE |IV. Relaxation of Ml cluster: distortions and site ener-

gies.

Ri(A)
Shelf (expt)® (calc) ¢ (A) E© (ev) E (eV)
Mn(0) 0) 0 0.038 -2.029 -2.020
Al( @) 2.45 2.525 0.039 0.241 0.244
Mn(w) 4.90 4.896 0.034 -1.437 -1.450
Al(B) 4.60 4.769 0.104 0.133 0.120

@Decoration LS1.1 on tiling6. ry,=6.2 A.
bReference 65.

The equation of the reference line is

E= i (1= Xpn) + i Xnn - 9
Here we take this to be the best linear fit of the 11 models
produced by decoration rule LS2.4. We obtain

we=0.3186, uil=-2.2392 (10)

for r,=6.2 A.
It is necessary to compute a separate ljaéso using
LS2.4 for thery,=11 A case, since the slope is different:

wWe=0.3793, wlel=-2.7437 (12)

for re=11 A.

As can be seen from Fig. 5, the best decoration rules for
rei=6.2 A are “LS3.1" and “LS3.2” (which have very
similar energiesAll tilings from these two rules lie almost
exactly on a straight line parallel to the reference lih6).
Atr.,=11 A, the plot would look quite similar, with a dif-
ferent reference line, but the best models are now LS1.2 and
LS2.4 (the reason for this difference is discussed in Sec.
VII C).

Table VI summarizes all our results fog,=6.2 A, using
tiling T7 as a representative examp[élthough it is an
important parameter, the conduction-electron dengityis
not displayed since it may be found from the Table VI entries
using Eq.(2).]
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. TABLE VII. Effects of potential truncation.
Phase diagram

CCT structures and small crystals AE (meV/aton)b
' ‘ ' ModeF (re=6.2 A) (re=11.0 A)
e crystals
s = Dense SI LS1.1 4.7 5.5
o s Dense FCI
~-0.05 c A + Loose SI LS1.2 8.9 -0.1
R S oLS2.4 LS2.1 1.8 4.1
o ----refline
%DA . — teline LsS2.2 6.5 -1.2
K LS2.3 2.4 4.4
LS2.4 6.8 -0.9
s LsS3.1 -0.7 26
:27 -0.15 - ] LS3.2 -0.1 2.8
[2]
§ 8Using tiling T6 for all models.
g bEnergy relative to reference lin€$0) and (11).
[
[
§ ° adopts a single reference line on the plot in Fig. 5, charac-
Z _pos | § terizing each rule by its difference from that lie.g., the
entries in Table VII. The conclusions of the simpler way are
well-defined to the extent that the different fit lines have the
same slopgwhich is an good approximation for the loose
AI10Mn3
h models)
To make generalizations as to which option is optimal at
_0.35 ‘ ‘ ‘ each variable site, we can then correlate the differences in
0.17 0.19 021 0.23 the resulting energies with the options shown in Table .
Indeed, it appears that the cost of different options is simply
Mn concentration additive, so that we can assign an independent energy cost

_ _ _ for each “problem” place. By this analysis, Table VII sug-

FIG. 5. Energies versugy, for various CCT decoration rules. gests that “LS2.2” and “LS2.4" are the overall best models

The small crystal structures from Fig. 2 are repeated here as hea\(Vvith roo=11 A)' however. under the shortened cutoff
dots, as is the tie line. The dashed line is the reference lin¢1By. §6 > A)CuEthe best’ones are L33

for quasicrystal decorations, and effectively connects model . .
LS2.4T1 and LS2.4¥3. Points from LS2.4(all 11 tilings are sioﬁzr);reated by the three variable types of site, the conclu-
shown as dia_monds, to illustrate hoyv th(_e energies from a singlé (i) In 8, sites, the competition between the options Al/
loose decoration fall nearly on a straight line. Mn/vacancy “loose” models is “delicate,” in that the energy
. . . _ differences are small and so the optimal choice can depend

There is no unique way to decide whether one decoratiogn, other minor features, e.g., the long-distance tails of the
rule is “better” than another, especially since a rule may bepgtentials. The energy differences are read off from the en-
good on some tilings and poor on others. One good wayries |.S.2.1, LS.2.2, and LS.3.1 in Table VII, since these
would be to fit a line for each decoration rule through theyyes differ exclusively in their & occupation. For
points in Fig. 5 represerllting.th.e models made.using fcilingsrcut: 11 A, the best option is Mitas in LS2.2; the excita-
Tl_—Tll, and to see wh|ch_f|t lines are lowest in the inter-tjgn cost(per 8y site, with the aid of Table VIllis 0.32 eV
esting range ok, . For a simpler, but somewhat more ar- for Al and 0.23 eV for vacancy. On the other hand, under the
bitrary way, one first adopts a particular representative tilingshortened 6.2 A cutoff, this order is reversed: the best option
and represents each rule by its energy for that tiling; then ong vacancy(as in LS3.}. Underr,=6.2 A, the excitation

cost is~0.15 eV for Al and~0.43 eV for Mn.
TABLE VI. Comparison of decoration model results.

TABLE VIII. Models used for molecular dynamics.

ModeF Pat XMn g Erel
(A9 (A9 (A9 (eV/ab Decoratioft Natoms XMn

LS1.1 0.06718 0.1991 0.080 -0.1891 DS2.1 2488 0.1801
LS1.2 0.2153 0.089 -0.2306 DS2.2 2488 0.2058
LS2.1 0.06599 0.2027 0.087 -0.2018 LS1.1 2448 0.1993
LS2.2 0.2192 0.097 -0.2438 LS1.2 2448 0.2157
LS2.3 0.1995 0.086 -0.1924 LS2.1 2400 0.2033
LS2.4 0.2160 0.095 -0.2346 LS2.2 2400 0.2200
LS3.1 0.06490 0.2061 0.086 -0.2139 LS3.2 2360 0.2034
LS3.2 0.2029 0.084 -0.2043

All of these with tiling T6. Atom density isp,=N_/Vce, With
3Using tiling T7, re,=6.2 A. cell volumeV g= (72b)3=374.33=3.643< 10* A3,
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(ii) The Z face (y;) sites are better in the “4/6” decora- TABLE IX. Energies from unrelaxed canonical positions.
tion than in the “6/6” decoration(The two vacant sites are —
on theZ face, along its twofold symmetry axisBy compar- Eg" Erel oe
ing the relaxed energies of LS1.1/LS1.2 and of LS2.1/LS2.2]1ing* Xy (eViatom)  (eV/aton)  (eV/aton)
we can estimate the excitation energy of filing eaetir of ¢ 0.2000 -0.17840 -0.19381 0.03115
vz vacancies to be 0.13 eV fog,=11 A (or 0.28 eV for T8 0.1987 017731 -0.18976 0.03049
rei=6.2 A).

(iii) The y3p site is better with Mn under our potentials °Rule LS2.3 for each tiling.
(which are, however, least reliable for that 3fje but the
excitation cost of Al is small. Using Table VI, it is found to AE=EZ"-E, is ~0.015 eV. This is reasonably sméthe
be 0.09 eV petyyp site (or 0.17 eV, forr,=6.2 A). typical energy scale of differences among different tilings is
~0.01 eV/atonm.

B. Tests of averaged positions C. Results of dense models

For each decoration rule, the *canonical” positions for 1o gjense 5| and FCI families of decoration rules were
each orbit were computed as a sort of symmetrization OLpplied to tilingsT1-T9.5° These models are worse than
average of the relaxed positions. The rms deviations from thg),se models in all aspects of their behavior: some of them
average positioitsee Table IV were an obvious measure of paye |ess stability, all of them have higher energies, and the
the goodness of the decoration description, in particular fofjle Hamiltonian concept would not work. Some other trends

diffraction which is sensitive to the displacements. will be explained by microscopic details of the “problem
As can be seen in Table VI, the loose models have rmsjtes.”

deviations ofc~0.1 A or less[Typically, the Al(8) orbit
has rms=0.11 A and all other orbits have much Igsk. 1. Stability
indicates that the simplegtminimal” ) binding of the CCT

decoration can already capture the relaxation displacemengna” tilings, but not in the case of largésize 5/3 approx-

rather well. imant tilings. Only a third of decoration rules lead to stable
The Al(B), the MI second-shell atoms, have a rms muchgircturegsee Fig. 3 even in these rather stable dense mod-
larger than any other orbit, presumably because these atorgfs the rms is strikingly larger than it is in loose models.
are exposed to a greater variety of environments. A sit@\nother third have a few orbits of runaway atoms, so that the
“bound” to a cell, if it is near the cell’s face, can “see” only canonical rms for those orbits can be larger than 0.2 A. The
two or so possible neighboring cells. On the other hand, theemaining third of the rules produce so many runaway orbits
outer MI atoms may fall into any of the nine different kinds that the relaxation program cannot find even a local mini-
of corner of a canonical ceff mum of the energy.
This confirms that a decoration modéhe one with “ca-
nonical” averaged positionsnay give a good approximation 2. Energies
of the true minimal energy positions. This observation might

justify a shortcut to computing the “tile Hamiltonian®n-  jjyes a5 the loose ones do, as can be seen in Fig. 5. Thus one
ergy of one tiling as opposed to anothery evaluating the 5, gistinguish certain models with the lowest enefgym-
total interatomic pair energy directly from the unrelaxed “ca- hared to the crystalline phase tie linghese occur around
nonical” positions(rather than from tile-tile terms fitted to Xun=0.20 (which happens to be the physically correct con-
the relaxed energies of representative tilings, the approacgentration fori-AlMn).
sketched in Sec. IX A least-squares fit line through all of the dense models
For every quantity computed from positions, we can congjves nearly the same slope as for the loose models. This
struct an analogous one from the site energies. For examplﬁ,stiﬁes defining “net” energies for comparison purpogas
in analogy to the canonical positions, we earlier defined cam Taple VII) by subtracting off the same reference li{i)
nonical energies by averagirtg over each orbit. So also for (for data atr,=6.2 A). Then the best deng&Cl) rules
each orbit there is a corresponding variane@, which  DF1.1 and DF1.2, applied to the tiling7, give energies
serves to quantify how similar are the local environments 0.042 and 0.035 eV, respectively, above the loose reference
different sites in that orbit, as reflected in the site energiesiine (10).
We letoZ be the mean o2 over all orbits(weighting each We have observed the following trends among the dense
atom in the orbit equally These quantities are shown in decorations: the net energiéfer a fixed tiling) are found to
Table IX for a typical loose decoration applied to two se-decreasewith increasingxy,, and toincreasewith density.
lected tilings. Thus DS3.2 is the best and DS2.1 is the worst among dense
Yet another way of testing the canonical positions is to se&| models.
whether computing the energy commutes with the canonical The xy, trend simply reflects the fact that the “problem”
averaging over an orbit. In Table IX, we compare the averaggites prefer to be occupied by Mn in structures where they
energy per atom founrelaxedmodel using the “canonical” are surrounded mostly by Al neighbors. In these sites, the
positions, Eg®", with the canonical average of thelaxed better option has a site energy roughly 0.5 eV lower than the
energy E. It can be seen from Table IX that worse one. The excitation cost should normally be about

Most of DS and DF structures are structurally stable for

The dense models do not cluster neatly along straight tie
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twice that difference, and is thus larger than in the looseealistically  oscillating  potentials (always  using
models. re=6.2 A) the lowest cohesive energies occurredviari-
The density trend indicates that all dense modelgen  ants of the DO model. We tentatively associate this with the
the loosest of thejnare packed more densely than optimal, S| symmetry of that model, since we also found SI symmetry
so that the energy can only increase with density. Specifito yield the lowest energies for CCT decoratigase Sec. V
cally, it reflects the fact that the “problem” sites mostly have and Sec. VIII B. In particular the DO 5/3 approximant was
rather tight surroundings. It is illuminating to compare theexactly degenerate in energy with our best CCT decoration
densest “loose” model LS.1 and the loosest “dense” modelsrule. (We will return to this point in Sec. VIII Q.
DF.1 or DS.3. They have quite similar densities, so the dif- The KG model is of interest in this paper mainly in testing
ference is that the dense and loose models achieve this dewhether the 12-atom MI inner shell is necessary for stability
sity, respectively, by occupying and y sites; the lower en- and/or low cohesive energigthe only difference between
ergy of loose models shows that, other things being equakKGme and KG is that the KG model has irregular, Ainer
6 sites are more costly to fill. shelly. Our preliminary resulf$ are unclear, since the en-
Another trend is that the energies of a series of tilingsergy difference between KGme and KG models depended on
with a particular dense Sl decoration rule, fall roughly alongthe choice of potential truncatiofNote that stability is prob-
a straight(tie) line, whereas with a dense FCI decorationlematic in the KG models as the 5/3 approximant relaxes to
they show more scatter. This reflects a quite large “tilean amorphous staje.
Hamiltonian” in the dense FCI case. The reason for this may
be that in the Sl case the resolutions of problem sites are VIl. FURTHER TESTS OF POTENTIALS
more local, whereas in the FCI case the differentiation of all ] ) » o )
sites into even/odd flavors forces entanglements of the object !N this section, we explore several additional directions in
types at larger radii. the “parameter _space” of our c_alculatlons, but do so less
Not surprisingly, the differences between site energies oforoughly than in the computations of Sec. V; these mostly
the respective orbits show the same trends as in the LS strutvolve deeper understanding of the role of the potentials.
tures. The Mn site energy increases but the Al site energyThe crystals and 6D-cut quasicrystals in Secs. Ill and VI can
decreases with the site’s radius from the Ml center; the orbit§imilarly be considered as exploring additional directions in

with the highest site energies were the “problem” sites andthe parameter space of modgMle start by using molecular
the Al sites in the MI. dynamics(MD) as a tool to check the stability of various

structureqSec. VII A). Then we focus on separating the ef-
fects of the pieces of the potential at different radii. First
VI. RELAXATION OF SIX-DIMENSIONAL MODELS (Sec. VII B) we study the effects of replacing the “realistic”
) L . oscillatory potentials by a short-range potential. Nééc.
Plausible quasiperiodic structure models already exis{;, C) we review the truncation distance effe¢abviously
with descriptions that are simple in the standard formulatior]mportant to the robustness of our conclusiorand also

L i 72
as a cut through a six-dimensional hypercry%?gf. The  (sec. VIl D) compute the contributions to total pair energy
CCT atomic models, though simple enough in physicalomn the different wells inVg(r). Finally (Sec. VIl B we

space, would be necessarily complicated to describe in 6Rqngjger the quasilattice constant from the standpoint of our
(see paper I, Sec. VAs a test, we have relaxed several pair-potential analysis.
WeII-kr)olvsvﬁq quasiperiodic models, under the same |, most of these supplementary calculations we only used
potentia h Otlir motivations _be'nﬁ" h is 2 fund Ithe 3/2-cubic approximant tilingT® in Table I). This ap-

(i) to check our assumption that the MI is a fundamentaly . imant is large enough to contain a variety of different

motif (t,he 6D-cut models have lower density of MI's, 0 N0 T enyironments but small enough that the relaxation time
true MI's at all. is not limiting.

(i) to assess the energy penalty for the simplicity of the
6D-cut description(some rare bad local environments are
forced, see Table Il in papey.|

(iii) to clarify the relationships between CCT and 6D To test the stability of the decoration models, we per-
models(discussed at greater length in papger | formed molecular-dynamic@D) simulations, using geom-

Our preliminary results suggest that the best 6D modeletries obtained as the output of conjugate gradient relax-
are practically degenerate in energy with CCT decoratiorations for a group of models. The aim of these simulations is
models.(Details will be given in Ref. 64. to verify that the system does not get hung up in spurious,

We chose three 6D-cut structure models for stisge shallow local valleys of the structural potential energy. After
paper |, Sec. ¥ the Duneau-Ogue¢DO) modell® the Katz-  sufficiently many MD steps, we quench the system and re-
Gratias(KG) model’*"?and a modified version of the Katz- relax the atom positions, and analyze the atomic displace-
Gratias model which we called “KGme.” For each of those ments to see if the initial configuration is recovered.
models variants with differing density and chemistry were Our models are listed in Table VIII; they consisted of
constructed along the lines of the CCT variants. seven decorations with a representative rangegf and

The KGme and DO models are built from Ml clusters andatom density, applied to the 3/2-cubic approximant tiling
have FCI and S| space group symmetry, respectively. They* T6” in Table Il). We adapted the MD code of Roh al**
have a lower density of Ml clustefs but otherwise the local Our typical runs consisted of 2410* MD steps(each time
arrangementgand the stability are similar to the corre- step corresponds to roughly>x@0 “ ps of real timg. We
sponding loose FCI and S| CCT decoration models. For ouperformed our analysi§ncluding the quenchnot only on

A. Molecular dynamics as a stability test
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TABLE X. Displacements under molecular dynamics (A). B. Short-range potentials
T—0.04 T—0.04 T—008 _It is. interesting to ask whether realistic pair potentials

Quantity (loose (dense (loose with Fnedel oscnlatlpns are necessary in order to capture the
physics(e.g., to decide which models have a plausible pack-

Equilibrated: ing of atom3. Many others studying the melting of quasi-

max({d;}) <~05 ~0.7 2 _ 4 crystals, or their phonon spectra, have instead adopted toy

mediand; 0.03 0.03 0.04 potentials such as Lennard-Joted.J) or Morse potentials
which are short rangé.e., have only one minimum

Quenched: In prior relaxation studies, a variant of the “Henley-

max({d;}) ~0.4 ~0.7 ~5 Elser” i-AlZnMg type modef* had a robust stability under

mediand, 0.002 0.01 ~0.02 LJ potentials. On the other hand, the Duneau-Oguey 6D-cut

model fori-AlMn was found stable under Morse potentials,
but the relaxation introduced significant displacive modula-
tions, with a few atoms moving disturbingly fa=@.8 A) in

the final configuration, but also using a configuration takerref. 9.

from halfway through the run. We found no systematic dif-  To obtain a fair measure of the importance of the Friedel
ferences between these casescept as noted belgwindi-  oscillations, we have also carried out relaxations using short-
Cating that our MD run duration is Sufficiently Iong to equili- range (Specifica”y Morse pair potentiajs onsome of the
brate local fluctuations. We used three MD temperaturessame structure models as we relaxed under realistically os-

aDepending upon equilibration time.

T=0.04, 0.08, or 0.16 eVin units wherekggjzmani=1)- cillating potentials. Our Morse potentials have the form
The results are summarized in Table X. At0.16, all

the atoms diffuse considerable distances; the system is Vi"j"orse(r)=eij{exp:—Zaij(r—rij)]

clearly melted. AtT=0.04 eV, the configurations are quite

stable: in the “loose” models, virtually all atoms relax back —2 exd —ajj(r—rij) 1}, (12)

to their initial positions, within some small distance set by
the numerical noise(In the “dense” models, however, the
mean displacement is larger, suggAesting that many atoms fi
new stable positions less than 1A from their old positipns. ™.
At T=0.08 eV, the fluctuations are apparently sufficiently P2"S AAl, Al-Mn, orﬁ/ln—Mn:& _ A
anharmonic that our relaxation algorithm fails to converge We 100k ~Tan=284 A, Tawn=259 A, and
for most “dense” models and for some “loose” models. At 'Mn-vn=2.71 A to agree with the first minimum of the re-

this temperature, most atoms still relax back to their initialSPECtve realistic po_te_ntlals. we SQ.IJEM” after Ref. 9,
location, but a few of them — the number increases withand sete;; =1, thus fixing a dimensionless energy scale for

time — suffer displacements larger than 1A. As a rule, if anthe Morse potential computations. It should be noted that the

atom diffuses by as much as 0.3-0.5 A, its final displacedePtNS €. €amn, a@nd eaa in Eq. (12) determine the

ment can be this larg@r even largéerafter relaxation; on the Che“?'c.a' p.otentlals for Al and Mn, and hence the slope of
other hand, atoms which displace about 0.1 A during the ME}h_e fit line in the pIo_t of structural energy VErsKgn - (S_ee
run return very nearly to their starting points. F'_g' 6) The truncation cutoff wasc,=6.2 A (increasing

The behavior observed @=0.08 eV suggests that our this would have little effect for the Morse potentials
models have a melting temperature in the vicinity of
0.1 eV~1000 K, which coincides with the true melting
temperature for these materials. The diffusion observed at Under Morse potentials, the low-energy crystal structures
T=0.08 eV is no surprise: the “loose” models have many*“ «-AlIMn” and w-AlMn are nearly as stable as under realis-
variants which differ only by whether a site is occupied ortic ones, as measured by the sharpness of the PPDF'¢$irand
vacant, so single atoms are expected to diffuse among the$ex-AIMn” ) and the smallness of the canonical rms. How-
nearly degenerate positions. ever, the larger CCT approximant models show a more com-

We also checked the change in “site energy” for eachplicated behavior under Morse potentials: tfpartia) pair
atom between the initial and quenched states. This followedistribution functions(PPDF remain sharp, as in a stable
the pattern of the atom displacements: i.e., if a few atomsnodel; yet the models are unstable by our strict criteria,
wandered large distances, then a few atoms would gaigince more and more individual atoms make large excursions
~0.4 eV in energy, however no atom ever takes on unphysiteven 2 A) from their initial positions, and the canonical
cally large energies. rms reaches;~1.2 A. for some Alfy) orbits in the “5/3”

In conclusion, our decoration models are stable againsipproximantT8.
finite-temperature molecular-dynamics perturbations. As a We can reconcile these conflicting indications of stability
side note, our standard criteria about stability terms of  and explain the size dependence if we ascribe a large part of
relaxation behavigr are supported: indeed, those modelsthese displacements to a strong “phason-phonon” coupling
(loose models which were more stable under relaxation in the Morse case. That refers to the elastic displacements
(compare Secs. Il C 3 and V G Were also more robust un- which accumulate rapidly with distance as a consequence of
der MD. The rough agreement between the simulated anpghason strain fluctuatiofis(i.e., deviations in the tile distri-
real melting temperatures ®fAlIMn adds credibility to the bution from icosahedral symmejryThus, in T8 the tile
pair potentials we are using. nodes themselves are distorted, as seen directly by the ca-

where €; is the “depth” of the minimum, a;; is its
r;‘(§trength,“ and ry; is position of the minimum(only one
well at nearest-neighbor distanceénerei andj stand for

1. Stability under Morse potentials
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tials, a higher occupation of thé network xs~0.50 is fa-

Relaxation using Morse potentials vored, thus forcing an ordering in the lattice gasdo$ites.

610 for selected representative structures (See Sec. VIII B).
o ‘ ' ‘ The competition between loose and dense models under
: o crvetals MO(se potentials depended on two eﬁects.'
O Do &1 (i) The parameterg; in Eq. (12) play an important role
A Dense FC since they can change tislapeof the potential. Potentials
—6.20 1 itﬁﬁiﬁ EEI I with a narrow first-neighbor well match models with a nar-
© + DF2.1 row range of first-neighbor distances, as tends to be found in
S R tie line loose models. Dense models have a broader spread of first-
g neighbor bond radiiespecially Al-Al), which is better toler-
> -630 . ated by an Al-Al potential with a broader or shallower well.
g N (i) Other things being equal, the Morse potentials favor
® R the closest atomic packings.
g As a consequence of the competition betwé&emand (ii ),
2 0l i the loose FCI modelLF) was slightly better than th@lens-
> s 7 esy dense FCI model DF2.1, when we choasg="6/r;;,
(4] .
a>3 s + but the opposite was true after we changed to
< N + « 4/rA|A| .
F XXX Variants.In contrast to the case of realistic potentials, we
-650 ¢ x I found that(i) Al( y;) hexagons in loose SI models are best in
./E////x the “6/6” variant, and (i) Mn is favored oné,(A) sites
u while Al is favored on thedy sites. But just as it was with the
o realistic potentials, the unphysical filled M) site is pre-
680 o 0180 0500 0220 ferred by Morse potentials.

Mn concentration “Tile Hamiltonian.” When applying the same rule to dif-
ferent tilings, the tilings under Morse potentials wouldt
FIG. 6. Energies Versusy,, as in F|g 5’ but relaxed under fa” on Stra'ght |IneS |n Flg 6, Il’l contrast to the case Of
Morse potentials. Energies are measured in dimensionless unitéealistic oscillating potentials. By the logic we will present in
roughly comparable to 0.1 eV. Models are identified by a similarSec. IX below, this signifies that the Morse-coupled system
key; some 3/2 approximants of 6D-cut structures are includecannot be described as a random tiling. The “tile Hamil-
among the models labeled “loose,” since they differ from CCT tonian”is rather large in energff it can be defined at all A
decorations only by the,(Zp) rings. specific observation was that the energy grew monotonically
as a function of the fraction dD cells in the tiling; in the

nonical rmsa,~0.17 A for the Mr0) orbit in T8; all sites  notation of Sec. IX, that means the coefficidfit in the “tile

are carried along with the nodes. Hamlltonlan" is exc_ept|or_1ally large; physically, it suggests
This is not, however, the entire story: a smooth distortionf€ D cell (in all variantg is rather badly packed for Morse

should not affect the site energies, yet in the smallish approxotentials.

imantT5, the rms variation of site energy (ke the canoni-

cal rmg already much larger foany orbit under Morse po-

tentials than for theworst orbit [Al(8)] under realistic ) ) )

potentials. Furthermore, the Mn-Mn PDF’s differ signifi- Ve have just notedSec. VII B) that including the poten-

cantly from models relaxed under realistically oscillating po-1ia!'s oscillations beyond the first-neighbor well makes a real

tentials and the Mn sites are displaced much farther from théifférence in the structure. Further information along the

“ideal” positions (see Fig. 4 Apparently the rigidity of the ~Sa&me lines is obtained by comparing the effects of truncating

Mn subnetwork really depends on the deep second minimurf{l® potential  at re,=11 A or a shorter cutoff of

in the realistic Mn-Mn interaction, and perhaps that is what' cu= 6-2 A (see Sec. IIC)L The 6.2 A cutoff means,

stiffens the entire structure against phason-phonon distofoughly, allowing interactions to the second or third shell of
tions. neighbors. This tests the validity of our entire program of

relaxations since(i) due to relaxation time limitations we
used the shortened cutoff for most of the calculations re-
ported here, assuming that this would have only minor ef-
The results of relaxations are shown in Fig. 6. Under thdects on the answersi) if r,=11 A gives answers differ-
Morse potentials, by far the best models are the crystagént from ro,=6.2 A, then the oscillating tails of the
phases &-AlMn” and w-AlMn. Among the CCT decoration potentials are still important at these radii, hence using an
models the results are more scattered, but it is clear that theven longer cutoff might give yet another answer.
FCI models(both loose and dengeare better than the SI The principal artifact of the 6.2 A cutoff among loose
models. A comparison on tilind6 of LS1.1 and its loose models is in a wrong sign of thenergiesresulting from the
FCI counterpart, which differ only in the arrangement of the §, site occupancy by Al, Mn, or a vacancy. This must be
occupieds sites, showed the FCI variant had lower energyblamed on the omission of thaird minimum of the poten-
by 0.030 units. Our interpretation is that, with Morse poten-tial Vy,un(r), at about 6.7 A(see Fig. 1; indeed, the re-

C. Truncation effects

2. Energies under Morse relaxation
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TABLE XI. Structural energy by wellgin eV/atom). energy by only 0.001 meV/atom, which is much smaller than

the differences between the different decoration rules.
These results are also relevant to the second worry in Sec.

LS1.1 0.1993 -0.0238 -0.2083 0.0423 -0.1898 |l B. Properly speaking, we should include the structure-

DF2.2 0.2079  -0.0235 -0.1782 0.0433  -0.1584 independent contributioby(a,), and then should minimize

the sumUq(a,) +E(ag), in order to determine the relaxed

®Tiling T6 was used. energy for a given topological arrangement of atdfeb-

viously the whole curvee(a,) would be needed for such a

laxed Mn-Mn pair-distribution function has a peak aroundcalculation.

6.7 A which includes contributions from Ma} atoms.

Dense models seemed to fitorse with potentials using

re=11 Athan withr,=6.2 A, as seen not only in failure VIIL. DISCUSSION OF STRUCTURAL TRENDS

of certain models to satisfy our stability criteria for relax-

ation, but also in higher “canonical rms” values after suc- In the spirit of Sec. Il D, we now try to make sense of our

cessful relaxations. results in terms of the distinctive features of the structures

and the potentials. The unifying theme of our discussion is

the § site occupations, in particular the negative vacancy

) i ) ) formation energieqfavoring “pseudovacancies” possible
To obtain further understandmg of the relatlonsh!p b,e'on many of them. This is why loose SI structures are fa-

tween quels and potentials, we se_parated the .contrlbut|oi%red, and why(see Sec. IXthe tile Hamiltonian is small.

from the first-, second-, and third-neighbor wells in each pair The possibility that the vacancy formation energies are

potential. That is, for each of the three potentials in Fig. 1Wrong owing to the weak aspects of our potentidec

we Ie.tbri pe th? radu;]s O.f thqathlmaxmum (OEOI)I‘ thendall II B), is a cause for some concern. However, the arguments

fr?:}?h lxlgl?s rom the intervalr{_, ;) were allocated to in this section could be inverted as follows. It would seem
This analysis confirmed that what favors loose modelsmf;It 3832;%22\-{"0&& \?vléaagmztaslprggggts fr?antdlttk:cénﬁ?gﬁ-n

over dense ones is the contribution from geeondwells (of Lality quasicrvstals such aAlPdMn must have loose-tvoe
all three potentials For a striking example, we compare the gtructﬁr?as eveyn if the best structure of redlIMn is nc})/tp
densest dense modéDF2.2) to one of the loose models ' .

@F2.2 loose. (We suspect that a better calculation would bear out

(LS1.7); these have similarxy, values of 0.2079 and . .
0.1993, respectively. The pair energy contributions from the}he general pattern of pseudovacancies on dfites, but

first and third wells are about the same, but the second We"gerhaps not on theamed sites are found in the present

of the oscillating potentials favor the loose model by 0 o3Paper, since thi_s can be sensitive to potential tails and other
eV/atom “““small energy differencesin any case, the “looseness” has

This conclusion fits reasonably well with the finding that EMerged more clearly as an essential parameter for discuss-

models with “pseudovacancies” are not stabilized by Morse'"Y Al-TM models.
potentials(Sec. VII B). After all, if we had truncated our
potentials after the first well, we would have created a short-
range potential qualitatively similar to Morse potentiédé
though dramatically different in the ratios of the well ~The key to this point is the discussion of the candidate
depths. The results are shown in Table XI. 6 sites in Sec. IV D of paper I. Thé atoms were viewed as
a lattice gas on this network, and the loose and dense model
families were primarily distinguished by the minimum spac-
ing r s among these atoms. It was argued that the ideal occu-
We have explored the effects of varyiag. (This could  pancy of this network s is less than 50%.
just as well be viewed as varying the radii of wells in the We propose that the optimal valuexfis ~0.33(as in a
potential, if we considea,, as fixed) We computed the re- typical loose modef and that, so long as the indirect exclu-
laxed energiegusing ro,=6.2 A), for the four best loose sion is satisfied, it does not matter very much exactly where
decoration rulegLS1.1, LS2.1, LS2.4, and LS3.bn tiling  those occupied’s are distributed: the lattice gas really looks
T6, varyingaq by 0.01 A increments. There is(guadrati¢  like a gas. Our claim that the placement of thatoms does
minimum of the relaxed energli(a,) near 4.60 A for the not matter much is reflected in our finding — see Sec. V —
“pbest” rule LS3.1 (at 4.61 or 4.62 A for the other rules that on such sites the competition between variant occupa-
These experiments with, address the first of the worries tions by Al, Mn, or(pseudgvacancy is very delicat.
about pair potentials in Sec. Il B. Instead of choosing Diffraction experiments indicate AlMn(like all other
aq=4.60 A throughout, as we have in all other sections, aAl-TM quasicrystal$ does have nonzero occupancy &f
more physical rule would be either to force the right positions’® Our finding that, among loose models, LS2
conduction-electron density for our potentialg,=pgy, or  structures are preferred over the LS3 structures is thus in
perhaps to adjusd, so as to optimize our structural energy. accord with experiment. It is only using potentials truncated
The above-mentioned results show that either choice wouldt r.,—6.2 A that the extreme loose structure L&@hich
have a very small effect on our results; e.g., had we optihasno occupieds site9 is preferred, presumably a spurious
mized a, for each decoration, it would have lowered the effect.

ModeP Xn EM® E@ E® Eot

D. Allocating energy by wells

A. Why are loose structures favored?

E. Quasilattice constant
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B. Why is there SI symmetry? D. Mn stoichiometry

Our finding that SI models are preferred ran counter to Experimentally,i-AlIMn seems to have highest quality
our a priori expectation that FCI structures would be favoredaroundxy,~0.20, but it admits a range from about 0.14 to
[based one-AIMnSi (Ref. 79 andi-AlCuFe]. The lack of  0.22. Our results from loose models would indeed predict a
ordering can be interpreted in light of the above viewpoint ofwide range ofxy, values: the fact that the energies cluster
the & sites as a lattice gas, within a surrounding that has Sflong a straightnot curved line in Fig. 5 shows that differ-
order. If the net occupation of sites is low, as in a loose €nt stoichiometries are equally acceptable. There are two
model, then their mutual interactions are unimportant and th€°ntributing reasons, in terms of tile and site disorder, re-
single-site terms determine the structure. Thus it will be SI.SPectively. , . .

From the above arguments, we would have conjectured ©One reason for the wide range in our models is tat

that an FCI ordering should be favorable for dense modelsfleslgsfenhd to b.e mucpl righ;; ]in Mhrghmt:lcellg 0_150{ rulhe
since it is the best solution to the repulsigies interactions. -1, thexyy Is roughly 0.24 for t cell and 0.19 for the

However, numerically SI was found to win also in the dense'g‘f Ctilje. ;hesgggs.ﬁio?emi "?‘;e;z(agéhz ;ﬁgggﬂ OC?IF;"“;';’:
case. Apparently the single-site terms favoring certain sub- b Sl ' ' pseu Y, Wh

X : e ; . Oy(D) site is reasonable as a Mfij) the D cell has the
gg:\;:es ob sites outweigh th&-§ interactions, even in this highest density of Mng) and Mn(x) sites. In turn,

canonical-cell tilings can have varying fractions@fversus
A cells (obvious in simple structures built from only one
kind of tile; but even with icosahedral symmetry, there is
. considerable freedom in these fractiors.

In our CCT decoration models, we assumed that Ml clus-  An independent reason for variable stoichiometry is that
ters were fundamental in two senses: the loose models contain manyy andé sites on which Mn

(i) we have complete MI clusters rather than fragmentary,r Al are almost equally good, so that the real structure may

or imperfect ones, _ _ have a stochastic occupation implying a phase with variable
(if) the number densityy, of Ml should be as high as ¢gncentration.

possible.

This point is somewhat controversial, aAIMnSi dif-
fraction data was interpreted in favor of pseudo-MI rather
than MI cluster$’ but it is now understood that even good  The decoration description of a quasicrystal may permit
data may be insufficient to decide the quesfidn. us to describe the energetics in terms of a reduced set of

Assumption(ii) can be addressed by a systematic com-degrees of freedom. Indeed, we have séec. \J that the
parison of relaxed energies including both CCT-decoratiortcanonical rms” of the relaxed positions is small. That
and 6D-cut models, since all of the latter contain a lowermeans that the atomic coordinates are well described by a
density of MI's than in a CCT structure. Calculations of this configuration of rigid tiles plus as subsequent decoration in
sort are in progres¥ A related kind of structure that might which tiles of a given kind receive identical configurations of
also be compared is a decoration model based on a generaltoms. It was arguegtf. paper |, Sec. Vjlthat such a lack of
ized CCT(using some larger types of canonical cell, and thus‘context sensitivity” may permit us to account for the struc-
permitting lower Ml number densitigs tural energies in terms of a “tile Hamiltonian'%., a

Assumption(i) is also addressed appropriately via the 6Dmodel Hamiltonian which assigns just one degree of freedom
models, since they contain fragmentary MI's wherever aper tile4 The fact that energies from many different tilings
complete MI could not be placed on a candidate MI centersfall nearly on a straight tie linéin Fig. 5 confirms, at least,
due to overlap with another Ml separated by a short distancehat tile rearrangements are valid low-energy excitations.
a4, and some of them contain pseudo-MI’s in place of MI's. However, to say that the tile Hamiltonian description is valid,

It seems unlikely that MI's should be imperfect in the the deviations from the straight line behavior must not only
second shell, which has a packing that can hardly be imbe small, but their values should be mostly accounted for by
proved by a rearrangement. On the other hand, for all of ouZ;.. In this section, we shall extract the parameters in
good decoration rules, the Ml first shell sites(Al)] have 77, using as input the relaxed energies presented above
the worst site energies of any Al ortjiibout 0.01 eV worse  (Sec. V), and confirm that the “tile Hamiltonian” description
than Al(8) or Al(y) in loose modelk® This suggests this is rather accurateThis works only for the loose decoration
shell ought to be modified, perhaps by making twaites  models under realistic potentials.
vacant in each MI. This option might also be studied ina 6D We consider the simplest possible form
representation, where it appears as a compromise between
the MI Al,, shell and the pseudo-MI Alshell.

To rule out MI fragments, we would have to explore an
even larger space of possible structures. For example, they
might be based on motifs such asgMh, tetrahedra and which includesonly one-tile terms, as in Eq2) from paper
“pentagonal bipyramid” clusters, which are, respectively, |, wherea=A,B,D,E for four kinds of tile.(We do not have
like 1/20 or 5/20 fragments of an MF:*8Finally, we observe an independer¥ sinceNc=Ng+ 2Ng; thusVg represents
that the two-shell mini-Bergman clusters are conceivably justhe sum ofB+C tiles andVg represent£+2C.) We as-
as important(for the cohesive energyas the three-shell Ml sume the validity of Eq(13), equate 7. to the relaxed
clusters®® energies for tilingsT1, T2, T3, andT4, and so findV,} as

C. Why Mackay icosahedra?

IX. TILE HAMILTONIAN RESULTS

Tie=2 VaNg, (13)
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TABLE XIl. Tile Hamiltonian results. sumably reflects the omission of many direct interactions of
further neighbor atoms in two neighboring tiles -
V. /N, (meV/atom r.=6.2 Ais less than a tile diamet&When we reduce the
Rule  roA)  fia amn A B D E interaction radius even furthéy using Morse potentialsit

appears that the residuglBable Xll) become smaller, rela-

tive to the energy scale set by the one-tile tetirable XIII).

In the absence of longer-range interactions, the residual tile-

tile interactions may be ascribed to elastic distortions — i.e.,

interactions between atoms on different tiles are mediated by

pushing on the intervening atorf®’

8UJnder Morse potentials, and modified DF2.1 decoration rule. In The values oW, are very sma}ll compared t.o qther energy

10-2 Morse units. scales — e.g., they are 1/100 times the excitation cost of
the higher-energy alternative occupancy in the “problem”

the solution of the four linear equations EG.3) with the  Sites, an energy difference which was considered s(ea#

N, values for those tilings as coefficients. Of course, the>€C. VA 2. Thus it is fair to say that a “random tiling” is

validity of this description must be tested by checking Eq.2PPropriate as a first-order approximation feAlMn. The

(13) for a variety of other tilings. smallness of the7Zy;, is a consequence of “loosenesEee

Sec. VIII A). In a dense model, atoms in different tiles are

pressed up against each other and so they interact more

i . . . strongly giving a much largev’,.

We first find the parametergvn (for each decoration  \we now consider whether the deviations from degeneracy
rule) by a least-squares fit of the relaxed energy/atomyre small enough to permit “entropic stabilizatidhdf an
(weighted equally for each of the 11 example tilings equilibrium quasicrystal. In the Al-Mn system, this possibil-

~ - ity is ruled out since some crystalline states were found
Erei= iA1= Xun) + mnXin - (14 If)ywer in energy than the CCT st)(/atéa accord with the fact
Then as explained in paper |, the parameters meaningful fdhat reali-AlMn is only metastable Instead let us consider a
comparative structural stability are obtained by subtractindiypothetical system in which all the CCT packings are lower

LS3.1 6.2 368 -2455 -0.633 -2.011 0.462 1.930
LS1.2 6.2 304 -2179 -2.212 2.623 -2.415 3.883
LS1.2 11.0 365 -2687 1.780 -2.540 0.759 1.970
LS2.4 11.0 379 -2744 1.150 -4.130 0.489 3.240
DF2.® 6.2 -1015 930 -0.908 5.967 0.403 10.551

Results for “tile Hamiltonian”

off the line of Eq.(14): in energy than other structures, but the energy differences
Y - " among CCT structures are similar to those found here for the
Vo=V,—pnaNg —amnNg (15  AIMn case (it is plausible thati-AIPdMn would fit this

desciption. B
The energy scal¥ of our “tile Hamiltonian” (Table XlI)
is ~1 meV/atom or~ 70 meV (=800 K) per CCT node.

whereNA"M" is the number of Al,Mn atoms on a tile of type
a. Note that in principle the subtracted parame{af§} are

linearly dependent — there are really only two independen urthermore, the CCT random-tiling entropy is at most
parameters among them.

N 3 . ; .

For selected combinations of decoration rules and pote ‘-T.O.No'l per node! —NO.W’ a quasicrystal |s:r1trop|cally sta-
tials, Table XII shows the subtracted tile energy per atom, fo llized when 00T>_V’ €., abov& 10° K using the_ param-
each kind of tile®> Then Table XIIl shows the difference ©ters for random-tiling-AlMn. Since the real melting tem-
E.—. 7. When the parameters in Table XII are insertedPerature is Tm= %03 K, entropicstabilization cannot be
into Eq. (15) for tilings T5—T11 from Table I1.(Of course, realized, unles¥ is reduced by an order of magnitude.
this is zero by construction for tiling§1-T4.)

The V/, values in Table XII are of order 1 meV. That is
about ten times bigger than the residuat§;.— E,e; Which
are typically~ = 0.15 meV/atorm(see Table XIl). This con- This paper demonstrates the use of detailed energetic
firms that our simple tiling Hamiltonian is a good approxi- studies as the basis for structural insight and refinement for
mation. Presumably, much of these residuals could in turn bthe case of AI-Mn as modeled using canonical-cell tilings.
accounted by including tile-tile interactions in H35). Though our results center on the Al-Mn system, they reflect

Note in Table XlII that the residuals are smaller with thea more general philosophy which advocates a synthesis of
reduced cutoffr ,,=6.2 A than withr =11 A. This pre- diffraction studies with total energy methods in the refine-

X. CONCLUSION

TABLE XIlI. Error in . 7%y (meV/atom).

Rule r el A) T5 T6 T7 T8 T9 T10 T11

LS3.1 6.2 0.21 -0.06 -0.07 -0.19 -0.00 -0.06 0.04
LS1.2 6.2 -0.79 -0.37 -0.60 -0.38 -0.47 -0.42 -0.60
LS1.2 11.0 -2.58 -0.98 -0.85 -0.97 -1.33 -1.04 -1.40
LS2.2 6.2 -0.79 -0.06 -0.13 -0.44 -0.32 -0.22 -0.32
LS2.4 11.0 -2.58 -0.27 -0.42 -0.74 -1.00 -0.65 -1.12
DF2.7 6.2 0.42 -8.14 -7.53 -5.28 -6.92 -6.99 -6.48

@Under Morse potentials, and modified DF2.1 decoration rule. I/? Morse units.
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ment of quasicrystal structures. “tile Hamiltonian” (Sec. IX from which we could calculate
Our approach has been to use pair potentials which simuthat energy cost, for any given tiling. These calculations are
taneously treat both the free-electron and tightly bound elecan explicit implementation of the idea of building an effec-
tronic degrees of freedom. These potentials exhibit strongive model with parameters determined by calculations at
Friedel oscillations which favor particular interatomic spac-smaller length scales and raise the possibility of simulations
ings that favor complex intermetallics. Our results from ap-at the tiling level based upon microscopically derived Hamil-
plying these potentials to structure refinement in the Al-Mntonians.
system are summarized below, followed by suggestions for We have explored, more systematically than in any prior

future work along these lines. work, some of the many directions in the parameter space of
our calculation, which concern the modehriations of den-
A. Summary of the results sity p Or stoichiometryxy,, and SI/FCI symmetryas well

2 the potential&ange/truncation, lattice parameteret our

We have systematically explored the energetics and st . - . .
studies are still incomplete at many points. For example, it is

bility of many different structural models based on . . ;
canonical-cell tilings, assuming pair potentials, in order tosurely ponﬂrmed that the .Mackay icosahed(b) cluster is .
grasp the relationship of particular features in the structure t& possible str_uctural m(_)t|f, but we could not r_eally se_ttle Its
the resulting total energy. Within the families of models we'mportance since we did not explor’e a sufficient variety of
studied, the most important kind of variation was of sitemOde'S with fewer(or nong of the MI's (see Sec. VIl ¢

occupancy — above all, the competition between filling the '!'here are a few other areas in which our result; are not
site or making it vacant“density variations’). It is much entirely satls_;factory. Our finding t_hat the bes_t versionaof
easier technically to modify such details in the tiling- phase has filled MI centers certainly contradicts the known

decoration approach than in the 6D approach, where on tructure ofa-AIMnSi. This may be an artifact of replacing

must first encode it as a context dependence and then m (fjgy Alin our mod'ell; morﬁ “Iﬁlly’ It Is in artifact cgf IUS'?g
figure out what acceptance domain corresponds to that coft |t|v_e|pa|r potentials ?tt ﬁ cerétéw eé%’ €.9. "glue
text. The generally good match between the pair potential§°tentials can account for the pseudovacancy

and known Al-Mn structural patterns indicates that structure .Mor(_e fundamentally, our [r)]alrf poterr]mal hschem$ E?S limi-
refinements in quasicrystals could quite practically incorpo—tat'ons' we cannot escape the fact that the available poten-
ials are calculated only for electron densjiy (see Sec.

rate realistic energy calculations to resolve uncertain details; d lable f iahb .
All of our quasicrystal models still lie above the tie line of I.I BI). and are unlre 1a ehor MT’M” lnellg %r paurs. Indpar-
the best real structures, and hence are predicted to be thd{cular, our conclusion that relatively low density and Sl
modynamically unstablg¢at T=0), just like reali-AIMn; symmetry are fgvored de_pends cruu_ally_on the sign of the
however, our models are competitive with several plausiblé/2cancy formation energies for certain sites known & .
small crystal structures which are also unstable for Al-MnSIteS: Or équivalently six-dimensional body-center sites; see
(see Sec. I As to our further finding that the best quasi- Sec. Vil and paper |, Sec. .IV D. Slng:e we do_ not knpw hOW
crystal has SI order, experiment is ambiguous in thaf®Pust the vacancy formation energies are, it is quite likely
i-AIMn is SI, but short-range FCI order may appear uponthat a better set of potentials will change our conclusions in
annealing® ' Sec. V as to the detailed ranking of models. Indeed, the
In the past, optimal packing of atoms as in Spherephys_ically correct answer may depen(_:i sensitively on small
packings®® guided by information from crystallographic re- details of the second-neighbor potential wells and vacancy

finements, has been a mainstay in constructing possible qu%grmanon energies, which will be a function of c_omposmon.
sicrystal decoration§ % But our results in this paper show urther dlscuss_,lons of the result_s are found in Sec. VIII.
that packing isnot a good guide for guessing the details of Hovyeve_r, despite all the uncertampes, we believe th"flt our
Al-Mn structures; for these details depend sensitively on thémdmg in favor ‘.Jf. loose structures is robust, becau;g itis a
oscillating, further-neighbor tails of the interatomic poten- necessary condition for the existence of a good tiling de-
tials. Under realistically oscillating potentials, those well- scription(see Sec. IX
packed structures appeaverpackedthe loose models were
favored instead. On the other hand, short-range potentials
with one well, such as the Morse potentidlp favor the Our results might serve as the prototype for an analogous
well-packed type of structure; indeed the more realistic loos&alculation for the more interesting stable ternary quasicrys-
structures tend to be unstable when relaxed under Morse ptals, i-AIPdMn andi-AlCuFe. In view of the experimental
tentials. It is vital to adopt the most realistic possible form offacts, we would expect find the FCI quasicrystal lower in
potential. energy than the competing crystébr Sl quasicrystal

The loose models, taken together, demonstrate that thghases. On the nearest-neighbor scale, these ternaries surely
description of atomic sites by “canonical orbits” is unex- have atomic patterns similar to those in the models studied
pectedly accurate, capturing the post-relaxation positions diere, and a structure model may well be based on variants
the atoms to within~0.1 A (see the entries in Table VI), built on the structure models of paper(This assumes that
without excessively many parameters. Presuming that theAIPdMn contains no MI clusters, which is a controversial
true positions can be captured as easily, this is encouragingoint, but may well be consistent with diffractif). Al-TM
for possible future diffraction refinements of CCT decorationternary calculations are not presently feasible since effective
models. Another consequence of this fact is that the energyair potentials have not yet been calculated for the
costs for tile rearrangementalso known as phason fluctua- ternaries°?except in the -AlCuLi family '’ which is more
tions) are quite small. Thus, there may exist a simple additiveractable, as noted in Sec. Il.

B. Future directions
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Such a calculation might be able to settle the controversgasily via the 8 network®® In i-AlCuFe, Massbauer
about the importance of entropic stabilizatisee Ref. 8for  spectroscop}} showed hopping by Cu atoms by distances
the stable, long-range-ordered quasicrystals. In Sec. IX, we-4 A; this could easily be ascribed to tléenetwork, since
estimated that our mod&tAlMn would be stabilized, rela-  Cu sits preferentially on thé sites™"?anda,~4.5 A is the
tive to a phase-separated mix of CCT approximants, at tenmshortest distance between candidatsites.
peratures above-10* K. Such a phase would be unstable
first because a phase-separated mix of small crystal struc-
tures has a lower cohesive energy in the Al-Mn case, and
second because the melting temperature i$KLOBut it ACKNOWLEDGMENTS
would not be surprising if in some other alloy systéper-

hapsi-AlPdMn) the CCT arrangements may be favored en- .
ergetically over the non-CCT small crystal structures. If weFGQZ'BgER4S4O5' We are grateful to M. K"ai"T the use
— of his relaxation code, to J. Roth for the use of his molecular-

cacr; als? redug;a éhe scale tOf t_he ”t|le :-Izl_”lr]llt%marby.an " ynqmics code, to M. E. J. Newman for help with the ap-

OL ero _Irlnag_nLl_J €, tan en r?p|ca y sta |b|zeé03qllia§|crys abroximants from Ref. 54, and especially to J. Zou, A. Carls-

phase wil te?qs Ina gmé)eraburle rangeﬂ? OY bl ' "e.l'.’b son, and M. Widom for their help in the construction of

may persist in some window beloW, as the stable equilib- epotentials. We also thank M. Oxborrow for collaboration in
e

rium phase. Itis easy to imagine doing this by fine tuning the, , i, stages and E. Cockayne for comments on the manu-
potentials and the decoratidh.lf, furthermore, the tile seript

Hamiltonian could be accurately evaluated, this would open
the door to Monte Carlo simulations in whidlonly) the
tiling was rearranged, for the purpose @f measuring the
phason elastic constaft$ or (ii) discovering the absolute APPENDIX A: EXPLANATIONS OF TYPICAL MOTIES
ground-state tiling of the model, to test whether or not it is '
ideally quasiperiodic. In this appendix, we review the rationalizations of the
Kinetic calculations, similarly relating to high- observed typical local patterfsee Sec. Ill A in paper)lin
temperaturgi.e., realisti¢ properties, can also be based onterms of the oscillating potentials depicted in Fig. 1. A ten-
our energy results. These would be particularly interesting iflency to uniform spacing of Mn atoms is partly explained by
performed for the case of atable quasicrystal such as the shape of the potentiai$Since there is no first-neighbor
i-AlPdMn. For example, the conclusion of paper | noted thewell, Al-Al nearest neighbors are strongly disfavorégbt
desirability of understanding the atomic rearrangements inthey are inevitable, since most of the atoms arg Ahis
duced by tile rearrangementa purely geometrical ques- provides the first reason why Mn-Mn not only avoid nearest
tion). Along with that it is natural to determine the energy neighbors, but also are spaced uniformly: such an arrange-
barriers along the optimal paths of those rearrangements. Theent maximizes the number of Al-Mn neighbors, hence
barriers would determine the kinetics permitting the relax-minimizes the number of Al-Al neighbors, as explained in
ation of phason strain at elevated temperatures. Ref. 14 in the similar case of Al-Co. A secondary reason for
The smallness of the tile Hamiltonian in our calculationsthe uniform spacing is the strong second minimum in the
was a consequence of the looseness ofiediMn models.  Mn-Mn potential at around 4.7 A
In the light of the preceding discussion on tile kinetics, we The ALMn tetrahedra are favored by the strong Al-Mn
can turn this observation around: good quasicrystals allomearest-neighbor attraction, which favors local close pack-
phason relaxation on human time scales, and this is possibleg. Twenty such tetrahedra constitute the very common
only if the tile Hamiltonian is smalfwhether or not it imple-  Al;,Mn icosahedron motifRef. 33 gives another approach
ments matching rules for quasiperiodigitfyrhus we conjec- to explaining the A,Mn icosahedra In turn, the MI cluster
ture thati-AlCuFe andi-AlIPdMn probably have loose-type is a super-icosahedron of AMn icosahedrd®
structures(Indeed, the popular Katz-Gratias 6D-cut model The existence of holeén particular the “pseudovacan-
for these alloyss a loose structure; see Sec. VI. cies”) in the structure becomes more plausible after review-
In addition to tile disorder, site disordé¢important both ing the potentials, if we recollect that there is no significant
for statics and dynamig¢ss also illuminated by our calcula- nearest-neighbor Al-Al attraction. Consider, for example, an
tions. In ouri-AIMn models at least, we expect site disorder empty Al icosahedron: its radius should be set so that the
to be prominent on the sites. At high temperatures, the second-neighbor bond lengths are satisfied, but then the re-
entropy of atoms occupying th& network could be sizable, maining hole is just a little too small to fit another Al atom.
and could easily be larger than the random-tiling entropy dué he sign of the energy change upon filling such a hypotheti-
to the different(almost degenerateonfigurations of cluster cal site with an atom might be dependent on distant neigh-
centers’® One would also expedtiiffusion to occur most  bors.
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