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It is proposed that quasicrystal structure determination should include the calculation of cohesive energies
using realistic potentials. A class of atomic decoration modelsi faiMn is then presented, adopting the
“canonical-cell” tiling geometry, with “Mackay icosahedron” clusters placed on all its nodes. The remaining
atomic positions are based, as far as possible, on the known structardlMnSi. These models guarantee
good local packing of the atoms, whose displacements away from “ideal” positions are specified by only a
moderate number of parameters. Certain atomic sites are uncertain as regards their occupancy and/or chemis-
try; variations of the decoration rules on these sites must be compared, in order to discover the correct one. Our
models are well adapted to be relaxed under an effective Hamiltonian to optimize the cohesive energy; we
show how the energies found in such relaxations can be used to extract an effective tile-tile Hamiltonian, as
would be needed for future studies of phason elasticity and the development of long-range order. In addition,
we clarify concepts needed for decoration models in gerfgradarticular, the ways in which elaborate, more
realistic decorations may be evolved from simpler gn&¥e also show that these decoration models are
closely related, but not identical, to quasiperiodic structures defined using six-dimensional formalism.

I. INTRODUCTION culations, e.g., for determining the cohesive enefpgr
atom E.,,. The differenceE q(1)—E¢o(2) between two
In this paper, we motivate and then describe explicitly ancompeting structures 1 and 2, is frequently only 0.01 eV per
ensemble of decoration models for the icosahedral quasicry@tom. Each erroneously placed atom could easily increase
tal i-AIMn, which are based on the canonical-cell tiling the cohesive energy by 1 eV, even after relaxation; thus, if
(CCT).! We attempt to deduce our models from what isjust ~1% of the atoms in either models 1 or 2 were bad, the
known abouti-AIMn, while allowing for structural varia- Sign of Eqo(1)—Ecor(2) could easily be spuriougn being

tions at places in the structure where our assumptions adetermined mainly by erroneous atomQuite possibly, the
insufficient to force a unique structure. This was done in€/TONEOUS atoms would also degrade or spoil calculations of

preparation for the systematic comparison of this entire fam%_?e d_lens!ty _thStalteS' tT]e CO?)‘.:IUC“V]E% and the iﬁe_ctive tile
ily of models by relaxing them under realistic pair potentials;, amiltonian; the lattefthe subject of Sec. Yl is the input
that study is reported in a companion pabaenceforth re- mform'atlon fqr theories explaining the origin of long-range
ferred to as paper Il. In addition, the present paper includes 8rder in quasicrystals.

conceptual frameworksee Secs. Il and Ywhich applies to It is quite likely that the existing modelo have errone-
pt ) ’ ’ PP ous atoms at the-1% level, if only because of the uncer-
decoration models quite generally.

tainty in the existing crystallographic data. In particular, the
real-space structures contain some atomic environments of
very low coordination number that are quite improbable, at
In the past decade, many model structures based on fits teast if the system is described by nearest-neighbor inter-
crystallographic data have been presented for icosahedratomic potential$® Furthermore, we suspect that a purely
quasicrystals, such as metastabl&IMnSi,3>~° thermody-  crystallographic approach, by itself, will never be able to fix
namically stable-AlCuLi,”® and long-range ordered, stable the positions and chemical identities of the atoms in quasi-
i-AlCuFe (Refs. 9—12, andi-AlPdMn.*® These are formu- crystals to the precision required for accurate electronic-
lated in terms of the six-dimension@D) “hyperspace cut” structure computations. Firstly, the usual technical pitfalls
approach!**which is an economical way of describing ide- that enter the analysis of diffraction data are exacerbated in
ally quasiperiodic structures. We believe that each these fithe case of quasicrystal$Due to truncation effects, density
ted structures contains a small, yet significant, residual fracmaps deduced from diffraction tend to contain spurious den-
tion of erroneous or undetermined sites. sity maxima(appearing as atom$’ In addition, correct at-
Let us considethow completely the structure must be oms may incorrectly appear to lie exactly on 6D high-
known in order to form a reliable basis for microscopic cal-symmetry positions whereas their proper positions are

A. Relevance to structure determination
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displaced from them’ Secondly, the 6D approach necessar-in Sec. V by a discussiotisummarizing Ref. 2B80of the
ily assumeshat the structure has no disorder; the irreducible(close relations between these CCT-based model structures
disorder present in all real samples is thus considered extrirand various 6D-cut model structures; here, we report the sta-
sic. If, instead, local disorder were intrinsic to real tistics of local patterns, which characterize the different
quasicrystal$®—2°then the 6D descriptions would be incom- structural families.
plete (in capturing only the averaged structussmd many of In any quasicrystal model — be it based on the matching-
the principles that guide the formulation of 6D-cut modelsrule or random-tiling scenarios — the origin of long-range
(e.g., sharp boundaries of the hyperatbhwould be unre-  quasicrystal order is formulated in terms of a Hamiltonian, as
liable. a function of the tile configuratioh?’?8 To justify such
Since no single technique is powerful enough to supply usheories microscopically, angherhapgto test the validity of
with the needed structural knowledge, we propose a “synthe random-tiling scenario, requires that we calculate the co-
thetic” approach to the problem of structure refinement, thaefficients entering this “tile Hamiltonian” from the atomic
judiciously combines complementary types of information.structure and the structural energy function. Section VI sets
This involves(i) drawing analogies with known crystalline up the general framework for doing this, based on relax-
structures(ii) fitting models to diffraction data, an@i) in-  ations of decoration models. Finally, Sec. VII ties together
sisting that models are both stable upon relaxation undevarious ideas, presents a few suppositions and hypotheses,
realistic potentials and have lower cohesive energies thaand describes some possible extensions to our work.
competing structures. By running cross checks of this sort,
the artifacts and/or spurious features arising out of individual
techniques can be detected and eliminated. Indeed, in an op- !l GENERAL CONCEPTS FOR DECORATIONS
timal _refinement procedure, we sgggest that both cohesive Here, we define what we mean by a decoration model.
energies based on realistic potentials &dactors with re- The concepts that we introduce are quite general; they are
spect to diffraction data should be calculategarallel, and ot gpecific to Al-Mn chemistry, nor to canonical-cell tilings,
given comparable weights.Our belief in the synthetic ap- o to icosahedral symmetry. The section is organized around
proach motivates and colors the present paper and paper e definitions of various concepts which we found essential

The *“synthetic approach” could be pursued entirely o, understanding our work on relaxatiépaper 1).
within the format of the “6D-cut” formalism(as in the on-

going work of Cockayne and co-workers on the decagonal
d-AlCo models?® and our own study of-AIMn models™). A. Definitions
Instead, we have chosen to adopt the “decoration” formal- A «“model” denotes a particular atomic structure. For

ism. Decorations are base_d on finite-sized combinations Qfecoration models, it means a combination of a particular
atoms and are formulated in 3D rather than 6D space. Thejjling and a particular decoration. For six-dimensional mod-
thus lend themselves to easy visualization of the local paty|s “it means a particular cut through a particular 6D hyper-
terns of atom's in the strgcture, which is useful if the mOdel%rystal. The same model can sometimes be derived via dif-
are to be varied and adjusted. ferent routes. For example, variations of the-AlMn”
structure appear as known crystédse paper )| as approxi-
mants to 6D structuresee Ref. 28 and as decorations of
the simple “pureA-cell” canonical-cell tiling.(Occasionally,
The outline of the paper is as follows. Section Il intro- “model” is used loosely to refer to a decoration ryle.
duces the general concepts upon which the decoration ap- An “atomic site” is a position in space to which a “chem-
proach is founded—concepts which we found essential for &try” is associated. This chemistry determines wtigany-
precise discussion, not only of each particular model, buthing) is placed at the site. In general, model structures can
more importantly of theelationsbetween different models. be formulated whose atomic sites are only partially occupied
In fact, we consider it an advance simply to give a preciseand/or contain statistical mixtures of two or more atomic
meaning to the words “decoration model.” This is followed species. It is difficult to relax structures of this sort in a way
(Sec. ) by the various facts, specific to-AlMn and that leads to meaningful results. We thus elect to exclude
canonical-cell tilings, that explain the assumptions made irpartial occupancies and mixed species from our palette of
the next section. free parameters. Each atomic site may contain only a single
Section IV is the core of this paper. In it four families of atom of a definite species, and this atom is either there, or it
CCT-based decoration models are presented, all of which aiie not.
extensions of Ref. 24. We distinguish between those places A “tiling object” (sometimes abbreviated to the word
in the structure wheréwe believe the decoration is nearly “object”) is any finite, recognizable, geometrical entity
inevitable, and those places where there are several plausibléthin a tiling. Thus, in order of roughly increasing complex-
choices. The details of these modéis contrast to some ity, vertices (also referred to as “node$,’ edges(also re-
earlier version®2?9 are informed by our considerable expe- ferred to as “linkages,” faces, cornef§aces meeting at a
rience with relaxations under realistic pair potenti@se pa- vertey, tiles, “node environmentsi{the star of edges radiat-
per Il). (Associated with Sec. IV are Appendix A, which ing out from a vertek pairs of tiles adjoined together, or any
presents an attractive and alternative way of breaking up caamalgamations thereof, can all be considered as tiling ob-
nonical cells into smaller tiles so as to extend thejects. Each type of tiling object has a point-group symmetry,
a-AlMnSi decoration, and Appendix B, which describes onewhich is a subgroup of the point group that is associated with
of our decoration models in full detailThis is followed up the tiling (icosahedral, decagonal, .)..

B. Contents of the paper
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We shall use “differentiation” as a general term for any of determining the positions and chemistries of an infinite
modification of a simple tiling model into a more elaborate number of different atomic sites by the task of determining
one, by simply relabeling tile objects using a deterministicthe positions and chemistries of the handful of independent
rule such that the tiling configurations correspond one-toatomic sites(orbits) that decorate each type of tiling object.
one, and the number of tile objects increases thro(@h Since a practical decoration model uses only a finite number
leas) one type of object being subdivided into several newof object types, there are only a finite number of independent
subtypes. This would be mathematically superfluous if weytomic sites, and their positions and chemistries can be
were concerned only about the set of allowed tilings; how-gheified by a finite number of parameters. This colossal sim-
ever, it is natural in a decoration model when the atomiqyjiication comes at a pricealmostidentical environments
arrangements are different on the different subtypes. are treated as if they aexactlyequivalent. The actual num-

Ther? are two common Iorms of dlﬁeyentlatlon. . ber of free parameters is determined by the binding of the

(i) A “context-sensitivity,” whereby objects are differen- decoration model
tiated ac_cording 0 th_e;ir Io<_:a| er_wironments in _the ti!i_ng. A given canoni.cal orbit can typically be specified by sev-
Upon doing so, each tiling gives rise to a new, unique mmg'%{al different choices of bindingFor example, one might

where there is a one-to-one relationship between the old an . : o ;
new tilings. account for a given site by binding it to either a nearby

(i) A “symmetry breaking” of the tiling’s space group. linkage or a nearby faceAdditionally, there may be other
The nodes of the tiling may be colorddccording to their  bindings which describe different atomic coordinates yet are
parity, for examplg or arrows may be attached to edges, ortopologically equivalentin that they relax to the same struc-
handles/stubs may be attached to face® Ref. I then the ture). Out of all those topologically equivalent bindings, we
point symmetries of these tiling objects will be reduced, anddefine the “minimal” binding for that structure to be the one
the number of distinguishable types of tiling objéat any that uses the fewest orbits.
given level in the hierarchy of tiling objects as listed above  Since the specification of a binding, in full detail, can be
will be increased. For example, a tiling with simple- forbiddingly complicated, it is usually clearer to present a
icosahedralSl) symmetry may be transformed into a tiling decoration model in a more informal fashion, which could be
with face-centered-icosahedréFCl) symmetry (see Secs. called a “topological” description. In such a description, we
Il A and VII B 1); then any given tiling may give rise to relax the condition that a given atom be accounted for just
more than one different structure, depending on one arbitrargnce; we do not specify the numerical coordinates of the
global choice as to which of the two sublattices is taken to bétomic sites; and we specify atomic sites with reference to
even and which is taken to be odd. the most convenient tiling objects, even if these are not the

In a “decoration,” atoms are placed on tiling objects suchobjects to which the sites will ultimately be bound.
that both The most compelling decoration models are those that are

(1) every object of a given type is decorated in the samecrystallographically good yet contain few free parameters. A
way (just like a unit cell in ordinary crystallographyand decoration model can be improvéalbeit at the expense of

(2) the point-group symmetry of a decorated tiling objectincreasing the total number of free parametdrg dividing
is the same as that of the “bare” tiling object before decora-each orbit into several new orbits of lower symmetry, such
tion. that the atomic environments within each new orbit are more

Atomic sites that decorate a given tiling object are said toalike. This process is called “rebinding.” Formally, it can be
be “bound” to that tiling object. Conditiorfii) above forces regarded as the re-expression of the tiling in terms of a larger
atomic sites to lie in discrete “orbits,” generated by the family of tiling objects — this step is what we called a “dif-
point-group symmetry of the tiling objects to which they areferentiation,” of the context-sensitivity variety — and the
bound. The association between these orbits and their tilingecoration of these new objects in independent ways — this
objects is called a “binding.” To avoid the generation of IS the differentiation of orbits, induced by the differentiation
duplicate atoms, we insist that, within a given binding, eactpf the tiling. Whenever we observe that two orbits in a deco-
atomic site is bound to a unique orbit. The specific coordi-ration are similar to each other, we can make this relationship
nates of atoms generated in this way, will be called the “cafrecise if we can consider them both as derived from a single
nonical positions” for that model and binding. orbit in a simplified model, via differentiation.

Models are “topologically equivalent” if they relax to ~ Rebinding may be implemented simply so that the canoni-
structures with identical atomic coordinafés(We assume cal positions in an orbit may more closely approximate the
that the initial positions are close enough to the final onegeal relaxed ones. Alternatively, it is possible that some of the
that different relaxation algorithms give identical resyls. nhew orbits are topologically differerthere a difference in
model is “topologically correct” if the model positions are chemistry or occupancy counts as a topological difference
topologically equivalent to the real ones; it is called “crys- In either case, so as to reduce the total number of free pa-
tallographically good” if, in addition, the canonical positions rameters, some orbits are typically left in undifferentiated
are close to the “real” ones. For this purpose we might plau-form; that is different orbits are forced to share the same
sibly take the real structure to be either the true ground statéanonical coordinate@s if they were bound to the original
of the potentials that we assume, or the experimental strudndifferentiated tile objec}s
ture as determined by diffraction.

C. Canonical and ideal positions

B. Binding and rebinding Rather than using generic canonical coordinates, it is of-

The utility of the decoration approach in specifying ten convenient to adopt “ideal coordinates,” meaning that
atomic structures stems from the fact that it replaces the tagbositions can be writtefi
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where then; are integers or half-integers and tagare six

basis vectors, independent over integers and pointing to-

S
wards the corners of an icosahedrf@]=a,~4.6 A, the \V/ /_A>

“quasilattice constant.” The vertices in an Ammann tiling

and the nodes in a canonical-cell tiling always have ideal &v;

coordinates. So do the atomic sites in 6D models with flat N / N 7

atomic surfacedlt is clear from Eq.(1) that “ideal” posi- D E

tions are simply the projections of high-symmetry Wyckoff

sites within the appropriate 6D regular lattite. FIG. 1. The canonical cells. Edges drdinkages(double line$

ideal position plus a d|splacemeﬂ_tw|th|n the decoration- Here, we recall the nomenclature and essential facts about
model approach, sites may be displaced only in directiongye cCT, which will be used in Sec. IV. Canonical-cell tilings
that respect the point symmetries of the tiling objects togre pyilt out of four kinds of cell, denotedl, B, C, D, such
which they are bound; the space of canonical displacementgat their “nodes”(i.e., vertice$ are joined by a network of
for a given site may be either 0-, 1-, 2-, or 3-dimensiofial. “inkages” (i.e., edges These linkages run in both the two-
All of the models presented in this paper use ideal positionsiold and threefold directiongsee Fig. 1, denoted b” and
for simplicity*® and because they are intended merely for use ¢ ” respectively®®*° There are three different sorts of cell
as starting structures for relaxatiofEaper 1). On the other  face, which have the shapes of an isosceles triafigiened
hand, a decoration model that is destined for structural reby oneb linkage and twcc linkages, an equilateral triangle
finements must be specified in terms of generic canonicalframed by threé linkages, and a rectangléramed by two
coordinates. b linkages and twoc linkages; these are denotedX;,”

A laudable aim is the discovery of crystallographically “Y,” and “Z,” respectively. Together, the nodes, linkages,
good decoration models, whose atomic sites lie extremelyaces, and cells comprise a set of “tiling objects” for the
close to the positions of the atoms in real quasicrystalsCCT.

Given that a decoration model is topologically correct, the Our CCT-based decoration models require one further

discrepancy between it and the real structure can be characell, theE cell; this is a squashed octahedron filling the same

terized in terms of the “canonical rms¥; for each orbitj, space as twd cells sharing alrectangular Z face. This

defined as the root-mean-squared difference between the reabdification of the CCT as defined in Ref. 1 ensures that

and canonical positions of the sites in that orbit. Optimizedevery allowed arrangement of nodes corresponds to a unique

canonical positions can be determined by minimizing eachiling.*® The internalZ faces within theE cell are denoted

gj; thus o, the properly weighted combination of’'s for  ** Zgg"; those Z faces that do not lie insidE cells are de-

all orbits, is the real-space analog of tRefactor of diffrac-  noted “Z,,” since they form the(rectangular sides ofD

tion refinements. Certainly can be decreased by rebinding cells; the distinction between these two typesZoface is

atoms to newly differentiated tiling objects with lower point only made where relevant.

symmetries(since this gives the atoms a greater range of The CCT nodes are bipartite, in the sense that they can be

displacements to choose fronthough at the expense of in- divided into “even” and “odd” sublattices. Even(odd)

troducing more free parameters. nodes have integer coordinates in 6D whose sums are even
(odd). Nodes connected Ry linkages have the same parity;
those connected by linkages have opposite parities.

. BACKGROUND FOR AL-MN STRUCTURES Consequently, FCI decoration models can be realized by

In this section, we review well-known features of Al-Mn distinguishing the even and odd nodes, and consequently
quasicrystals and related crystal structures, which serve a&rious tiling objects(bonds, cells, etg.of which these
the starting point for our minimal decoration mod&ec. hodes form a part. Many CCT objects get differentiated into
IV). This includes both some essential facts on the canonicafven- and odd-flavored versions, defined according to the
cell tiling, which will serve as the framework for the deco- Parity of the nodes within the object. Thusbzbond is even

ration model, and also some generalities about the typicddd when it connects two evefedd nodes. On the other
local order in these alloys. hand, thec bond, connecting one even and one odd node,
still comes in one flavor but its ends are no longer symmetry-
equivalent to each other. Other objects, important in our
A. Canonical-cell tiling decorations, that acquire two flavors are the e(@td) Y
We base our decoration models on the canonical-cell tilfaces[which have everiodd nodes on all verticgsand the
ing (CCT).* Some of us have used these tilings in two pre_eve_n(odaj D cells[for the orientation shown in our figures,
vious models for FCI-AIMnSi.?>?CCT-based models have their lowestY faces are evefodd)].
also been produced farAlCuLi and i-TiMn.3*% The CCT
packing rules permit periodic, random, @n principle) qua-
siperiodic tilings'*®3"no rule for a quasiperiodic CCTisyet ~ Our most importantand largest motif is the Mackay
known. icosahedror{MI) cluster?! see Fig. 2. This is composed of

B. Typical atomic motifs
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The known, stable Al-rich AIMn alloygincluding those
which are not quasicrystal approximantsontain certain
characteristic, repeating motifs at the scale of a single coor-
dination shell.(Similar patterns are seen in the other Al-
transition-metal alloy$. Even if the effective interatomic
Hamiltonian is not available, one can gain some insight into
this Hamiltonian and the probable local orderi#IMn by
studying these small-scale motffsthe resultant conclusions
are

(i) the Mn-Mn spacing is strikingly uniforf in alloys

FIG. 2. Icosahedral cluster with three shells of atoftest to ~ WhoSe Mn concentrationsx,) lie near the quasicrystal-
right), shown within the outline of a large triacontahedron. The firstforming value. The typical Mn-Mn separation in suchl-
two shells constitute the “Mackay icosahedro¥l). Open circles ~ rich) alloys is~4.6 A 48
are Al; filled circles are Mn(on the second shelbr candidates (i) The Al;,Mn icosahedroricentered by Miis a ubig-
sites(on the third shejl uitous motif. This forms the center of the “mini-Bergman”

cluster (see below. The MI cluster(the backbone of our

inner and outer shells. The inner shell contains 12 neares&ecoratiom is a super-icosahedron formed by,Ain icosa-
neighbor Al atoms, located at the vertices of a small icosa edra

hedron. The outer shell comprises 12 Mn atoms and 30 A (iii ) Octahedra of AJ are a common pattern, prominent in

atoms: the 12 Mn atoms are located at the vertices of.a larger o i cluster(and its extension to a three-shell cludt®see
icosahedron, about twice the radius of the small one; the 3(.

Al atoms are located along twofold axes, just outside of the 'g. 2. Thus, in contrast to“the AlCuLi family of quasmSEDys—
larger icosahedron. There is good reason to believe that I\/ff'"ls' the AlMn alloys areot “tetrahedrally close packed:
are present in-AIMnSi quasicrystals from the similarity of

the Patterson function to that @f-AIMnSi,® and perhaps

also from extended x-ray-absorption fine-struct(EXAFS) IV. MINIMAL DECORATION MODEL FOR Al-Mn

results* The 6D diffraction refinements are, in fact, not in-
consistent with the “6D midedge” sites, that represent thed

inner icosahedron of Al atoms in the K. dron (MI) motif and the geometry of the canonical-cell tiling

Next, we mention a motif which isot observed in ap- L .
S - . CCT). We limit ourselves to binary Al-Mn model&@s op-
roximant crystals, but which appears commonly in man ( ) . . T
b Y bp y ¢ osed to studying ternaries, suchi aslPdMn) primarily be-

6D cut models. The “pseudo-MI” is composed of inner and P , o . ,
outer shells. Its outer shell, containing 12 Mn and 30 AlC&uSe, in paper Il, we lacked the requisite effective pair po-
atoms, is identical to that of the ML. Its inner shell, however, €ntials for relaxing ternary models. .
contains only seven Al atoms, which are located along three- We consider two classes of decoration rules: “dense”
fold axes radiating from the center of icosahedral symmetryfules which attempt to optimize the atomic packing, and
From the viewpoint of good packing, as favored by familiar ‘l0ose” rules which, we discovered, do a better job of satis-
nearest-neighbor potentials, such a pattern seems quite ifing realistic potentialssee paper )l We also consider two
plausible. However, experience with realistically oscillatingkinds of “Bravais” symmetry: S| symmetry, as is experimen-
potentials(paper 1) has taught us to be cautious in making tally observed in reai-AIMn and i-AIMnSi; and FCI sym-
such judgments. metry, which is created if one takes the natural generalization
A secondary, common motif is the “mini-Bergman” clus- of the a-AIMnSi structure>! and which seems to be present
ter, which consists of an AMn icosahedron as an inner as local ordeP? in i-AlMn. Thus, four major families of
shell, plus an outer shell of 20 Al or Mn atoms on the three-decoration may be delineated by the various combinations of
fold axes of this icosahedron. This cluster has been discussgnse/loose and SI/ECI.
as a fundamerHaI motif for the Katz—Gratia_s quasiperiodic  The complete presentation of a decoration model really
(6D cuy model.~ It appears very frequently in a model for consists of two parts: first, a “topological” description, that
i-TiCrSi (in the i-TiMn family), whose characteristic local poih covers all atomic sitegoossibly some of them more
order interpolates between the Al-Mn and Frank-Kaspeg,an oncgand also has the correct bond topology, but which
fa”?"'e.s of qua&_crysteﬂ. ['_I'he complete Bergman cluster, does not specify the precise positions of the atoms; and sec-
which is }he dominant TOt'f of _bcE-AIZ_nMg (Ref. 49 and ond, the binding, which assigns atoms to tiling objects such
][fcl)ﬁt]et?]e ';:%?_IEE?SSZL C?Jjgzlfiﬁtoﬂlluethzhafssgr:fcriif 1ihat none of them are duplicated, and which specifies the
additional atoms ogn the outer shell, zglong th?a icosahedron’gositions mgtrically: Descriptions of the former sort are the
Subject of this section. We present an example of a binding

five-fold axes] . . o :
The energetic favorability of those motifs ought to be ex-(viZ. a minimal binding for the loose SI decoratjain Ap-

plained in terms of cohesive energies, hopefully expressed &€Ndix B.
effective interatomic Hamiltonians with local interactions. It

might turn out that the large motifs are simply the best solu-

tions for maximizing the frequency of some small motifs, We will present the decoration rules by outlining the pro-
which are discussed next. cess by which we guessed them. For each decoration rule, we

In this section, we present the core content of this paper:
ecoration models for Al-Mn based on the Mackay icosahe-

A. Overview
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find it convenient to distinguish “zeroth-order,” “first- Exceedingly simple “zeroth-order” models can be ob-
order,” and “second-order” levels of description. The tained by decorating these small tiles with orBitDecora-
zeroth-order model is formulated by decomposing theions of this sort are, however, unacceptably crude—they
canonical-cell tiling into smaller tiles and decorating thesetypically produce conflicting pairs of atoms. Our “minimal
by simple rules. The resultant structure contains a few glar¢first-orde)y” decoration model is, in essence, a differentia-
ing conflicts or duplications of atoms. Fixing them yields thetion via context sensitivitysee Sec. Il B of such a zeroth-
first-order model; the process amounts to a “rebinding,”order model, the orbits of which get rebound to canonical
which implements “context sensitivities(see Sec. Il B cells (and the various tiling objects associated therewith
The first-order model is usually plausibl@s can be Our labels for orbits reflect this evolution: the Greek letter
checked by stability under relaxatiprbut a few places are denotes the zeroth-order orbit from which the given site is
poorly packed and costly in energy. Models in which thesejescended; where needed, other subscripts distinguish par-
too are fixed, as in the models actually relaxed in paper llticular orbits in the minimalfirst-ordey model. Thus orbits
will be called “second order.” Such models include possible\yith the same Greek letter tend to have similar local envi-
“variants” (alternate versions of the decoration, differing by \onments and behave in similar ways upon relaxation.

the occupancy of special sites _ In the rest of this section, we first present our minimal
We adopted this stratified way of presenting models be(first-ordeb model from the “vertex-rhombohedral” view-

cause ; . .
) point (Sec. IV B. We then address the conflicts that arise,

apéll)ietcg]fostirﬁ:r Eﬁ]réirilf 352;?3§2tglc')uw (ed has been first those involving the %" atoms (Sec. IV Q, and then
(ii) it organizes our thinking about the different orbits — those _Lr)}vo:(vmghthi o g_?ms (Sec.bIV D, which fare.lfe' f
two orbits are likely to have similar local environments, if SPONSIPle for the key difierences between our families o
model. The resolution of the handful of questionable envi-

they arose by differentiation from the same orbit in the o= . - X
“>eroth-order” model: ronments within each family leads to variant decorations;

(iii) we want to impress upon the reader that our modelghese are discussed in Sec. IVE atthe end.
are not arbitrary inventions; their forms are practically ines- For the specific loose models emphasized in this paper,
capable, once we have assumed that the structure is a padRe vertex-rhombohedral viewpoint turns out to be more suc-
ing of Mackay icosahedrofMI) clusters arranged in a CCT cinct for describing the structure model. However, the dual-
geometry; rhombohedral viewpoint is more economical for grasping the
(iv) it hints at a heuristic but systematic approach togeometry of the model angprobably for explaining its
guessing more realistic models by “differentiating” the or- Physics.
bits of cruder models.
As our starting point, we demand that our decoration con-
form to the known features of the cubicAIMnSi structure B. Vertex-rhombohedral approach
(also seen in hexagonal-AlFeSi): mechanically reproduc- In this subsection, we will present the miniméirst-
ing a-AIMNnSi motifs, wherever we can, yields a complete ordep decoration of the vertex rhombohedra.
zeroth-order model. Thus, every CCT node is occupied by a
two-shell Mackay icosahedrdiMl) cluster, and the configu-
rations of atoms surrounding the twofol@)(and threefold
(c) linkages are the same as in thephase; see Fig. 2. The It is well known that the simplest quasiperiodic tiling with
MI clusters include the inner icosahedron of A)( atoms icosahedral symmetry is the Ammann tilifgometimes
and the outer icosahedron of 4 and Mn(x) atoms. This called 3DPT(Refs. 24, 30 and 56 lts tiles are the prolate
accounts for about 70% of the atoms, in particular all thos¢ghombohedron(PR) and the oblate rhombohedro©R);
in the A cell and nearly all of them in th€ cell. their rhombic faces are all congruent, and their edges all
From this point, there are several paths for guessing howave lengtha, and point along fivefold symmetry axes. The
using the structure oft(AIMnSi) as a guide, the decoration CCT may be decomposed in a unique fashion into PR’s,
can be extended to the interiors of the largeandE cells;  OR'’s, and rhombic dodecahed(®D’s)." Collectively, and
happily, they all lead to exactly the same basic decoratiofoosely, these will be called “rhombohedra.” This decompo-
rules. These paths are based on two different ways of subdsition is illustrated in the case of the cell’s interior in Fig.
viding the CCT into smaller tiles: 3; each successive layer of rhombohedra fits exactly over the
(i) subdividing into “vertex rhombohedra,” such that each surfaces of the layer below.
CCT node is a vertex, where the tips of many such rhombo- To eachb linkage, we assign an RD, and to eaclink-
hedra meet* (We call them “vertex” rhombohedra because age, we assign a PR; we shall call them *“RDand
their corners can be projected from vertices in)oe shall  “PR,” respectively; they both have MI's at their tips and
refer to this path as the “vertex-rhombohedral” approach. were already encountered in Ref. 24. We assign to each tri-
(i) subdividing into “dual” rnombohedral objects, such angularY face another kind of PR‘PRy" ), which pierces
that each CCT node is surrounded by(amwsahedrally sym- the Y face. It is useful to divide these RRnto two sub-
metric) triacontahedron representing large three-shell atomiclasses, called “PRC)” and “PRy(D),” according to
clusters.(We call these objects “dual” because their cornerswhether the cell adjoining th& face on the side marked
can be projected from the body-center sites in)6Chis “+" (Ref. 1) is aC or aD cell, respectivelymost of the
geometrical treatment of CCT is presented in Appendix A;PRy lies within the cell on that sigeTo eachD cell, we also
we shall refer to it as the “dual-rhombohedral” approach. assign three more PR'PRp). And finally, to eachrectan-

1. Geometry of vertex-rhombohedral tiling
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FIG. 3. Decoration oD cell by vertex rhombohedral) the
PR/(D) appears shaded in the centé?) adjoining it are two(out
of the thre¢ PR, (thin lines, whose lower tips coincide with nodes
at the bottom of th® cell; (3) centered on the rectanguldp face
at the front is an OR (bold lineg; (4) two (out of threg¢ PR, are
shown (medium lineg spanning thec linkages along the vertical
sides of the fronZ, face; (5) a RD, (dashed linesspans theb
linkage along the bottom edge of the frafy face.

gulan Z face, we assign an oblate rhombohedron ¢DRs
seen in Fig. &) of Ref. 1. This OR also occurs at the center
of the E cell. (It could also be viewed as decorating the
internalZ face that arises when ttecell is divided into two

RD, PR,
3’Y -~ Y3

variation in lower PRy (C, D) OR(Z, E)

g "~ interior Al
- /] - @ 5(Al/Mn)

’ O Al
® Mn
upper PR (D) upper PRp

FIG. 4. Decoration of vertex rhombohedra by atoms. &lat-
oms are interior; interioty(Al) atoms inside a PR may occasionally

B cells) In the following descriptions, we will use the words
lower, upper, front, etc., with reference to the orientations of
the objects shown in Figs. 3 and) 4.

2. Zeroth-order description

The zeroth-order version of the decoration is a generali-
zation of the Elser-Henley decoratiéh:

(i) First, we decorate every CCT node with a Mackay
icosahedror(MI) cluster. This fixes a good many of the at-
oms lying on or inside the rhombohedra that link the nodes
of the CCT(viz. the RD, and PR). See Fig. 4. In particular,
all vertices of the MI turn out to be rhombohedron vertices
[“Mn( w)" sites in our descriptioh The Al atoms in the Ml
form the Al(a) and Al(B) sites.

(i) Next, to decorate théb linkages, we place two
Al(y) atoms on each side and top face of every RDn
addition, we place two candidat® sites in the interior of
each RO, along its “vertical” twofold axis; we will refer to
these as the 8,” sites. See Fig. 4. Here, we call th® sites
“candidate” because only some of them will be occupied;
indeed, the treatment @ sites is the key distinction between
dense/loose and SI/FCI models. So as to emphasize the fea-
tures that are common to all four model families, we post-
pone the details of-site occupancy to Secs. IV D and IV E.

The above rulesi) and(ii) are identical to the decoration
of a pureA-cell tiling, as described in Ref. 24. This-cell
tiling is special, in that it can be decomposed into Pid
RD,, and no others. More general canonical-cell tilings nec-
essarily contain other rhombohedra, whose decorations we
have yet to specify.

Several of these other rhombohedra have tips that lie at
CCT nodes. For example, the top tip of each,Higs at the
apex of aC cell, and the lower tips of each BRriplet lie at
the three lower corners of @ cell. The decorations of such
tips are determined by the decoration of each CCT node with
an MI. Furthermore, the decorations on the top and side
faces of the RD fix the decoration on the faces of the other
rhombohedra adjoining it.

Thus, the decoration of the remaining rhombohedral faces
can be summarized by the following two rules, which are
generalizations of the way in which the R@aces are deco-
rated:

(iii) We place a Mnft) atom oneveryrhombohedron ver-
tex that was not already covered by rig

(iv) Next, we place two “Al(y)” atoms on the long diag-
onal of every rhombic face, except when one endpoint is a
CCT node[lIn that case, the face decoration is already speci-
fied by rule(i).]

On the three upper faces of P®), the Al(y) atoms
form two sets of trios; we name the upper trio, which lies
nearer to the upper PR tip,yp»,” and the lower trio, which
lies nearer to the PR centeryp;.”

Finally, we decorate the interior of the PR.

(v) To each PR(C), we place &y site on its longthree-
fold) axis in the end lying closest to théface, such that the
site divides the long axis in about the ratio*: 7~ 2; simi-

be Mn (see text Atoms on hidden faces are not shown. The secondarly, we place a5y site in the upper end of each BR
shell of an MI cluster is shown schematically by dashed lines at the A Simple rule to codify the asymmetry in the placement of

tips of the RO, ; similarly there is an MI at each tip of PR The
density variation is possible for both RFEC) and PR/(D). The
lower half of PRy and the upper half of PRC) are identical to
half of PR;, since MI's are centered on those tips.

these(candidate S sites is that they may reside only in those
ends of PR which do not have a Mackay icosahedidh)
cluster at the tip. Thus, RR with an MI at both its tips, can
contain noé site, while the PR(C) and PR can each host
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one § site (in the ends whose tips do not coincide with the
apex of the surroundin@ cell, and a node at the bottom of
the surroundingD cell, respectively. The placement of an
(occupied 6 site in PR/(D) is precluded by the presence of
the y3p site (see beloy, which lies nearby and also on the | .
threefold axis. We remark here, that the placements of can-
didate 6 sites would seem to be more natural from the “dual-

rhombohedral” viewpoint{see Appendix A This completes ® Condidate § @) ®) ©
the zeroth-level decoration rule. andidate
oy
C. Resolving y atom conflicts: First-order description FIG. 5. Conflicts between atoms as mediated by atoms. The

] ) rhombus(divided into two isosceles trianglesvith edges of length
The zeroth-order decoration produces two kinds of CONg,~4.6 A, is part of thes network. The dotted rectangle on the

flict between they sites that are generated by rie); both  |eft most rhombus is the outline of a rhombic dodecahedron, viewed
are resolved in the first-order decoration. At the same timedown its long axis. In(a and (b) the 5-6 spacing is 1.0&, and
we note some remaining options for these “problem places,”..70,, respectively, characteristic of dense FCI and loose FCI
which provide some of the variations in Sec. IV E. decorations; inc) all § sites are vacant, as can occur in loose Sl
The first kind of conflict concerns the QRwhich, in the ~ decorations.
zeroth-order decoration, gets six “Alf)” sites on its top
three faces and six on its bottom three faces. These sites forder to highlight the similarities between these models. We
extremely close pairs, so close that they must be mergedyill now turn to the differences.
producing a hexagon of A¥;) sites, which lie in the plane
bisecting the short axis of the QR These sites are called
“v,,” since there is one such hexagonal ring of sites for
everyZ face. The candidate’ sites form a network such that the closest
It is not obvious, but it emerged from relaxation studiessites are separated lay, (rhombus edge lengthwhich we
(paper 1) that even they, ring is somewhat overpacked. will call a & link. (It is seen in Appendix A that thé links
This is resolved, not by merging these sites, but by leavingire precisely the edges of the dual rhombohedral objects.
some of them unoccupied; this leads to the “4/6” and “5/6” The issue at hand is the occupancy of the networg sites.
variants(the numerator indicates the number of sites that arés we will explain shortly, theS atoms can be thought of as
occupied. The symmetry imposed by our use of determinis-a lattice gas which satisfies an effective hard-core constraint,
tic decorations prevents us from implementing such variantsvhere the minimum separation betwe&mtoms isr s. The
in many places; for example, thesymmetry of theE cell ~dense and loose models are those witj+=1.0%, and
demands that we use the “6/6” optidall six sites occupied s=1.70a4, respectively; the dense models attempt to maxi-
for the y, sites associated with the QFE) inside that cell. mize the occupancy af sites under this constraint, whereas
The second kind of conflict concerns the PR tips that ddhe loose models occupy an arbitrarily small fraction of them
not coincide with CCT nodes. These tips receive a triangle of— the rules called “LS3” in paper Il have no occupietl
Al(y) atoms lying too close togethdtheir separation is sites at all. Given a particular density éfsites, the FCI and
roughly ~ 7~ of the usual interatomic distangeSuch tri- Sl models represent two different solutions to the problem of
angles have two possible fates: satisfying the hard-core constraint.
(@) in the “3 " option, all three sites remain — inthe real ~ Thesed-§ exclusions are not direct conflicts, sincgis
structure they must of course relax outwards somewhat frormuch larger than an interatomic distance; rather, conflicts are

D. Resolving é-site conflicts

the faces of the PR; mediated by the intervening atoms. To understand the in-
(b) in the “vy3” option, the triangle ofy sites is merged terplay between thesgandy sites, let us consider the rhom-
into a singley; site. bus of four nearbys sites, as shown in Fig. 5; this configu-

At the upper tip of PR, we always(in every decoration ration is a typical pattern in thé network. [In the dual-
rule) take the 3 option. At the upper tip of PR(D), on the  rhombohedral descriptiofAppendix A), this rhombus is the
other hand, we take thes option, collapsing 3p,— v3p.  face of a dual tile; such a face lies in the plane bisecting a
The only PR tips not yet considered are the lower ends ob linkage; now, in the vertex-rhombohedral description, this
PRy . Here, we take the 8 option in the “first-order” rule, ~ plane cuts the RPspanning theb linkage; the intersection
but in some varian(“second-order’) models these atoms of the plane with the surface of the RIs indicated by the
can form ays;y site instead; the choice is influenced by thedotted rectangle in Fig. The solid edges aré links of
neighboring atoms, in particular by the occupancy of theéengtha,, and the dotted edge is of length 1235 There are
surroundingd atoms.(Thus, in the complicated variants of y atoms on eacld-link edge and candidat® atoms on every

the “dense” FCI models, different resolutions of thetri-  corner.
angle give rise to “even” and “odd” flavored decorations of  First, two § atoms connected by & link should not both
the PR/’s.) be occupied, since that would leave too little space for the

This completes our first-order description. We chose toy atom which sits near the midpoint of evesylink.>’ In Fig.
force the first-order model to be virtually the same for all 5(8), this is achieved by leaving the apéxsites vacant and
combinations of the dense/loose and SI/FCI attributes, in oreccupying the other tw@ sites; such a configuration, with
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closest approach,=1.0%,, is typical of a dense model. TABLE I. Four families of decoration rules.
(For the dense Sl case, this constraint is not perfectly satis
fied as there are rare pairs of sites with separation of onl{rbit Ls® LF DS DF
1.0a,.)

S?acond, although the configuration in Figaavoids the Zbgg)D) 8 0(')5 0'80 ! 8';,
direct y-8 atom conflicts, they atoms on edges will be dis- " b '

: v 0-1 0.5 o-F 0.5

placed(upon relaxatiopalong the edges towards the vacant 0 0 P 0
4 sites, and thus closer towards each other; the squegzed_® i
atoms cannot deviate very far from the rhombus edges, sincgc 1 1 1 0.90-1
there are typically other nearby atoms in such directions,,(z) 0.67—1 1 1 1
Thus, Fig. §b) is a better configuration, with the apes y,(Z¢) 1 1 1 1
occupied and the other twd sites vacant. This is typical of ,, 1 1 1 1
a loose model, where;=1.7G,, the length of the long . . 1b 1 1 1

rhombus diagonal in Fig 5.
To implements-8 exclusion everywhere, the dense FCI 8L/S=loose/dense, S& SI/FCI.

decorations allow only eve#d sites to be occupi€ll (thus,  PSites for possible Al/Mn variatiogall others in table contain pure

only about half of the availablé sites are fillegl In other  Al).

words, the lattice gas of’s satisfies the indirect exclusion ‘Includesysy sites.

through a(globa) symmetry breakingn the dense Sl deco-

rations, on the other hand, sites are occupietor noy ac- e consider here were partly preselected on the basis of the
cording to their locations with respect to the CCT. But theyg|axations presented in paperfiwe have eliminated from
whole discussion suggests that it is actually preferable to filljiscyssion those variants that turned out, in all situations, to
much less than 50% of th&sites on average, as in the 100Se e ynstable under relaxation.

models, in which frequently all thre@ sites in a triangle are We will organize our account of the variants systemati-

left vacant[as shown in Fig. &)]. In ‘:[hat_ case, ,t’hese CON- cally by their effect on the total number densjy, and on
straints have many solutions — the “lattice gas” really doesiyq stoichiometry(i.e., the fraction of Mnxy,). First, all

have the freedom of a gas. three kinds of uncertain place allow density variations. As
for chemical variations, the main option is Ak Mn on §
E. Second-order description: Families of decoration SiteS. These SiteS haVe icosahedralzkbordination She||S,

i - , and Al ,Mn icosahedra are indeed favorable motgse Sec.
The first-order description has fixed most of the problems; gy 'O, the other hand, the MaJ sites do not fit well with
atic atomic orbits. The further treatment éfsites leads to Hw structural tendency to uniform spacing of Mn, as realized

Fhe fotl)” bai}c 'fatr'mlles QLQecoritlfons',l as hasf beenhoutlm'e y Mn(u/v) at the corners of vertex rhombohedra; instead,
Just above. Variations within each family arise from the vari- - Mn(3) option often creates Mn-Mn neighbor pairs,

ous options that are available f_or resolvin.g the p.mblemati(?/vhich is somewhat contrary to structural tendencies in Al-
y sites, as vyell as fro”.‘ the details concerning hbsites are o nsition-metal alloys. There are also possible Al/Mn varia-
treated W'”"T‘ the ba§|c pattern .Of each family. tions on theysp sites among the loose Sl decorations.
Let us review the_ _f|rst-0rder sites which are common to all We are now ready to present the basic choices made by
our decoration families: L the variants in each of the big families of dense FCI, dense
(@ One MI at each CCT node, consisting of Wh Sl, loose Sl, and loose FC[See also paper )l.Table |
Al(a), Al(5), and Mn(u); . summarizes all four families of decoration rule, by showing
(b) Mn(v) at'each remaining rhombohedron vertex; .. the occupations of and y sites relative to the first-order
(c) Al(y) pairs on each remaining rhombus face, with gjio5 common to all models. Sites where a range of occupan-
those on OR merging into a ring of sixy; sites, and those e i shown are the candidates for density variations; when
around the upper tip of PRD) merging into a(singl®  this is a fraction, it is accomplished by differentiating sub-

Ysp Site. ) ) . . classes(implemented through a rebindingNote that no
(d) Candidatesy, dy, andép sites in each Ri, in the \ariants of the LF family have been defined.
lower end of each PRD), and in the upper end of each

PRp, respectively. For future convenience, thg sites are

divided into “6,(A),” which fall into A cells, and 1. Dense FCI models
“ 5p(BD),” which fall into all other cell typegthe cases are The FCI rule is a natural generalization of thesite be-
B/E or D). havior in a-AlMnSi:*° the even “candidate’s sites are oc-
The uncertain places, available for variation in thecupied and the odd ones are vacant. Consequently, except for
second-order description, are a few vacants sites due to the presence of a PRall even
(i) every candidates site (Al, Mn, or vacanj; nodes receive third shells like those shown in Figth2 first
(i) 3y sites in the lower end of PR(the y3y option); two shells being the M| while the odd nodes are decorated
(iii ) the hexagonal ring of six; sites in eaclZ face(the  only by two-shell Ml clusters. The presence of the three-shell
“4/6” or “6/6” options ). clusters makes the dual-rhombohedral approach in Appendix

Most of the above options are,priori, equally plausible. A appealing for describing FCI cases, since the atoms on the
The optimal choice might depend on the potential used, or othird shell can be economically described by a rhombic tria-
how other nearby uncertain sites are resolved. The variantontahedron.
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The dense FCI case is the only decoration rule where wand 5, sites vacant; only thé, sites remain as candidates.
possibly merge 3— y3y; this is considered for only the Since we no longer have th#, sites, we need not be con-
evenY face, since they sites are squeezed by the six sur- cerned with the three subclasses&(A) sites, that appear
rounding &, sites(which are all occupied in the even case above in the definition of dense SI models.

This 3y is the only “problem site” at which density varia- The options for variation stem fror(i) the occupation/
tions are allowed for variants within the dense FCI family. chemistry of thedy site; (i) the occupation of each ring of

Somes4 sites can be decorated either with Al or Mn. First, six Al(y;) sites(only the “4/6” and “6/6” options are al-
the § sites originally bound to the linkage are rebound to lowed by symmetry, and (iii ) the chemistry of they;p site
different cells. We then choos®(B), 6,(D), andédp as three in the top part of PR(D).
sites whose chemistrie&@ither Al or Mn) may be varied An independent modification, increasing both the density
within this family of decorations. We pursued only two of the and the Mn content, is to place an Mn atom at the center of
possible combinations in paper Il: either all Al or all Mn on every MI [this orbit is named “Mi0)” ]. This option was
all three sites. favored by our potentialaper 1). The loose SI models are

energetically favored in relaxations with realistic potentials,
2. Dense S| models as is extensively described in paper Il.

Dense Sl decorations can be thought of as adaptations of
FCI decorations: For each type of object, we adopt either the
even-flavored or the odd-flavored version of the FCI decora- The basic principle of these decorations is to select a sub-
tion rule (usually the one that is lowest in enejggnd then  set of thes network satisfying the constrai=1.7a,, and
use it forall objects of that type, irrespective of whether they then occupy the even atoms of this subnetwork. Though we
are even or odd. did not investigate such models in paper Il, we describe one

Thus, from the dense FCI decorations, we find that bottof them here for the sake of completeness.
the oddY face and the odd cell are more favorable than All even 6, atoms are occupied. About half of the even
their even counterparts. Consequently, we fill thesite in  §, atoms, viz. those that fall intG) A cells or (ii) the top
PRy(C), take the 3 option for both subclasses of RRand  halves of the 3 RIg's that frame theY face of theD cell, are
fill the &p site in the PRy. also occupied. We remark here that thenetwork of the

We have two candidaté, sites from eaclp linkage, but loose FCI decoration for the 3/2 CCT approximant is identi-
if these were all filled, they would violate the effectided  cal with the § network of the 3/2 approximant to the Katz-
exclusion at distance, . To prevent most of these conflicts, Gratias 6D modé?Apart from thes network, the loose FCI
we simply fill only thosed,, sites which fall intoA cells. and Sl decorations are topologically equivalent; thus, in the

For correct accounting of thes® sites, we are forced, in loose FCI case, the interiors of thi2 and E cells are still
the dense S| model, to implement added context sensitivitydecorated the same way irrespective of whether these cells
The subset ofs, sites fall intoA cells will collectively be  have even or odd flavor.
called 6,(A). [Note that the relevanb linkage is always
situated on the relevark cell as the edge shared by the two V. COMPARISON OF CANONICAL-CELL
faces marked “ " in Fig. 1(b) of Ref. 1] Then thed, sites AND SIX-DIMENSIONAL MODELS
are divided into three subclasses according to what kind of
cells adjoin theA cell along the two faces sharing the rel- Having completed the specification of our decoration

4., Loose FCI models

evantb linkage: models, it is appropriate in this section to understand some of
(i) 8y(A,), when the relevanb linkage is entirely sur- their properties. In particular, it is natural to ask how they fit
rounded byA cells; into the more standard 6D-cut formali$m* (and how they
(ii) 8p(A,), when one of the adjoining cells is @cell; relate to WeII-known models defin_ed in terms of that formal-
(i) Sy(Acc), when both of the adjoining cells a@ ism). First, we introduce the particular 6D models that we
cells. have adopted as standards a separate work> we have

Noting that 8, may be in&-8 conflict with some of the relaxed these standard models feAIMn under the same

Sy(A) sites, some variants fill all thé,(A) but none of the Potentials used in paper )Il.Next, we contrast certain

8y, while our densest variant among the dense SI modelBhYysical-space features of these 6D models with our CCT-

fills all the 8y and as many nonconflicting,(A) as possible. Pased decoration models. Finally, we relate — as far as is
Among the many combinations of the filling 6 and the possible — the various atomic sites in our decoration models

three subclasses of thi(A) sites, as well as the chemical (labéled by Greek letteyswith the hyperatoms of the 6D

choice of Al vs Mn at each site, we have extracted severalodels.

representative variants which are described in detail in paper

Il A. Description of 6D models

We adopted three “standard” modelgi) the Duneau-
Oguey (DO) model? which was originally constructed to

The loose Sl family is similar to the dense Sl family in the contain Ml (though the density of Ml in the DO model is
arrangement of ity sites. However, in the loose decorations, lower than in CCT-based modglsii) the Katz-GratiagkKG)
most & sites are vacant. We keep they3option in the model structure fori-AlCuFe®™!! whose chemistry we
PRy, and occupy the nearby, site; this follows the ex- adjuste@" in order to model binary-AIMn; the FCI modu-
ample of thea-AlFeSi crystal structur€® We leaveall 8, lation that this model exhibits is due primarily to 6D body-

3. Loose S| models
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TABLE II. Statistics of various decorations. DF, and LS, stand for dense SlI, dense FCI, and loose S,
respectively. The variant with an M@) atom at the center of

Pat z _ every MI was adopted for all loose models quoted in these
Model$ (atomsA?) Nen. (Range (Typica)® (MeanZ) tables, including the DO modéthis is the only respect in

which our DO model differs from the model of Ref).. Here

DS 6.53-6.69 28-31 10-16 (10-19 11.98-12.42 Neni denotes the number of different types of local
DF 6.67-6.77 28-38 10-16 (11-13 1236-1248 i onmenf?Z denotes the coordination number, dhithe

LS 6.34-6.54 18-24 9-14 (10-13 11.84-12.15 mean ofZ 0\;er all atomic sites. !

KGme 6.54 28 8-14 (11-19 12.41 Extremely loose sites with coordinations under 10 occur
DO 6.41 34 8-14 (11-13 12.19 only in the 6D models, and in our loose decoration models;
KG 6.12 18 7-13  (10-13 11.82 presumably, some of the “neighbors” of these sites are

pseudovacancies. Coordinations over 14 arise only in our
dense decoration models; these tend to exhibit a large num-
ber of different types of local environment.

Much of the model geometry can be described simply in
terms of two basic motifs: the Mackay icosahed(bt) and
center hyperatomgcorresponding tod sites in our CCT- the mini-Bergman cluster. To quantify this statement, and to
based decoratiohsthat are present only on the even check whether these two structural motifs have equal signifi-
sublattice; andiii) a modified version of the Katz-Gratias cance, we calculated the fractions of atoms that compose M|
model in which pseudo-MI clusters are replaced by Mi clus-2nd mini-Bergman clusters for each of the three 6D models.
ters: we call this the KGme model because it contains mid!n the KGme model with filled MI centers, a fraction 0.69 of
edge sites. the atoms belong to mini-Bergman clusters and a fraction

The DO model has S| symmetry; the KG and KGme mod-0-66 of them belong to Mi clusters, while over 0.90 of them
els both have FCI symmetry. For each model, as in our decd?€l0ng to at least one cluster of either tyfa. the unmodi-
ration models, there are certain sit@specially among the fied KG model, a fraction 0.79 of the atoms belong to mini-
6D body-center atoms, i.e., the site9 which lend them- Bergman clusters)
selves to variations of occupancy or chemistry. All three 6D
models include a number of environments of low coordina-
tion number(see Table I, at least some of these environ-
ments would be expected to give rise to high local energies. Here, we discuss the ways in which our decoration mod-

els are related to the 6D-cut models, from a 6D perspective.
B. Comparison of physical-space features As a starting point for the discussion, consider an atomic

. ._model that is generated by applying a decoration rule to a
Here, we compare our various CCT-based decoratlmﬁ{ d y applying

uasiperiodic tiling, where every atomic site is specified us-
models, b_oth to each other, and to th_e _three standard 6D-_c g ideal coordinates, in the sense of in Efj). A model of
models, in terms of the characteristic local patterns i

; ) L ) "this sort can be represented as a cut through a periodic 6D
physical-space and their statistical frequencies.

Table I I h ; ; ) . I dqf structure containing “hyperatoms.” These hyperatoms can
able il lists the various interatomic spacings allowed foryq ;jenified with pieces of 3D hyperplanes, which lie ex-

a ﬁrst-neighbor bond in the _ideal vgrsions of our models. _Th%ctly parallel to the “perp” direction, and which are attached
pair of Greek letters associated with each bond length |nd|-0 high-symmetry Wyckoff positions within the 6D cell.

C?tﬁs tge té/pes of a'gomlgrﬁ!te t%?t arhe Iolgatt)edhatl t?el .tw_c:jen us, the use of ideal positions within decoration rules — as
of the bond in question. This table should be helptul In 1den-5 1ha 456 for our CCT-based decoration models — reveals

tifying 6D models that are similar to our decorgtion mOdeISthe correspondences between the hyperatoms of 6D models
and/or for making comparisons with experimer#.g., ;4 the orbits of decoration models. We should not, however,

EXAFS (Ref. 42] that prpduce pair-d_istribution functi(_)_ns. expect to find an exact mapping from our decoration models
Table Il contrasts various properties of three families of

: ; ) to familiar 6D-cut models: a fairly simple decoration of a
decoration modelthe first three rowswith those of the three y P

; fairly simple quasiperiodic tiling can easily correspond to a
6D models introduced abovéhe last three rowsHere, DS, 4, ite complicated 6D structurén that the boundaries of the

hyperatoms are fragmented into many small facets
A technical advantage of decoration models over 6D-cut
models is that they continue to specify well-defined posi-

8 ach model here is represented by tilifi§ (a 5/3P213 approx-
imand; see paper Il.

b«Typical” means excluding the 5% with largest and the 5% with
smallest coordination numbers.

C. Comparison of 6D features

TABLE lll. Allowed bond lengths between ideal sites.

Orbits of endpoints Lengthe) tions, even on tilings that are not quasiperiodic. In particular,
(@), (8,v%) 0.500 they can be used directly to construct periodic approximants,
(a,a), (v*,y*)? 0.526 without the technical burden of properly shearing the cut
(v,v), (1 9), ... 0.563 plane and redefining the shape of atomic surfaces — as is the
(v, %) 0.596 case with 6D models. Furthermore, we can apply the deco-
(u,9) 0.618 ration to random tilings; in principle at least, this affords a
(w,B), (1), ... 0.650 more precise way of fitting diffraction data than the simple
(a,B) 0.679 insertion of a “phason Debye-Waller” factor.

Broadly speaking, the DO and KGme models are similar
ay* means a 6D body-center midedge site. to our loose Sl and loose FCI decoration models, respec-
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TABLE IV. Orbits in SI minimal binding. 2. 6D-cut structures as decorations?
Object Orbit Atoms 6D positich We now turn to the reverse que;t.ion: treating a 6D—cqt
model as a cluster packing and/or tiling decoration. Candi-
Node (0) 1 Mn v date MI positions can be identified as the centers of 42-atom
a 12 Al ME icosidodecahedra of 6D-vertex atoms which are identical to
n 12 Mn v MI second shellgsuch shells are common in all three of our
B 30 Al v “standard” 6D-cut models Unlike the CCT, the standard
b linkage 3P 4 Al " 6D models contain pairs of candidate MI centers separated
Y face v 1 Mn v by “short” fivefold linkages of lengtha,.®® The DO and
Sy 1 Al/Mn BC KGme models attempt to maximize the density of MI, by
E cell vy 6 Al BCME placing them wherever possible, but only one MI in each
7, face . 6 or 4 Al BCME close pair can receive an MI. Since the CCT contains no such
D cell 5 3 Mn v fivefold linkages, every CCT node can receive an MI, and so
v 3 Al v the density of Ml's in our CCT-based decoration models is
~10% higher than in the 6D-cut models.
Y3 1 Al/Mn v

In the 1/1, 2/1, and 3/2 cubic approximants to the 6D
%, = vertex, BC= 6D body-center, ME= 6D midedge, BCME= models, the short fivefold linkages are avoidable with a
6D midedge between body centers. proper choice of centering in 6D. With this choice of center-
bOn the hidden PR faces in RD. ing, it turns out that the MI centers in these approximants
coincide exactly with those in the corresponding CCT ap-

tively. T ke th lati ise it is desirable t K roximants(tilings T1, T5, andT6, respectively, in Table I
IVely. 10 make these refations precise, 1t 1s desirable to ma paper I), allowing us to overlay the 6D-cut atomic struc-

correspondences between particular orbits in our CCT-bas re and the CCT tiling. This then permits an almost me-
decoration models and particular hyperatoms in the 6D-CUlpanical prescription for turning 6D models into CCT deco-

models. Such identifications between classes of atom may hgiions: the decoration of each canonical cell simply consists
approached in two ways: the first is to imagine a quasiperigf the atoms that fall into it.

odic CCT-based model expressed as a 6D-cut; the second is Of course, this will not work for a generic quasiperiodic
to take an approximant to a quasiperiodic 6D-cut model andtructure. The decoration of each cell must respect its point

express it as the decoration of a CCT. symmetry; furthermore, since, e.g., the 3/2 CCT approximant
contains several crystallographically inequivaléncells, it
1. CCT orbits in 6D must be checked that all of them are decorated identically.

The fact that it works at all for our three standard 6D-cut

Let us consider the 6D-cut representation of a decoratiormode|s(up the 3/2 cubic approximanis the objective basis
rule applied to dstill hypothetical quasiperiodic CCT. First,  for our claim that they are similar to our CCT-based decora-
we identify the 6D Wyckoff position to which a particular tion models.
orbit is attributed by inspecting the “ideal coordinates” of  Fojlowing this prescription with the 3/2 approximants, the
the orbit's atomic sitegthe results are included in Table)lV  |gose SI models are derived from the DO motiglecifically

The 6D vertex hyperatoms contain the MIl-centerit js decoration LS1.1, in the labeling of papey; Isimilarly
[*Mn (0)" ] sites, and then Mn{), Mn(»), Al(8), and |gose FCI models are derived from the KGme model. The
Al(y) type atoms, roughly from inside to out in perp spéte. single difference between the 6D and the CCT versions of
Since we have assumed that the tiling geometry itself hage approximants is the treatment of the ringjof sites on
even/odd symmetry, it follows that the Mj) portions are 7. faces: in the 6D models, the Ay) atom nearest the
identical on even and odd hyperatoms, and have a shaRgreefold axis of theD cell is filled 50% of the time(in a
associated with the CCT node packing, which is suspected tg@eterministic way, yielding the “5/6” variant of the Aly,
have a fractal boundaf{.Of course, all orbits belonging to ring.
the MI [viz. Mn(u), Al(a), and Al(8)] must correspond to |ncidentally, our analysis has shown tiapart from the
atomic surfaces consisting of disjoint unions of the samesp body-center, i.e.§-type sitey the DO and KGme models
shape, and similarly must be even/odd symmetric. Theye topologically equivalent. This was not obvious to previ-
Al( @) atoms come from 6D midedge hyperatoms; such hyyys authors, because certain topologically equivalent atoms

peratoms exist in the DO and KGme modelgich contain  gre assigned to different 6D Wyckoff positions in the respec-
complete MI's by constructionbut are absent in the KG tjye models.

model.

Our § atoms, which correspond to 6D body centers, are
contained in the third shells of extended MI. In our FCI
models,s atoms are found at a radius, along the fivefold
axes of MI centered atvenCCT nodes, thus realizing an This section defines and develops the concept of a “tile
atomic surface oreven6D body-center sites, just as in the Hamiltonian,” . 7., a function which assigns an energy to
KG and KGme models. In our FCI decoration models, cereach allowed configuration of tiles. For the sake of
tain y-type atoms must also be removed to avoid close consimplicity/definiteness, we concentrate primarily on tile
tacts with § atoms; this in turn causes theportion of the  Hamiltonians for CCT-based decoration models, and we will
6D-vertex hyperatoms to exhibit an even/odd modulation. speak only of tile-tile interactionglt is trivial to generalize

VI. TILE HAMILTONIANS
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this to interactions of generic “tiling objects,” as defined in ond neighborg their optimized canonical positions should,
Sec. Il A) after such a rebinding, better approximate those of the re-

The tile Hamiltonian valueZy, for a particular tiling is  laxed structure. It should thus be possible to formulate an
defined simply as the relaxed energy of the atomic structuraccurate tile Hamiltonianvithout intertile interactions. The
produced by decorating that tiling. This is well defined sinceprocess of rebinding thus enables the intertile interactions in
we have demanded that decoration always generate a uniqtlee original tile Hamiltonian for the crude model to be re-
structure®® It is physically meaningfule.g., for calculating expressed a$i.e., absorbed intoone-tile terms in the tile
the entropy to the extent that the tiling-structure relationship Hamiltonian for the sophisticated moddl.
is one-to-one: that is, every low-energy structure can be gen-
erated from exactly one tiling. Notice that a change in either B. Subtraction of chemical potential terms
the decoration rule or the potentials will changg; .

There are obvious practical benefits to usig;., pro-
vided it is well defined: a large number of continuous de-
grees of freedomatomic coordinatesget replaced by a
much smaller number of discrete degrees of freedtiing
configurationg Most theories about the nature of long-range
order in quasicrystals are formulated as statements about &
tile Hamiltonian®?n particular, a necessary and sufficient
condition for the validity of the random-tiling scenario is that
Iyie is small compared to the effective temperature at which
icosahedral order develops. Within this scenario, the phason Tie= > VaN,, 2
elastic constants of the model structure can be calculated @
numerically by Monte Carlo simulations, using;. as the
Hamiltonian®’

Our aim here is to formulate the simplest possibige
for CCT-based decoration models, that correctly accounts for
the energy differences between different tiling configura-
tions. Here, we restrict our attention to CCT-based decora-
tion models whose atoms are bound to the five species of
nonical cell(see Fig. 1
The simplest case is whe#;. consists simply of one-
tile terms, i.e., when it can be written in the form

where N, is the number of tiles of typex and V, is the
energy associated with each tile of that type. There are thus
four independent parameters foow=A,B,D,E (since

A. Prerequisites Nc=Ng+2Ng). This formula can be rewritten as

A generic.7Zye comprises one-tile terms plus intertile in- _ o o ,
teractions. The tiling Hamiltonian for a given decoration '%ile:“MnNMnJ““AINAI’L; VN ©)
model is tractable only if

(i) its intertile interactions are short range, preferably con-Here, we have separated out two chemical-potential terms,

sisting only of tile-pair interactions; which couple to the total number of Al and Mn atoni,,
(i) the specification of these tile-pair interactions requiresand Ny,. Clearly Eq. (3) is related to Eq.(2) by
only a few parameter®. Vo=V, + uaNA+ uyNM" where NA' and NM" are the

In turn, these two criteria will be satisfied only when the number of Al and Mn atoms bound to tile. There now
decoration model is “crystallographically goodas defined remain only two linearly independent coefficieivs .
in Sec._ Il A), that is, if the _relaxed positions can be well  The values we compute here quIA)I wn are physically
approximated by a context-independenbrelaxed decora-  meaningless, since they omit the possibly strong effects of

tion of the tiles. structure-independent terms in the total energy. The values

Even if there are significant forces on the atoms in a given,o compute for the coefficientd’ , however, constitute a
tile from atoms in the neighboring tiles, the intertile interac- ,casure of the deviation from aar7andom-tili,ng ensemble: if
tion can still be small, provided those forces are nearly indeboth were zero, i.e., it 7Zg.=u® Ny +MO|NA| then all

. . . . . . . . y .C., Ctile — 5
pe“de”t. OfWh'gh tiles are ne|ghbor|ng. Th'.s situation Is re')}:)ossible random tilings vlvi)uIndr;oe;ist i/r: the equilibrium
flected in having only a small variance in the site-energ state(with equal weighk, in such cases, the equilibrium state

d|agnos_t|c[see paper II, Eq(5)] overa single orbit of _the could be represented asvaximally random tiling modéf
decoration model. If the canonical rnas (see Sec. Il Cis

small, i.e., if the atomic positions depend only weakly on
which way the surrounding tiles are arranged, then the same

will tend to be true for the energies. o Here we will review the most important parts from the
The simplicity/usefulness of the tile Hamiltonian is re- yreceding sections and indicate possible future develop-

lated to the issue of bindingsee Sec. Il B Consider firsta  ments. Since the associated computations have been left to
crude decoration model, whose atoms are bound to a feWaper ||, the reader is asked to look there for results and

basic species of tiling object. An accurate tile Hamiltonianconclusions.
for such a modelif one exists at a)l will need to contain

intertile interactions, which reflect context sensitivities

(again, see Sec. II)B Now consider a more sophisticated

decoration model, that is derived from the crude model by In this paper, we have presented a general machinery for
dividing each species of tiling object into several subspeciessetting up(and talking aboytdecoration models, and a spe-
according to the various ways in which neighboring tiling cific machinery for producing numerous variantsi eAlMn
objects can be placed around it. For each such way, the atrodels, suitable for our tests using realistic pair potentials
oms on the object have a distinct environm@uunting sec-  (paper I). A theme which runs through the entire work is

VIl. SUMMARY AND DISCUSSION

A. Summary
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that it is more desirable to understand the differences beferred. The main example we pursued had to do with the
tween two models than to understand the details of oné-site occupatiofSec. IV D). As discussed in Sec. Il B, de-
model.Another theme is the desire to dissect any model intoviations could occur either in the form of a context sensitiv-
a discrete set of orbitéi.e., types of sitg since our only ity (as for § sites in dense S| modelsr in the form of a
method for steadily improving a model is to revise one orbit“global symmetry breaking’(as for § sites in FCI models

at a time. It might be profitable to explore breaking of the local

Some of the highlights of the general framework put forthinversionsymmetry(which is equivalent to mirror symmetry,
in Sec. Il were the notion of “topological equivalence,” given the twofold axes of the icosahedral proper point group
which allowed us in passing to characterize succinctly theé532). For example, consider the triangle of three clgse
unrecognized near-identity of the Katz-Gratias and Duneauatoms near the lower tip of RR(see Sec. IV ¢ Instead of
Oguey structures, and the idea of a canonical rms, whiclmerging these into ong, atom, or relaxing them directly
provides a quantitative measure for the validity of theoutwards, it might be plausible instead to expand the triangle
decoration-model positions, as approximations to the realnhile rotating it a small angle clockwise or counterclockwise
atomic positions. The concept of binding, which we intro- (so as to avoid some surrounding aton#ss in other cases,
duced Sec. Il B, enables us to specify, precisely, what wehis sort of deviation might be implemented either as a con-
mean by a decoration model. Though this concept mightext sensitivity, or as a breaking of the global inversion sym-
seem annoying in view of the onerous bookkeeping that iinetry.
forces upon ugAppendix B), it is what “dissects” the atoms
into disjoint orbits, and thus what breaks up the task of mod- 2. “Reshuffling condition” for kinetics?
eling the atomic structure into manageable, reasonably iso-
lated units. Section Il B also introduces the notion of “dif-
ferentiation” of models, which clarifies how simple
decoration rules may be elaborated into more comgéex
more realisti¢ ones. This grouping of different models into a
“family tree” gives us a precise way of describing the rela-
tionships among them.

Differentiation is used repeatedly in our actual descriptio
of the modelgSec. IV), the heart of the paper. That section X i ; ) "
shows that good decoration rules dumexpectedly similar We have not investigated this question for our tlings. It
to the crude and incomplete Elser-Henley ffghey are would be difficult to do so sy_stematlcally, s“m_ce thf} allowed
also closely related to, and in part inspired by, the 6D-cuf€@rangement for the CCT is a nonlocal “zipper mae,
models(Sec. \J. Apart from that, the geometrical details of whose rules are, as yet, only partially understood: It is clear,
Sec. IV are useful mainly for understanding the relaxationdOWeVver, f[hat there will be a large overlap Pf atomic sigs
in paper II. Above the details, we find two suggestive con-£xa@mple is Ref. 58 of paper II, concerning the M)
cepts arising out of our structural descriptions: a new, per-s'te]'
haps superior set of “dual” rhombohedral tiles, that supply a

To explain the experimental existence of well-ordered
quasicrystals, it is not sufficient that they be the equilibrium
phase; they must be accessible kinetically, too. If the inter-
mediate states are valid decorated tilings, and if the decora-
tion rules do not admit chemical disorder, this requirement
poses an additional constraint on the decoration rule: atoms
pshould be “glissile,” that is, they should jump only locally
under tile reshufflings, to sites of the same spetes.

framework for describing CCT decoration structu¢appen- 3. Diffraction refinements

dix A); and the view of thes (6D body-center sites as a In principle, decoration models are well adapted to struc-
lattice gas, whose fundamental parameter is its deS®¢.  tyral refinements anthas will be seen in a momendemand
VD). less radical shifts from the long-established path of crystal-

Finally, we have laid ouin Sec. V) the basic theory for |ographic refinement for a periodic crystal. Our ignorance of
ConStrUCting a “tile Hamiltonian” out of a decoration rule any infinite quasiperiodic CCT structure is On|y a small em-
plus a function(as in our paper )ithat returns the structural parrassment for carrying out this program. One can proceed
energy for a given atomic arrangement. This and the othepy calculating the diffraction patterns of decorated large cu-
above-mentioned concepts are applied in paper Il, in whichhic approximants; it can be confirmed that these diffraction
we both ascertain the particular models that are favored b]zSatterns already have nearly icosahedral symmetry. Then a
realistic Al-Mn pair potentials, and assess the dependence @foper icosahedral symmetrization of the structure factors on
the cohesive energy on various parameters that span ogragg peaks yields a very good ersatz for the diffraction

space of decoration models. pattern of an icosahedral crystal. The fitting parameters are
simply the three-dimensional “canonical” coordinates and
B. Future directions the chemical occupancies of each site.

. : . _ As mentioned in the Introduction, such a program might
Here we mention some possible extensions to this worky qfitably be combined with energy calculations. An objec-
from minor to major.(Those relating to structural energy e functionP, measuring the goodness of the adaptation of
calculations are deferred to papey Il. the structure to the relaxed structural energy functigy)
_ _ _ _ could simply be added to the factor (which is, of course,
1. Decorations which break inversion symmetry the corresponding objective function for the fit in Fourier
One of our principles of decoration was that the decoraspace between the calculated and measured structure fac-
tion of a tiling object must have the same symmetry as thdors). There are two plausible choices fBr the first would
tiling object, but this does not necessarily describe the lowedte simply a multiple ofE,,, the other would be?ajz, the
energy state; a breaking of the local symmetry could be presum of the canonical variances.
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FIG. 6. The dTR triacontahedra are placed on the nodes of an
A cell. Those on the evefodd) nodes are shown soligh outling).
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APPENDIX A: DUAL-RHOMBOHEDRAL (CLUSTER) ar£p faces

APPROACH TO CCT DECORATION
each dTR, we place ong atom on every edge, and one

The dual-rhombohedral approach decomposes the CCTandidate” § site on every vertexboth threefold and five-
into a new tiling? of rhombic triacontahedra and prolate fold vertices, except where two dTR surfaces overlap along
rhombohedra, which we collectively call “dual” rhombohe- a c linkage. In each such overlap, we remove the threefold
dra since their vertices correspond to 6D body cerfiarthe  candidates sites that lie around the linkage, such that each
setting where the nodgsertices of the CCT come from 6D dTR has threey sites on its surface, which coincide with
cell corners. three Al(B) sites in the secon@MI) shell of the other dTR.

Since dTR’s account for most of the volume, they also
1. Dual-rhombohedral geometry account for most of the atoms. Moreover, all dPR vertices
are shared with dTR vertices. The rhombic faces of each dPR

The decomposition of space by dual entities is very . . .
simple: on each CCT node, we center a large rhombic tria£bOth type} contain thes and Al(y) sites that lie on the

. . s faces of the dTR’s adjoining it. Within each dPRtwo ad-
contahedron with edges of lengtly, oriented along fivefold : :
directions. We will call this “dTR” (we begin the names of ditional Mn(») sites are p_IqC_ed alpng the dpRbody dlag_-
all dual objects with a “d’). The dTR’s always share rhom- Or,]?_l Etg‘_re,ej‘%'gThaX'ii iéjlvm:(lng r']t dlgn i a(tj)outr tth% irr1attrl10
bic faces along linkages. Alongc linkages, the dTR'sin 7 7 -7 - teth ?theol eac ER.ts Jeco ?e db €
fact overlap by a volume congruent to an oblate rhomboheZ@Me Way, except that the lower Mi)(site Is replaced by a

. A ite.
dron (dOR). We show how clusters sit on tifecell in Fig. 6. 73D S! .
A much larger fraction of space lies inside the dTR’s of the The above dual-rhombohedral version of the zeroth-order

dual decomposition than inside the RDlus PR, of the description, in fact, introduces no conflidegpart from those

vertex-rhombohedral decomposition. The union of the dTR’%nVOIVe<j with the § network, which were described in Sec.

V D). Hence it is also the first-order description.
already accounts for 94% of the volume of the C@Ycon- ; .
trast t)r:e R, and PR in the vertex-rhombohedraﬂ]Tjescrip- It would be possible, but redundant, to describe the fur-
tion :alccount for only 83% of the volumhe ther options and the second-order models in dual language. It
With dTR on each CCT node, the remaining gaps are ahay be noted _that _the Sixz sites_ form a ring arou_nd the
filled by dual prolate rhombohedfdPR), of which there are mldd_letof 1PF|2|Z |r]1 tt?]'s Leprlesenttlatmn. Tg@trézt.wErk amg:y
two types: eaclZ face(including the internal gz face in an consists of afl of the dual vertices, an INks are the

o . dges of the rhombic facdas in Fig. 5.
E cell) is pierced by one dPR eachD cell contains one €99E . : .
dPR, ) wh?ch lies al)c/mg the cﬁll’s axis of threefold symme- Since thed andy sites that experience most of the varia-

try. We show the placement of these dPR’s in Fig. 7. In eaclﬁIons lie on the dTR faces, complicated decoration ries

D cell, the lower tip of the dPRand the lower tips of three 'ound In bqth dense fam'llles'may be conveniently V|sua!-
dPR, all meet at a point on thi cell's threefold axis in the ized by taking planar projections of the surface decorations

. of dTR’s. (In fact, it is sufficient simply to map the intersec-
lower part of the cell(We use lower, upper, front, etc., with : .
reference to the orientations of objects as they appear in Fi jion of the dTR surface with the solid angle of each type of

7; this is consistent with our word usage concerning Fip. S.Qhe CCT cell corner, as shown in Figch of Ref. 1)

2. Zeroth- and first-order decoration rule APPENDIX B: AN EXAMPLE OF BINDING

Along the dual-rhombohedral path, the zeroth-order deco- We present here the specification of the minimal binding
ration is taken from the three-shell cluster shown in Fi§® 2; for loose SI models, this being the simplest of the bindings
such three-shell clusters are observed f{at least thatwe implemented. We will be careful to assign each atom
a-AIMnSi.** " 5First, a Mackay icosahedrdl) clusteris  metrically to a tiling object so that it is accounted for once
placed at the center of each dTR. Next, on the surface aind only once, in accordance with our definition of binding.
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Exterior of all dPR the “upper” PRy tip, dividing the PR body diagonal in the
2 ® o ratio 7~ 3:1— 7~ 3. Another orbit consists of the Aj,) at-
candidate & A K .
o Al oms on the three faces, dividing the face diagonals in the
® interior Mn(v) ratio 7~ 1: 772, There is also onécandidate &y site on the
¢ interior Al(Ys) body diagonal of each of the three Pt the D cell.

The y, sites will account for all remaining atoms in the
B, D, and E cells. The six Alfy;) sites decorating each
OR; in the vertex-rhombohedral tiling are always sited at 6D
body-center midedgéBCME) locations, sitting on the bi-
secting plane of the ORassociated with ever¥ face. They
dPRp dPR, sit on the line running from the midpoint of the threefold axis
to that of each edge, dividing it in the ratio *: 772,

FIG. 8. Decoration of “dual” prolate rhombohedra by atoms.  In fact, the Al(yz) are rebound in several different orbits,
(The dTR decoration is just Fig. 2, which has faces identical tofirst to respect the symmetries of the respective tiling objects
those shown herk. in which the OR, finds itself, and second to facilitate varia-

tions of the decoration rule in which certajp sites are left
We rely on the reader to visualize how this description isvacant(an example of context sensitivity, as defined in Sec.
equivalent to the “topological” description presented in thell B).
text. The dense FCI and dense S| models have more elabo- The six Al(y;) sites inside the highly symmetrig cell
rate bindings; at the end of this appendix, we sketch the maire bound to it, forming just one orbit. The other 4} sites
ways in which they differ from the loose Sl bindin@;)uite could be bound to rd faces, which occur between twd
detailed binding descriptions for a very dense FCI modekells, and between B and aB cell. (A binding to the Z
may be found in Ref. 2. object, which lacks sixfold symmetry, would require two

The four orbits bound to the CCT nodes form the Ml separate orbits However, due to certain technicalities in our
cluster. The MKO) site, of course, is bound to the center of gigorithm for identifying tiling objectggiven the node loca-
the MI cluster. The 12 Mng) sit on the rhombohedron ver- tiong), it was more convenient to further differentiate the
tices in an icosahedral shell of radiag around every CCT 7z, face into classes, (treated like the g) and Z,g. The
node. The 12 inner shell Ai) atoms sit at the midpoints of orbits of the Zz may be bound to th8 cell, in which case
the edges connecting MB®) and Mn(u) sites. The 30 three separate orbits are needed to account for the six Al
Al( B) atoms in the MI second shell divide the face diagonalgy,) sites.
of the vertex rhombohedra in the ratio *:7~?. The y and This completes the binding description of the Loose Sl
o atoms, although they often form part of the three-shelldecoration; it is summarized in Table IV, which can be used
cluster illustrated in Fig. 8, can never be bound to nd@@s to compute the number of atoms of each class in a given
account of the cluster-cluster overlaps CCT tiling. Chemical variations may be performed for the

To eachb linkage, there is assigned an orbit of 4 A4))  orbits 5, and y3p independently. The density variations are
atoms situated near the vertical long diagonals of the rhomyrealized by filling/lemptying thes, sites and by choosing
bus faces of the Rpin Fig. 4 (i.e., the faces in the plane of eijther the “4/6” or the “6/6” option for the ring of six Al
the paper. More precisely, they are situated somewhat inside y,) sites associated with each, Zace (see paper )l These
the RD,; indeed, when the RD is decomposed into two PRvariant models are easily constructed from the basic binding
and two OR, the Alf;,) atoms are located on the long di- formulation given above, since each variation affects only
agonals of the “internal” PR faces. The Alj atoms shown one orbit.
on the “top” and “bottom” faces in Fig. 4 are not bound to  The dense FCI model is more complicated because it dif-
the associated RpDitself, but rather to other tiling objects. ferentiates many types of tiling object into odd and even
The 6, sites are located at the intersection of the long bodyflavors. As a result, the number of distinct orbits almost
diagonals of the “internal” PR’s just mentioned. doubles. Indeed, the minimal binding requires 20 orbits of

The éy site is placed near the low®Ry tip, dividing the  atoms bound to seven types (@ven- or odd)-flavored CCT
PRy diagonal in the ratior—2: 7~ %; this site is bound to the objects; a typical binding that differentiates some of the
Y face. The Mngy) site is also bound to th¥ face, sitting  problematic orbits(by rebinding them to objects of lower
at the PR’s lower tip (which lies almost in the plane of the symmetry has a total of 38 orbits for nine CCT objeckmn
Y face. The upper part of the RRs in the interior of aC or  this rebinding, the Al§) of the oddb linkages are rebound to
D cell; its decoration consists, respectively, of Ml orbitstheA, B, D, andE cells into which they fall; and thesy of
bound to the node at thé cell's apex, and orbits bound to the oddY face are rebound to thB, D, andE cells into
the D cell. which they fall]

All orbits bound to theD cell involve the top half of the The dense S| decorations are complicated in a different
PR/, or the nearby parts of the BRas seen in Figs. 3 and way. In these(see Sec. IV ERPwe adopted an alternative
4). There is an orbit of 3 Mng) PR, sites on the PR vertices. strategy for occupyind, sites, such which they were subdi-
In the first-order decoration rule, there is one pairnodites  vided into three subclasses according to the neighboring tiles
on each of the three upper faces of theyARBn the long sharing theb linkage. Correspondingly, then, tlelinkages
diagona). However, in the loose Sl family of decorations, adjacent to the faces & cells marked “-” in Fig. 1(b) of
the top three sites are always merged into gge orbit near Ref. 1 are differentiated into three new tiling objects

Interior
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b(A,), b(A,), andb(Acc). Then they, and 8, sites for  used for decoration: all of theiy, atoms(and 8, atoms, if
theseb linkages are rebound to these three new tiling objectany) are rebound t faces and other CCT objects. A mini-
(calledb(A,), b(A,), andb(Ac¢), since they depend upon mal binding specification for the dense SI model requires
the surroundindA cells). The otherb linkages are no longer (typically) 22 orbits bound to nine CCT tiling objects.
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along an axis oh-fold rotational symmetry with respect to an
icosahedron, whose center the axis passes through.
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which is somewhat displaced sideways from the midpstin
the ysp and y, cases
%8The & sites at the fivefold vertices of those dTR that are centered

39The distance between nearest-neighbor nodes along threefold on even(odd CCT nodes are defined to be ev@dd. Given

linkages is (3°/\5)2a,~11.0A, and the distance between
nearest-neighbor nodes along twofold linkages is
2(71\5)a~12.7A.

this convention, it turns out that thé, sites associated with
“even” b linkages are odd, and thus remain unoccupied in
(densé FCI decorations.

“OIf we represented this particular arrangement of nodes as a coni?The variants involvingy sites may also be preselected according

bination of two B cells, there would be three possible place-
ments of theZ face, for the same placement of nodes. Thus, we
demand that this arrangement always be callecEacell. (It
follows that, on the tiles we continue to admit Bstiles theZ
faces arealwaysshared withD tiles) The E cell was called a
“B," cell in Ref. 1.

41AIthough that is what the abbreviation stands for, our Ml cluster
is somewhat different from the true “Mackay icosahedrda”
finite icosatwinning of the fcc lattioe Our MI always contains
only the first two shells of Mackay’s cluster, whose atomic sites
are filled by Al and Mn as in Fig. 2.
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breaking under relaxation — see Sec. VII B 1.
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their frequencies may be different depending on the tiling envi-
ronment.

%8For example, if an independent energy were associated with each

of the 32 ways of packing canonical cells around a node, the
model would be extremely complicated; moreover, the determi-
nation of its free parameters would require calculating the cohe-
sive energy for more than the 11 tilings that we considered in
paper Il.

53The distinction between successive “levels of description” is not®1t should be noted, however, that this dramatic simplification is

mathematically precise; it is more a statement of the way in
which we organize our description of the model.

54An initial attempt to extend the Elser-Henley rule makes full us-
age of the empirical structural knowledge framAIMnSi and
a-AlFeSi, namely that Mn atoms are spaced as uniformly as
possible (with mean spacing~4.6 A). First Ml clusters are
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sicrystals.

56C. L. Henley, Phys. Rev. B4, 797 (1986.

somewhat cosmetic: from a computational standpoint, the evalu-
ation of intertile interactions and the recognition of complicated
tiling objects are similacif not totally equivalenk tasks.

"We thank V. Elsefpersonal communicatiorior persuading us as

to the importance of this poirsee Ref. 19, Sec. 11.8lt has
been put independently by Katz and Gratias in Ref. 11; their
notion of “glissile” atoms is specific to quasiperiodic models,
but its extension to random tilings is clear. In 6D models the
only allowed phason rearrangements are implemented by trans-
lating the cut plane continuously in the “perp” direction; thus
the “glissile” constraint implies the “glueing” or “closeness”
condition, which requires that the boundaries of the atomic sur-
faces be connectg@imost everywheneby additional hypersur-
faces lying purely in the perp subspa¢&ee P. A. Kalugin,
Europhys. Lett9, 545(1989.]

"IM. Oxborrow and C. L. Henleyunpublishedl

57A few vy sites become vacant, or merge together to a new sité2Strictly speaking, the dual rhombohedra form not a “tiling” but a
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“covering” since the dTR’s overlap along threefold linkages.

"3Note that our labeling of site types in the zeroth-order madeg!
Greek letters appears even simpler in the dual-rhombohedral
description, since each letter corresponds to one kind of position
on the three-shell cluster.

"The third shell ina-AIMnSi or i-AlMn was previously repre-
sented as a triacontahedron on p. 11 of M. Audier and P. Guyot,
in Extended Icosahedral Structuresdited by M. V. JafidAca-
demic, San Diego, 1989

>The same approach would be equally good for th&lCuLi
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structure, in which a three-shell cluster is already well known.
See M. Audier, P. Sainfort, and B. Dubost, Philos. Magh®8
L105 (1986; and M. Audier and P. Guyot, iQuasicrystalline
Materials, edited by Ch. Janot and J. M. DubdMorld Scien-
tific, Singapore, 1988 p. 181.

"8Intriguingly, this is identical to the decoration e®rtex prolate

rhombohedra in the Henley-Elser model for Frank-Kasper qua-
sicrystals, Ref. 45; this unexpected relationship to such models
plays a prominent role in the model foiTiCrSi of Ref. 35. See
also V. E. Dmitrienko, inProceedings of ICQ%Ref. 2.



