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It is proposed that quasicrystal structure determination should include the calculation of cohesive energies
using realistic potentials. A class of atomic decoration models fori -AlMn is then presented, adopting the
‘‘canonical-cell’’ tiling geometry, with ‘‘Mackay icosahedron’’ clusters placed on all its nodes. The remaining
atomic positions are based, as far as possible, on the known structure ofa-AlMnSi. These models guarantee
good local packing of the atoms, whose displacements away from ‘‘ideal’’ positions are specified by only a
moderate number of parameters. Certain atomic sites are uncertain as regards their occupancy and/or chemis-
try; variations of the decoration rules on these sites must be compared, in order to discover the correct one. Our
models are well adapted to be relaxed under an effective Hamiltonian to optimize the cohesive energy; we
show how the energies found in such relaxations can be used to extract an effective tile-tile Hamiltonian, as
would be needed for future studies of phason elasticity and the development of long-range order. In addition,
we clarify concepts needed for decoration models in general~in particular, the ways in which elaborate, more
realistic decorations may be evolved from simpler ones!. We also show that these decoration models are
closely related, but not identical, to quasiperiodic structures defined using six-dimensional formalism.

I. INTRODUCTION

In this paper, we motivate and then describe explicitly an
ensemble of decoration models for the icosahedral quasicrys-
tal i -AlMn, which are based on the canonical-cell tiling
~CCT!.1 We attempt to deduce our models from what is
known abouti -AlMn, while allowing for structural varia-
tions at places in the structure where our assumptions are
insufficient to force a unique structure. This was done in
preparation for the systematic comparison of this entire fam-
ily of models by relaxing them under realistic pair potentials;
that study is reported in a companion paper,2 henceforth re-
ferred to as paper II. In addition, the present paper includes a
conceptual framework~see Secs. II and VI!, which applies to
decoration models quite generally.

A. Relevance to structure determination

In the past decade, many model structures based on fits to
crystallographic data have been presented for icosahedral
quasicrystals, such as metastablei -AlMnSi,3–6 thermody-
namically stablei -AlCuLi,7,8 and long-range ordered, stable
i -AlCuFe ~Refs. 9–12!, and i -AlPdMn.13 These are formu-
lated in terms of the six-dimensional~6D! ‘‘hyperspace cut’’
approach,11,14which is an economical way of describing ide-
ally quasiperiodic structures. We believe that each these fit-
ted structures contains a small, yet significant, residual frac-
tion of erroneous or undetermined sites.

Let us considerhow completely the structure must be
known in order to form a reliable basis for microscopic cal-

culations, e.g., for determining the cohesive energy~per
atom! Ecoh. The differenceEcoh(1)2Ecoh(2) between two
competing structures 1 and 2, is frequently only 0.01 eV per
atom. Each erroneously placed atom could easily increase
the cohesive energy by;1 eV, even after relaxation; thus, if
just;1% of the atoms in either models 1 or 2 were bad, the
sign ofEcoh(1)2Ecoh(2) could easily be spurious~in being
determined mainly by erroneous atoms!. Quite possibly, the
erroneous atoms would also degrade or spoil calculations of
the density of states, the conductivity, and the effective tile
Hamiltonian; the latter~the subject of Sec. VI!, is the input
information for theories explaining the origin of long-range
order in quasicrystals.

It is quite likely that the existing modelsdo have errone-
ous atoms at the;1% level, if only because of the uncer-
tainty in the existing crystallographic data. In particular, the
real-space structures contain some atomic environments of
very low coordination number that are quite improbable, at
least if the system is described by nearest-neighbor inter-
atomic potentials.15 Furthermore, we suspect that a purely
crystallographic approach, by itself, will never be able to fix
the positions and chemical identities of the atoms in quasi-
crystals to the precision required for accurate electronic-
structure computations. Firstly, the usual technical pitfalls
that enter the analysis of diffraction data are exacerbated in
the case of quasicrystals.16 Due to truncation effects, density
maps deduced from diffraction tend to contain spurious den-
sity maxima~appearing as atoms!.17 In addition, correct at-
oms may incorrectly appear to lie exactly on 6D high-
symmetry positions whereas their proper positions are
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displaced from them.17 Secondly, the 6D approach necessar-
ily assumesthat the structure has no disorder; the irreducible
disorder present in all real samples is thus considered extrin-
sic. If, instead, local disorder were intrinsic to real
quasicrystals,18–20then the 6D descriptions would be incom-
plete~in capturing only the averaged structure! and many of
the principles that guide the formulation of 6D-cut models
~e.g., sharp boundaries of the hyperatoms11! would be unre-
liable.

Since no single technique is powerful enough to supply us
with the needed structural knowledge, we propose a ‘‘syn-
thetic’’ approach to the problem of structure refinement, that
judiciously combines complementary types of information.
This involves~i! drawing analogies with known crystalline
structures,~ii ! fitting models to diffraction data, and~iii ! in-
sisting that models are both stable upon relaxation under
realistic potentials and have lower cohesive energies than
competing structures. By running cross checks of this sort,
the artifacts and/or spurious features arising out of individual
techniques can be detected and eliminated. Indeed, in an op-
timal refinement procedure, we suggest that both cohesive
energies based on realistic potentials andR factors with re-
spect to diffraction data should be calculatedin parallel, and
given comparable weights.21 Our belief in the synthetic ap-
proach motivates and colors the present paper and paper II.

The ‘‘synthetic approach’’ could be pursued entirely
within the format of the ‘‘6D-cut’’ formalism~as in the on-
going work of Cockayne and co-workers on the decagonal
d-AlCo models,22 and our own study ofi -AlMn models23!.
Instead, we have chosen to adopt the ‘‘decoration’’ formal-
ism. Decorations are based on finite-sized combinations of
atoms and are formulated in 3D rather than 6D space. They
thus lend themselves to easy visualization of the local pat-
terns of atoms in the structure, which is useful if the models
are to be varied and adjusted.

B. Contents of the paper

The outline of the paper is as follows. Section II intro-
duces the general concepts upon which the decoration ap-
proach is founded—concepts which we found essential for a
precise discussion, not only of each particular model, but
more importantly of therelationsbetween different models.
In fact, we consider it an advance simply to give a precise
meaning to the words ‘‘decoration model.’’ This is followed
~Sec. III! by the various facts, specific toi -AlMn and
canonical-cell tilings, that explain the assumptions made in
the next section.

Section IV is the core of this paper. In it four families of
CCT-based decoration models are presented, all of which are
extensions of Ref. 24. We distinguish between those places
in the structure where~we believe! the decoration is nearly
inevitable, and those places where there are several plausible
choices. The details of these models~in contrast to some
earlier versions25,26! are informed by our considerable expe-
rience with relaxations under realistic pair potentials~see pa-
per II!. ~Associated with Sec. IV are Appendix A, which
presents an attractive and alternative way of breaking up ca-
nonical cells into smaller tiles so as to extend the
a-AlMnSi decoration, and Appendix B, which describes one
of our decoration models in full detail.! This is followed up

in Sec. V by a discussion~summarizing Ref. 23! of the
~close! relations between these CCT-based model structures
and various 6D-cut model structures; here, we report the sta-
tistics of local patterns, which characterize the different
structural families.

In any quasicrystal model — be it based on the matching-
rule or random-tiling scenarios — the origin of long-range
quasicrystal order is formulated in terms of a Hamiltonian, as
a function of the tile configuration.19,27,28 To justify such
theories microscopically, and~perhaps! to test the validity of
the random-tiling scenario, requires that we calculate the co-
efficients entering this ‘‘tile Hamiltonian’’ from the atomic
structure and the structural energy function. Section VI sets
up the general framework for doing this, based on relax-
ations of decoration models. Finally, Sec. VII ties together
various ideas, presents a few suppositions and hypotheses,
and describes some possible extensions to our work.

II. GENERAL CONCEPTS FOR DECORATIONS

Here, we define what we mean by a decoration model.
The concepts that we introduce are quite general; they are
not specific to Al-Mn chemistry, nor to canonical-cell tilings,
nor to icosahedral symmetry. The section is organized around
the definitions of various concepts which we found essential
for understanding our work on relaxation~paper II!.

A. Definitions

A ‘‘model’’ denotes a particular atomic structure. For
decoration models, it means a combination of a particular
tiling and a particular decoration. For six-dimensional mod-
els, it means a particular cut through a particular 6D hyper-
crystal. The same model can sometimes be derived via dif-
ferent routes. For example, variations of the ‘‘a-AlMn’’
structure appear as known crystals~see paper II!, as approxi-
mants to 6D structures~see Ref. 23!, and as decorations of
the simple ‘‘pureA-cell’’ canonical-cell tiling.~Occasionally,
‘‘model’’ is used loosely to refer to a decoration rule.!

An ‘‘atomic site’’ is a position in space to which a ‘‘chem-
istry’’ is associated. This chemistry determines what~if any-
thing! is placed at the site. In general, model structures can
be formulated whose atomic sites are only partially occupied
and/or contain statistical mixtures of two or more atomic
species. It is difficult to relax structures of this sort in a way
that leads to meaningful results. We thus elect to exclude
partial occupancies and mixed species from our palette of
free parameters. Each atomic site may contain only a single
atom of a definite species, and this atom is either there, or it
is not.

A ‘‘tiling object’’ ~sometimes abbreviated to the word
‘‘object’’ ! is any finite, recognizable, geometrical entity
within a tiling. Thus, in order of roughly increasing complex-
ity, vertices ~also referred to as ‘‘nodes’’!, edges~also re-
ferred to as ‘‘linkages,’’ faces, corners~faces meeting at a
vertex!, tiles, ‘‘node environments’’~the star of edges radiat-
ing out from a vertex!, pairs of tiles adjoined together, or any
amalgamations thereof, can all be considered as tiling ob-
jects. Each type of tiling object has a point-group symmetry,
which is a subgroup of the point group that is associated with
the tiling ~icosahedral, decagonal, . . .!.
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We shall use ‘‘differentiation’’ as a general term for any
modification of a simple tiling model into a more elaborate
one, by simply relabeling tile objects using a deterministic
rule such that the tiling configurations correspond one-to-
one, and the number of tile objects increases through~at
least! one type of object being subdivided into several new
subtypes. This would be mathematically superfluous if we
were concerned only about the set of allowed tilings; how-
ever, it is natural in a decoration model when the atomic
arrangements are different on the different subtypes.

There are two common forms of differentiation:
~i! A ‘‘context-sensitivity,’’ whereby objects are differen-

tiated according to their local environments in the tiling.
Upon doing so, each tiling gives rise to a new, unique tiling,
where there is a one-to-one relationship between the old and
new tilings.

~ii ! A ‘‘symmetry breaking’’ of the tiling’s space group.
The nodes of the tiling may be colored~according to their
parity, for example!, or arrows may be attached to edges, or
handles/stubs may be attached to faces~see Ref. 1!; then the
point symmetries of these tiling objects will be reduced, and
the number of distinguishable types of tiling object~at any
given level in the hierarchy of tiling objects as listed above!
will be increased. For example, a tiling with simple-
icosahedral~SI! symmetry may be transformed into a tiling
with face-centered-icosahedral~FCI! symmetry ~see Secs.
III A and VII B 1 !; then any given tiling may give rise to
more than one different structure, depending on one arbitrary
global choice as to which of the two sublattices is taken to be
even and which is taken to be odd.

In a ‘‘decoration,’’ atoms are placed on tiling objects such
that both

~1! every object of a given type is decorated in the same
way ~just like a unit cell in ordinary crystallography!, and

~2! the point-group symmetry of a decorated tiling object
is the same as that of the ‘‘bare’’ tiling object before decora-
tion.

Atomic sites that decorate a given tiling object are said to
be ‘‘bound’’ to that tiling object. Condition~ii ! above forces
atomic sites to lie in discrete ‘‘orbits,’’ generated by the
point-group symmetry of the tiling objects to which they are
bound. The association between these orbits and their tiling
objects is called a ‘‘binding.’’ To avoid the generation of
duplicate atoms, we insist that, within a given binding, each
atomic site is bound to a unique orbit. The specific coordi-
nates of atoms generated in this way, will be called the ‘‘ca-
nonical positions’’ for that model and binding.

Models are ‘‘topologically equivalent’’ if they relax to
structures with identical atomic coordinates.29 ~We assume
that the initial positions are close enough to the final ones
that different relaxation algorithms give identical results.! A
model is ‘‘topologically correct’’ if the model positions are
topologically equivalent to the real ones; it is called ‘‘crys-
tallographically good’’ if, in addition, the canonical positions
are close to the ‘‘real’’ ones. For this purpose we might plau-
sibly take the real structure to be either the true ground state
of the potentials that we assume, or the experimental struc-
ture as determined by diffraction.

B. Binding and rebinding

The utility of the decoration approach in specifying
atomic structures stems from the fact that it replaces the task

of determining the positions and chemistries of an infinite
number of different atomic sites by the task of determining
the positions and chemistries of the handful of independent
atomic sites~orbits! that decorate each type of tiling object.
Since a practical decoration model uses only a finite number
of object types, there are only a finite number of independent
atomic sites, and their positions and chemistries can be
specified by a finite number of parameters. This colossal sim-
plification comes at a price:almost identical environments
are treated as if they areexactlyequivalent. The actual num-
ber of free parameters is determined by the binding of the
decoration model.

A given canonical orbit can typically be specified by sev-
eral different choices of binding.~For example, one might
account for a given site by binding it to either a nearby
linkage or a nearby face.! Additionally, there may be other
bindings which describe different atomic coordinates yet are
topologically equivalent~in that they relax to the same struc-
ture!. Out of all those topologically equivalent bindings, we
define the ‘‘minimal’’ binding for that structure to be the one
that uses the fewest orbits.

Since the specification of a binding, in full detail, can be
forbiddingly complicated, it is usually clearer to present a
decoration model in a more informal fashion, which could be
called a ‘‘topological’’ description. In such a description, we
relax the condition that a given atom be accounted for just
once; we do not specify the numerical coordinates of the
atomic sites; and we specify atomic sites with reference to
the most convenient tiling objects, even if these are not the
objects to which the sites will ultimately be bound.

The most compelling decoration models are those that are
crystallographically good yet contain few free parameters. A
decoration model can be improved~albeit at the expense of
increasing the total number of free parameters! by dividing
each orbit into several new orbits of lower symmetry, such
that the atomic environments within each new orbit are more
alike. This process is called ‘‘rebinding.’’ Formally, it can be
regarded as the re-expression of the tiling in terms of a larger
family of tiling objects — this step is what we called a ‘‘dif-
ferentiation,’’ of the context-sensitivity variety — and the
decoration of these new objects in independent ways — this
is the differentiation of orbits, induced by the differentiation
of the tiling. Whenever we observe that two orbits in a deco-
ration are similar to each other, we can make this relationship
precise if we can consider them both as derived from a single
orbit in a simplified model, via differentiation.

Rebinding may be implemented simply so that the canoni-
cal positions in an orbit may more closely approximate the
real relaxed ones. Alternatively, it is possible that some of the
new orbits are topologically different~here a difference in
chemistry or occupancy counts as a topological difference!.
In either case, so as to reduce the total number of free pa-
rameters, some orbits are typically left in undifferentiated
form; that is different orbits are forced to share the same
canonical coordinates~as if they were bound to the original
undifferentiated tile objects!.

C. Canonical and ideal positions

Rather than using generic canonical coordinates, it is of-
ten convenient to adopt ‘‘ideal coordinates,’’ meaning that
positions can be written30
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njaj , ~1!

where thenj are integers or half-integers and theaj are six
basis vectors, independent over integers and pointing to-
wards the corners of an icosahedron;uaj u5aq'4.6 Å , the
‘‘quasilattice constant.’’ The vertices in an Ammann tiling
and the nodes in a canonical-cell tiling always have ideal
coordinates. So do the atomic sites in 6D models with flat
atomic surfaces.@It is clear from Eq.~1! that ‘‘ideal’’ posi-
tions are simply the projections of high-symmetry Wyckoff
sites within the appropriate 6D regular lattice.#

It is often useful to specify a canonical position as an
ideal position plus a displacement.31 Within the decoration-
model approach, sites may be displaced only in directions
that respect the point symmetries of the tiling objects to
which they are bound; the space of canonical displacements
for a given site may be either 0-, 1-, 2-, or 3-dimensional.32

All of the models presented in this paper use ideal positions,
for simplicity33 and because they are intended merely for use
as starting structures for relaxations~paper II!. On the other
hand, a decoration model that is destined for structural re-
finements must be specified in terms of generic canonical
coordinates.

A laudable aim is the discovery of crystallographically
good decoration models, whose atomic sites lie extremely
close to the positions of the atoms in real quasicrystals.
Given that a decoration model is topologically correct, the
discrepancy between it and the real structure can be charac-
terized in terms of the ‘‘canonical rms’’s j for each orbitj ,
defined as the root-mean-squared difference between the real
and canonical positions of the sites in that orbit. Optimized
canonical positions can be determined by minimizing each
s j ; thus s̄, the properly weighted combination ofs j ’s for
all orbits, is the real-space analog of theR factor of diffrac-
tion refinements. Certainlys̄ can be decreased by rebinding
atoms to newly differentiated tiling objects with lower point
symmetries~since this gives the atoms a greater range of
displacements to choose from!, though at the expense of in-
troducing more free parameters.

III. BACKGROUND FOR AL-MN STRUCTURES

In this section, we review well-known features of Al-Mn
quasicrystals and related crystal structures, which serve as
the starting point for our minimal decoration model~Sec.
IV !. This includes both some essential facts on the canonical-
cell tiling, which will serve as the framework for the deco-
ration model, and also some generalities about the typical
local order in these alloys.

A. Canonical-cell tiling

We base our decoration models on the canonical-cell til-
ing ~CCT!.1 Some of us have used these tilings in two pre-
vious models for FCIi -AlMnSi.25,26CCT-based models have
also been produced fori -AlCuLi and i -TiMn.34,35 The CCT
packing rules permit periodic, random, or~in principle! qua-
siperiodic tilings;1,36,37no rule for a quasiperiodic CCT is yet
known.

Here, we recall the nomenclature and essential facts about
the CCT, which will be used in Sec. IV. Canonical-cell tilings
are built out of four kinds of cell, denotedA, B, C, D, such
that their ‘‘nodes’’~i.e., vertices! are joined by a network of
‘‘linkages’’ ~i.e., edges!. These linkages run in both the two-
fold and threefold directions~see Fig. 1!, denoted ‘‘b’’ and
‘‘ c,’’ respectively.38,39 There are three different sorts of cell
face, which have the shapes of an isosceles triangle~framed
by oneb linkage and twoc linkages!, an equilateral triangle
~framed by threeb linkages!, and a rectangle~framed by two
b linkages and twoc linkages!; these are denoted ‘‘X, ’’
‘‘ Y,’’ and ‘‘ Z, ’’ respectively. Together, the nodes, linkages,
faces, and cells comprise a set of ‘‘tiling objects’’ for the
CCT.

Our CCT-based decoration models require one further
cell, theE cell; this is a squashed octahedron filling the same
space as twoB cells sharing a~rectangular! Z face. This
modification of the CCT as defined in Ref. 1 ensures that
every allowed arrangement of nodes corresponds to a unique
tiling.40 The internalZ faces within theE cell are denoted
‘‘ ZBB’’; those Z faces that do not lie insideE cells are de-
noted ‘‘ZD , ’’ since they form the~rectangular! sides ofD
cells; the distinction between these two types ofZ face is
only made where relevant.

The CCT nodes are bipartite, in the sense that they can be
divided into ‘‘even’’ and ‘‘odd’’ sublattices. Even~odd!
nodes have integer coordinates in 6D whose sums are even
~odd!. Nodes connected byb linkages have the same parity;
those connected byc linkages have opposite parities.

Consequently, FCI decoration models can be realized by
distinguishing the even and odd nodes, and consequently
various tiling objects~bonds, cells, etc.! of which these
nodes form a part. Many CCT objects get differentiated into
even- and odd-flavored versions, defined according to the
parity of the nodes within the object. Thus ab bond is even
~odd! when it connects two even~odd! nodes. On the other
hand, thec bond, connecting one even and one odd node,
still comes in one flavor but its ends are no longer symmetry-
equivalent to each other. Other objects, important in our
decorations, that acquire two flavors are the even~odd! Y
faces@which have even~odd! nodes on all vertices#, and the
even~odd! D cells @for the orientation shown in our figures,
their lowestY faces are even~odd!#.

B. Typical atomic motifs

Our most important~and largest! motif is the Mackay
icosahedron~MI ! cluster;41 see Fig. 2. This is composed of

FIG. 1. The canonical cells. Edges areb linkages~double lines!
andc linkages~single lines!. The face names are also indicated.
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inner and outer shells. The inner shell contains 12 nearest-
neighbor Al atoms, located at the vertices of a small icosa-
hedron. The outer shell comprises 12 Mn atoms and 30 Al
atoms: the 12 Mn atoms are located at the vertices of a larger
icosahedron, about twice the radius of the small one; the 30
Al atoms are located along twofold axes, just outside of the
larger icosahedron. There is good reason to believe that MI
are present ini -AlMnSi quasicrystals from the similarity of
the Patterson function to that ofa-AlMnSi,3 and perhaps
also from extended x-ray-absorption fine-structure~EXAFS!
results.42 The 6D diffraction refinements are, in fact, not in-
consistent with the ‘‘6D midedge’’ sites, that represent the
inner icosahedron of Al atoms in the MI.43

Next, we mention a motif which isnot observed in ap-
proximant crystals, but which appears commonly in many
6D cut models. The ‘‘pseudo-MI’’ is composed of inner and
outer shells. Its outer shell, containing 12 Mn and 30 Al
atoms, is identical to that of the MI. Its inner shell, however,
contains only seven Al atoms, which are located along three-
fold axes radiating from the center of icosahedral symmetry.
From the viewpoint of good packing, as favored by familiar
nearest-neighbor potentials, such a pattern seems quite im-
plausible. However, experience with realistically oscillating
potentials~paper II! has taught us to be cautious in making
such judgments.

A secondary, common motif is the ‘‘mini-Bergman’’ clus-
ter, which consists of an Al12Mn icosahedron as an inner
shell, plus an outer shell of 20 Al or Mn atoms on the three-
fold axes of this icosahedron. This cluster has been discussed
as a fundamental motif for the Katz-Gratias quasiperiodic
~6D cut! model.11 It appears very frequently in a model for
i -TiCrSi ~in the i -TiMn family!, whose characteristic local
order interpolates between the Al-Mn and Frank-Kasper
families of quasicrystal.35 @The complete Bergman cluster,
which is the dominant motif of bccT-AlZnMg ~Ref. 44! and
related ‘‘Frank-Kasper’’ quasicrystalline phases,45 differs
from the mini-Bergman cluster through the presence of 12
additional atoms on the outer shell, along the icosahedron’s
five-fold axes.#

The energetic favorability of those motifs ought to be ex-
plained in terms of cohesive energies, hopefully expressed as
effective interatomic Hamiltonians with local interactions. It
might turn out that the large motifs are simply the best solu-
tions for maximizing the frequency of some small motifs,
which are discussed next.

The known, stable Al-rich AlMn alloys~including those
which are not quasicrystal approximants! contain certain
characteristic, repeating motifs at the scale of a single coor-
dination shell.~Similar patterns are seen in the other Al-
transition-metal alloys.! Even if the effective interatomic
Hamiltonian is not available, one can gain some insight into
this Hamiltonian and the probable local order ini -AlMn by
studying these small-scale motifs;46 the resultant conclusions
are

~i! the Mn-Mn spacing is strikingly uniform47 in alloys
whose Mn concentrations (xMn) lie near the quasicrystal-
forming value. The typical Mn-Mn separation in such~Al-
rich! alloys is;4.6 Å .48

~ii ! The Al12Mn icosahedron~centered by Mn! is a ubiq-
uitous motif. This forms the center of the ‘‘mini-Bergman’’
cluster ~see below!. The MI cluster ~the backbone of our
decoration! is a super-icosahedron formed by Al12Mn icosa-
hedra.

~iii ! Octahedra of Al6 are a common pattern, prominent in
the MI cluster~and its extension to a three-shell cluster,49 see
Fig. 2!. Thus, in contrast to the AlCuLi family of quasicrys-
tals, the AlMn alloys arenot ‘‘tetrahedrally close packed.’’50

IV. MINIMAL DECORATION MODEL FOR Al-Mn

In this section, we present the core content of this paper:
decoration models for Al-Mn based on the Mackay icosahe-
dron ~MI ! motif and the geometry of the canonical-cell tiling
~CCT!. We limit ourselves to binary Al-Mn models~as op-
posed to studying ternaries, such asi -AlPdMn! primarily be-
cause, in paper II, we lacked the requisite effective pair po-
tentials for relaxing ternary models.

We consider two classes of decoration rules: ‘‘dense’’
rules which attempt to optimize the atomic packing, and
‘‘loose’’ rules which, we discovered, do a better job of satis-
fying realistic potentials~see paper II!. We also consider two
kinds of ‘‘Bravais’’ symmetry: SI symmetry, as is experimen-
tally observed in reali -AlMn and i -AlMnSi; and FCI sym-
metry, which is created if one takes the natural generalization
of thea-AlMnSi structure,51 and which seems to be present
as local order52 in i -AlMn. Thus, four major families of
decoration may be delineated by the various combinations of
dense/loose and SI/FCI.

The complete presentation of a decoration model really
consists of two parts: first, a ‘‘topological’’ description, that
both covers all atomic sites~possibly some of them more
than once! and also has the correct bond topology, but which
does not specify the precise positions of the atoms; and sec-
ond, the binding, which assigns atoms to tiling objects such
that none of them are duplicated, and which specifies the
positions metrically. Descriptions of the former sort are the
subject of this section. We present an example of a binding
~viz. a minimal binding for the loose SI decoration! in Ap-
pendix B.

A. Overview

We will present the decoration rules by outlining the pro-
cess by which we guessed them. For each decoration rule, we

FIG. 2. Icosahedral cluster with three shells of atoms~left to
right!, shown within the outline of a large triacontahedron. The first
two shells constitute the ‘‘Mackay icosahedron’’~MI !. Open circles
are Al; filled circles are Mn~on the second shell! or candidated
sites~on the third shell!.
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find it convenient to distinguish ‘‘zeroth-order,’’ ‘‘first-
order,’’ and ‘‘second-order’’ levels of description.53 The
zeroth-order model is formulated by decomposing the
canonical-cell tiling into smaller tiles and decorating these
by simple rules. The resultant structure contains a few glar-
ing conflicts or duplications of atoms. Fixing them yields the
first-order model; the process amounts to a ‘‘rebinding,’’
which implements ‘‘context sensitivities’’~see Sec. II B!.

The first-order model is usually plausible~as can be
checked by stability under relaxation!, but a few places are
poorly packed and costly in energy. Models in which these
too are fixed, as in the models actually relaxed in paper II,
will be called ‘‘second order.’’ Such models include possible
‘‘variants’’ ~alternate versions of the decoration, differing by
the occupancy of special sites!.

We adopted this stratified way of presenting models be-
cause

~i! the same general approach could be~and has been!
applied to other kinds of quasicrystal;

~ii ! it organizes our thinking about the different orbits —
two orbits are likely to have similar local environments, if
they arose by differentiation from the same orbit in the
‘‘zeroth-order’’ model;

~iii ! we want to impress upon the reader that our models
are not arbitrary inventions; their forms are practically ines-
capable, once we have assumed that the structure is a pack-
ing of Mackay icosahedron~MI ! clusters arranged in a CCT
geometry;

~iv! it hints at a heuristic but systematic approach to
guessing more realistic models by ‘‘differentiating’’ the or-
bits of cruder models.

As our starting point, we demand that our decoration con-
form to the known features of the cubica-AlMnSi structure
~also seen in hexagonala-AlFeSi!: mechanically reproduc-
ing a-AlMnSi motifs, wherever we can, yields a complete
zeroth-order model. Thus, every CCT node is occupied by a
two-shell Mackay icosahedron~MI ! cluster, and the configu-
rations of atoms surrounding the twofold (b) and threefold
(c) linkages are the same as in thea phase; see Fig. 2. The
MI clusters include the inner icosahedron of Al(a) atoms
and the outer icosahedron of Al(b) and Mn(m) atoms. This
accounts for about 70% of the atoms, in particular all those
in theA cell and nearly all of them in theC cell.

From this point, there are several paths for guessing how,
using the structure ofa~AlMnSi! as a guide, the decoration
can be extended to the interiors of the largerD andE cells;
happily, they all lead to exactly the same basic decoration
rules. These paths are based on two different ways of subdi-
viding the CCT into smaller tiles:

~i! subdividing into ‘‘vertex rhombohedra,’’ such that each
CCT node is a vertex, where the tips of many such rhombo-
hedra meet.54 ~We call them ‘‘vertex’’ rhombohedra because
their corners can be projected from vertices in 6D.! We shall
refer to this path as the ‘‘vertex-rhombohedral’’ approach.

~ii ! subdividing into ‘‘dual’’ rhombohedral objects, such
that each CCT node is surrounded by an~icosahedrally sym-
metric! triacontahedron representing large three-shell atomic
clusters.~We call these objects ‘‘dual’’ because their corners
can be projected from the body-center sites in 6D.! This
geometrical treatment of CCT is presented in Appendix A;
we shall refer to it as the ‘‘dual-rhombohedral’’ approach.

Exceedingly simple ‘‘zeroth-order’’ models can be ob-
tained by decorating these small tiles with orbits.55 Decora-
tions of this sort are, however, unacceptably crude—they
typically produce conflicting pairs of atoms. Our ‘‘minimal
~first-order!’’ decoration model is, in essence, a differentia-
tion via context sensitivity~see Sec. II B! of such a zeroth-
order model, the orbits of which get rebound to canonical
cells ~and the various tiling objects associated therewith!.
Our labels for orbits reflect this evolution: the Greek letter
denotes the zeroth-order orbit from which the given site is
descended; where needed, other subscripts distinguish par-
ticular orbits in the minimal~first-order! model. Thus orbits
with the same Greek letter tend to have similar local envi-
ronments and behave in similar ways upon relaxation.

In the rest of this section, we first present our minimal
~first-order! model from the ‘‘vertex-rhombohedral’’ view-
point ~Sec. IV B!. We then address the conflicts that arise,
first those involving the ‘‘g ’’ atoms ~Sec. IV C!, and then
those involving the ‘‘d ’’ atoms ~Sec. IV D!, which are re-
sponsible for the key differences between our families of
model. The resolution of the handful of questionable envi-
ronments within each family leads to variant decorations;
these are discussed in Sec. IV E at the end.

For the specific loose models emphasized in this paper,
the vertex-rhombohedral viewpoint turns out to be more suc-
cinct for describing the structure model. However, the dual-
rhombohedral viewpoint is more economical for grasping the
geometry of the model and~probably! for explaining its
physics.

B. Vertex-rhombohedral approach

In this subsection, we will present the minimal~first-
order! decoration of the vertex rhombohedra.

1. Geometry of vertex-rhombohedral tiling

It is well known that the simplest quasiperiodic tiling with
icosahedral symmetry is the Ammann tiling@sometimes
called 3DPT~Refs. 24, 30 and 56!#. Its tiles are the prolate
rhombohedron~PR! and the oblate rhombohedron~OR!;
their rhombic faces are all congruent, and their edges all
have lengthaq and point along fivefold symmetry axes. The
CCT may be decomposed in a unique fashion into PR’s,
OR’s, and rhombic dodecahedra~RD’s!.1 Collectively, and
loosely, these will be called ‘‘rhombohedra.’’ This decompo-
sition is illustrated in the case of theD cell’s interior in Fig.
3; each successive layer of rhombohedra fits exactly over the
surfaces of the layer below.

To eachb linkage, we assign an RD, and to eachc link-
age, we assign a PR; we shall call them ‘‘RDb’’ and
‘‘PR c , ’’ respectively; they both have MI’s at their tips and
were already encountered in Ref. 24. We assign to each tri-
angularY face another kind of PR~‘‘PRY’’ !, which pierces
the Y face. It is useful to divide these PRY into two sub-
classes, called ‘‘PRY(C)’’ and ‘‘PRY(D),’’ according to
whether the cell adjoining theY face on the side marked
‘‘ 1 ’’ ~Ref. 1! is aC or aD cell, respectively~most of the
PRY lies within the cell on that side!. To eachD cell, we also
assign three more PR’s (PRD). And finally, to each~rectan-
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gular! Z face, we assign an oblate rhombohedron (ORZ), as
seen in Fig. 4~b! of Ref. 1. This ORZ also occurs at the center
of the E cell. ~It could also be viewed as decorating the
internalZ face that arises when theE cell is divided into two

B cells.! In the following descriptions, we will use the words
lower, upper, front, etc., with reference to the orientations of
the objects shown in Figs. 3 and 4.!

2. Zeroth-order description

The zeroth-order version of the decoration is a generali-
zation of the Elser-Henley decoration:24

~i! First, we decorate every CCT node with a Mackay
icosahedron~MI ! cluster. This fixes a good many of the at-
oms lying on or inside the rhombohedra that link the nodes
of the CCT~viz. the RDb and PRc). See Fig. 4. In particular,
all vertices of the MI turn out to be rhombohedron vertices
@‘‘Mn( m)’’ sites in our description#. The Al atoms in the MI
form the Al(a) and Al(b) sites.

~ii ! Next, to decorate theb linkages, we place two
Al( g) atoms on each side and top face of every RDb . In
addition, we place two candidated sites in the interior of
each RDb , along its ‘‘vertical’’ twofold axis; we will refer to
these as the ‘‘db’’ sites. See Fig. 4. Here, we call thedb sites
‘‘candidate’’ because only some of them will be occupied;
indeed, the treatment ofd sites is the key distinction between
dense/loose and SI/FCI models. So as to emphasize the fea-
tures that are common to all four model families, we post-
pone the details ofd-site occupancy to Secs. IV D and IV E.

The above rules~i! and~ii ! are identical to the decoration
of a pureA-cell tiling, as described in Ref. 24. ThisA-cell
tiling is special, in that it can be decomposed into PRc and
RDb , and no others. More general canonical-cell tilings nec-
essarily contain other rhombohedra, whose decorations we
have yet to specify.

Several of these other rhombohedra have tips that lie at
CCT nodes. For example, the top tip of each PRY lies at the
apex of aC cell, and the lower tips of each PRD triplet lie at
the three lower corners of aD cell. The decorations of such
tips are determined by the decoration of each CCT node with
an MI. Furthermore, the decorations on the top and side
faces of the RD fix the decoration on the faces of the other
rhombohedra adjoining it.

Thus, the decoration of the remaining rhombohedral faces
can be summarized by the following two rules, which are
generalizations of the way in which the RDb faces are deco-
rated:

~iii ! We place a Mn(m) atom oneveryrhombohedron ver-
tex that was not already covered by rule~i!.

~iv! Next, we place two ‘‘Al(g)’’ atoms on the long diag-
onal of every rhombic face, except when one endpoint is a
CCT node.@In that case, the face decoration is already speci-
fied by rule~i!.#

On the three upper faces of PRY(D), the Al(g) atoms
form two sets of trios; we name the upper trio, which lies
nearer to the upper PR tip, ‘‘gD2,’’ and the lower trio, which
lies nearer to the PR center, ‘‘gD1.’’

Finally, we decorate the interior of the PR.
~v! To each PRY(C), we place adY site on its long~three-

fold! axis in the end lying closest to theY face, such that the
site divides the long axis in about the ratiot21:t22; simi-
larly, we place adD site in the upper end of each PRD .

A simple rule to codify the asymmetry in the placement of
these~candidate! d sites is that they may reside only in those
ends of PR which do not have a Mackay icosahedron~MI !
cluster at the tip. Thus, PRc , with an MI at both its tips, can
contain nod site, while the PRY(C) and PRD can each host

FIG. 3. Decoration ofD cell by vertex rhombohedra:~1! the
PRY(D) appears shaded in the center;~2! adjoining it are two~out
of the three! PRD ~thin lines!, whose lower tips coincide with nodes
at the bottom of theD cell; ~3! centered on the rectangularZD face
at the front is an ORZ ~bold lines!; ~4! two ~out of three! PRc are
shown ~medium lines! spanning thec linkages along the vertical
sides of the frontZD face; ~5! a RDb ~dashed lines! spans theb
linkage along the bottom edge of the frontZD face.

FIG. 4. Decoration of vertex rhombohedra by atoms. Alld at-
oms are interior; interiorg~Al ! atoms inside a PR may occasionally
be Mn ~see text!. Atoms on hidden faces are not shown. The second
shell of an MI cluster is shown schematically by dashed lines at the
tips of the RDb ; similarly there is an MI at each tip of PRc . The
density variation is possible for both PRY~C! and PRY(D). The
lower half of PRD and the upper half of PRY(C) are identical to
half of PRc , since MI’s are centered on those tips.

9008 53MIHALKOVIČ , ZHU, HENLEY, AND OXBORROW



oned site ~in the ends whose tips do not coincide with the
apex of the surroundingC cell, and a node at the bottom of
the surroundingD cell, respectively!. The placement of an
~occupied! d site in PRY(D) is precluded by the presence of
the g3D site ~see below!, which lies nearby and also on the
threefold axis. We remark here, that the placements of can-
didated sites would seem to be more natural from the ‘‘dual-
rhombohedral’’ viewpoint~see Appendix A!. This completes
the zeroth-level decoration rule.

C. Resolvingg atom conflicts: First-order description

The zeroth-order decoration produces two kinds of con-
flict between theg sites that are generated by rule~iv!; both
are resolved in the first-order decoration. At the same time,
we note some remaining options for these ‘‘problem places,’’
which provide some of the variations in Sec. IV E.

The first kind of conflict concerns the ORZ , which, in the
zeroth-order decoration, gets six ‘‘Al(gZ)’’ sites on its top
three faces and six on its bottom three faces. These sites form
extremely close pairs, so close that they must be merged,
producing a hexagon of Al(gZ) sites, which lie in the plane
bisecting the short axis of the ORZ . These sites are called
‘‘ gZ , ’’ since there is one such hexagonal ring of sites for
everyZ face.

It is not obvious, but it emerged from relaxation studies
~paper II! that even thegZ ring is somewhat overpacked.
This is resolved, not by merging these sites, but by leaving
some of them unoccupied; this leads to the ‘‘4/6’’ and ‘‘5/6’’
variants~the numerator indicates the number of sites that are
occupied!. The symmetry imposed by our use of determinis-
tic decorations prevents us from implementing such variants
in many places; for example, the 3¯symmetry of theE cell
demands that we use the ‘‘6/6’’ option~all six sites occupied!
for thegZ sites associated with the ORZ(E) inside that cell.

The second kind of conflict concerns the PR tips that do
not coincide with CCT nodes. These tips receive a triangle of
Al( g) atoms lying too close together~their separation is
roughly;t21 of the usual interatomic distances!. Such tri-
angles have two possible fates:

~a! in the ‘‘3g ’’ option, all three sites remain — in the real
structure they must of course relax outwards somewhat from
the faces of the PR;

~b! in the ‘‘g3’’ option, the triangle ofg sites is merged
into a singleg3 site.

At the upper tip of PRD , we always~in every decoration
rule! take the 3g option. At the upper tip of PRY(D), on the
other hand, we take theg3 option, collapsing 3gD2→g3D .
The only PR tips not yet considered are the lower ends of
PRY . Here, we take the 3g option in the ‘‘first-order’’ rule,
but in some variant~‘‘second-order’’! models these atoms
can form ag3Y site instead; the choice is influenced by the
neighboring atoms, in particular by the occupancy of the
surroundingd atoms.~Thus, in the complicated variants of
the ‘‘dense’’ FCI models, different resolutions of theg tri-
angle give rise to ‘‘even’’ and ‘‘odd’’ flavored decorations of
the PRY’s.!

This completes our first-order description. We chose to
force the first-order model to be virtually the same for all
combinations of the dense/loose and SI/FCI attributes, in or-

der to highlight the similarities between these models. We
will now turn to the differences.

D. Resolvingd-site conflicts

The candidated sites form a network such that the closest
sites are separated byaq ~rhombus edge length!, which we
will call a d link. ~It is seen in Appendix A that thed links
are precisely the edges of the dual rhombohedral objects.!
The issue at hand is the occupancy of the network ofd sites.
As we will explain shortly, thed atoms can be thought of as
a lattice gas which satisfies an effective hard-core constraint,
where the minimum separation betweend atoms isr d . The
dense and loose models are those withr d51.05aq and
r d51.70aq , respectively; the dense models attempt to maxi-
mize the occupancy ofd sites under this constraint, whereas
the loose models occupy an arbitrarily small fraction of them
— the rules called ‘‘LS3’’ in paper II have no occupiedd
sites at all. Given a particular density ofd sites, the FCI and
SI models represent two different solutions to the problem of
satisfying the hard-core constraint.

Thesed-d exclusions are not direct conflicts, sincer d is
much larger than an interatomic distance; rather, conflicts are
mediated by the interveningg atoms. To understand the in-
terplay between thesed andg sites, let us consider the rhom-
bus of four nearbyd sites, as shown in Fig. 5; this configu-
ration is a typical pattern in thed network. @In the dual-
rhombohedral description~Appendix A!, this rhombus is the
face of a dual tile; such a face lies in the plane bisecting a
b linkage; now, in the vertex-rhombohedral description, this
plane cuts the RDb spanning theb linkage; the intersection
of the plane with the surface of the RDb is indicated by the
dotted rectangle in Fig. 5.# The solid edges ared links of
lengthaq , and the dotted edge is of length 1.05aq . There are
g atoms on eachd-link edge and candidated atoms on every
corner.

First, twod atoms connected by ad link should not both
be occupied, since that would leave too little space for the
g atom which sits near the midpoint of everyd link.57 In Fig.
5~a!, this is achieved by leaving the apexd sites vacant and
occupying the other twod sites; such a configuration, with

FIG. 5. Conflicts betweend atoms as mediated byg atoms. The
rhombus~divided into two isosceles triangles!, with edges of length
aq'4.6 Å , is part of thed network. The dotted rectangle on the
left most rhombus is the outline of a rhombic dodecahedron, viewed
down its long axis. In~a! and ~b! the d-d spacing is 1.05aq and
1.70aq, respectively, characteristic of dense FCI and loose FCI
decorations; in~c! all d sites are vacant, as can occur in loose SI
decorations.
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closest approachr d51.05aq , is typical of a dense model.
~For the dense SI case, this constraint is not perfectly satis-
fied as there are rare pairs of sites with separation of only
1.0aq .)

Second, although the configuration in Fig. 5~a! avoids the
directg-d atom conflicts, theg atoms on edges will be dis-
placed~upon relaxation! along the edges towards the vacant
d sites, and thus closer towards each other; the squeezedg
atoms cannot deviate very far from the rhombus edges, since
there are typically other nearby atoms in such directions.
Thus, Fig. 5~b! is a better configuration, with the apexd ’s
occupied and the other twod sites vacant. This is typical of
a loose model, wherer d51.70aq , the length of the long
rhombus diagonal in Fig 5.

To implementd-d exclusion everywhere, the dense FCI
decorations allow only evend sites to be occupied58 ~thus,
only about half of the availabled sites are filled!. In other
words, the lattice gas ofd ’s satisfies the indirect exclusion
through a~global! symmetry breaking. In the dense SI deco-
rations, on the other hand,d sites are occupied~or not! ac-
cording to their locations with respect to the CCT. But the
whole discussion suggests that it is actually preferable to fill
much less than 50% of thed sites on average, as in the loose
models, in which frequently all threed sites in a triangle are
left vacant@as shown in Fig. 5~c!#. In that case, these con-
straints have many solutions — the ‘‘lattice gas’’ really does
have the freedom of a gas.

E. Second-order description: Families of decoration

The first-order description has fixed most of the problem-
atic atomic orbits. The further treatment ofd sites leads to
the four basic families of decorations, as has been outlined
just above. Variations within each family arise from the vari-
ous options that are available for resolving the problematic
g sites, as well as from the details concerning howd sites are
treated within the basic pattern of each family.

Let us review the first-order sites which are common to all
our decoration families:

~a! One MI at each CCT node, consisting of Mn~0!,
Al( a), Al(b), and Mn(m);

~b! Mn(n) at each remaining rhombohedron vertex;
~c! Al( g) pairs on each remaining rhombus face, with

those on ORZ merging into a ring of sixgZ sites, and those
around the upper tip of PRY(D) merging into a~single!
g3D site.

~d! Candidatedb , dY , anddD sites in each RDb , in the
lower end of each PRY(D), and in the upper end of each
PRD , respectively. For future convenience, thedb sites are
divided into ‘‘db(A), ’’ which fall into A cells, and
‘‘ db(BD),’’ which fall into all other cell types~the cases are
B/E or D).

The uncertain places, available for variation in the
second-order description, are

~i! every candidated site ~Al, Mn, or vacant!;
~ii ! 3g sites in the lower end of PRY ~theg3Y option!;
~iii ! the hexagonal ring of sixgZ sites in eachZD face~the

‘‘4/6’’ or ‘‘6/6’’ options !.
Most of the above options are,a priori, equally plausible.

The optimal choice might depend on the potential used, or on
how other nearby uncertain sites are resolved. The variants

we consider here were partly preselected on the basis of the
relaxations presented in paper II:59 we have eliminated from
discussion those variants that turned out, in all situations, to
be unstable under relaxation.

We will organize our account of the variants systemati-
cally by their effect on the total number densityrat and on
the stoichiometry~i.e., the fraction of Mn,xMn). First, all
three kinds of uncertain place allow density variations. As
for chemical variations, the main option is Al→ Mn on d
sites. These sites have icosahedral Al12 coordination shells,
and Al12Mn icosahedra are indeed favorable motifs~see Sec.
III B !. On the other hand, the Mn(d) sites do not fit well with
the structural tendency to uniform spacing of Mn, as realized
by Mn(m/n) at the corners of vertex rhombohedra; instead,
the Mn(d) option often creates Mn-Mn neighbor pairs,
which is somewhat contrary to structural tendencies in Al-
transition-metal alloys. There are also possible Al/Mn varia-
tions on theg3D sites among the loose SI decorations.

We are now ready to present the basic choices made by
the variants in each of the big families of dense FCI, dense
SI, loose SI, and loose FCI.~See also paper II.! Table I
summarizes all four families of decoration rule, by showing
the occupations ofd and g sites relative to the first-order
sites common to all models. Sites where a range of occupan-
cies is shown are the candidates for density variations; when
this is a fraction, it is accomplished by differentiating sub-
classes~implemented through a rebinding.! Note that no
variants of the LF family have been defined.

1. Dense FCI models

The FCI rule is a natural generalization of thed site be-
havior ina-AlMnSi:49 the even ‘‘candidate’’d sites are oc-
cupied and the odd ones are vacant. Consequently, except for
a few vacantd sites due to the presence of a PRY , all even
nodes receive third shells like those shown in Fig. 2~the first
two shells being the MI!, while the odd nodes are decorated
only by two-shell MI clusters. The presence of the three-shell
clusters makes the dual-rhombohedral approach in Appendix
A appealing for describing FCI cases, since the atoms on the
third shell can be economically described by a rhombic tria-
contahedron.

TABLE I. Four families of decoration rules.

Orbit LSa LF DS DF

db(A) 0 0.5 0.8–1b 0.5
db(BD) 0 0 0 0.5b

dY 0–1b 0.5 0–1b 0.5
dD 0 0 1b 0.5b

gb
c 1 1 1 0.90–1

gZ~ZD) 0.67–1 1 1 1
gZ(ZE) 1 1 1 1
gD1 1 1 1 1
g3D 1b 1 1 1

aL/S5loose/dense, S/F5 SI/FCI.
bSites for possible Al/Mn variation~all others in table contain pure
Al !.
cIncludesg3Y sites.
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The dense FCI case is the only decoration rule where we
possibly merge 3g→g3Y ; this is considered for only the
evenY face, since theg sites are squeezed by the six sur-
roundingdb sites~which are all occupied in the even case!.
This g3Y is the only ‘‘problem site’’ at which density varia-
tions are allowed for variants within the dense FCI family.

Somed sites can be decorated either with Al or Mn. First,
the d sites originally bound to theb linkage are rebound to
different cells. We then choosedb~B!, db~D!, anddD as three
sites whose chemistries~either Al or Mn! may be varied
within this family of decorations. We pursued only two of the
possible combinations in paper II: either all Al or all Mn on
all three sites.

2. Dense SI models

Dense SI decorations can be thought of as adaptations of
FCI decorations: For each type of object, we adopt either the
even-flavored or the odd-flavored version of the FCI decora-
tion rule ~usually the one that is lowest in energy! and then
use it forall objects of that type, irrespective of whether they
are even or odd.

Thus, from the dense FCI decorations, we find that both
the oddY face and the oddD cell are more favorable than
their even counterparts. Consequently, we fill thedY site in
PRY~C!, take the 3g option for both subclasses of PRY , and
fill the dD site in the PRD .

We have two candidatedb sites from eachb linkage, but
if these were all filled, they would violate the effectived-d
exclusion at distanceaq . To prevent most of these conflicts,
we simply fill only thosedb sites which fall intoA cells.

For correct accounting of thesedb sites, we are forced, in
the dense SI model, to implement added context sensitivity.
The subset ofdb sites fall intoA cells will collectively be
called db(A). @Note that the relevantb linkage is always
situated on the relevantA cell as the edge shared by the two
faces marked ‘‘2 ’’ in Fig. 1~b! of Ref. 1.# Then thedb sites
are divided into three subclasses according to what kind of
cells adjoin theA cell along the two faces sharing the rel-
evantb linkage:

~i! db(A4), when the relevantb linkage is entirely sur-
rounded byA cells;

~ii ! db(A2), when one of the adjoining cells is anA cell;
~iii ! db(ACC), when both of the adjoining cells areC

cells.
Noting thatdY may be ind-d conflict with some of the

db(A) sites, some variants fill all thedb(A) but none of the
dY , while our densest variant among the dense SI models
fills all the dY and as many nonconflictingdb(A) as possible.

Among the many combinations of the filling ofdY and the
three subclasses of thedb(A) sites, as well as the chemical
choice of Al vs Mn at each site, we have extracted several
representative variants which are described in detail in paper
II.

3. Loose SI models

The loose SI family is similar to the dense SI family in the
arrangement of itsg sites. However, in the loose decorations,
most d sites are vacant. We keep the 3gb option in the
PRY , and occupy the nearbydY site; this follows the ex-
ample of thea-AlFeSi crystal structure.60 We leaveall db

anddD sites vacant; only thedY sites remain as candidates.
Since we no longer have thedb sites, we need not be con-
cerned with the three subclasses ofdb(A) sites, that appear
above in the definition of dense SI models.

The options for variation stem from~i! the occupation/
chemistry of thedY site; ~ii ! the occupation of each ring of
six Al(gZ) sites ~only the ‘‘4/6’’ and ‘‘6/6’’ options are al-
lowed by symmetry!; and ~iii ! the chemistry of theg3D site
in the top part of PRY(D).

An independent modification, increasing both the density
and the Mn content, is to place an Mn atom at the center of
every MI @this orbit is named ‘‘Mn~0!’’ #. This option was
favored by our potentials~paper II!. The loose SI models are
energetically favored in relaxations with realistic potentials,
as is extensively described in paper II.

4. Loose FCI models

The basic principle of these decorations is to select a sub-
set of thed network satisfying the constraintR>1.7aq , and
then occupy the even atoms of this subnetwork. Though we
did not investigate such models in paper II, we describe one
of them here for the sake of completeness.

All even dY atoms are occupied. About half of the even
db atoms, viz. those that fall into~i! A cells or ~ii ! the top
halves of the 3 RDb’s that frame theY face of theD cell, are
also occupied. We remark here that thed network of the
loose FCI decoration for the 3/2 CCT approximant is identi-
cal with thed network of the 3/2 approximant to the Katz-
Gratias 6D model.11Apart from thed network, the loose FCI
and SI decorations are topologically equivalent; thus, in the
loose FCI case, the interiors of theD andE cells are still
decorated the same way irrespective of whether these cells
have even or odd flavor.

V. COMPARISON OF CANONICAL-CELL
AND SIX-DIMENSIONAL MODELS

Having completed the specification of our decoration
models, it is appropriate in this section to understand some of
their properties. In particular, it is natural to ask how they fit
into the more standard 6D-cut formalism11,14 ~and how they
relate to well-known models defined in terms of that formal-
ism!. First, we introduce the particular 6D models that we
have adopted as standards.~In a separate work,23 we have
relaxed these standard models fori -AlMn under the same
potentials used in paper II.! Next, we contrast certain
physical-space features of these 6D models with our CCT-
based decoration models. Finally, we relate — as far as is
possible — the various atomic sites in our decoration models
~labeled by Greek letters! with the hyperatoms of the 6D
models.

A. Description of 6D models

We adopted three ‘‘standard’’ models:~i! the Duneau-
Oguey ~DO! model,4 which was originally constructed to
contain MI ~though the density of MI in the DO model is
lower than in CCT-based models!; ~ii ! the Katz-Gratias~KG!
model structure for i -AlCuFe,9–11 whose chemistry we
adjusted61 in order to model binaryi -AlMn; the FCI modu-
lation that this model exhibits is due primarily to 6D body-
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center hyperatoms~corresponding tod sites in our CCT-
based decorations! that are present only on the even
sublattice; and~iii ! a modified version of the Katz-Gratias
model in which pseudo-MI clusters are replaced by MI clus-
ters; we call this the KGme model because it contains mid-
edge sites.

The DO model has SI symmetry; the KG and KGme mod-
els both have FCI symmetry. For each model, as in our deco-
ration models, there are certain sites~especially among the
6D body-center atoms, i.e., thed sites! which lend them-
selves to variations of occupancy or chemistry. All three 6D
models include a number of environments of low coordina-
tion number~see Table II!; at least some of these environ-
ments would be expected to give rise to high local energies.

B. Comparison of physical-space features

Here, we compare our various CCT-based decoration
models, both to each other, and to the three standard 6D-cut
models, in terms of the characteristic local patterns in
physical-space and their statistical frequencies.

Table III lists the various interatomic spacings allowed for
a first-neighbor bond in the ideal versions of our models. The
pair of Greek letters associated with each bond length indi-
cates the types of atomic site that are located at the two ends
of the bond in question. This table should be helpful in iden-
tifying 6D models that are similar to our decoration models
and/or for making comparisons with experiments@e.g.,
EXAFS ~Ref. 42!# that produce pair-distribution functions.

Table II contrasts various properties of three families of
decoration model~the first three rows! with those of the three
6D models introduced above~the last three rows!. Here, DS,

DF, and LS, stand for dense SI, dense FCI, and loose SI,
respectively. The variant with an Mn~0! atom at the center of
every MI was adopted for all loose models quoted in these
tables, including the DO model~this is the only respect in
which our DO model differs from the model of Ref. 4!. Here
Nenvt denotes the number of different types of local
environment,62Z denotes the coordination number, andZ̄ the
mean ofZ over all atomic sites.

Extremely loose sites with coordinations under 10 occur
only in the 6D models, and in our loose decoration models;
presumably, some of the ‘‘neighbors’’ of these sites are
pseudovacancies. Coordinations over 14 arise only in our
dense decoration models; these tend to exhibit a large num-
ber of different types of local environment.

Much of the model geometry can be described simply in
terms of two basic motifs: the Mackay icosahedron~MI ! and
the mini-Bergman cluster. To quantify this statement, and to
check whether these two structural motifs have equal signifi-
cance, we calculated the fractions of atoms that compose MI
and mini-Bergman clusters for each of the three 6D models.
In the KGme model with filled MI centers, a fraction 0.69 of
the atoms belong to mini-Bergman clusters and a fraction
0.66 of them belong to MI clusters, while over 0.90 of them
belong to at least one cluster of either type.~In the unmodi-
fied KG model, a fraction 0.79 of the atoms belong to mini-
Bergman clusters.11!

C. Comparison of 6D features

Here, we discuss the ways in which our decoration mod-
els are related to the 6D-cut models, from a 6D perspective.
As a starting point for the discussion, consider an atomic
model that is generated by applying a decoration rule to a
quasiperiodic tiling, where every atomic site is specified us-
ing ideal coordinates, in the sense of in Eq.~1!. A model of
this sort can be represented as a cut through a periodic 6D
structure containing ‘‘hyperatoms.’’ These hyperatoms can
be identified with pieces of 3D hyperplanes, which lie ex-
actly parallel to the ‘‘perp’’ direction, and which are attached
to high-symmetry Wyckoff positions within the 6D cell.
Thus, the use of ideal positions within decoration rules — as
is the case for our CCT-based decoration models — reveals
the correspondences between the hyperatoms of 6D models
and the orbits of decoration models. We should not, however,
expect to find an exact mapping from our decoration models
to familiar 6D-cut models: a fairly simple decoration of a
fairly simple quasiperiodic tiling can easily correspond to a
quite complicated 6D structure~in that the boundaries of the
hyperatoms are fragmented into many small facets!.

A technical advantage of decoration models over 6D-cut
models is that they continue to specify well-defined posi-
tions, even on tilings that are not quasiperiodic. In particular,
they can be used directly to construct periodic approximants,
without the technical burden of properly shearing the cut
plane and redefining the shape of atomic surfaces — as is the
case with 6D models. Furthermore, we can apply the deco-
ration to random tilings; in principle at least, this affords a
more precise way of fitting diffraction data than the simple
insertion of a ‘‘phason Debye-Waller’’ factor.

Broadly speaking, the DO and KGme models are similar
to our loose SI and loose FCI decoration models, respec-

TABLE II. Statistics of various decorations.

rat Z
Modelsa ~atoms/aq

3) Nenvt ~Range! ~Typical!b ~Mean Z̄)

DS 6.53–6.69 28–31 10–16 ~10–14! 11.98–12.42
DF 6.67–6.77 28–38 10–16 ~11–15! 12.36–12.48
LS 6.34–6.54 18–24 9–14 ~10–13! 11.84–12.15
KGme 6.54 28 8–14 ~11–14! 12.47
DO 6.41 34 8–14 ~11–13! 12.19
KG 6.12 18 7–13 ~10–13! 11.82

aEach model here is represented by tilingT8 ~a 5/3P213 approx-
imant!; see paper II.
b‘‘Typical’’ means excluding the 5% with largest and the 5% with
smallest coordination numbers.

TABLE III. Allowed bond lengths between ideal sites.

Orbits of endpoints Length (aq)

(m,a), (d,g* ) 0.500
(a,a), (g* ,g* )a 0.526
(n,n), (g,g), . . . 0.563
(n,g* ) 0.596
(m,d) 0.618
(m,b), (n,g), . . . 0.650
(a,b) 0.679

ag* means a 6D body-center midedge site.
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tively. To make these relations precise, it is desirable to make
correspondences between particular orbits in our CCT-based
decoration models and particular hyperatoms in the 6D-cut
models. Such identifications between classes of atom may be
approached in two ways: the first is to imagine a quasiperi-
odic CCT-based model expressed as a 6D-cut; the second is
to take an approximant to a quasiperiodic 6D-cut model and
express it as the decoration of a CCT.

1. CCT orbits in 6D

Let us consider the 6D-cut representation of a decoration
rule applied to a~still hypothetical! quasiperiodic CCT. First,
we identify the 6D Wyckoff position to which a particular
orbit is attributed by inspecting the ‘‘ideal coordinates’’ of
the orbit’s atomic sites~the results are included in Table IV!.

The 6D vertex hyperatoms contain the MI-center
@‘‘Mn ~0!’’ # sites, and then Mn(m), Mn(n), Al(b), and
Al( g) type atoms, roughly from inside to out in perp space.63

Since we have assumed that the tiling geometry itself has
even/odd symmetry, it follows that the Mn~0! portions are
identical on even and odd hyperatoms, and have a shape
associated with the CCT node packing, which is suspected to
have a fractal boundary.64 Of course, all orbits belonging to
the MI @viz. Mn(m), Al(a), and Al(b)# must correspond to
atomic surfaces consisting of disjoint unions of the same
shape, and similarly must be even/odd symmetric. The
Al( a) atoms come from 6D midedge hyperatoms; such hy-
peratoms exist in the DO and KGme models~which contain
complete MI’s by construction! but are absent in the KG
model.

Our d atoms, which correspond to 6D body centers, are
contained in the third shells of extended MI. In our FCI
models,d atoms are found at a radiustaq along the fivefold
axes of MI centered atevenCCT nodes, thus realizing an
atomic surface oneven6D body-center sites, just as in the
KG and KGme models. In our FCI decoration models, cer-
tain g-type atoms must also be removed to avoid close con-
tacts withd atoms; this in turn causes theg portion of the
6D-vertex hyperatoms to exhibit an even/odd modulation.

2. 6D-cut structures as decorations?

We now turn to the reverse question: treating a 6D-cut
model as a cluster packing and/or tiling decoration. Candi-
date MI positions can be identified as the centers of 42-atom
icosidodecahedra of 6D-vertex atoms which are identical to
MI second shells~such shells are common in all three of our
‘‘standard’’ 6D-cut models!. Unlike the CCT, the standard
6D models contain pairs of candidate MI centers separated
by ‘‘short’’ fivefold linkages of lengthaq .

65 The DO and
KGme models attempt to maximize the density of MI, by
placing them wherever possible, but only one MI in each
close pair can receive an MI. Since the CCT contains no such
fivefold linkages, every CCT node can receive an MI, and so
the density of MI’s in our CCT-based decoration models is
;10% higher than in the 6D-cut models.

In the 1/1, 2/1, and 3/2 cubic approximants to the 6D
models, the short fivefold linkages are avoidable with a
proper choice of centering in 6D. With this choice of center-
ing, it turns out that the MI centers in these approximants
coincide exactly with those in the corresponding CCT ap-
proximants~tilings T1, T5, andT6, respectively, in Table II
of paper II!, allowing us to overlay the 6D-cut atomic struc-
ture and the CCT tiling. This then permits an almost me-
chanical prescription for turning 6D models into CCT deco-
rations: the decoration of each canonical cell simply consists
of the atoms that fall into it.

Of course, this will not work for a generic quasiperiodic
structure. The decoration of each cell must respect its point
symmetry; furthermore, since, e.g., the 3/2 CCT approximant
contains several crystallographically inequivalentC cells, it
must be checked that all of them are decorated identically.
The fact that it works at all for our three standard 6D-cut
models~up the 3/2 cubic approximant! is the objective basis
for our claim that they are similar to our CCT-based decora-
tion models.

Following this prescription with the 3/2 approximants, the
loose SI models are derived from the DO model~specifically
it is decoration LS1.1, in the labeling of paper II!; similarly
loose FCI models are derived from the KGme model. The
single difference between the 6D and the CCT versions of
the approximants is the treatment of the ring ofgZ sites on
ZDB faces: in the 6D models, the Al(gZ) atom nearest the
threefold axis of theD cell is filled 50% of the time~in a
deterministic way!, yielding the ‘‘5/6’’ variant of the AlgZ
ring.

Incidentally, our analysis has shown that~apart from the
6D body-center, i.e.,d-type sites! the DO and KGme models
are topologically equivalent. This was not obvious to previ-
ous authors, because certain topologically equivalent atoms
are assigned to different 6D Wyckoff positions in the respec-
tive models.

VI. TILE HAMILTONIANS

This section defines and develops the concept of a ‘‘tile
Hamiltonian,’’H tile , a function which assigns an energy to
each allowed configuration of tiles. For the sake of
simplicity/definiteness, we concentrate primarily on tile
Hamiltonians for CCT-based decoration models, and we will
speak only of tile-tile interactions.~It is trivial to generalize

TABLE IV. Orbits in SI minimal binding.

Object Orbit Atoms 6D positiona

Node ~0! 1 Mn v
a 12 Al ME
m 12 Mn v
b 30 Al v

b linkage gb 4 Al v
Y face n 1 Mn v

dY 1 Al/Mn BC
E cell gZ 6 Al BCME
ZD face gZ 6 or 4 Al BCME
D cell n 3 Mn v

gD 3 Al v
g3D 1 Al/Mn v

av5 vertex, BC5 6D body-center, ME5 6D midedge, BCME5

6D midedge between body centers.
bOn the hidden PR faces in RD.
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this to interactions of generic ‘‘tiling objects,’’ as defined in
Sec. II A.!

The tile Hamiltonian valueH tile for a particular tiling is
defined simply as the relaxed energy of the atomic structure
produced by decorating that tiling. This is well defined since
we have demanded that decoration always generate a unique
structure.66 It is physically meaningful~e.g., for calculating
the entropy! to the extent that the tiling-structure relationship
is one-to-one: that is, every low-energy structure can be gen-
erated from exactly one tiling. Notice that a change in either
the decoration rule or the potentials will changeH tile .

There are obvious practical benefits to usingH tile , pro-
vided it is well defined: a large number of continuous de-
grees of freedom~atomic coordinates! get replaced by a
much smaller number of discrete degrees of freedom~tiling
configurations!. Most theories about the nature of long-range
order in quasicrystals are formulated as statements about the
tile Hamiltonian.19,28 In particular, a necessary and sufficient
condition for the validity of the random-tiling scenario is that
H tile is small compared to the effective temperature at which
icosahedral order develops. Within this scenario, the phason
elastic constants of the model structure can be calculated
numerically by Monte Carlo simulations, usingH tile as the
Hamiltonian.67

A. Prerequisites

A genericH tile comprises one-tile terms plus intertile in-
teractions. The tiling Hamiltonian for a given decoration
model is tractable only if

~i! its intertile interactions are short range, preferably con-
sisting only of tile-pair interactions;

~ii ! the specification of these tile-pair interactions requires
only a few parameters.68

In turn, these two criteria will be satisfied only when the
decoration model is ‘‘crystallographically good’’~as defined
in Sec. II A!, that is, if the relaxed positions can be well
approximated by a context-independent~unrelaxed! decora-
tion of the tiles.

Even if there are significant forces on the atoms in a given
tile from atoms in the neighboring tiles, the intertile interac-
tion can still be small, provided those forces are nearly inde-
pendent ofwhich tiles are neighboring. This situation is re-
flected in having only a small variance in the site-energy
diagnostic@see paper II, Eq.~5!# over a single orbit of the
decoration model. If the canonical rmss ~see Sec. II C! is
small, i.e., if the atomic positions depend only weakly on
which way the surrounding tiles are arranged, then the same
will tend to be true for the energies.

The simplicity/usefulness of the tile Hamiltonian is re-
lated to the issue of binding~see Sec. II B!. Consider first a
crude decoration model, whose atoms are bound to a few
basic species of tiling object. An accurate tile Hamiltonian
for such a model~if one exists at all! will need to contain
intertile interactions, which reflect context sensitivities
~again, see Sec. II B!. Now consider a more sophisticated
decoration model, that is derived from the crude model by
dividing each species of tiling object into several subspecies,
according to the various ways in which neighboring tiling
objects can be placed around it. For each such way, the at-
oms on the object have a distinct environment~counting sec-

ond neighbors!; their optimized canonical positions should,
after such a rebinding, better approximate those of the re-
laxed structure. It should thus be possible to formulate an
accurate tile Hamiltonianwithout intertile interactions. The
process of rebinding thus enables the intertile interactions in
the original tile Hamiltonian for the crude model to be re-
expressed as~i.e., absorbed into! one-tile terms in the tile
Hamiltonian for the sophisticated model.69

B. Subtraction of chemical potential terms

Our aim here is to formulate the simplest possibleH tile
for CCT-based decoration models, that correctly accounts for
the energy differences between different tiling configura-
tions. Here, we restrict our attention to CCT-based decora-
tion models whose atoms are bound to the five species of
canonical cell~see Fig. 1!.

The simplest case is whenH tile consists simply of one-
tile terms, i.e., when it can be written in the form

H tile5(
a

VaNa , ~2!

whereNa is the number of tiles of typea and Va is the
energy associated with each tile of that type. There are thus
four independent parameters fora5A,B,D,E ~since
NC[NB12NE). This formula can be rewritten as

H tile5mMn
0 NMn1mAl

0 NAl1(
a

Va8Na . ~3!

Here, we have separated out two chemical-potential terms,
which couple to the total number of Al and Mn atoms,NAl
and NMn . Clearly Eq. ~3! is related to Eq. ~2! by
Va5Va81mAlNa

Al1mMnNa
Mn , where Na

Al and Na
Mn are the

number of Al and Mn atoms bound to tilea. There now
remain only two linearly independent coefficientsVa8 .

The values we compute here formAl,Mn
0 are physically

meaningless, since they omit the possibly strong effects of
structure-independent terms in the total energy. The values
we compute for the coefficientsVa8 , however, constitute a
measure of the deviation from a random-tiling ensemble: if
both were zero, i.e., ifH tile5mMn

0 NMn1mAl
0 NAl , then all

possible random tilings would coexist in the equilibrium
state~with equal weight!; in such cases, the equilibrium state
could be represented as amaximally random tiling model.19

VII. SUMMARY AND DISCUSSION

Here we will review the most important parts from the
preceding sections and indicate possible future develop-
ments. Since the associated computations have been left to
paper II, the reader is asked to look there for results and
conclusions.

A. Summary

In this paper, we have presented a general machinery for
setting up~and talking about! decoration models, and a spe-
cific machinery for producing numerous variants ofi -AlMn
models, suitable for our tests using realistic pair potentials
~paper II!. A theme which runs through the entire work is
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that it is more desirable to understand the differences be-
tween two models than to understand the details of one
model.Another theme is the desire to dissect any model into
a discrete set of orbits~i.e., types of site!, since our only
method for steadily improving a model is to revise one orbit
at a time.

Some of the highlights of the general framework put forth
in Sec. II were the notion of ‘‘topological equivalence,’’
which allowed us in passing to characterize succinctly the
unrecognized near-identity of the Katz-Gratias and Duneau-
Oguey structures, and the idea of a canonical rms, which
provides a quantitative measure for the validity of the
decoration-model positions, as approximations to the real
atomic positions. The concept of binding, which we intro-
duced Sec. II B, enables us to specify, precisely, what we
mean by a decoration model. Though this concept might
seem annoying in view of the onerous bookkeeping that it
forces upon us~Appendix B!, it is what ‘‘dissects’’ the atoms
into disjoint orbits, and thus what breaks up the task of mod-
eling the atomic structure into manageable, reasonably iso-
lated units. Section II B also introduces the notion of ‘‘dif-
ferentiation’’ of models, which clarifies how simple
decoration rules may be elaborated into more complex~and
more realistic! ones. This grouping of different models into a
‘‘family tree’’ gives us a precise way of describing the rela-
tionships among them.

Differentiation is used repeatedly in our actual description
of the models~Sec. IV!, the heart of the paper. That section
shows that good decoration rules are~unexpectedly! similar
to the crude and incomplete Elser-Henley rule;24 they are
also closely related to, and in part inspired by, the 6D-cut
models~Sec. V!. Apart from that, the geometrical details of
Sec. IV are useful mainly for understanding the relaxations
in paper II. Above the details, we find two suggestive con-
cepts arising out of our structural descriptions: a new, per-
haps superior set of ‘‘dual’’ rhombohedral tiles, that supply a
framework for describing CCT decoration structures~Appen-
dix A!; and the view of thed ~6D body-center! sites as a
lattice gas, whose fundamental parameter is its density~Sec.
IV D !.

Finally, we have laid out~in Sec. VI! the basic theory for
constructing a ‘‘tile Hamiltonian’’ out of a decoration rule
plus a function~as in our paper II! that returns the structural
energy for a given atomic arrangement. This and the other
above-mentioned concepts are applied in paper II, in which
we both ascertain the particular models that are favored by
realistic Al-Mn pair potentials, and assess the dependence of
the cohesive energy on various parameters that span our
space of decoration models.

B. Future directions

Here we mention some possible extensions to this work,
from minor to major.~Those relating to structural energy
calculations are deferred to paper II.!

1. Decorations which break inversion symmetry

One of our principles of decoration was that the decora-
tion of a tiling object must have the same symmetry as the
tiling object, but this does not necessarily describe the lowest
energy state; a breaking of the local symmetry could be pre-

ferred. The main example we pursued had to do with the
d-site occupation~Sec. IV D!. As discussed in Sec. II B, de-
viations could occur either in the form of a context sensitiv-
ity ~as for d sites in dense SI models! or in the form of a
‘‘global symmetry breaking’’~as ford sites in FCI models!.

It might be profitable to explore breaking of the local
inversionsymmetry~which is equivalent to mirror symmetry,
given the twofold axes of the icosahedral proper point group
532). For example, consider the triangle of three closeg
atoms near the lower tip of PRY ~see Sec. IV C!. Instead of
merging these into onegY atom, or relaxing them directly
outwards, it might be plausible instead to expand the triangle
while rotating it a small angle clockwise or counterclockwise
~so as to avoid some surrounding atoms!. As in other cases,
this sort of deviation might be implemented either as a con-
text sensitivity, or as a breaking of the global inversion sym-
metry.

2. ‘‘Reshuffling condition’’ for kinetics?

To explain the experimental existence of well-ordered
quasicrystals, it is not sufficient that they be the equilibrium
phase; they must be accessible kinetically, too. If the inter-
mediate states are valid decorated tilings, and if the decora-
tion rules do not admit chemical disorder, this requirement
poses an additional constraint on the decoration rule: atoms
should be ‘‘glissile,’’ that is, they should jump only locally
under tile reshufflings, to sites of the same species.70

We have not investigated this question for our tilings. It
would be difficult to do so systematically, since the allowed
rearrangement for the CCT is a nonlocal ‘‘zipper’’ move,71

whose rules are, as yet, only partially understood. It is clear,
however, that there will be a large overlap of atomic sites@an
example is Ref. 58 of paper II, concerning the Mn(g3D)
site#.

3. Diffraction refinements

In principle, decoration models are well adapted to struc-
tural refinements and~as will be seen in a moment! demand
less radical shifts from the long-established path of crystal-
lographic refinement for a periodic crystal. Our ignorance of
any infinite quasiperiodic CCT structure is only a small em-
barrassment for carrying out this program. One can proceed
by calculating the diffraction patterns of decorated large cu-
bic approximants; it can be confirmed that these diffraction
patterns already have nearly icosahedral symmetry. Then a
proper icosahedral symmetrization of the structure factors on
Bragg peaks yields a very good ersatz for the diffraction
pattern of an icosahedral crystal. The fitting parameters are
simply the three-dimensional ‘‘canonical’’ coordinates and
the chemical occupancies of each site.

As mentioned in the Introduction, such a program might
profitably be combined with energy calculations. An objec-
tive functionP, measuring the goodness of the adaptation of
the structure to the relaxed structural energy functionErel
could simply be added to theR factor ~which is, of course,
the corresponding objective function for the fit in Fourier
space between the calculated and measured structure fac-
tors!. There are two plausible choices forP: the first would
be simply a multiple ofErel , the other would be(s j

2 , the
sum of the canonical variances.
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APPENDIX A: DUAL-RHOMBOHEDRAL „CLUSTER…
APPROACH TO CCT DECORATION

The dual-rhombohedral approach decomposes the CCT
into a new tiling72 of rhombic triacontahedra and prolate
rhombohedra, which we collectively call ‘‘dual’’ rhombohe-
dra since their vertices correspond to 6D body centers@in the
setting where the nodes~vertices! of the CCT come from 6D
cell corners#.

1. Dual-rhombohedral geometry

The decomposition of space by dual entities is very
simple: on each CCT node, we center a large rhombic tria-
contahedron with edges of lengthaq , oriented along fivefold
directions. We will call this ‘‘dTR’’ ~we begin the names of
all dual objects with a ‘‘d’’!. The dTR’s always share rhom-
bic faces alongb linkages. Alongc linkages, the dTR’s in
fact overlap by a volume congruent to an oblate rhombohe-
dron~dOR!. We show how clusters sit on theA cell in Fig. 6.
A much larger fraction of space lies inside the dTR’s of the
dual decomposition than inside the RDb plus PRc of the
vertex-rhombohedral decomposition. The union of the dTR’s
already accounts for 94% of the volume of the CCT~in con-
trast, the RDb and PRc in the vertex-rhombohedral descrip-
tion account for only 83% of the volume!.

With dTR on each CCT node, the remaining gaps are all
filled by dual prolate rhombohedra~dPR!, of which there are
two types: eachZ face~including the internal ZBB face in an
E cell! is pierced by one dPRZ ; eachD cell contains one
dPRD , which lies along the cell’s axis of threefold symme-
try. We show the placement of these dPR’s in Fig. 7. In each
D cell, the lower tip of the dPRD and the lower tips of three
dPRZ all meet at a point on theD cell’s threefold axis in the
lower part of the cell.~We use lower, upper, front, etc., with
reference to the orientations of objects as they appear in Fig.
7; this is consistent with our word usage concerning Fig. 3.!

2. Zeroth- and first-order decoration rule

Along the dual-rhombohedral path, the zeroth-order deco-
ration is taken from the three-shell cluster shown in Fig. 2;73

such three-shell clusters are observed in~at least!
a-AlMnSi.49,74,75First, a Mackay icosahedron~MI ! cluster is
placed at the center of each dTR. Next, on the surface of

each dTR, we place oneg atom on every edge, and one
‘‘candidate’’ d site on every vertex~both threefold and five-
fold vertices!, except where two dTR surfaces overlap along
a c linkage. In each such overlap, we remove the threefold
candidated sites that lie around thec linkage, such that each
dTR has threeg sites on its surface, which coincide with
three Al(b) sites in the second~MI ! shell of the other dTR.

Since dTR’s account for most of the volume, they also
account for most of the atoms. Moreover, all dPR vertices
are shared with dTR vertices. The rhombic faces of each dPR
~both types! contain thed and Al(g) sites that lie on the
faces of the dTR’s adjoining it. Within each dPRZ , two ad-
ditional Mn(n) sites are placed along the dPRZ’s body diag-
onal ~threefold axis!, dividing it in about the ratio
t22:t23:t22.76 The inside of each dPRD is decorated in the
same way, except that the lower Mn(n) site is replaced by a
g3D site.

The above dual-rhombohedral version of the zeroth-order
description, in fact, introduces no conflicts~apart from those
involved with thed network, which were described in Sec.
IV D !. Hence it is also the first-order description.

It would be possible, but redundant, to describe the fur-
ther options and the second-order models in dual language. It
may be noted that the sixgZ sites form a ring around the
middle of dPRZ in this representation. Thed network simply
consists of all of the dual vertices, and thed links are the
edges of the rhombic faces~as in Fig. 5!.

Since thed andg sites that experience most of the varia-
tions lie on the dTR faces, complicated decoration rules~as
found in both dense families! may be conveniently visual-
ized by taking planar projections of the surface decorations
of dTR’s. ~In fact, it is sufficient simply to map the intersec-
tion of the dTR surface with the solid angle of each type of
the CCT cell corner, as shown in Fig. 5~c! of Ref. 1.!

APPENDIX B: AN EXAMPLE OF BINDING

We present here the specification of the minimal binding
for loose SI models, this being the simplest of the bindings
that we implemented. We will be careful to assign each atom
metrically to a tiling object so that it is accounted for once
and only once, in accordance with our definition of binding.

FIG. 6. The dTR triacontahedra are placed on the nodes of an
A cell. Those on the even~odd! nodes are shown solid~in outline!.

FIG. 7. Decoration ofD cell by ‘‘dual’’ rhombohedra:~1! one
dTR is shown~thin lines! surrounding the lower rear node;~2! the
dPRD appears shaded in the center;~3! surrounding it are the three
dPRZ ~bold lines!, centered on~and piercing through! the rectangu-
lar ZD faces.
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We rely on the reader to visualize how this description is
equivalent to the ‘‘topological’’ description presented in the
text. The dense FCI and dense SI models have more elabo-
rate bindings; at the end of this appendix, we sketch the main
ways in which they differ from the loose SI binding.~Quite
detailed binding descriptions for a very dense FCI model
may be found in Ref. 26.!

The four orbits bound to the CCT nodes form the MI
cluster. The Mn~0! site, of course, is bound to the center of
the MI cluster. The 12 Mn(m) sit on the rhombohedron ver-
tices in an icosahedral shell of radiusaq around every CCT
node. The 12 inner shell Al(a) atoms sit at the midpoints of
the edges connecting Mn~0! and Mn(m) sites. The 30
Al( b) atoms in the MI second shell divide the face diagonals
of the vertex rhombohedra in the ratiot21:t22. Theg and
d atoms, although they often form part of the three-shell
cluster illustrated in Fig. 8, can never be bound to nodes~on
account of the cluster-cluster overlaps!.

To eachb linkage, there is assigned an orbit of 4 Al(gb)
atoms situated near the vertical long diagonals of the rhom-
bus faces of the RDb in Fig. 4 ~i.e., the faces in the plane of
the paper!. More precisely, they are situated somewhat inside
the RDb ; indeed, when the RD is decomposed into two PR
and two OR, the Al(gb) atoms are located on the long di-
agonals of the ‘‘internal’’ PR faces. The Al(g) atoms shown
on the ‘‘top’’ and ‘‘bottom’’ faces in Fig. 4 are not bound to
the associated RDb itself, but rather to other tiling objects.
The db sites are located at the intersection of the long body
diagonals of the ‘‘internal’’ PR’s just mentioned.

ThedY site is placed near the lowerPRY tip, dividing the
PRY diagonal in the ratiot22:t21; this site is bound to the
Y face. The Mn(nY) site is also bound to theY face, sitting
at the PRY’s lower tip ~which lies almost in the plane of the
Y face!. The upper part of the PRY is in the interior of aC or
D cell; its decoration consists, respectively, of MI orbits
bound to the node at theC cell’s apex, and orbits bound to
theD cell.

All orbits bound to theD cell involve the top half of the
PRY , or the nearby parts of the PRD ~as seen in Figs. 3 and
4!. There is an orbit of 3 Mn(n) PRY sites on the PR vertices.
In the first-order decoration rule, there is one pair ofg sites
on each of the three upper faces of the PRY ~on the long
diagonal!. However, in the loose SI family of decorations,
the top three sites are always merged into oneg3D orbit near

the ‘‘upper’’ PRY tip, dividing the PRY body diagonal in the
ratio t23:12t23. Another orbit consists of the Al(gD1) at-
oms on the three faces, dividing the face diagonals in the
ratio t21:t22. There is also one~candidate! dD site on the
body diagonal of each of the three PRD in theD cell.

The gZ sites will account for all remaining atoms in the
B, D, and E cells. The six Al(gZ) sites decorating each
ORZ in the vertex-rhombohedral tiling are always sited at 6D
body-center midedge~BCME! locations, sitting on the bi-
secting plane of the ORZ associated with everyZ face. They
sit on the line running from the midpoint of the threefold axis
to that of each edge, dividing it in the ratiot21:t22.

In fact, the Al(gZ) are rebound in several different orbits,
first to respect the symmetries of the respective tiling objects
in which the ORZ finds itself, and second to facilitate varia-
tions of the decoration rule in which certaingZ sites are left
vacant~an example of context sensitivity, as defined in Sec.
II B !.

The six Al(gZ) sites inside the highly symmetricE cell
are bound to it, forming just one orbit. The other Al(gZ) sites
could be bound to ZD faces, which occur between twoD
cells, and between aD and aB cell. ~A binding to the ZD
object, which lacks sixfold symmetry, would require two
separate orbits.! However, due to certain technicalities in our
algorithm for identifying tiling objects~given the node loca-
tions!, it was more convenient to further differentiate the
ZD face into classes ZDD ~treated like the ZD) and ZDB . The
orbits of the ZDB may be bound to theB cell, in which case
three separate orbits are needed to account for the six Al
(gZ) sites.

This completes the binding description of the Loose SI
decoration; it is summarized in Table IV, which can be used
to compute the number of atoms of each class in a given
CCT tiling. Chemical variations may be performed for the
orbits dY andg3D independently. The density variations are
realized by filling/emptying thedY sites and by choosing
either the ‘‘4/6’’ or the ‘‘6/6’’ option for the ring of six Al
(gZ) sites associated with each ZD face~see paper II!. These
variant models are easily constructed from the basic binding
formulation given above, since each variation affects only
one orbit.

The dense FCI model is more complicated because it dif-
ferentiates many types of tiling object into odd and even
flavors. As a result, the number of distinct orbits almost
doubles. Indeed, the minimal binding requires 20 orbits of
atoms bound to seven types of~even- or odd-! flavored CCT
objects; a typical binding that differentiates some of the
problematic orbits~by rebinding them to objects of lower
symmetry! has a total of 38 orbits for nine CCT objects.@In
this rebinding, the Al(d) of the oddb linkages are rebound to
theA, B, D, andE cells into which they fall; and theg3Y of
the oddY face are rebound to theB, D, andE cells into
which they fall.#

The dense SI decorations are complicated in a different
way. In these~see Sec. IV E 2! we adopted an alternative
strategy for occupyingdb sites, such which they were subdi-
vided into three subclasses according to the neighboring tiles
sharing theb linkage. Correspondingly, then, theb linkages
adjacent to the faces ofA cells marked ‘‘-’’ in Fig. 1~b! of
Ref. 1 are differentiated into three new tiling objects

FIG. 8. Decoration of ‘‘dual’’ prolate rhombohedra by atoms.
~The dTR decoration is just Fig. 2, which has faces identical to
those shown here.!
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b(A4), b(A2), and b(ACC). Then thegb and db sites for
theseb linkages are rebound to these three new tiling objects
~calledb(A4), b(A2), andb(ACC), since they depend upon
the surroundingA cells!. The otherb linkages are no longer

used for decoration: all of theirgb atoms~anddb atoms, if
any! are rebound toY faces and other CCT objects. A mini-
mal binding specification for the dense SI model requires
~typically! 22 orbits bound to nine CCT tiling objects.

*Permanent address: Institute of Physics, Slovak Academy of Sci-
ences, Dubravska cesta 8, 842 28 Bratislava, Slovakia.

†Present address: Department of Physics, Theoretical Physics, 1
Keble Road, Oxford, OX1 3NP, England.

1C. L. Henley, Phys. Rev. B43, 993 ~1991!.
2M. Mihalkovič, W.-J. Zhu, C. L. Henley, and R. Phillips, follow-
ing paper, Phys. Rev. B53, 9021 ~1996!. Brief preliminary re-
ports of our work have appeared in M. Mihalkovicˇ, W.-J. Zhu,
C. L. Henley, M. E. J. Newman, M. Oxborrow, and R. B. Phil-
lips, in Aperiodic ’94, edited by G. Chapuis and W. Paciorek
~World Scientific, Singapore, 1995!, p. 169 and W.-J. Zhu, C. L.
Henley, and M. Mihalkovicˇ, in Proceedings of ICQ5, edited by
J.-M. Dubois~World Scientific, Singapore, in press!.

3J. W. Cahn, D. Gratias, and B. Mozer, J. Phys.~Paris! 49, 1225
~1988!.

4M. Duneau and C. Oguey, J. Phys.~Paris! 50, 135 ~1989!.
5C. Janot, J.-M. Dubois, M. de Boissieu, and J. Pannetier, Physica
B 156&157, 25 ~1989!.

6A. Yamamoto, inQuasicrystals, edited by T. Fujiwara and T.
Ogawa, Springer Series in Solid State Sciences Vol. 93
~Springer-Verlag, Berlin, 1990!, p. 57.

7M. de Boissieu, C. Janot, J.-M. Dubois, M. Audier, and B. Du-
bost, J. Phys. Condens. Matter3, 1 ~1991!.

8A. Yamamoto, Phys. Rev. B45, 5217~1992!.
9M. Cornier-Quiquandon, A. Quivy, S. LeFebvre, E. Elkaim, G.
Heger, A. Katz, and D. Gratias, Phys. Rev. B44, 2071~1991!.

10A. Katz and D. Gratias, J. Non-Cryst. Solids153&154, 187
~1993!.

11A. Katz and D. Gratias, inLectures on Quasicrystals, edited by F.
Hippert and D. Gratias~Les Editions de Physique, Les Ulis,
France, 1994!, p. 187.

12E. Cockayne, R. Phillips, X.-B. Kan, S. C. Moss, J. L. Robertson,
T. Ishimasa, and M. Mori, J. Non-Cryst. Solids153&154, 140
~1993!.

13M. Boudard, M. de Boissieu, C. Janot, J. M. Dubois, and C.
Dong, Philos. Mag. Lett.64, 197 ~1991!; M. de Boissieu, P.
Stephens, M. Boudard, C. Janot, D. L. Chapman, and M. Audier,
J. Phys. Condens. Matter6, 10 725~1994!.

14C. Janot, M. de Boissieu, J. M. Dubois, and J. Pannetier, J. Phys.
Condens. Matter1, 1029~1989!.

15The realistic pair potentials, however, have quite important
second-neighbor interactions.~See paper II.!

16M. de Boissiieu, P. Guyot, and M. Audier, inLectures on Quasi-
crystals~Ref. 11!, p. 1.

17M. de Boissieu, C. Janot, and J.-M. Dubois, J. Phys. Condens.
Matter2, 2499~1990!.

18C. L. Henley, inQuasicrystals and Incommensurate Structures in
Condensed Matter, edited by M. J. Yacaman, D. Romeu, V.
Castan˜o, and A. Go´mez ~World Scientific, Singapore, 1990! p.
152; M. Widom, inQuasicrystals, edited by M. V. Jaric´ and S.
Lundqvist ~World Scientific, Singapore, 1990!, p. 337.

19C. L. Henley, inQuasicrystals: The State of the Art, edited by D.
P. DiVincenzo and P. J. Steinhardt~World Scientific, Singapore,
1991!, p. 429.

20M. de Boissieu, P. Stephens, M. Boudard, C. Janot, D. L. Chap-

man, and M. Audier, Phys. Rev. Lett.72, 3538 ~1994!; M. de
Boissieu, M. Boudard, B. Hennion, R. Bellissent, S. Kycia, A.
Goldman, C. Janot, and M. Audier, Phys. Rev. Lett.75, 89
~1995!.

21The case ofi -AlPdMn furnishes a good example of the need for
structural refinement based on both cohesive-energy calculations
and diffraction data: The diffraction data~Ref. 13! do not re-
solve the positions of the inner Al shell of the~pseudo!-MI clus-
ter ~see Sec. III B!; in contrast, cohesive energy calculations
could give reliable information about these sites~since the sur-
rounding second-shell sites are known!. On the other hand,
cohesive-energy calculations run into difficulties if asked to de-
termine the occupancy of ‘‘d ’’ ~6D body-center! sites, since the
contribution to the cohesive-energy from these sites is extremely
sensitive to the precise shapes of the tails of the relevant pair
potentials~see Ref. 2!; in contrast, diffraction data~Ref. 13!
clearly show that Pd atoms occupy thed sites.

22E. Cockayne, M. Widom, P. Launois, M. Fettweis, and F. De´-
noyer, inAperiodic ’94 ~Ref. 2!, p. 578.
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