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We have constructed and relaxed over 200 different finite structure models for the quasicrystali -AlMn based
on decorations of the ‘‘canonical-cell tiling.’’ We adoptedab initio-based pair potentials with strong Friedel
oscillations, which reproduce the phase diagram of real Al-Mn intermetallic crystal structures fairly well. Our
various decoration rules encompass cases with face-centered icosahedral~FCI! symmetry and with simple
icosahedral~SI! symmetry, and include additional variations in the occupancy and/or chemistry of certain site
types. Each decoration was applied to 11 distinct periodic approximants of the tiling. We found that~i! the
relaxed atomic positions of each site type can be closely approximated by fixed positions on each tile type,
even though the environments~beyond the first neighbor! are inequivalent.~ii ! Models with simple icosahedral
~SI! space-group symmetry were better than those with face-centered icosahedral~FCI! space-group symmetry.
~iii ! ‘‘Loose’’ decorations, containing voids almost large enough for an atom, were better than the ‘‘dense’’
decorations which were suggested by packing considerations.~iv! Our results depended on using the realistic
potentials;short-range potentials favor the ‘‘dense’’ structures, and many details depend on the second or
further oscillations in the potentials.~v! For our best model, there is relatively little variation of the energy
when tiles are rearranged, i.e., arandom-tiling modelis a good zero-order description of the system.

I. INTRODUCTION

Quasicrystals raise at least two interesting questions:
~i! What causes the atoms to adopt these aperiodic, yet

ordered structures? How can the quasicrystal structure have a
lower free energy than any competing crystalline one for
certain compositions, as ini -AlPdMn?

~ii ! Where do the exotic electronic transport properties
come from? Experiments find an extremely high resistivity,
which is ascribed to localized states or possibly to ‘‘spiky’’
features of the density of states.1–3

Answers to both questions require electronic-structure
calculations. These are inherently difficult, not only due to
the absence of a finite unit cell, but also because the elec-
tronic structure of Al-transition metal~Al-TM ! alloys is tech-
nically difficult to model, owing to the combination ofsp
and d bands near the Fermi level. In addition, electronic-
structure calculations demand knowledge of the atomic po-
sitions, which are nontrivial to describe. A perfect quasiperi-
odic structure requires~in principle! an infinite number of
parameters to specify the positions of its atoms; moreover, if
a quasicrystal phase are stabilized by entropy,4,5 then its
structure is intrinsically random.

In a companion paper6 ~henceforth called ‘‘paper I’’!, we
argued that many electronic calculations depend on having a
reasonably correct local geometry aroundevery atom, a level
of perfection which cannot be delivered by structural refine-
ments of diffraction data. We proposed instead a unified ap-
proach to quasicrystal structure determination, in which dif-

fraction fitting ~guided also by geometric intuition based
upon known crystalline approximants! is combinedwith op-
timization of the total energy — here represented by pair
potentials — to discover where the atoms are. In this paper
we carry out a prototype of the second part of this program,
by exploring the structural energies of a family of atomic
models fori -AlMn, which is descended from the model of
Ref. 7.

Structural models for icosahedral quasicrystals are com-
monly represented as cuts~at irrational orientations! through
densities which are periodic in a six-dimensional~6D! hyper-
space. For this paper, however, we adopted the alternate for-
malism of cluster-based decoration models, based in this
case on the canonical-cell tiling~CCT!.8 A decoration model
consists of a geometrical framework~most often a tiling!,
and a set of local rules for decorating this framework with
atoms~detailed definitions are found in paper I, Sec. II!. We
have adopted the decoration approach because

~i! we wished to explore an alternative to the ‘‘six-
dimensional’’ technology;

~ii ! it permits the systematic study of the energy changes
due to tile rearrangements;

~iii ! this approach appears to be more convenient when
we wish to make many variations of the models~as here!.

We have studied two general families of decorations
which we have called ‘‘dense’’ and ‘‘loose.’’ This paper con-
centrates on the ‘‘loose’’ family since they turn out to be
noticeably superior in energy to the ‘‘dense’’ models. The
specific models here were presented in detail in paper I as
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were the general concepts of systematic tile-decoration mod-
els which in the present work were found useful for under-
standing the interplay between potentials, geometry, and the
resulting energies~in Secs. IV and II of paper I, respec-
tively.!

All known stable, highly ordered quasicrystals~e.g.,
i -AlPdMn! belong to ternary systems; in this paper, however,
we consider only Al-Mn structures. Our reasons for imposing
this rather severe restriction are the following:

~i! The parameter space of a binary phase diagram~at
T50) can be explored by tuning a single parameter, the
manganese concentrationxMn .

~ii ! In the Al-Mn system of alloys, we may be guided by
the many crystalline phases with solved structures, that are
similar in their composition and in their local atomic order to
the ~metastable! i -AlMn phase.

~iii ! Realistic pair potentials have not yet, to our knowl-
edge, been computed for any Al-transition-metal ternary sys-
tem.

The paper is organized as follows. In Sec. II, we describe
in detail the pair potentials used in this study — the first of
the two essential inputs to our calculation. In particular, we
comment on the derivation of the potentials and provide a
critical analysis of their expected virtues and drawbacks.
This is followed by a sketch of the coupling between geo-
metrical motifs and the shape and character of the potentials
as well as a description of the techniques we have used to
carry out structural relaxations. In Sec. III, we test the valid-
ity of pair potentials as a tool for structural discrimination by
applying them to a variety of real and hypothetical crystal-
line structures in the Al-Mn system indeed, we obtain a
mostly correct picture of the Al-Mn~zero-temperature! phase
diagram around the quasicrystal forming compositions. Sec-
tion IV summarizes the models used, the second of the two
essential inputs for this work. We also outline the diagnostic
criteria which helped us to systematically identify and repair
‘‘problem sites’’ in the decoration so as to improve the total
energy.~This was one of several technical objectives of the
present work, which is intended as a ‘‘prototype’’ for future
studies.!

The prime objective of our study was to determine which
of the families we studied~including ‘‘dense’’ FCI, ‘‘dense’’
SI, and ‘‘loose’’ SI models! had the optimal energy, and to
ascertain how significant the long-range interatomic interac-
tions are. Thus the heart of the paper is Sec. V, which reports
the results of our systematic comparison of various compet-
ing models, which differ in their symmetry~FCI vs SI! and
in the tightness of their packing~dense vs loose!. In this
section we also accomplish a technical objective, by verify-
ing that a decoration model can accurately model the true,
relaxed positions of all atoms using a moderate number of
real parameters. Section VI provides a brief summary of our
parallel work on relaxing models defined within the 6D-cut
framework. Section VII presents further tests of the stability
of our models and its origins — mostly, it consists of explo-
rations of additional ways in which potentials can be varied.
Section VIII gathers the insights of previous sections and
attempts to justify our observation that loose structures with
SI symmetry are favored. Our total experience shows that it
is essential to have the correct potentials and the correct
model; the second well of the oscillating potentials is quite

significant in selecting among structures.
A final objective of this project was to initiate the study of

‘‘tile Hamiltonian’’ ~Sec. IX!, a reduced Hamiltonian defined
in terms of the tile degrees of freedom; calculating this is the
bridge from the microscopic to the macroscopic level. Our
preliminary results on the tile Hamiltonian support the valid-
ity of a random tiling as the zeroth-order description, since
different arrangement of tiles have almost the same energies.
The conclusions~Sec. X! recapitulate the most important re-
sults and outline promising directions for extending or im-
proving our calculation.

There are some precedents for our approach. Some years
ago, Lanc¸on and Billard9 studied the stability of the Duneau-
Oguey model10 for i -AlMn ~Si!, and two variants thereof, un-
der the influence of Morse pair potentials; similar relaxations
were carried out by Rothet al.11 for i -AlZnMg ~in the
i -AlCuLi family !. Our present work differs from theirs in
that we used realistic, microscopically derived pair poten-
tials, with no free parameters; that was previously done~in
the i -AlCuLi rather than thei -AlMn family ! by Krajči and
Hafner,12 but they did not vary the models. A precursor of the
present calculation13 incorporated a computational scheme
which admitted variations, but did not actually pursue
them.13Widom, Phillips, and collaborators have made inves-
tigations similar in spirit to ours for decagonal quasicrystals
in the Al-Co system,14,15 with some variations of different
models. However, no previous work has studied a collection
of models nearly as extensive as reported here.

II. PAIR POTENTIALS

Present computational resources allow forab initio calcu-
lations only for systems of up to about 500 atoms.16 Since we
relax structures with 43104 atoms, we approximate the
structural energy by a sum of interatomic potentials,

Ecoh5
1

2(i j Vi j ~r i j !, ~1!

wherer i j is the distance between atomsi and j . The shape of
the potentialVi j (R) depends only on the speciesi and j .

If our quasicrystals were alloys of simple metals~such as
Al ! with sp orbitals, these potentials could be derived from a
nearly-free-electron picture based upon pseudopotentials.
This approach has been applied to thei -AlCuLi family of
quasicrystals.12,17

On the other hand, if our quasicrystals included only tran-
sition metals, the binding would be dominated byd orbitals
and could be approached from a tight-binding approxima-
tion. This approach was applied to quasicrystals of the
i -TiMn family.18 But Al-transition-metal alloys, the case we
are studying, present technical difficulties since both tightly
bound d bands and also free-electron-likesp bands are
present.

A. Construction of pair potentials

We use effective pair potentials that have been developed
for Al-rich AlMn compounds, using a combined pseudopo-
tential and Green’s-function method for the Mn-Mn and
Al-Mn potentials, and conventional pseudopotential-based
perturbation theory for Al-Al pairs.~Details of the construc-
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tion may be found in Ref. 19; see also Refs. 20 and 21. The
analogous potentials for Al-Co compounds are described in
Ref. 14.! We will call our potentials ‘‘realistically oscillat-
ing’’ because their outstanding feature is the strong Friedel
oscillations and, furthermore, the wavelength and magni-
tudes of the oscillations are calculated using microscopically
based approximations.22

Such potentials depend parametrically on the density of
conduction electrons, which is given simply by

rel5nat@vAl2~vAl2vMn!xMn#. ~2!

The valences~number of electrons contributed to the con-
duction band! are

vAl53, vMn51.5 ~3!

for Al and Mn, respectively. Equation~2! may be used to
computerel for the various structures we studied from the
values of nat and xMn given in our tables. The value
vMn51.5 comes from augmented-spherical-wave~ASW!
calculations23 on an ordered fcc solid solution Al3Mn in
which the number ofd electrons per Mn was determined to
be 5.5, leaving 7–5.55 1.5 free electrons per Mn.

Note that we donot adopt the effectivenegativevMn
which was hypothesized on empirical grounds during the
1950’s,~in the context of a Hume-Rothery picture!. It would
be hard to credit a real charge transfer of such a magnitude,
but there is theoretical support for negative valence behavior
withouta large shift ind electron number.24,25References 24
and 25 present different scenarios: the former says thatkF
should be calculated using the usual~positive! valences, but
the latter implies thatvMn'21 ought to be used.26

For this work, we always use potentials calculated for the
particular reference density of conduction electrons27

r0[0.17792 Å23. ~4!

The Al-Al potential ~see Fig. 1! has only a shallow and
rather narrow minimum at 2.8 Å, and then a deep and broad
second-neighbor well at about 4.4 Å,17 whereas the Mn-Mn
potential has a strong second-neighbor well at 4.7 Å. These
pair potentials also show quite large Friedel oscillations, es-
pecially in the Mn-Mn potential. The asymptotic form of
Friedel oscillations~neglecting effects of disorder! is

V~r !}cos~2kFr1f!/r 3, ~5!

wheref is some phase angle.
Thus, pair interactions between second, third, or fourth

neighbors might determine the atomic structure. The Friedel
oscillations are the equivalent in real space of the ‘‘Hume-
Rothery/Jones’’ phenomenon in Fourier space, which is be-
lieved to be important for stabilizing the icosahedral phase
and in producing a pseudogap in the electronic density of
states.1,24 It has even been suggested2 that such oscillating,
long-range potentials might suffice to force aquasiperiodic
ground state, without the need for local matching rules.

B. Drawbacks of pair potentials

We would not expecta priori that our pair potentials will
account for the relative cohesive energy of various structures
with enough precision to predict which ones are stable in the

real system. The reasons for these doubts are listed below.
~An even more detailed discussion of some of these difficul-
ties is found in Ref. 14.! But in fact, as we shall see below
~Sec. III!, our potentials give a reasonable account of the
Al-Mn phase diagram, as long asxMn is not too far from
0.20 ~as in a typical quasicrystal composition! and rel is
close tor0 . Therefore, we believe it is plausible that they
also give correct answers for many details of thei -AlMn
structure.

1. Electron density

The forms of the potentials, and in particular the radii at
which they have wells, depend upon the conduction-electron
densityrel . ~The most obvious reason is that the wavelength
of Friedel oscillations is 1/2kF.) This is worrisome since~as
noted above! our potentials should be valid only for the
conduction-electron densityrel5r0 , but we use them in
structures which may haverelÞr0 .

Of course, the value ofrel also depends on the quasilattice
constantaq . In the present work, unless otherwise noted, the
unit cell dimensions were chosen so thataq54.60 Å as ob-
served experimentally ini -AlMnSi.28 It would have been
more precise to adopt instead the experimental value for
i -AlMn, which is aq;4.65 Å.29 Had we done so, we would
also avoid the concern about usingrelÞr0 , for in fact
rel5r0 would be reproduced byaq'4.64 Å for a typical
loose model, oraq'4.67 Å for the densest of the dense

FIG. 1. The three pair potentials for~a! Al-Al, ~b! Al-Mn, and
~c! Mn-Mn atoms. With each potential is shown the pair-
distribution function for the corresponding types of pairs, for the
‘‘loose’’ CCT decoration LS1.2~in the 5/3 approximant tiling
T8). The solid~dashed! line shows the results using truncation 11
Å ~6.2 Å). Note the good match between the peaks of the PDF and
the small wells from the Friedel oscillations.
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models, close to the observed value ini -AlMn.
In any case, for the lattice constants we use and the AlMn

compositions of interest to us,rel lies within ;2% of r0 .
Since therel values are uncertain anyhow by a comparable
amount~due to the;60.1 uncertainty invMn), we feel this
is not a serious problem.

2. Structure-independent terms

A further, more fundamental deficiency in our total ener-
gies is that they actually include only the structure-dependent
terms; we omit the much larger contributions to the cohesive
energy~call their sumU0) which depend~through the jel-
lium total energy, a function of the electron density, and the
pseudopotential core radius! on the density and stoichiom-
etry of the cores, butnot on their arrangement.30 Thus our
computed energy differences are correct only when we com-
pare two structures with exactly the same composition and
density. Realistically, for each structure considered, we ought
to optimize the lattice constant to minimize the sum ofU0
and the structure energy, and then use the results to construct
tie lines and determine the phase diagram. Fortunately, as
just noted, we are mostly comparing structures of similar
stoichiometry.

3. Validity of pair form

The calculation upon which our potentials were based
went up to, but no further than, second order in perturbation
theory. As a result, our cohesive energy includes only pair
terms, which amounts to assuming that there is no directional
bonding. There are at least two kinds of local atomic pattern
for which this assumption is obviously questionable:

~a! Nearest-neighbor Mn contacts are taken into account
only via an indirect hopping term mediated by the back-
ground electron sea.31 Thus, our potentials are somewhat un-
trustworthy for Mn pairs and quite dubious for Mn triples.
Fortunately, such clusters are rare in most of our structures,
since the Mn atoms tend to be spread out uniformly in space;
but for certain models with highxMn , our structural energy
may be far from the true one.

~b! Where a structure contains large perturbations such as
vacancies, it is unreasonable to stop at second-order pertur-
bation theory.32 Indeed, one explanation for the stability of
the ‘‘Mackay icosahedron,’’33 and in particular for the vacant
site at its center, uses a type of ‘‘glue’’ approximation, in
which the structural energy has an additional term of the
form

Ecoh5(
i
Fi„r~xi !…, ~6!

wherer(xi)5( jÞ ir j (Ri j ) represents the sum of the contri-
butions of neighboring atoms to the electron density near
atom i , andF() is anonlinear function.

C. Relaxation procedures

For each model, we relaxed the initial configuration to a
state of mechanical equilibrium with respect to the forces
derived from the pair potentials. Models are ‘‘topologically
equivalent’’ if they relax to exactly the same atomic struc-
ture.~It is assumed that the initial positions are close enough

to the final ones that different relaxation algorithms give
identical results.! We adopt the convention that superscript
‘‘(0)’’ refers to energies or positions before relaxation. Initial
coordinates will be called ‘‘ideal’’ when they are linear com-
binations of the icosahedral basis vectors with integer or
half-integer coefficients. Here we describe, not only our
setup for relaxation computations, but also the use of calcu-
lated quantities relating to individual sites as criteria for the
physical validity of the arrangements around those sites.

1. Truncation of potentials

To make the pair potentials more computationally trac-
table, we introduced a cutoff at a certain radiusr cut. As in
Ref. 9, each pair potentialV(r ) was smoothed so that
V8(r ) and V9(r ) were continuous everywhere and
V(r )5V8(r )5V9(r )50 for r>r cut.

Models produced from 3/2 approximants and larger tilings
~see Sec. IV B! are large enough that~using our truncations!
no atom ever interacts with multiple images of another atom
under the periodic boundary conditions; for smaller tilings,
and for the real crystal structures of Sec. III, we form a
sufficiently large supercell by joining copies of the unit cell.

Our preferred cutoff radius wasr cut511 Å.34 However,
relaxations of large models~over 104 atoms/unit cell! re-
quired excessive computer time with this cutoff; thus the
majority of our relaxations were performed using
r cut56.2 Å, which is chosen to just include the second-
neighbor well, and~unless otherwise noted! the results in our
tables and figures are from this truncation.

In many cases, we can partially relax a structure using
r cut56.2 Å and then complete the relaxation using
r cut511 Å, which results in very small readjustments. How-
ever, certain dense models which were~barely! stable with
r cut56.2 Å, became unstable withr cut511 Å, and the en-
ergy differences between certain variants of the loose deco-
rations~Sec. IV! changed sign. The small but significant dif-
ferences between the results with 6.2 and 11 Å will be
discussed in Sec. VII C.

2. Relaxation algorithm

Apart from a few molecular-dynamics runs~reported in
Sec. VII A, below!, all of our computations consisted of re-
laxations performed at zero temperature. Our relaxations
were performed using a standard conjugate-gradient algo-
rithm, except that the space group of the particular model
was directly incorporated into the relaxation program, by
constraining all symmetry-related atoms to relax together.35

For a structure of high symmetry, the number of independent
variables was thereby reduced by a factor of 10 or more.36A
drawback of incorporating space-group symmetry into the
relaxation is that spontaneous symmetry breaking cannot be
detected.

The maximum time to relax one of our models was;4 h
CPU time on an IBM RISC-6000 workstation~for the Pa3̄
‘‘8/5’’ approximants!. The criterion for convergence of the
conjugate-gradient relaxation was that the energy change in
one iteration be less thandE51028 eV per atom. The con-
vergence rate can be a useful continuous diagnostic of sta-
bility, independent of the deviations from initial positions:
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models which take exceptionally long to relax are often on
the edge of instability.

3. Stability criteria

A common criterion for the stability of a model is that its
structure does not amorphize upon relaxation, i.e., that the
~angularly averaged! pair-distribution function retains sharp
peaks out to arbitrarily large distances, indicating that long-
range order is maintained. This criterion has been applied to
assess the stability of 6D models.9 The criterion that we
adopt, however, is much stricter: we deem a model to be
stable only ifeveryatom stays within the sphere that is in-
scribed in its Voronoi polyhedron~each such sphere is thus in
contact with its nearest neighbors!. This criterion is moti-
vated by our desire to obtain ‘‘crystallographically correct’’
decoration models~as discussed in Sec. II of paper I!.

D. Important motifs

A major objective of this paper is to understand the rela-
tionship between the form of the potentials and the atomic
arrangements they favor. Some of these motifs are familiar in
a-AlMnSi and other crystalline Al-TM phases, such as regu-
lar Mn-Mn spacings of;4.6 Å, or Al12Mn icosahedra.
These motifs, which influenced the proposed decorations,
were reviewed in paper I and are rationalized below in Ap-
pendix A. After we present the relaxation results, we shall
further discuss the relationship between the potentials and
the patterns favored by them.

We next define our terms for three important structural
features.

~i! The Mackay icosahedron~MI ! consists of a Al12 icosa-
hedron around a central vacancy, with an outer shell com-
posed of a large Mn12 icosahedron and an icosidodecahedron
of 30 Al atoms near the edges of that icosahedron.

~ii ! All of our Al-Mn models include ‘‘mini’’ Bergman
clusters, each of which consists of an Al12Mn icosahedron
plus an outer shell of 20 Al/Mn atoms~each centered over an
icosahedron face!.

A ‘‘pseudovacancy’’ is a site with a negative vacancy for-
mation energy: i.e., it is vacant in the ground state, but oc-
cupying it by an atom does not change the topology of the
other bonds, does not make the model unstable, and does not
force physically impossible bond lengths.~By contrast, a
‘‘vacancy’’ denotes adefectwhich costs energy relative to
the ground state.! Pseudovacancies are frequent in known
Al-Mn crystal structures;37 a well-known example of a
pseudovacancy is the MI center ina-AlMnSi and
a-AlFeSi. They are the most important type of variation
among closely related structure models, and are responsible
for the lowered density in our loose family of models.

E. Diagnostics: displacements and site energies

While revising our models to improve their energies~and
eliminating those models which were unstable under relax-
ation, or too high in energy!, we developed diagnostics to
identify ‘‘problem’’ atoms and to compare alternate ways of
resolving the uncertainties of extending the decoration. The
displacementDi of atom i from its initial position in the
relaxation process serves as a diagnostic in practice: after all,

if a certain atom displaces so far that the model must be
deemed ‘‘unstable,’’ that atom~or one of its neighbors! is a
prime candidate to be changed. However,Di should be in-
terpreted with caution, since it depends on our~arbitrary!
choice of ‘‘ideal’’ coordinates.

Another simple but useful diagnostic is the ‘‘site energy’’

Ei5
1

2(j Vi j ~Ri j !, ~7!

i.e., the part of the total pair energy~1! assigned to atomi .
Note that each site energy should be compared with the

average for that chemical species; a site withEi far above
this average is a prime candidate for a change in occupancy.
To be precise, the site energy must be equal to or lower than
the chemical potential for that species; otherwise the site
would want to be empty. Consider the values

DEi~A!5Ei~A!2mA , ~8!

whereEi(A) means the site energy if speciesA were placed
on that site, with no additional relaxations. We can also con-
siderA5 vacancy as another possible ‘‘species,’’ such that
DEi (vacancy)[0. Then the occupation adopted for sitei
ought to be the choiceAi

min that gives the minimum of
DEi(A) over all A. Note that changing from some other
option toAi

min will certainly lower total energy, and this can
only be lowered further when the system is re-relaxed to
allow neighboring atoms to adjust to the change.

III. SMALL CRYSTAL STRUCTURES

Before describing the main relaxations which were per-
formed on CCT decoration models, we consider relaxations
done using the same potentials and procedures~as explained
in Sec. II!, but applied to known crystal structures. In this
section, we test the potentials on various crystal structures
which are either Al-Mn alloys known from crystallographic
refinements, or else structures arising in alloys of Al and
other transition metals which have similar local order. Their
unit cells are ‘‘small’’ only in comparison to the ‘‘approxi-
mants’’ which we treat in Sec. V; by any other crystallo-
graphic standard in condensed-matter physics, their unit cells
would be considered rather large. Besides thea-AlMnSi
structure, which is the simplest approximant of our icosahe-
dral Al-Mn decoration models, a number of these ‘‘small’’
crystalline structures are known to be decagonal quasicrystal
approximants.

The purpose of the calculations on the Al-Mn phase dia-
gram is to yield a level of confidence in the application of
these potentials to structure determination in the quasicrystal
problem. Explaining a phase diagram should mean not only
accounting for the existence of the observed stable phases,
but also for the nonexistence of the unobserved phases. Thus
we included some real Al-Co and Al-Fe structures; since they
have the same local motifs as Al-Mn structures, they are
expected to have a bettera priori chance of being low-
energy than other unphysical structures we might devise
~e.g., a solid solution!.
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A. The structures

We test our pair potentials on realistic structures taken
from both the AlMn and the AlCo systems, focusing on those
that give rise to the low concentrations of Mn for which the
pair potentials are applicable. Many of these phases arenot
stable in the Al-Mn system; however, they have local order
similar to the Al-Mn phases, and differ only slightly in en-
ergy per atom from the real Al-Mn phases. Our aim is to
determine whether thesignsof these small differences agree
with the real phase diagram, which was uncertaina priori in
the light of some doubts about these potentials. This ap-
proach is similar to that taken by Ref. 14 in the Al-Co case.

The structures we chose38 are listed in Table I, along with
the Mn fractionxMn and the atomic densityrat, from which
the electron density may be computed via~2!. For all struc-
tures except Al3Co we used the real reported lattice constant,
since this gave an electron densityrel close to the valuer0
for which our potentials are valid. In the case of Al3Co, rel
would be;7% lower thanr0; thus in our results we chose
a lattice constant so thatrel[r0 .

39 Where the refinement
indicated partial occupancy for an orbit, we tested only de-
terministic variants in which that orbit was either all filled or
all vacant.

Several of these structures are approximants to decagonal
phases. Hiraga’s Al3Mn ~Ref. 40! and the Al13Co4 phase

41

are good approximants — although the decagonal corre-
sponding to Al13Co4 ~Ref. 15! was discovered only recently.
Also, Al9Co2,

42 Al11Mn4,
43,44 m~AlMn !,45 and the Al10Mn3

phase46may be viewed as imperfect approximants to decago-
nals.

Thea~AlMnSi! phase47 is an approximant to an icosahe-
dral quasicrystal, and as such it has been listed in later sec-
tions also as an approximant. The reala-phase exists only
with Si, but in our atomic model we replaced Si→ Al. We
did calculations for several variations of this structure, which
were actually constructed by different decorations of tiling
T1 ~pure ‘‘A’’ cells!. Finally, the Al6Mn ~Refs. 48 and 49!
and Al12Mn ~Refs. 50 and 51! phases are not approximants
in any meaningful way.

B. Results of relaxations

Our potentials give a decent account of the Al-Mn phase
diagram: they give a nearly correct picture of which phases
are stable and which are not.

However, the version ofa phase favored by our potentials
is unphysical, in that it has Mn instead of a vacancy at the
MI cluster center. Furthermore it has all of thed sites vacant
~implying bcc symmetry!, whereas the reala-AlMnSi struc-
ture has alternating occupancy~implying sc symmetry!. We
suspect that the first difference is an artifact of the deficien-
cies in our interatomic potentials~see Sec. II B!; the second
difference might be correct for a binary Al-Mn alloy — per-
haps ternary or pseudobinary potentials adapted to Al-Mn-Si
would have given a different answer.

For each structure, Table I gives the initial and final~re-
laxed! energy per atom and the maximum displacement
Dmax of an atom from its initial position under relaxation.
The majority of sites suffer only minor relaxations, but in
some structures certain rogue atoms exhibit large displace-
ments and/or changes in site energy; this indicates that the
atomic arrangement in the vicinity is poorly matched with
our potentials.

1. Comparison with refinements

There are three observations on the correlation between
the behavior of structures under relaxation and the goodness
of their refinements. First, the symmetry of a structure seems
to be inversely correlated with the atomic displacements;
e.g., they are small~about 0.1 Å! for Al12Mn, Al6Mn, and
Al10Mn3, which are all highly symmetric structures with
relatively few sites per unit cell.~This is not simply an arti-
fact of our relaxation code, since we used supercells for all of
our small structures.! Presumably the high symmetry has
prevented atomic displacements in some directions.

Second, in the structures for which partial occupations
were quoted, we observed that a change in the occupancy of
just one site can produce drastic changes in the energy and
stability of the model. The optimum deterministic choice for
filling such sites relaxed almost as stably as did other struc-

TABLE I. Relaxation results for small crystal structures.

Structure Source xMn rat ~atoms/Å
3) E0 ~eV/at! Erel ~eV/at! Dmax (Å)

Al 12Mn Ref. 49 0.0769 0.06238 0.1993 0.1656 0.115
Al 6Mn Ref. 48 0.1428 0.06427 0.0533 0.0418 0.100
‘‘ a-Al5Mn’’

a Ref. 46 0.1739 0.06801 -0.0263 -0.0730 0.251
DF1.1 0.1739 0.06801 0.1516 -0.0733 0.303
DS3.1 0.1818 0.06505 0.0563 -0.1228 0.314
DF1.3 0.2174 0.06801 0.0532 -0.1937 0.381

Al9Co2 Ref. 41 0.1818 0.06699 0.5788 b

m-Al 4Mn Ref. 44 0.1957 0.06589 -0.1731 -0.1982 0.296
Al 3Mn Ref. 39 0.2308 0.06765 -0.2475 -0.2817 0.396
Al 10Mn3 Ref. 45 0.2308 0.06681 -0.2822 -0.2907 0.090
Al 13Co4 Ref. 40 0.2353 0.07044 -0.1906 -0.2702 0.532
Al 3Co Ref. 15 0.2553 0.06778 -0.2712 -0.2855 0.121
Al11Mn4 Ref. 43 0.2667 0.06919 -0.3272 -0.3437 0.271

aThe ‘‘a-AlMn’’ structure can be represented as a decoration of the pure ‘‘A’’ tiling ~tiling T1), thus versions
of it are associated with the corresponding decoration labels.
bUnstable.
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tures whose refinements quoted no partially occupied sites.
For the cases in which the refinement showed several orbits
with partial occupancies, we found that filling all of them
gave an overpacked structure, yet zero occupancy was too
loose. The best results were obtained when some but not all
of the orbits were occupied. This suggests that our conclu-
sions on the vacancy formation energies are roughly right on
average for these alloys.52

Third, our calculations of relaxed positions could be con-
sidered as implementing the ‘‘synthetic’’ approach to struc-
ture determination suggested in paper I, in the sense that
diffraction data and energy calculations are combined. In
particular, in some cases we have taken a circa 1955 refine-
ment ~which is topologically correct as to the atom arrange-
ment, but comparatively inaccurate in coordinates!, and re-
laxed it to obtain a ‘‘synthesized’’ structure model. Indeed,
our relaxed version was always closer to ‘‘reality’’~as repre-
sented by a more modern refinement of the same structure!
than the old structure was. This is a success for our poten-
tials, but we do not know whether other potentials~e.g., the
Morse potentials! might be equally successful~in correcting
the cruder refinements!.

2. Phase diagram

The resulting energies are plotted in Fig. 2. The solid line
is the tie line between thermodynamically stable phases.

The a-AlMn and Al13Co4 structures are predicted to be
energetically unstable, while them-Al4Mn, Al3Mn, and
Al10Mn3 phases are predicted to be stable. All these predic-
tions are correct except for the last: Al10Mn3 was wrongly
computed to have a slightly lower relaxed energy than

Al3Mn. But since Al10Mn3 is the equilibrium phase at higher
temperatures, the difference of the true cohesive energy be-
tween these phases must be small.

We have omitted drawing a tie line to the Al12Mn struc-
ture, which would have incorrectly implied Al6Mn was un-
stable; we suspect the Al12Mn energy is unphysically low,
since this structure has the most extreme value ofxMn . We
cannot just dismiss Al12Mn, however, since it is within 1%
of the targetr el and contains no dangerous Mn-Mn pairs. We
would rather expect the potentials to be unrealistic at the
Mn-rich end, the fact that our Al11Mn4 energy looks reason-
able cannot be given much weight.

Figure 2 indicates the typical scale for energy differences
between competing good structures. Stable phases lie below,
and unstable phases lie above the tie line between competing
phases, by 0.01–0.05 eV, exactly as in the Al-Co phase
diagram.14

In conclusion, although the details in Fig. 2 are not per-
fect, the overall pattern of behavior suggests our potentials
are realistic, and increases our confidence in their subsequent
application ~in Sec. V, below! to icosahedral structures in
which we have no other way to discover the details.

IV. DECORATION MODELS

We relaxed at least ten different variations for three fami-
lies of MI-based decoration rule presented in paper I~loose
SI, dense FCI, and dense SI!. We attempted to systematically
consider all possible decoration rules, within this narrow
class. We did not test grossly different arrangements, e.g.,
placing Al and Mn atoms into ai -AlCuLi-type structure
~which would almost surely be unstable!.

Our variations all arise from the small set of ‘‘problem
places’’ discussed in paper I. Most of the variations simply
consisted of changing the occupancy or chemistry of a site
~i.e., is it Al, Mn, or empty!. Variations might also entail
changing the structure topologically, by the alternation of
one atom with a pair or triple of atoms; we found only one
stable choice of this type~theg3Y alternation in dense mod-
els!.

In the course of testing our models, we tried many other
variants involving either other chemistry/occupancy combi-
nations in the variable places mentioned here, or variations
in places other than mentioned here.@An example of the
latter would be replacing Al(g3D) by 3 Al(g) atoms.# How-
ever, most of these adjustments were discarded on the
grounds that they were unstable, or led to unacceptably high
site energies.

A. Definitions

By ‘‘model’’ we mean a combination of a particular tiling
and a particular decoration.~For six-dimensional models, it
means a particular cut through a particular 6D hypercrystal.!

In this paper, we focus on decoration models: in a ‘‘deco-
ration,’’ atoms are placed on tiling objects such that both

~i! every object of a given type is decorated in the same
way ~just like a unit cell in ordinary crystallography!, and

~ii ! the point-group symmetry of a decorated tiling object
is the same as that of the ‘‘bare’’ tiling object before decora-
tion.

FIG. 2. Energy versusxMn for possible crystalline phases. Here
‘‘ a~A15Mn!’’ denotesa~AlMnSi! with Si→Al. ‘‘Al 3Co’’ lattice pa-
rameters are rescaled to give the correct electron densityr0.
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An ‘‘atomic site’’ is a position in space to which a ‘‘chem-
istry’’ is associated.~See Sec. II A of paper I.! Atomic sites
that decorate a given tiling object are said to be ‘‘bound’’ to
that tiling object. Condition~ii ! above forces atomic sites to
lie in discrete orbits, generated by the point-group symmetry
of the objects to which they are bound. The association of
these orbits to tiling objects is called a ‘‘binding.’’ The spe-
cific coordinates of atoms, generated in this fashion, will be
called the ‘‘canonical positions’’ for that model and binding.

Our decoration models are based on the ‘‘canonical-cell
tiling’’ ~CCT!.8 This is built out of four kinds of cells, de-
noted ‘‘A, B, C, D,’’ such that their vertices~‘‘nodes’’! are
joined by a network of ‘‘linkages’’ in both twofold and three-
fold directions. The former linkages are calledb linkages,
the latter are calledc linkages. The three different sorts of
faces are labeled by the lettersX, Y, andZ. In this work, we
treat the threefold symmetric pair ofB cells as an additional
cell ‘‘E.’’ Together, these comprise a set of ‘‘tile objects’’ for
the CCT.~The objects are seen in Fig. 1 of paper I.!

B. CCT approximants

As periodic boundary conditions are preferable for doing
simulations/relaxations~due to the absence of surface ef-
fects! we use large periodic packings of canonical cells
called ‘‘approximants.’’ These approximate the correspond-
ing extended, icosahedrally symmetric quasicrystal.53 The
small approximants are very imbalanced with regard to tile
content; and even the larger approximants, owing to their
high symmetry, under-represent some of the ways two tiles
can adjoin. Since a given trial decoration might be good for
some of these ways and bad for others, we therefore need to
test out our decoration models on a broad selection of
canonical-cell approximants.

We selected the 11 reference canonical-cell tilings of ca-
nonical cells listed in Table II. The labeling ‘‘p/q’’ means
that the unit cell is the same size as a ‘‘true’’p/q approxi-
mant of the~as yet hypothetical! icosahedral canonical-cell
tiling.7 The first ~and smallest! six approximants appear in
Ref. 8, Table VII. The 5/3 tilings are taken from the known
exhaustive list of all 30 inequivalent 5/3 approximants, dis-
covered through exact enumeration, reported in Ref. 54.

Lastly, the 8/5 tilings are from Ref. 55; these were discov-
ered as the final states of Monte Carlo annealing simulations,
that attempted to maximize the packing fraction. When deco-
rated with atoms, the largest models~decorations of the ‘‘8/
5’’ tilings ! contain;43 000 atoms each.

Our large ‘‘5/3’’ and ‘‘8/5 ’’tilings were judiciously cho-
sen to have high symmetry~as demanded by the relaxation
procedures56! and to vary the following degrees of freedom:

~i! The variance of the perp-space57 coordinate of the til-
ing nodes. This should be smallest in a true approximant of
the ~as yet unknown! ideal quasiperiodic CCT. The perp-
variance is low for tilingsT7, T9, andT10, and is high for
tilings T8 andT11.

~ii ! The relative fraction of space occupied byD cells ~at
the expense ofA cells!.58 The number density of nodes~and
hence of MI’s! increases with the density ofA cells; if the
nodes were decorated by identical spheres, their packing
fraction would range from 0.600 to 0.625~for icosahedral
symmetric structures!.54,55 Tilings T9 andT11 were chosen
to have high density.

C. Families of decoration rules

In paper I, we presented four basic families of sensible
CCT decoration rules. In resolving the most problematic
sites, we identified several possible resolutions, thus creating
a number of variants within each family. The results of the
present paper derive from relaxing and comparing these vari-
ants.

We have labeled the different decoration rules as e.g.,
‘‘DFn.x;’’ here the first letter is ‘‘D’’ or ‘‘L’’ for ‘‘dense’’ or
‘‘loose’’ family of decorations, the second letter is ‘‘F’’ or
‘‘S’’ for ‘‘FCI’’ or ‘‘SI’’ symmetry decorations. Within each
of these four families, we have independent ways of varying
the density and the chemistry of atomic orbits. The number
n labels variants with different total number density and the
number ‘‘x’’ labels variants of differentxMn .

1. Loose model variants

Based on the problem sites identified in paper I, Sec. IV,
we adopted variants of loose SI models as listed in Table III.

TABLE II. Approximant tilings used for decoration.

Code Tiling Space group Nnode NA NB
a ND NE

a

T1 PureA Im3̄ 2 12 0 0 0

T2 PureEC R3̄m 1 0 0 0 1

T3 PureD P3̄m1 1 0 0 2 0

T4 ‘‘ t3 OR’’ b R3m 3 6 3 1 0
T5 Cubic 2/1 Pa3 8 24 0 0 4
T6 Cubic 3/2 Pa3 32 72 24 8 4
T7 Cubic 5/3 P212121 136 312 88 32 24
T8 Cubic 5/3 P213 136 312 48 32 44
T9 Cubic 5/3 R3̄ 138 348 60 24 38

T10 Cubic 8/5 Pa3 576 1320 312 136 132
T11 Cubic 8/5 Pa3 592 1608 216 72 180

aNC5NB12NE .
bName used in Ref. 8.
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The ‘‘problem sites,’’ which we recall are candidates for
modifications, occur in three orbits:

~i! one ‘‘g3D’’ near the center of eachD cell;
~ii ! one ‘‘dY’’ near the center of eachY face;
~iii ! six ‘‘gZ’’ sites form a ring around the center of each

Z face,~which straddles theZ face!.
The g3D andgZ ‘‘problem’’ sites are in fact the Al sites

with highest site energies,excludingthe MI sites~we have
not allowed variations within the MI!. Thus they are prom-
ising places to try some other occupation. Indeed, Mn(g3D)
has site energy similar to Mn(n), which we have assumed is
always Mn.59,60

The six ‘‘Al( gZ)’’ sites decorate not only theZ faces on
D cells, but also are found around the center of eachE cell
~which can be considered as having an internalZ face!.
When all six Al atoms are present, they have the highest Al
site energies~outside of the MI!. We concluded that this
configuration was slightly overpacked, so we tried variants in
which some of those sites were vacant, labeled ‘‘6/6,’’ ‘‘5/6,’’
and ‘‘4/6’’ by how many sites are occupied. Trials with small
models indicated that the ‘‘4/6’’ arrangement was consider-
ably better than the ‘‘6/6’’ variant, and this was later con-
firmed in our systematic comparisons.61–63

The ‘‘dY’’ site was sensitive to the truncation of the po-
tential — the Mn(d) site energy islower than that of
Mn(n), but with the shortened cutoffr cut56.2 Å, Mn(d)
came outhigher. ~The results and explanation are discussed
in Sec. V A 2 and Sec. VII C; example site-energy results are
in Table V.!

2. Dense FCI variants

In dense models the density variation is associated purely
with theg3Y↔3g alternation, as noted in paper I. These are
g3Y sites associated with theodd Y faces; they can occur in
oddB, evenD, or E cells. ~In all our models, there was no
such freedom for theg3D sites.! We decided onthreedensity
variations that independently treat these locations:

n51 is the loosest, assigning a single Al(g3Y) atom in
every case.

n52 is the densest, with three Al(g) atoms replacing the
g3Y sites in every case.

n53 tries to account for the local atomic density, assign-
ing a single Al(g3Y) when the site falls in an evenD cell, but
replacing the site by 3 Al(g) when it is in an oddB or an
E cell.

The chemical variations were performed on a certain sub-
set ofd sites which reasonably allows either Al or Mn. These
were thedb sites on oddb linkages that fell withinB and
D cells @to be calleddb(B) and db(D)#, as well as thedD
sites in theD cell. The two chemical variants are then
x51 and x52, which, respectively, assign the above-
mentionedd sites to be either all Al or all Mn.

A ‘‘modified’’ DF2.1 rule differs from the casen52
above in setting alldb(D) sites vacant.~This was found nec-
essary to stabilize the pureD tiling under Morse potential
relaxations.!

3. Dense SI variants

All density and chemical variations were on thed sites.
d sites may occur inb linkage,Y face, andD cell. In dense
SI models, as outlined in paper I, we are forced to differen-
tiate three kinds ofb linkage, namelyb(A4), b(A2), and
b(ACC).

Our density variations involve the occupancy of the
db(A) anddY type sites, but never the occupieddD sites:

n51 sets alldb(A) occupied and alldY vacant.
n52 is the densest, with alldY and mostdb(A) being

occupied, and only thedb(ACC) being left vacant.
n53 is the loosest, occupying onlydb(A2) and

db(ACC). This differs from then51 option only through
making thedb(A4) site vacant.

Chemical variations are implemented only on thed sites:
x51 sets alld sites to Al;
x52 sets only thedb(A2) sites to Al, and the rest of the

occupiedd sites to Mn.

4. Loose FCI models

It is possible~paper I! to generate loose CCT models with
FCI order, which would be analogs of the quasiperiodic
modified-Katz-Gratias~KGme! model studied in Ref. 64.
~Such models may be a good starting point for CCT models
of alloys with FCI order such asi -AlPdMn.!

We did not include any FCI loose models in our system-
atic study. A few examples were checked in passing~subsets
of even d sites were occupied!. From these we confirmed
that the results of FCI and SI loose models differ in just the
same way that those of their 6D analogs@FCI KGme model
and SI Duneau-Oguey~DO! model# did; in particular, the SI
models had lower energy.

D. Procedures and diagnostics for variants

Each of the model variants was systematically applied to
each of the 11 CCT ‘‘approximant’’ tilings to generate a
model. Average behavior across the 11 tilings suggest prop-
erties intrinsic to the variant decoration. Since we focus on
atomic orbits rather than individual atoms, we elaborate on
our methods for evaluation of orbits and consequently deco-
rations.

RMS deviations.After each relaxation of a decoration
model, we computed the ‘‘canonical positions’’~see defini-
tions in paper I, Sec. II! from the relaxed coordinates for
each orbit of atoms. This means that, for each site of an orbit
bound to tiling objects of typeO, we apply the inverse space
operation which maps its object back onto the reference tile

TABLE III. Variant decorations.

Decoration dY Al( gZ)
a g3D

LS1.1 Al 6/6 Mn
LS1.2 Mn 6/6 Mn
LS2.1 Al 4/6 Mn
LS2.2 Mn 4/6 Mn
LS2.3 Al 4/6 Al
LS2.4 Mn 4/6 Al
LS3.1 4/6 Mn
LS3.2 4/6 Al

aSitegZ is always Al.
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of type O; then the canonical position is the mean of the
cloud of these points, and the canonical rms is their standard
deviation.13

Note that this rms is invariant if the initial structure is
changed, as long as it is topologically equivalent; in particu-
lar, it has nothing to do with our choice of ‘‘ideal coordi-
nates.’’ On the other hand, the rms is specific to a particular
‘‘binding’’ of the sites; making the ‘‘binding’’ more elaborate
~thus increasing the number of fitting parameters! decreases
the rms, even when the actual relaxed structure is unchanged.
It should be noted that the distortions of the tiles themselves
~equivalently, displacements of the centroids of clusters
decorating the tile nodes! contribute an additional term to the
canonical rms value of every orbit.

In contrast to stability under relaxation~Sec. II C! or the
single-site energy~Sec. II E!, the rms is not a physical crite-
rion for how well the orbit in question reduces the total struc-
tural energy. Rather, it is a criterion for the usefulness of the
binding chosen for that orbit; the overall mean rms estimates
the validity of a decoration picture at all, measuring the com-
ponents of the~relaxed! atom positions whichcannotbe ac-
counted for in the decoration model. A small value for the
rms ~for a simple enough binding! means that the atom po-
sitions can be adequately represented without much ‘‘context
dependence,’’ i.e., they are not strongly dependent on the
surrounding tile configurations.

There is one way in which the rms can indirectly guide us
to a reduction of energy. If the rms is large, it suggests there
are qualitatively different kinds of sites in the orbit. Then it
may be advantageous to ‘‘rebind’’~see paper I! the orbit, i.e.,
to differentiate it into two or more distinct new orbits. Then
it is possible for the new orbits to have different occupations,
which may improve the energy.

V. RESULTS

This section gives the core results of our relaxations. For
each group of models reported on, we will first discuss the
stability ~or lack thereof! of the atomic positions under the
relaxation. Then we turn to the main issue, the energies, our
main concern being which variant model is optimal, i.e.,
which one lies closest to the convex tie line in a plot of
xMn versus energy. We correlate these energies with the many
directions in our parameter space: some of these concern the
decoration rule — either the overall family~dense/loose,
FCI/SI!, or the variations on specific sites~affectingnat and
xMn); other directions concern the potentials in use — in this
section, this means changing the truncation radiusr cut. As
noted in Sec. II, it is more correct to user cut511 Å, but
most of our systematic comparisons user cut56.2 Å since it
is too costly to relax all the models with the longer cutoff.

Left to later sections~VI and VII! are yet other directions
in the parameter space, which have been explored less thor-
oughly. We have also left most of the discussion of these
results to later sections, in particular Sec. VIII. Our main
finding is that loose models are good, in having energies
offset by a small constant above the equilibrium tie line,
comparable to the energy difference among crystalline struc-
tures seen in Sec. III, and that different loose variants have
rather similar behavior. We also have found that a decoration
approach accounts rather well for the relaxed positions~Sec.

V B!. On the other hand, in the case of the dense models,
none of the just-mentioned findings is valid~Sec. V C!.

A. Results of loose models

Using the long-range potentials withr cut511 Å, all deco-
ration rules~and variants! were relaxed for tilingsT1–T6,
and furthermore rules LS1.2 and LS2.4~which seem to be
optimal! were relaxed with the 5/3 approximants~tilings
T7–T9). However, since our relaxations with the shorter
cutoff r cut56.2 Å were more systematic and complete, most
of the data presented here are taken with that cutoff.

1. Stability

Our results demonstrate clearly the plausibility of MI-
based models under realistic pair potentials. To our surprise,
every model in the loose family was found to be remarkably
stable, as seen in Fig. 3. Indeed, the peaks in the pair-
distribution function~PDF! at larger i j are just as sharp in
large tilings as in small ones. The Mn-Mn correlations~see
Fig. 4! are especially striking.66

Furthermore, the typical rms displacement of the relaxed
positions from the ‘‘canonical’’ positions for each orbit was
only 0.08–0.09 Å for the largest tilings studied; a sample
histogram is included in Fig. 3. Table IV compares the con-
figurations before and after relaxation, for the atom types in
the two-shell Mackay icosahedron. The displacements for
Mn~0! ~which is occupied in all these models! and the inner
Al( a) shell are presumably following rigid motions of the
entire cluster~responding to phonon-phason coupling — see
Sec. VII B!. Since our sort of decoration model has no way
to describe a net displacement of an entire MI, we must hope

FIG. 3. Distribution of atomic displacementsD from ideal to
relaxed~bottom! and from ‘‘canonical’’ to relaxed~top! atomic po-
sitions. Solid line: Loose model LS1.2 under 11 Å cutoff. Dotted
line: Dense model DF2.1 under 6.2 Å cutoff. Dashed line: Dense
model DF2.1 under 11 Å cutoff. The histogram includes Al and Mn
atoms together. The bin resolution on thex axis is 0.005aq. Vertical
bars mark the rms displacements of the MI centers~CCT nodes!,
which limits the crystallographic accuracy of the CCT model.
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that these are small and indeed the table shows
s i;0.03 Å.

The expansion/contraction of the MI, relative to ‘‘ideal’’
positions, is similar to the experimental finding for
i -AlMnSi.67 The inner Al(a) and outer Mn(m) icosahedra
expand, while the icosidodecahedron formed by Al(b) con-
tracts relative to the ideal positions.

2. Energies

The site energies for the different orbits, are shown in
Table V. It may be seen that the Mn site energiesincrease
from the MI center towards the third shell and the tile inte-
rior regions, @along the sequence Mn~0!, Mn(m), Mn(n),
Mn(d)#. On the other hand, the Al site energies typically
decreasealong the sequence Al(a), Al(b), Al(g), i.e., inside
to outside.@In the MI, as Table IV shows, the site energy

variance follows the trend of the canonical rms: it is largest
for the outermost and most distorted Al(b) shell.#

Figure 5 plots the~relaxed! energy/atom againstx Mn , for
the different models. The overall slope in such a plot just
shows the difference between the Al and Mn chemical po-
tentials. To help compare models with differingxMn content,
we have drawn the~solid! tie line ~same as in Fig. 2! and a
~dashed! reference line.

The equation of the reference line is

E5mAl
ref~12xMn!1mMn

ref xMn . ~9!

Here we take this to be the best linear fit of the 11 models
produced by decoration rule LS2.4. We obtain

mAl
ref50.3186, mMn

ref522.2392 ~10!

for r cut56.2 Å.
It is necessary to compute a separate line~also using

LS2.4! for the r cut511 Å case, since the slope is different:

mAl
ref50.3793, mMn

ref522.7437 ~11!

for r cut511 Å.
As can be seen from Fig. 5, the best decoration rules for

r cut56.2 Å are ‘‘LS3.1’’ and ‘‘LS3.2’’ ~which have very
similar energies! All tilings from these two rules lie almost
exactly on a straight line parallel to the reference line~10!.
At r cut511 Å, the plot would look quite similar, with a dif-
ferent reference line, but the best models are now LS1.2 and
LS2.4 ~the reason for this difference is discussed in Sec.
VII C !.

Table VI summarizes all our results forr cut56.2 Å, using
tiling T7 as a representative example.@Although it is an
important parameter, the conduction-electron densityrel is
not displayed since it may be found from the Table VI entries
using Eq.~2!.#

FIG. 4. The Mn-Mn pair distribution function for various CCT
decoration models.~a! Loose 5/3 T4 LS1.2~solid line 11 Å cutoff,
dashed 6.2 Å!; ~b! Dense 5/3T4 DF2.1 ~solid line 11 Å cutoff,
dashed 6.2 Å!; ~c! the same as~a!, but under Morse potentials;~d!
the same as~b!, under Morse potentials.

TABLE IV. Relaxation of MI cluster: distortions and site ener-
gies.

Shella

Ri(Å)

f i (Å) Ei
(0) ~eV! Ei (eV!~expt.!b ~calc.!

Mn~0! ~0! 0 0.038 -2.029 -2.020
Al( a) 2.45 2.525 0.039 0.241 0.244
Mn(m) 4.90 4.896 0.034 -1.437 -1.450
Al( b) 4.60 4.769 0.104 0.133 0.120

aDecoration LS1.1 on tilingT6. rcut56.2 Å.
bReference 65.

TABLE V. Site frequencies and site energies.

Ei ~eV!

Sitea Percentage (r cut56.2 Å) (r cut511.0 Å)

Mn~0! 1.31 -2.0155 -1.7975
Mn(m) 15.74 -1.4390 -1.6643
Mn(nY) 1.62 -1.3307 -1.4190
Mn(nD1g3D) 1.23 -1.4000 -1.5873
Mn(d) 1.62 -1.1001 -1.5546

Al( a) 15.74 0.2463 0.1994
Al( b) 39.35 0.1019 0.0899
Al( gZ) 6.71 0.1001 0.0681
Al( gb) 15.74 -0.0289 -0.0499
Al( gD) 0.93 -0.2188 -0.2535
Al( dY)

b 1.62 0.1395

All Mn ~combined! 21.53 -1.4382 -1.6413
All Al ~combined! 78.47 0.1007 0.0779

aDecoration LS1.2 on tilingT8.
bThis site energy is from decoration LS1.1, since model LS1.2 has
no d(Al) sites. ~The other site energies in LS1.1 are similar to
those shown above, the largest differences being at the immediate
neighbors of thedY site.!
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There is no unique way to decide whether one decoration
rule is ‘‘better’’ than another, especially since a rule may be
good on some tilings and poor on others. One good way
would be to fit a line for each decoration rule through the
points in Fig. 5 representing the models made using tilings
T1–T11, and to see which fit lines are lowest in the inter-
esting range ofxMn . For a simpler, but somewhat more ar-
bitrary way, one first adopts a particular representative tiling
and represents each rule by its energy for that tiling; then one

adopts a single reference line on the plot in Fig. 5, charac-
terizing each rule by its difference from that line~e.g., the
entries in Table VII!. The conclusions of the simpler way are
well-defined to the extent that the different fit lines have the
same slope~which is an good approximation for the loose
models.!

To make generalizations as to which option is optimal at
each variable site, we can then correlate the differences in
the resulting energies with the options shown in Table III.
Indeed, it appears that the cost of different options is simply
additive, so that we can assign an independent energy cost
for each ‘‘problem’’ place. By this analysis, Table VII sug-
gests that ‘‘LS2.2’’ and ‘‘LS2.4’’ are the overall best models
~with r cut511 Å); however, under the shortened cutoff
(6.2 Å), the best ones are LS3.x.

Separated by the three variable types of site, the conclu-
sions are

~i! In dY sites, the competition between the options Al/
Mn/vacancy ‘‘loose’’ models is ‘‘delicate,’’ in that the energy
differences are small and so the optimal choice can depend
on other minor features, e.g., the long-distance tails of the
potentials. The energy differences are read off from the en-
tries LS.2.1, LS.2.2, and LS.3.1 in Table VII, since these
rules differ exclusively in their dY occupation. For
r cut511 Å, the best option is Mn~as in LS2.2!; the excita-
tion cost~per dY site, with the aid of Table VIII! is 0.32 eV
for Al and 0.23 eV for vacancy. On the other hand, under the
shortened 6.2 Å cutoff, this order is reversed: the best option
is vacancy~as in LS3.1!. Under r cut56.2 Å, the excitation
cost is;0.15 eV for Al and;0.43 eV for Mn.

FIG. 5. Energies versusxMn for various CCT decoration rules.
The small crystal structures from Fig. 2 are repeated here as heavy
dots, as is the tie line. The dashed line is the reference line Eq.~10!
for quasicrystal decorations, and effectively connects models
LS2.4-T1 and LS2.4-T3. Points from LS2.4~all 11 tilings! are
shown as diamonds, to illustrate how the energies from a single
loose decoration fall nearly on a straight line.

TABLE VI. Comparison of decoration model results.

Modela rat xMn s̄ Erel

(Å23) (Å23) (Å23) ~eV/at!

LS1.1 0.06718 0.1991 0.080 -0.1891
LS1.2 0.2153 0.089 -0.2306
LS2.1 0.06599 0.2027 0.087 -0.2018
LS2.2 0.2192 0.097 -0.2438
LS2.3 0.1995 0.086 -0.1924
LS2.4 0.2160 0.095 -0.2346
LS3.1 0.06490 0.2061 0.086 -0.2139
LS3.2 0.2029 0.084 -0.2043

aUsing tiling T7, r cut56.2 Å.

TABLE VII. Effects of potential truncation.

DE ~meV/atom!b

Modela (r cut56.2 Å) (r cut511.0 Å)

LS1.1 4.7 5.5
LS1.2 8.9 -0.1
LS2.1 1.8 4.1
LS2.2 6.5 -1.2
LS2.3 2.4 4.4
LS2.4 6.8 -0.9
LS3.1 -0.7 2.6
LS3.2 -0.1 2.8

aUsing tiling T6 for all models.
bEnergy relative to reference lines~10! and ~11!.

TABLE VIII. Models used for molecular dynamics.

Decorationa Natoms xMn

DS2.1 2488 0.1801
DS2.2 2488 0.2058
LS1.1 2448 0.1993
LS1.2 2448 0.2157
LS2.1 2400 0.2033
LS2.2 2400 0.2200
LS3.2 2360 0.2034

aAll of these with tiling T6. Atom density israt[Nat /Vcell , with
cell volumeVcell5(t2b)35374.3aq

353.6433104 Å3.
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~ii ! TheZ face (gZ) sites are better in the ‘‘4/6’’ decora-
tion than in the ‘‘6/6’’ decoration.~The two vacant sites are
on theZ face, along its twofold symmetry axis.! By compar-
ing the relaxed energies of LS1.1/LS1.2 and of LS2.1/LS2.2,
we can estimate the excitation energy of filling eachpair of
gZ vacancies to be 0.13 eV forr cut511 Å ~or 0.28 eV for
r cut56.2 Å).

~iii ! The g3D site is better with Mn under our potentials
~which are, however, least reliable for that site59!, but the
excitation cost of Al is small. Using Table VII, it is found to
be 0.09 eV perg3D site ~or 0.17 eV, forr cut56.2 Å).

B. Tests of averaged positions

For each decoration rule, the ‘‘canonical’’ positions for
each orbit were computed as a sort of symmetrization or
average of the relaxed positions. The rms deviations from the
average position~see Table IV! were an obvious measure of
the goodness of the decoration description, in particular for
diffraction which is sensitive to the displacements.

As can be seen in Table VI, the loose models have rms
deviations ofs̄;0.1 Å or less.@Typically, the Al(b) orbit
has rms50.11 Å and all other orbits have much less.# It
indicates that the simplest~‘‘minimal’’ ! binding of the CCT
decoration can already capture the relaxation displacements
rather well.

The Al(b), the MI second-shell atoms, have a rms much
larger than any other orbit, presumably because these atoms
are exposed to a greater variety of environments. A site
‘‘bound’’ to a cell, if it is near the cell’s face, can ‘‘see’’ only
two or so possible neighboring cells. On the other hand, the
outer MI atoms may fall into any of the nine different kinds
of corner of a canonical cell.68

This confirms that a decoration model~the one with ‘‘ca-
nonical’’ averaged positions! may give a good approximation
of the true minimal energy positions. This observation might
justify a shortcut to computing the ‘‘tile Hamiltonian’’~en-
ergy of one tiling as opposed to another!, by evaluating the
total interatomic pair energy directly from the unrelaxed ‘‘ca-
nonical’’ positions~rather than from tile-tile terms fitted to
the relaxed energies of representative tilings, the approach
sketched in Sec. IX!.

For every quantity computed from positions, we can con-
struct an analogous one from the site energies. For example,
in analogy to the canonical positions, we earlier defined ca-
nonical energies by averagingEi over each orbit. So also for
each orbit there is a corresponding variancesE

2 , which
serves to quantify how similar are the local environments of
different sites in that orbit, as reflected in the site energies.
We let s̄E

2 be the mean ofsE
2 over all orbits~weighting each

atom in the orbit equally!. These quantities are shown in
Table IX for a typical loose decoration applied to two se-
lected tilings.

Yet another way of testing the canonical positions is to see
whether computing the energy commutes with the canonical
averaging over an orbit. In Table IX, we compare the average
energy per atom forunrelaxedmodel using the ‘‘canonical’’
positions,E0

can, with the canonical average of therelaxed
energy Erel . It can be seen from Table IX that

DE[E0
can2Erel is ;0.015 eV. This is reasonably small@the

typical energy scale of differences among different tilings is
;0.01 eV/atom!.

C. Results of dense models

The dense SI and FCI families of decoration rules were
applied to tilingsT1–T9.69 These models are worse than
loose models in all aspects of their behavior: some of them
have less stability, all of them have higher energies, and the
tile Hamiltonian concept would not work. Some other trends
will be explained by microscopic details of the ‘‘problem
sites.’’

1. Stability

Most of DS and DF structures are structurally stable for
small tilings, but not in the case of larger~size 5/3! approx-
imant tilings. Only a third of decoration rules lead to stable
structures~see Fig. 3!; even in these rather stable dense mod-
els, the rms is strikingly larger than it is in loose models.
Another third have a few orbits of runaway atoms, so that the
canonical rms for those orbits can be larger than 0.2 Å. The
remaining third of the rules produce so many runaway orbits
that the relaxation program cannot find even a local mini-
mum of the energy.

2. Energies

The dense models do not cluster neatly along straight tie
lines as the loose ones do, as can be seen in Fig. 5. Thus one
can distinguish certain models with the lowest energy~com-
pared to the crystalline phase tie line!; these occur around
xMn50.20 ~which happens to be the physically correct con-
centration fori -AlMn !.

A least-squares fit line through all of the dense models
gives nearly the same slope as for the loose models. This
justifies defining ‘‘net’’ energies for comparison purposes~as
in Table VII! by subtracting off the same reference line~10!
~for data atr cut56.2 Å). Then the best dense~FCI! rules
DF1.1 and DF1.2, applied to the tilingT7, give energies
0.042 and 0.035 eV, respectively, above the loose reference
line ~10!.

We have observed the following trends among the dense
decorations: the net energies~for a fixed tiling! are found to
decreasewith increasingxMn , and toincreasewith density.
Thus DS3.2 is the best and DS2.1 is the worst among dense
SI models.

ThexMn trend simply reflects the fact that the ‘‘problem’’
sites prefer to be occupied by Mn in structures where they
are surrounded mostly by Al neighbors. In these sites, the
better option has a site energy roughly 0.5 eV lower than the
worse one. The excitation cost should normally be about

TABLE IX. Energies from unrelaxed canonical positions.

E0
can Erel s̄E

Tilinga xMn ~eV/atom! ~eV/atom! ~eV/atom!

T6 0.2000 -0.17840 -0.19381 0.03115
T8 0.1987 -0.17731 -0.18976 0.03049

aRule LS2.3 for each tiling.
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twice that difference, and is thus larger than in the loose
models.

The density trend indicates that all dense models~even
the loosest of them! are packed more densely than optimal,
so that the energy can only increase with density. Specifi-
cally, it reflects the fact that the ‘‘problem’’ sites mostly have
rather tight surroundings. It is illuminating to compare the
densest ‘‘loose’’ model LS.1 and the loosest ‘‘dense’’ models
DF.1 or DS.3. They have quite similar densities, so the dif-
ference is that the dense and loose models achieve this den-
sity, respectively, by occupyingd andg sites; the lower en-
ergy of loose models shows that, other things being equal,
d sites are more costly to fill.

Another trend is that the energies of a series of tilings,
with a particular dense SI decoration rule, fall roughly along
a straight~tie! line, whereas with a dense FCI decoration
they show more scatter. This reflects a quite large ‘‘tile
Hamiltonian’’ in the dense FCI case. The reason for this may
be that in the SI case the resolutions of problem sites are
more local, whereas in the FCI case the differentiation of all
sites into even/odd flavors forces entanglements of the object
types at larger radii.

Not surprisingly, the differences between site energies of
the respective orbits show the same trends as in the LS struc-
tures. The Mn site energy increases but the Al site energy
decreases with the site’s radius from the MI center; the orbits
with the highest site energies were the ‘‘problem’’ sites and
the Al sites in the MI.

VI. RELAXATION OF SIX-DIMENSIONAL MODELS

Plausible quasiperiodic structure models already exist
with descriptions that are simple in the standard formulation
as a cut through a six-dimensional hypercrystal.70–72 The
CCT atomic models, though simple enough in physical
space, would be necessarily complicated to describe in 6D
~see paper I, Sec. V!. As a test, we have relaxed several
well-known quasiperiodic models, under the same
potentials,64 our motivations being:

~i! to check our assumption that the MI is a fundamental
motif ~the 6D-cut models have lower density of MI’s, or no
true MI’s at all!.

~ii ! to assess the energy penalty for the simplicity of the
6D-cut description~some rare bad local environments are
forced, see Table II in paper I!.

~iii ! to clarify the relationships between CCT and 6D
models~discussed at greater length in paper I!.

Our preliminary results suggest that the best 6D models
are practically degenerate in energy with CCT decoration
models.~Details will be given in Ref. 64.!

We chose three 6D-cut structure models for study~see
paper I, Sec. V!: the Duneau-Oguey~DO! model,10 the Katz-
Gratias~KG! model,71,72and a modified version of the Katz-
Gratias model which we called ‘‘KGme.’’ For each of those
models variants with differing density and chemistry were
constructed along the lines of the CCT variants.

The KGme and DO models are built from MI clusters and
have FCI and SI space group symmetry, respectively. They
have a lower density of MI clusters,73 but otherwise the local
arrangements~and the stability! are similar to the corre-
sponding loose FCI and SI CCT decoration models. For our

realistically oscillating potentials ~always using
r cut56.2 Å) the lowest cohesive energies occurred in~vari-
ants of! the DO model. We tentatively associate this with the
SI symmetry of that model, since we also found SI symmetry
to yield the lowest energies for CCT decorations~see Sec. V
and Sec. VIII B!. In particular the DO 5/3 approximant was
exactly degenerate in energy with our best CCT decoration
rule. ~We will return to this point in Sec. VIII C.!

The KG model is of interest in this paper mainly in testing
whether the 12-atom MI inner shell is necessary for stability
and/or low cohesive energies~the only difference between
KGme and KG is that the KG model has irregular Al7 inner
shells!. Our preliminary results64 are unclear, since the en-
ergy difference between KGme and KG models depended on
the choice of potential truncation.~Note that stability is prob-
lematic in the KG models as the 5/3 approximant relaxes to
an amorphous state.!

VII. FURTHER TESTS OF POTENTIALS

In this section, we explore several additional directions in
the ‘‘parameter space’’ of our calculations, but do so less
thoroughly than in the computations of Sec. V; these mostly
involve deeper understanding of the role of the potentials.
~The crystals and 6D-cut quasicrystals in Secs. III and VI can
similarly be considered as exploring additional directions in
the parameter space of models.! We start by using molecular
dynamics~MD! as a tool to check the stability of various
structures~Sec. VII A!. Then we focus on separating the ef-
fects of the pieces of the potential at different radii. First
~Sec. VII B! we study the effects of replacing the ‘‘realistic’’
oscillatory potentials by a short-range potential. Next~Sec.
VII C ! we review the truncation distance effects~obviously
important to the robustness of our conclusions!, and also
~Sec. VII D! compute the contributions to total pair energy
from the different wells inVAB(r ). Finally ~Sec. VII E! we
consider the quasilattice constant from the standpoint of our
pair-potential analysis.

In most of these supplementary calculations we only used
the 3/2-cubic approximant tiling (T6 in Table II!. This ap-
proximant is large enough to contain a variety of different
CCT environments but small enough that the relaxation time
is not limiting.

A. Molecular dynamics as a stability test

To test the stability of the decoration models, we per-
formed molecular-dynamics~MD! simulations, using geom-
etries obtained as the output of conjugate gradient relax-
ations for a group of models. The aim of these simulations is
to verify that the system does not get hung up in spurious,
shallow local valleys of the structural potential energy. After
sufficiently many MD steps, we quench the system and re-
relax the atom positions, and analyze the atomic displace-
ments to see if the initial configuration is recovered.

Our models are listed in Table VIII; they consisted of
seven decorations with a representative range ofxMn and
atom density, applied to the 3/2-cubic approximant tiling
~‘‘ T6’’ in Table II!. We adapted the MD code of Rothet al.11

Our typical runs consisted of 2.43104 MD steps~each time
step corresponds to roughly 331024 ps of real time!. We
performed our analysis~including the quench! not only on
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the final configuration, but also using a configuration taken
from halfway through the run. We found no systematic dif-
ferences between these cases~except as noted below!, indi-
cating that our MD run duration is sufficiently long to equili-
brate local fluctuations. We used three MD temperatures,
T50.04, 0.08, or 0.16 eV~in units wherekBoltzmann51).

The results are summarized in Table X. AtT50.16, all
the atoms diffuse considerable distances; the system is
clearly melted. AtT50.04 eV, the configurations are quite
stable: in the ‘‘loose’’ models, virtually all atoms relax back
to their initial positions, within some small distance set by
the numerical noise.~In the ‘‘dense’’ models, however, the
mean displacement is larger, suggesting that many atoms find
new stable positions less than 1Å from their old positions.!
At T50.08 eV, the fluctuations are apparently sufficiently
anharmonic that our relaxation algorithm fails to converge
for most ‘‘dense’’ models and for some ‘‘loose’’ models. At
this temperature, most atoms still relax back to their initial
location, but a few of them — the number increases with
time — suffer displacements larger than 1Å. As a rule, if an
atom diffuses by as much as 0.3–0.5 Å, its final displace-
ment can be this large~or even larger! after relaxation; on the
other hand, atoms which displace about 0.1 Å during the MD
run return very nearly to their starting points.

The behavior observed atT50.08 eV suggests that our
models have a melting temperature in the vicinity of
0.1 eV;1000 K, which coincides with the true melting
temperature for these materials. The diffusion observed at
T50.08 eV is no surprise: the ‘‘loose’’ models have many
variants which differ only by whether a site is occupied or
vacant, so single atoms are expected to diffuse among these
nearly degenerate positions.

We also checked the change in ‘‘site energy’’ for each
atom between the initial and quenched states. This followed
the pattern of the atom displacements: i.e., if a few atoms
wandered large distances, then a few atoms would gain
;0.4 eV in energy, however no atom ever takes on unphysi-
cally large energies.

In conclusion, our decoration models are stable against
finite-temperature molecular-dynamics perturbations. As a
side note, our standard criteria about stability~in terms of
relaxation behavior! are supported: indeed, those models
~loose models! which were more stable under relaxation
~compare Secs. II C 3 and V C 1! were also more robust un-
der MD. The rough agreement between the simulated and
real melting temperatures ofi -AlMn adds credibility to the
pair potentials we are using.

B. Short-range potentials

It is interesting to ask whether realistic pair potentials
with Friedel oscillations are necessary in order to capture the
physics~e.g., to decide which models have a plausible pack-
ing of atoms!. Many others studying the melting of quasi-
crystals, or their phonon spectra, have instead adopted toy
potentials such as Lennard-Jones11 ~LJ! or Morse9 potentials
which are short range~i.e., have only one minimum!.

In prior relaxation studies, a variant of the ‘‘Henley-
Elser’’ i -AlZnMg type model74 had a robust stability under
LJ potentials. On the other hand, the Duneau-Oguey 6D-cut
model for i -AlMn was found stable under Morse potentials,
but the relaxation introduced significant displacive modula-
tions, with a few atoms moving disturbingly far ('2.8 Å) in
Ref. 9.

To obtain a fair measure of the importance of the Friedel
oscillations, we have also carried out relaxations using short-
range~specifically Morse! pair potentials on~some of! the
same structure models as we relaxed under realistically os-
cillating potentials. Our Morse potentials have the form

Vi j
Morse~r !5e i j $exp@22a i j ~r2r i j !#

22 exp@2a i j ~r2r i j !#%, ~12!

where e i j is the ‘‘depth’’ of the minimum, a i j is its
‘‘strength,’’ and r i j is position of the minimum~only one
well at nearest-neighbor distance!; here i and j stand for
pairs Al-Al, Al-Mn, or Mn-Mn.

We took rAlAl52.84 Å, rAlMn52.59 Å, and
rMn-Mn52.71 Å to agree with the first minimum of the re-
spective realistic potentials. We seta i j[6/r i j after Ref. 9,
and sete i j[1, thus fixing a dimensionless energy scale for
the Morse potential computations. It should be noted that the
depthseMnMn , eAlMn , and eAlAl in Eq. ~12! determine the
chemical potentials for Al and Mn, and hence the slope of
the fit line in the plot of structural energy versusxMn . ~See
Fig. 6.! The truncation cutoff wasr cut56.2 Å ~increasing
this would have little effect for the Morse potentials!.

1. Stability under Morse potentials

Under Morse potentials, the low-energy crystal structures
‘‘ a-AlMn’’ and m-AlMn are nearly as stable as under realis-
tic ones, as measured by the sharpness of the PPDF’s, and~in
‘‘ a-AlMn’’ ! and the smallness of the canonical rms. How-
ever, the larger CCT approximant models show a more com-
plicated behavior under Morse potentials: the~partial! pair
distribution functions~PPDF! remain sharp, as in a stable
model; yet the models are unstable by our strict criteria,
since more and more individual atoms make large excursions
~even 2 Å) from their initial positions, and the canonical
rms reachess i;1.2 Å. for some Al(gZ) orbits in the ‘‘5/3’’
approximantT8.

We can reconcile these conflicting indications of stability
and explain the size dependence if we ascribe a large part of
these displacements to a strong ‘‘phason-phonon’’ coupling
in the Morse case. That refers to the elastic displacements
which accumulate rapidly with distance as a consequence of
phason strain fluctuations75 ~i.e., deviations in the tile distri-
bution from icosahedral symmetry!. Thus, in T8 the tile
nodes themselves are distorted, as seen directly by the ca-

TABLE X. Displacements under molecular dynamics (Å).

T50.04 T50.04 T50.08
Quantity ~loose! ~dense! ~loose!

Equilibrated:
max($di%) ,;0.5 ;0.7 2 – 4a

mediandi 0.03 0.03 0.04

Quenched:
max($di%) ;0.4 ;0.7 ;5
mediandi 0.002 0.01 ;0.02

aDepending upon equilibration time.
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nonical rmss i;0.17 Å for the Mn~0! orbit in T8; all sites
are carried along with the nodes.

This is not, however, the entire story: a smooth distortion
should not affect the site energies, yet in the smallish approx-
imantT5, the rms variation of site energy is~like the canoni-
cal rms! already much larger forany orbit under Morse po-
tentials than for theworst orbit @Al( b)# under realistic
potentials. Furthermore, the Mn-Mn PDF’s differ signifi-
cantly from models relaxed under realistically oscillating po-
tentials and the Mn sites are displaced much farther from the
‘‘ideal’’ positions ~see Fig. 4!. Apparently the rigidity of the
Mn subnetwork really depends on the deep second minimum
in the realistic Mn-Mn interaction, and perhaps that is what
stiffens the entire structure against phason-phonon distor-
tions.

2. Energies under Morse relaxation

The results of relaxations are shown in Fig. 6. Under the
Morse potentials, by far the best models are the crystal
phases ‘‘a-AlMn’’ and m-AlMn. Among the CCT decoration
models the results are more scattered, but it is clear that the
FCI models~both loose and dense! are better than the SI
models. A comparison on tilingT6 of LS1.1 and its loose
FCI counterpart, which differ only in the arrangement of the
occupiedd sites, showed the FCI variant had lower energy
by 0.030 units. Our interpretation is that, with Morse poten-

tials, a higher occupation of thed network xd'0.50 is fa-
vored, thus forcing an ordering in the lattice gas ofd sites.
~See Sec. VIII B.!

The competition between loose and dense models under
Morse potentials depended on two effects.

~i! The parametersa i in Eq. ~12! play an important role
since they can change theshapeof the potential. Potentials
with a narrow first-neighbor well match models with a nar-
row range of first-neighbor distances, as tends to be found in
loose models. Dense models have a broader spread of first-
neighbor bond radii~especially Al-Al!, which is better toler-
ated by an Al-Al potential with a broader or shallower well.

~ii ! Other things being equal, the Morse potentials favor
the closest atomic packings.

As a consequence of the competition between~i! and~ii !,
the loose FCI model~LF! was slightly better than the~dens-
est! dense FCI model DF2.1, when we choosea i j[6/r i j ,
but the opposite was true after we changedaAlAl to
4/rAlAl .

Variants.In contrast to the case of realistic potentials, we
found that~i! Al( gZ) hexagons in loose SI models are best in
the ‘‘6/6’’ variant, and ~ii ! Mn is favored ondb(A) sites
while Al is favored on thedY sites. But just as it was with the
realistic potentials, the unphysical filled Mn~0! site is pre-
ferred by Morse potentials.

‘‘Tile Hamiltonian.’’ When applying the same rule to dif-
ferent tilings, the tilings under Morse potentials wouldnot
fall on straight lines in Fig. 6, in contrast to the case of
realistic oscillating potentials. By the logic we will present in
Sec. IX below, this signifies that the Morse-coupled system
cannot be described as a random tiling. The ‘‘tile Hamil-
tonian’’ is rather large in energy~if it can be defined at all!. A
specific observation was that the energy grew monotonically
as a function of the fraction ofD cells in the tiling; in the
notation of Sec. IX, that means the coefficientVD8 in the ‘‘tile
Hamiltonian’’ is exceptionally large; physically, it suggests
theD cell ~in all variants! is rather badly packed for Morse
potentials.

C. Truncation effects

We have just noted~Sec. VII B! that including the poten-
tial’s oscillations beyond the first-neighbor well makes a real
difference in the structure. Further information along the
same lines is obtained by comparing the effects of truncating
the potential at r cut511 Å or a shorter cutoff of
r cut56.2 Å ~see Sec. II C 1!. The 6.2 Å cutoff means,
roughly, allowing interactions to the second or third shell of
neighbors. This tests the validity of our entire program of
relaxations since:~i! due to relaxation time limitations we
used the shortened cutoff for most of the calculations re-
ported here, assuming that this would have only minor ef-
fects on the answers;~ii ! if r cut511 Å gives answers differ-
ent from r cut56.2 Å, then the oscillating tails of the
potentials are still important at these radii, hence using an
even longer cutoff might give yet another answer.

The principal artifact of the 6.2 Å cutoff among loose
models is in a wrong sign of theenergiesresulting from the
dY site occupancy by Al, Mn, or a vacancy. This must be
blamed on the omission of thethird minimum of the poten-
tial VMnMn(r ), at about 6.7 Å~see Fig. 1!; indeed, the re-

FIG. 6. Energies versusxMn as in Fig. 5, but relaxed under
Morse potentials. Energies are measured in dimensionless units,
roughly comparable to 0.1 eV. Models are identified by a similar
key; some 3/2 approximants of 6D-cut structures are included
among the models labeled ‘‘loose,’’ since they differ from CCT
decorations only by thegZ(ZD) rings.
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laxed Mn-Mn pair-distribution function has a peak around
6.7 Å which includes contributions from Mn(d) atoms.
Dense models seemed to fitworse with potentials using
r cut511 Å than withr cut56.2 Å, as seen not only in failure
of certain models to satisfy our stability criteria for relax-
ation, but also in higher ‘‘canonical rms’’ values after suc-
cessful relaxations.

D. Allocating energy by wells

To obtain further understanding of the relationship be-
tween models and potentials, we separated the contributions
from the first-, second-, and third-neighbor wells in each pair
potential. That is, for each of the three potentials in Fig. 1,
we let r j be the radius of thej th maximum (r 0[0), then all
contributions from the interval (r j21 ,r j ) were allocated to
the j th well.

This analysis confirmed that what favors loose models
over dense ones is the contribution from thesecondwells ~of
all three potentials!. For a striking example, we compare the
densest dense model~DF2.2! to one of the loose models
~LS1.1!; these have similarxMn values of 0.2079 and
0.1993, respectively. The pair energy contributions from the
first and third wells are about the same, but the second wells
of the oscillating potentials favor the loose model by 0.03
eV/atom.

This conclusion fits reasonably well with the finding that
models with ‘‘pseudovacancies’’ are not stabilized by Morse
potentials~Sec. VII B!. After all, if we had truncated our
potentials after the first well, we would have created a short-
range potential qualitatively similar to Morse potentials~al-
though dramatically different in the ratios of the well
depths!. The results are shown in Table XI.

E. Quasilattice constant

We have explored the effects of varyingaq . ~This could
just as well be viewed as varying the radii of wells in the
potential, if we consideraq as fixed.! We computed the re-
laxed energies~using r cut56.2 Å), for the four best loose
decoration rules~LS1.1, LS2.1, LS2.4, and LS3.1! on tiling
T6, varyingaq by 0.01 Å increments. There is a~quadratic!
minimum of the relaxed energyE(aq) near 4.60 Å for the
‘‘best’’ rule LS3.1 ~at 4.61 or 4.62 Å for the other rules!.

These experiments withaq address the first of the worries
about pair potentials in Sec. II B. Instead of choosing
aq54.60 Å throughout, as we have in all other sections, a
more physical rule would be either to force the right
conduction-electron density for our potentials,rel5r0 , or
perhaps to adjustaq so as to optimize our structural energy.
The above-mentioned results show that either choice would
have a very small effect on our results; e.g., had we opti-
mized aq for each decoration, it would have lowered the

energy by only 0.001 meV/atom, which is much smaller than
the differences between the different decoration rules.

These results are also relevant to the second worry in Sec.
II B. Properly speaking, we should include the structure-
independent contributionU0(aq), and then should minimize
the sumU0(aq)1E(aq), in order to determine the relaxed
energy for a given topological arrangement of atoms;76 ob-
viously the whole curveE(aq) would be needed for such a
calculation.

VIII. DISCUSSION OF STRUCTURAL TRENDS

In the spirit of Sec. II D, we now try to make sense of our
results in terms of the distinctive features of the structures
and the potentials. The unifying theme of our discussion is
the d site occupations, in particular the negative vacancy
formation energies~favoring ‘‘pseudovacancies’’! possible
on many of them. This is why loose SI structures are fa-
vored, and why~see Sec. IX! the tile Hamiltonian is small.

The possibility that the vacancy formation energies are
wrong, owing to the weak aspects of our potentials~Sec.
II B !, is a cause for some concern. However, the arguments
in this section could be inverted as follows. It would seem
that good behavior in a quasicrystal model is conditioned on
the ‘‘looseness;’’ thus, we would speculate that the high-
quality quasicrystals such asi -AlPdMn must have loose-type
structures, even if the best structure of reali -AlMn is not
loose.~We suspect that a better calculation would bear out
the general pattern of pseudovacancies on thed sites, but
perhaps not on thesamed sites are found in the present
paper, since this can be sensitive to potential tails and other
small energy differences.! In any case, the ‘‘looseness’’ has
emerged more clearly as an essential parameter for discuss-
ing Al-TM models.

A. Why are loose structures favored?

The key to this point is the discussion of the candidate
d sites in Sec. IV D of paper I. Thed atoms were viewed as
a lattice gas on this network, and the loose and dense model
families were primarily distinguished by the minimum spac-
ing r d among these atoms. It was argued that the ideal occu-
pancy of this networkxd is less than 50%.

We propose that the optimal value ofxd is ;0.33~as in a
typical loose model!; and that, so long as the indirect exclu-
sion is satisfied, it does not matter very much exactly where
those occupiedd ’s are distributed: the lattice gas really looks
like a gas. Our claim that the placement of thed atoms does
not matter much is reflected in our finding — see Sec. V —
that on such sites the competition between variant occupa-
tions by Al, Mn, or ~pseudo!vacancy is very delicate.77

Diffraction experiments indicate AlMn~like all other
Al-TM quasicrystals! does have nonzero occupancy ofd
positions.78 Our finding that, among loose models, LS2
structures are preferred over the LS3 structures is thus in
accord with experiment. It is only using potentials truncated
at r cut26.2 Å that the extreme loose structure LS3~which
hasno occupiedd sites! is preferred, presumably a spurious
effect.

TABLE XI. Structural energy by wells~in eV/atom!.

Modela xMn E(1) E(2) E(3) Etot

LS1.1 0.1993 -0.0238 -0.2083 0.0423 -0.1898
DF2.2 0.2079 -0.0235 -0.1782 0.0433 -0.1584

aTiling T6 was used.
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B. Why is there SI symmetry?

Our finding that SI models are preferred ran counter to
oura priori expectation that FCI structures would be favored
@based ona-AlMnSi ~Ref. 79! and i -AlCuFe#. The lack of
ordering can be interpreted in light of the above viewpoint of
the d sites as a lattice gas, within a surrounding that has SI
order. If the net occupation ofd sites is low, as in a loose
model, then their mutual interactions are unimportant and the
single-site terms determine the structure. Thus it will be SI.

From the above arguments, we would have conjectured
that an FCI ordering should be favorable for dense models,
since it is the best solution to the repulsived-d interactions.
However, numerically SI was found to win also in the dense
case. Apparently the single-site terms favoring certain sub-
classes ofd sites outweigh thed-d interactions, even in this
case.

C. Why Mackay icosahedra?

In our CCT decoration models, we assumed that MI clus-
ters were fundamental in two senses:

~i! we have complete MI clusters rather than fragmentary
or imperfect ones,

~ii ! the number densitynMI of MI should be as high as
possible.

This point is somewhat controversial, asi -AlMnSi dif-
fraction data was interpreted in favor of pseudo-MI rather
than MI clusters,67 but it is now understood that even good
data may be insufficient to decide the question.80

Assumption~ii ! can be addressed by a systematic com-
parison of relaxed energies including both CCT-decoration
and 6D-cut models, since all of the latter contain a lower
density of MI’s than in a CCT structure. Calculations of this
sort are in progress.64 A related kind of structure that might
also be compared is a decoration model based on a general-
ized CCT~using some larger types of canonical cell, and thus
permitting lower MI number densities!.

Assumption~i! is also addressed appropriately via the 6D
models, since they contain fragmentary MI’s wherever a
complete MI could not be placed on a candidate MI centers,
due to overlap with another MI separated by a short distance
aq , and some of them contain pseudo-MI’s in place of MI’s.

It seems unlikely that MI’s should be imperfect in the
second shell, which has a packing that can hardly be im-
proved by a rearrangement. On the other hand, for all of our
good decoration rules, the MI first shell sites@a~Al !# have
the worst site energies of any Al orbit@about 0.01 eV worse
than Al(b) or Al(g) in loose models#.81 This suggests this
shell ought to be modified, perhaps by making twoa sites
vacant in each MI. This option might also be studied in a 6D
representation, where it appears as a compromise between
the MI Al12 shell and the pseudo-MI Al7 shell.

To rule out MI fragments, we would have to explore an
even larger space of possible structures. For example, they
might be based on motifs such as Al6Mn4 tetrahedra and
‘‘pentagonal bipyramid’’ clusters, which are, respectively,
like 1/20 or 5/20 fragments of an MI.82,38Finally, we observe
that the two-shell mini-Bergman clusters are conceivably just
as important~for the cohesive energy! as the three-shell MI
clusters.83

D. Mn stoichiometry

Experimentally, i -AlMn seems to have highest quality
aroundxMn'0.20, but it admits a range from about 0.14 to
0.22. Our results from loose models would indeed predict a
wide range ofxMn values: the fact that the energies cluster
along a straight~not curved! line in Fig. 5 shows that differ-
ent stoichiometries are equally acceptable. There are two
contributing reasons, in terms of tile and site disorder, re-
spectively.

One reason for the wide range in our models is thatD
cells tend to be much richer in Mn thanA cells — for rule
LS3.1, thexMn is roughly 0.24 for theD cell and 0.19 for the
A cell. The causes of this are that~i! the optimum occupation
of the db sites inA cells is a ~pseudo!vacancy, while the
dY(D) site is reasonable as a Mn;~ii ! the D cell has the
highest density of Mn(n) and Mn(m) sites. In turn,
canonical-cell tilings can have varying fractions ofD versus
A cells ~obvious in simple structures built from only one
kind of tile; but even with icosahedral symmetry, there is
considerable freedom in these fractions8,55!.

An independent reason for variable stoichiometry is that
the loose models contain manyg3D andd sites on which Mn
or Al are almost equally good, so that the real structure may
have a stochastic occupation implying a phase with variable
concentration.

IX. TILE HAMILTONIAN RESULTS

The decoration description of a quasicrystal may permit
us to describe the energetics in terms of a reduced set of
degrees of freedom. Indeed, we have seen~Sec. V! that the
‘‘canonical rms’’ of the relaxed positions is small. That
means that the atomic coordinates are well described by a
configuration of rigid tiles plus as subsequent decoration in
which tiles of a given kind receive identical configurations of
atoms. It was argued~cf. paper I, Sec. VI! that such a lack of
‘‘context sensitivity’’ may permit us to account for the struc-
tural energies in terms of a ‘‘tile Hamiltonian’’H tile , a
model Hamiltonian which assigns just one degree of freedom
per tile.84 The fact that energies from many different tilings
fall nearly on a straight tie line~in Fig. 5! confirms, at least,
that tile rearrangements are valid low-energy excitations.
However, to say that the tile Hamiltonian description is valid,
the deviations from the straight line behavior must not only
be small, but their values should be mostly accounted for by
H tile . In this section, we shall extract the parameters in
H tile , using as input the relaxed energies presented above
~Sec. V!, and confirm that the ‘‘tile Hamiltonian’’ description
is rather accurate.~This works only for the loose decoration
models under realistic potentials.!

We consider the simplest possible form

H tile5(
a

VaNa , ~13!

which includesonly one-tile terms, as in Eq.~2! from paper
I, wherea5A,B,D,E for four kinds of tile.~We do not have
an independentVC sinceNC[NB12NE ; thusVB represents
the sum ofB1C tiles andVE representsE12C.) We as-
sume the validity of Eq.~13!, equateH tile to the relaxed
energies for tilingsT1, T2, T3, andT4, and so find$Va% as
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the solution of the four linear equations Eq.~13! with the
Na values for those tilings as coefficients. Of course, the
validity of this description must be tested by checking Eq.
~13! for a variety of other tilings.

Results for ‘‘tile Hamiltonian’’

We first find the parametersm̃Al,Mn ~for each decoration
rule! by a least-squares fit of the relaxed energy/atom
~weighted equally for each of the 11 example tilings! to

Erel5m̃Al~12xMn!1m̃MnxMn . ~14!

Then as explained in paper I, the parameters meaningful for
comparative structural stability are obtained by subtracting
off the line of Eq.~14!:

Va85Va2m̃AlNa
Al2m̃MnNa

Mn , ~15!

whereNAl,Mn is the number of Al,Mn atoms on a tile of type
a. Note that in principle the subtracted parameters$Va8 % are
linearly dependent — there are really only two independent
parameters among them.

For selected combinations of decoration rules and poten-
tials, Table XII shows the subtracted tile energy per atom, for
each kind of tile.85 Then Table XIII shows the difference
Erel2H tile when the parameters in Table XII are inserted
into Eq. ~15! for tilings T5–T11 from Table II.~Of course,
this is zero by construction for tilingsT1–T4.)

The Va8 values in Table XII are of order 1 meV. That is
about ten times bigger than the residualsH tile2Erel which
are typically;60.15 meV/atom~see Table XIII!. This con-
firms that our simple tiling Hamiltonian is a good approxi-
mation. Presumably, much of these residuals could in turn be
accounted by including tile-tile interactions in Eq.~15!.

Note in Table XIII that the residuals are smaller with the
reduced cutoffr cut56.2 Å than withr cut511 Å. This pre-

sumably reflects the omission of many direct interactions of
further neighbor atoms in two neighboring tiles –
r c56.2 Å is less than a tile diameter.86 When we reduce the
interaction radius even further~by using Morse potentials!, it
appears that the residuals~Table XII! become smaller, rela-
tive to the energy scale set by the one-tile terms~Table XIII!.
In the absence of longer-range interactions, the residual tile-
tile interactions may be ascribed to elastic distortions — i.e.,
interactions between atoms on different tiles are mediated by
pushing on the intervening atoms.86,87

The values ofVa8 are very small compared to other energy
scales — e.g., they are;1/100 times the excitation cost of
the higher-energy alternative occupancy in the ‘‘problem’’
sites, an energy difference which was considered small~see
Sec. V A 2!. Thus it is fair to say that a ‘‘random tiling’’ is
appropriate as a first-order approximation fori -AlMn. The
smallness of theH tile is a consequence of ‘‘looseness’’~see
Sec. VIII A!. In a dense model, atoms in different tiles are
pressed up against each other and so they interact more
strongly giving a much largerVa8 .

We now consider whether the deviations from degeneracy
are small enough to permit ‘‘entropic stabilization’’4 of an
equilibrium quasicrystal. In the Al-Mn system, this possibil-
ity is ruled out since some crystalline states were found
lower in energy than the CCT states~in accord with the fact
that reali -AlMn is only metastable!. Instead let us consider a
hypothetical system in which all the CCT packings are lower
in energy than other structures, but the energy differences
among CCT structures are similar to those found here for the
AlMn case ~it is plausible thati -AlPdMn would fit this
desciption!.

The energy scaleV̄ of our ‘‘tile Hamiltonian’’ ~Table XII!
is ;1 meV/atom or; 70 meV ('800 K! per CCT node.
Furthermore, the CCT random-tiling entropy is at most
s0'0.1 per node.88 Now, a quasicrystal isentropically sta-
bilizedwhens0T.V̄, i.e., above;104 K using the param-
eters for random-tilingi -AlMn. Since the real melting tem-
perature is Tm;103 K, entropic stabilization cannot be
realized, unlessV̄ is reduced by an order of magnitude.

X. CONCLUSION

This paper demonstrates the use of detailed energetic
studies as the basis for structural insight and refinement for
the case of Al-Mn as modeled using canonical-cell tilings.
Though our results center on the Al-Mn system, they reflect
a more general philosophy which advocates a synthesis of
diffraction studies with total energy methods in the refine-

TABLE XII. Tile Hamiltonian results.

Va8 /Na ~meV/atom!

Rule r cut(Å) m̃Al m̃Mn A B D E

LS3.1 6.2 368 -2455 -0.633 -2.011 0.462 1.930
LS1.2 6.2 304 -2179 -2.212 2.623 -2.415 3.883
LS1.2 11.0 365 -2687 1.780 -2.540 0.759 1.970
LS2.4 11.0 379 -2744 1.150 -4.130 0.489 3.240
DF2.1a 6.2 -1015 930 -0.908 5.967 0.403 10.551

aUnder Morse potentials, and modified DF2.1 decoration rule. In
1022 Morse units.

TABLE XIII. Error in H tile ~meV/atom!.

Rule r cut(Å) T5 T6 T7 T8 T9 T10 T11

LS3.1 6.2 0.21 -0.06 -0.07 -0.19 -0.00 -0.06 0.04
LS1.2 6.2 -0.79 -0.37 -0.60 -0.38 -0.47 -0.42 -0.60
LS1.2 11.0 -2.58 -0.98 -0.85 -0.97 -1.33 -1.04 -1.40
LS2.2 6.2 -0.79 -0.06 -0.13 -0.44 -0.32 -0.22 -0.32
LS2.4 11.0 -2.58 -0.27 -0.42 -0.74 -1.00 -0.65 -1.12
DF2.1a 6.2 0.42 -8.14 -7.53 -5.28 -6.92 -6.99 -6.48

aUnder Morse potentials, and modified DF2.1 decoration rule. In 1022 Morse units.
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ment of quasicrystal structures.
Our approach has been to use pair potentials which simul-

taneously treat both the free-electron and tightly bound elec-
tronic degrees of freedom. These potentials exhibit strong
Friedel oscillations which favor particular interatomic spac-
ings that favor complex intermetallics. Our results from ap-
plying these potentials to structure refinement in the Al-Mn
system are summarized below, followed by suggestions for
future work along these lines.

A. Summary of the results

We have systematically explored the energetics and sta-
bility of many different structural models based on
canonical-cell tilings, assuming pair potentials, in order to
grasp the relationship of particular features in the structure to
the resulting total energy. Within the families of models we
studied, the most important kind of variation was of site
occupancy — above all, the competition between filling the
site or making it vacant~‘‘density variations’’!. It is much
easier technically to modify such details in the tiling-
decoration approach than in the 6D approach, where one
must first encode it as a context dependence and then must
figure out what acceptance domain corresponds to that con-
text. The generally good match between the pair potentials
and known Al-Mn structural patterns indicates that structure
refinements in quasicrystals could quite practically incorpo-
rate realistic energy calculations to resolve uncertain details.

All of our quasicrystal models still lie above the tie line of
the best real structures, and hence are predicted to be ther-
modynamically unstable~at T50), just like real i -AlMn;
however, our models are competitive with several plausible
small crystal structures which are also unstable for Al-Mn
~see Sec. III!. As to our further finding that the best quasi-
crystal has SI order, experiment is ambiguous in that
i -AlMn is SI, but short-range FCI order may appear upon
annealing.79

In the past, optimal packing of atoms as in sphere
packings,89 guided by information from crystallographic re-
finements, has been a mainstay in constructing possible qua-
sicrystal decorations.13,90 But our results in this paper show
that packing isnot a good guide for guessing the details of
Al-Mn structures; for these details depend sensitively on the
oscillating, further-neighbor tails of the interatomic poten-
tials. Under realistically oscillating potentials, those well-
packed structures appearoverpacked; the loose models were
favored instead. On the other hand, short-range potentials
with one well, such as the Morse potential,do favor the
well-packed type of structure; indeed the more realistic loose
structures tend to be unstable when relaxed under Morse po-
tentials. It is vital to adopt the most realistic possible form of
potential.

The loose models, taken together, demonstrate that the
description of atomic sites by ‘‘canonical orbits’’ is unex-
pectedly accurate, capturing the post-relaxation positions of
the atoms to within;0.1 Å ~see the entriess̄ in Table VI!,
without excessively many parameters. Presuming that the
true positions can be captured as easily, this is encouraging
for possible future diffraction refinements of CCT decoration
models. Another consequence of this fact is that the energy
costs for tile rearrangements~also known as phason fluctua-
tions! are quite small. Thus, there may exist a simple additive

‘‘tile Hamiltonian’’ ~Sec. IX! from which we could calculate
that energy cost, for any given tiling. These calculations are
an explicit implementation of the idea of building an effec-
tive model with parameters determined by calculations at
smaller length scales and raise the possibility of simulations
at the tiling level based upon microscopically derived Hamil-
tonians.

We have explored, more systematically than in any prior
work, some of the many directions in the parameter space of
our calculation, which concern the model~variations of den-
sity rat or stoichiometryxMn and SI/FCI symmetry! as well
as the potentials~range/truncation, lattice parameter!. Yet our
studies are still incomplete at many points. For example, it is
surely confirmed that the Mackay icosahedron~MI ! cluster is
a possible structural motif, but we could not really settle its
importance since we did not explore a sufficient variety of
models with fewer~or none! of the MI’s ~see Sec. VIII C!.

There are a few other areas in which our results are not
entirely satisfactory. Our finding that the best version ofa
phase has filled MI centers certainly contradicts the known
structure ofa-AlMnSi. This may be an artifact of replacing
Si by Al in our model; more likely, it is an artifact of using
additive pair potentials at the MI center~where, e.g., ‘‘glue’’
potentials can account for the pseudovacancy33!.

More fundamentally, our pair potential scheme has limi-
tations: we cannot escape the fact that the available poten-
tials are calculated only for electron densityr0 ~see Sec.
II B !. and are unreliable for Mn-Mn neighbor pairs. In par-
ticular, our conclusion that relatively low density and SI
symmetry are favored depends crucially on the sign of the
vacancy formation energies for certain sites known as ‘‘d ’’
sites, or equivalently six-dimensional body-center sites; see
Sec. VIII and paper I, Sec. IV D . Since we do not know how
robust the vacancy formation energies are, it is quite likely
that a better set of potentials will change our conclusions in
Sec. V as to the detailed ranking of models. Indeed, the
physically correct answer may depend sensitively on small
details of the second-neighbor potential wells and vacancy
formation energies, which will be a function of composition.
Further discussions of the results are found in Sec. VIII.
However, despite all the uncertainties, we believe that our
finding in favor of loose structures is robust, because it is a
necessary condition for the existence of a good tiling de-
scription ~see Sec. IX!.

B. Future directions

Our results might serve as the prototype for an analogous
calculation for the more interesting stable ternary quasicrys-
tals, i -AlPdMn and i -AlCuFe. In view of the experimental
facts, we would expect find the FCI quasicrystal lower in
energy than the competing crystal~or SI quasicrystal!
phases. On the nearest-neighbor scale, these ternaries surely
have atomic patterns similar to those in the models studied
here, and a structure model may well be based on variants
built on the structure models of paper I.~This assumes that
i -AlPdMn contains no MI clusters, which is a controversial
point, but may well be consistent with diffraction.80! Al-TM
ternary calculations are not presently feasible since effective
pair potentials have not yet been calculated for the
ternaries,91,92except in thei -AlCuLi family17 which is more
tractable, as noted in Sec. II.
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Such a calculation might be able to settle the controversy
about the importance of entropic stabilization~see Ref. 8! for
the stable, long-range-ordered quasicrystals. In Sec. IX, we
estimated that our modeli -AlMn would be stabilized, rela-
tive to a phase-separated mix of CCT approximants, at tem-
peratures above;104 K. Such a phase would be unstable
first because a phase-separated mix of small crystal struc-
tures has a lower cohesive energy in the Al-Mn case, and
second because the melting temperature is 103 K. But it
would not be surprising if in some other alloy system~per-
hapsi -AlPdMn! the CCT arrangements may be favored en-
ergetically over the non-CCT small crystal structures. If we
can also reduce the scale of the tile HamiltonianV̄ by an
order of magnitude, an entropically stabilized quasicrystal
phase will exist in a temperature range above;103 K, i.e.,
may persist in some window belowTm as the stable equilib-
rium phase. It is easy to imagine doing this by fine tuning the
potentials and the decoration.93 If, furthermore, the tile
Hamiltonian could be accurately evaluated, this would open
the door to Monte Carlo simulations in which~only! the
tiling was rearranged, for the purpose of~i! measuring the
phason elastic constants5,88 or ~ii ! discovering the absolute
ground-state tiling of the model, to test whether or not it is
ideally quasiperiodic.

Kinetic calculations, similarly relating to high-
temperature~i.e., realistic! properties, can also be based on
our energy results. These would be particularly interesting if
performed for the case of astable quasicrystal such as
i -AlPdMn. For example, the conclusion of paper I noted the
desirability of understanding the atomic rearrangements in-
duced by tile rearrangements~a purely geometrical ques-
tion!. Along with that it is natural to determine the energy
barriers along the optimal paths of those rearrangements. The
barriers would determine the kinetics permitting the relax-
ation of phason strain at elevated temperatures.

The smallness of the tile Hamiltonian in our calculations
was a consequence of the looseness of ouri -AlMn models.
In the light of the preceding discussion on tile kinetics, we
can turn this observation around: good quasicrystals allow
phason relaxation on human time scales, and this is possible
only if the tile Hamiltonian is small~whether or not it imple-
ments matching rules for quasiperiodicity!. Thus we conjec-
ture thati -AlCuFe andi -AlPdMn probably have loose-type
structures.~Indeed, the popular Katz-Gratias 6D-cut model
for these alloysis a loose structure; see Sec. VI.!

In addition to tile disorder, site disorder~important both
for statics and dynamics! is also illuminated by our calcula-
tions. In ouri -AlMn models at least, we expect site disorder
to be prominent on thed sites. At high temperatures, the
entropy of atoms occupying thed network could be sizable,
and could easily be larger than the random-tiling entropy due
to the different~almost degenerate! configurations of cluster
centers.96 One would also expectdiffusion to occur most

easily via the d network.95 In i -AlCuFe, Mössbauer
spectroscopy94 showed hopping by Cu atoms by distances
;4 Å; this could easily be ascribed to thed network, since
Cu sits preferentially on thed sites71,72andaq'4.5 Å is the
shortest distance between candidated sites.
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APPENDIX A: EXPLANATIONS OF TYPICAL MOTIFS

In this appendix, we review the rationalizations of the
observed typical local patterns~see Sec. III A in paper I! in
terms of the oscillating potentials depicted in Fig. 1. A ten-
dency to uniform spacing of Mn atoms is partly explained by
the shape of the potentials.19 Since there is no first-neighbor
well, Al-Al nearest neighbors are strongly disfavored~yet
they are inevitable, since most of the atoms are Al!. This
provides the first reason why Mn-Mn not only avoid nearest
neighbors, but also are spaced uniformly: such an arrange-
ment maximizes the number of Al-Mn neighbors, hence
minimizes the number of Al-Al neighbors, as explained in
Ref. 14 in the similar case of Al-Co. A secondary reason for
the uniform spacing is the strong second minimum in the
Mn-Mn potential at around 4.7 Å.14

The Al3Mn tetrahedra are favored by the strong Al-Mn
nearest-neighbor attraction, which favors local close pack-
ing. Twenty such tetrahedra constitute the very common
Al12Mn icosahedron motif~Ref. 33 gives another approach
to explaining the Al12Mn icosahedra!. In turn, the MI cluster
is a super-icosahedron of Al12Mn icosahedra.33

The existence of holes~in particular the ‘‘pseudovacan-
cies’’! in the structure becomes more plausible after review-
ing the potentials, if we recollect that there is no significant
nearest-neighbor Al-Al attraction. Consider, for example, an
empty Al icosahedron: its radius should be set so that the
second-neighbor bond lengths are satisfied, but then the re-
maining hole is just a little too small to fit another Al atom.
The sign of the energy change upon filling such a hypotheti-
cal site with an atom might be dependent on distant neigh-
bors.
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S. Sorensen, Phys. Rev. Lett. 73, 2464~1994!; and F. Ga¨hler and
J. Roth, inAperiodic Crystals ’94~Ref. 6!, p. 183.

96However, a different scenario seems to be observed ind-AlCo:
only Co atoms stay fixed, while all Al sites~including those in
the ‘‘pentagonal bipyramid’’ clusters analogous to MI’s! seem to
show random occupations at high temperatures@M. Widom ~per-
sonal communication!#; See E. Cockayne, M. Widom, P.
Launois, M. Fettweis, and F. De´noyer, inAperiodic ’94~Ref. 6!,
p. 578.

9044 53MIHALKOVIČ , ZHU, HENLEY, AND PHILLIPS


