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Recent studies show that the effect of the lattice vibrations on predictions of phase stability can be important.
Because complete computations of the phonon density of states from first principles are difficult, simpler
models for the vibrational free energy have been used to incorporate these effects into phase diagram calcu-
lations. In this paper, we systematically investigate the accuracy of these approximations by studying model
systems for which the vibrational free energy can be computed exactly in the harmonic approximation. We
found that the Debye approximation, usually used in first-principles studies, fails to capture the configuration
dependence of the vibrational free energy. We explain the reason for this failure. With the same model systems,
we analyzed the effect of the lattice vibrations on the predicted phase diagrams as a function of size mismatch
and chemical affinity. By fitting our results to the available experimental information, we find that the effect of
vibrations on phase transition temperatures may be significant.

I. INTRODUCTION

Recent advances in theoretical models and computer
power have made the first-principles calculations of alloy
phase diagrams a powerful tool in materials science.1,2 Pre-
cise control of external variables, attainability of extreme
experimental conditions, and low cost make the computa-
tional models an attractive alternative to traditional labora-
tory experimentation for the design of new materials. In or-
der to compete with ‘‘real’’ experiments, the computational
models have to be reliable and capable of producing quanti-
tative predictions. To achieve this goal, the theoretical mod-
els have to include all the important contributions to the
alloy free energy.

In particular, methods to deal with substitutional disorder
are well developed.2 Quantum mechanics can be used to pa-
rametrize an Ising-like Hamiltonian for an alloy with any
required accuracy. This lattice Hamiltonian allows one to
compute the configurational entropy of a material and to
evaluate its phase diagram. Although first-principles calcula-
tions based on this procedure have been successful in repro-
ducing the topology of many real-alloy phase diagrams, the
effect of neglecting other contributions to the free energy is
unclear. Recently, Wolverton and Zunger3 showed how the
character of the short-range order in Ni-V and Pd-V is modi-
fied by the electronic entropy. The effects of lattice vibra-
tions may be even more dramatic. It has been shown experi-
mentally that for the Ni-Al, Fe-Al, Fe-Cr, and Cu-Au
systems4–8 the change of vibrational free energy in order-
disorder and segregating phase transformations can be com-
parable in magnitude to the change in the configurational
entropy. Some theoretical calculations,9–12 based on simpli-
fied models for the vibrational free energy, support these
conclusions, by showing that the inclusion of the vibrations
in the theoretical models can significantly alter the predicted
phase stability, bringing the predictions in closer agreement
with experiment.

Despite this realization, very little has been done to justify

the approximations used in the simplified models, and to
study the trends of the effect of the lattice vibrations with
size mismatch and chemical affinity. In this paper, we study
model systems for which the vibrational free energy can be
computed exactly within the harmonic approximation. This
allows us to derive conclusions about the different approxi-
mations and the size and origin of the vibrational effect on
alloy phase stability. In addition, we estimate the effect of
vibrations on the transition temperatures in coherent transfor-
mations.

The rest of the paper is organized as follows. In Sec. II we
briefly review the formalism used to study substitutional al-
loys and describe how a lattice model can accommodate the
lattice vibrations. Simplified models that are usually used to
address the problem are described in Sec. III. The model
system used in the present study is presented in Sec. IV.
Sections V and VI present the results of the exact approach
and the simplified models, respectively. A discussion of pos-
sible approaches for first-principles calculations follows in
Sec. VII. Rough estimates of the effect of the lattice vibra-
tions on phase diagrams are reported in Sec. VIII. Section IX
explores the roll of chemical affinity and atomic size in de-
termining the effects of lattice vibrations on phase stability.
Finally, the conclusions are summarized in Sec. X.

II. VIBRATIONAL FREE ENERGYAND ITS DEPENDENCE
ON CONFIGURATION

The effect of the lattice vibrations on the phase stability of
substitutional alloys can be studied with an Ising-like lattice
model.9,13 The only assumption needed for this transforma-
tion is that every microstate of the alloy can be uniquely
mapped to a configuration of the atoms on a fixed lattice.
This is achieved by, for every atom, finding the closest lattice
site to its position. The mapping of the alloy problem to a
lattice model breaks down close to displacive transitions,
where the underlying lattice changes~e.g., from fcc to bcc!.
The lattice Hamiltonian can be properly defined bycoarse
graining the full Hamiltonian of the alloy system. The reduc-
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tion in the number of the degrees of freedom, from the
quantum-mechanical continuous Hamiltonian to the lattice
Hamiltonian, is achieved by integrating out the fastest de-
grees of freedom. For the case of a substitutional alloy, the
configurational degrees of freedom evolve with much longer
time scales than the vibrational or electronic degrees of free-
dom. That means that for every substitutional arrangement,
there is a well-defined vibrational free energy. As our focus
is on the vibrational free energy we ignore the electronic
excitations. The lattice Hamiltonian contains the ‘‘chemical’’
energy of the relaxed ground state structure and its vibra-
tional free energy. Therefore, the partition function of the
system defined by this lattice Hamiltonian includes both con-
figurational and vibrational degrees of freedom. In the har-
monic approximation and for temperatures larger than the
characteristic Debye temperatures of the system, the lattice
Hamiltonian can be written as11

H~sW ,T!5E0~sW !1^ ln~v!&~sW !kBT1
\2^v2&~sW !

24kBT

2
\4^v4&~sW !

2880kB
3T3

1•••, ~1!

wheresW labels the configuration of theA andB atoms on the
lattice,^ & symbolizes averages~per atom! over the Brillouin
zone,E0 is the fully relaxed ground state energy,v is the
vibrational frequency of a phonon mode, andkB and\ are
the Boltzmann and Planck constants, respectively. The terms
that are not dependent onsW have been left out of the lattice
Hamiltonian, as they do not contribute to the configurational
thermodynamics.

We have shown11 that the leading term̂ln(v)&kBT in this
high-temperature expansion is enough to accurately repre-
sent the vibrational free energy for temperatures of the order
of, or higher than, the Debye temperatures of the system.
Since most phase transformations occur in this temperature
range, in the rest of the paper we will concentrate on this
term, but most of the conclusions are also valid for the other
terms in Eq.~1!.

For systems described with classical potentials, the dy-
namical matrix is easily obtained from the second derivates
of the total energy.14 By diagonalizing this matrix, the values
of the frequencies of the normal modes of the system can be
obtained and the averages in Eq.~1! are easily computed. For
systems that require a more complex, quantum-mechanical
description, simplifications are necessary to get the moments
of the frequency distribution~see Sec. III, below!.

To study the thermodynamic properties of the alloy sys-
tem, the actual dependence ofH on the configurationsW is
parametrized using a cluster expansion technique.15 The oc-
cupancy of site i is labeled by a spinlike variables i
@s i511 (21) when aB (A) atom is on sitei #. The sub-
stitutional state~or configuration! of an N-site alloy,sW , is
then anN-dimensional vector of 1’s and21’s. The alloy
Hamiltonian is written as

H~sW ,T!5(
a

Va~T!sa~sW !, ~2!

where the sum is over all clustersa of lattice points. The
cluster functionssa are defined as the product of the spin
variables on clustera, andVa are theeffective cluster inter-
actions ~ECI’s!. Once the ECI’s are known, the thermody-
namic properties of the alloy can be computed using any of
the standard statistical mechanics techniques~e.g., Monte
Carlo simulations, cluster variation method, low- and high-
temperature expansions!.

The techniques for obtaining the ECI’s have been re-
viewed elsewhere.16–19 In most cases, the ECI’s can be ob-
tained from the values ofH(sW ,T) for a few ~of the order of
10! ordered structures of theA andB atoms on the sites of
the lattice. Given the above approximations, we would only
needE0 and ^ ln(v)& for these configurations.

Because phase stability depends on differences in thermo-
dynamic potentials, only theformation values of E0 ,
^ ln(v)&, etc., are needed. For an ordered structure with com-
position c ~atomic fraction ofA), the formation value of a
quantityQ is defined as

DQ5Q2@cQA1~12c!QB#. ~3!

It has been noted by several authors~see for example Ref.
20! that the value ofD^ ln(v)& for an ordered structure is
independent of the masses of theA and B atoms. Also,
D^ ln(v)& is dimensionless, independent of the units used for
v, and invariant under a change in energy and length scales.
These properties do not hold for the other moments of the
frequency distribution in Eq.~1!.

III. SIMPLIFIED MODELS

The calculation ofD^ ln(v)& for several ordered structures
of a binary alloy from first principles is beyond the current
computer power because it amounts to computing the full
phonon dispersion relations for structures with complex unit
cells. For this reason, simplified models have been developed
in recent years to reduce these calculations to tractable
schemes. In this section, we review some of these models.

A. Debye model

In the Debye model, the solid is considered as an elastic
continuum with the same elastic constants as the true solid.
The vibrational density of states is then parabolic, with a
cutoff frequencyvD given by the condition that the total
number of frequencies should equal the 3N degrees of free-
dom. The Debye temperature is defined asuD5\vD /kB ,
and can be computed as21

uD5
2p\

kB
S 9

4p

N

VD 1/3H E F 1c13 1
1

c2
3 1

1

c3
3GdV

4p J 21/3

, ~4!

wherec1 , c2 , andc3 are the three speeds of sound in a given
direction of propagation,N/V is the number density, and the
integral is over all the possible directions. The speeds of
sound can be easily computed if the elastic constants and
density of the material are known.21

Assuming a Debye-like distribution of frequencies, the
vibrational free energy of an ordered structuresW can be
computed22 once uD is known for that configuration. The
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resulting high-temperature limit of the vibrational free en-
ergy has the same form as Eq.~1! with

^ ln~v!&Debye53 lnS kBuD
\ D21. ~5!

Some of the effects of anharmonicity~e.g., thermal expan-
sion! can be taken into account by using the Debye-
Grüneisen model.23 Since we are only evaluating the ap-
proximations to reproduce the harmonic behavior, these
effects will not be considered.

In most studies whereab initio methods are used, com-
puting all the elastic constants is very difficult and further
approximations are necessary. Assuming constant transverse
and longitudinal sound velocity, given bycl5(L/r)1/2 and
ct5(S/r)1/2, where r is the density, and using empirical
relationships between the bulk modulus and the shear (S)
and longitudinal (L) moduli ~valid for nonmagnetic cubic
elements!, Moruzzi, Janak, and Schwarz23 derived the fol-
lowing approximation to Eq.~4!:

uD50.617~6p2!1/3
\

kB
Fv1/3BM G1/2, ~6!

wherev is the average volume per atom,M is the average
atomic weight, andB is the bulk modulus obtained from the
binding curve as

B5v
]2u

]v2
U
v0

, ~7!

whereu is the energy per atom andv0 is the equilibrium
value ofv.

We will refer to this scheme to approximate the Debye
model as the Moruzzi-Janak-Schwarz~MJS! approximation.
The MJS approximation has been widely used in studies of
alloy thermodynamics. Studies of binary@Ag-Cu ~Refs. 9
and 24!, Co-Pt ~Ref. 25!, Au-Ni ~Ref. 26!, Ni-Al ~Ref. 27!,
Ti-Al ~Ref. 28!, Au-Pd ~Ref. 24!, Au-Ag ~Ref. 24!, and
Cd-Mg ~Ref. 10!#, pseudobinary@InP-InSb ~Ref. 29!, and
GaAs-InAs~Ref. 30!#, and ternary@Ru-Nb-Zr ~Ref. 31!# al-
loys have been reported in the literature.

The popularity of the MJS scheme is due to its simplicity:
The quantities needed~volume and bulk modulus! are by-
products of the calculation of the relaxed formation energies
for the ordered structures. However, its validity for the cal-
culation of formation free energies in alloys has not been
demonstrated. For an ordered structure with compositionc,
the formation value of the coefficient of the leading term in
Eq. ~1! in the MJS scheme is

D^ ln~v!&MJS5
3

2 F lnS B

BA
cBB

12cD 1 lnS r

r A
c r B

12cD
1 lnS MA

cMB
12c

cMA1~12c!MB
D G , ~8!

where r is the average Wigner-Seitz radius of the structure
~i.e., v54pr 3/3).

As pointed out above, the exact value ofD^ ln(v)& is
independent of the atomic masses of theA and B atoms.
Both the Debye and MJS approximations fail to reproduce

this property@see Eqs.~4! and~8!#. An ad hocway of fixing
this deficiency is to drop the last term in Eq.~8!. We will
refer to this scheme as the modified MJS~MMJS! approxi-
mation. To our knowledge the MMJS approximation has not
been reported before.

B. Local harmonic model

In the local harmonic~LH! model,32,33 every atom is as-
sumed to vibrate independently from the other atoms, as if
the rest of the structure were frozen at its equilibrium posi-
tion. The vibrational density of states is then approximated
by a set ofd functions at the Einstein frequencies of each
atom. This is equivalent to neglecting the elements in the
dynamical matrix outside the 333 block diagonal. With this
simplification, the problem of diagonalizing the 3N33N dy-
namical matrix is reduced to the diagonalization ofN 333
matrices. This model has been used to compute thermody-
namic and structural properties of perfect crystals,33 point
defects,34 grain boundaries,33 interfacial segregation,35 and
phase transitions at surfaces.36

In the LH approximation the second moment of the vibra-
tional density of states,^v2&, is obtained exactly. The second
moment can be related to the trace of the dynamical matrix
D through14 ^v2&5 Tr(D)/N. The trace ofD is preserved
by the LH approximation makinĝv2&LH5^v2&exact. The
other moments necessary to compute the free energy@most
importantly ^ ln(v)&# are approximate in the LH model.

In the next section we define a model system for which
^ ln(v)& can be computed accurately, while in the following
sections we compare the exact results with those obtained
using the approximations described in this section.

IV. MODEL SYSTEM

The model system we studied is a fcc Lennard-Jones~LJ!
alloy, described by three LJ functions corresponding to the
A-A, A-B, andB-B interactions. The functional form used is

V~r !5e@~R/r !1222~R/r !6#. ~9!

To simplify the calculations, the potential functions were
truncated atr52.5R.

To analyze the effect of the lattice vibrations on the phase
stability of the model system, we studied a set of 16 ordered
structures with up to 8 atoms in the unit cell. Once the for-
mation values of the chemical energy and the vibrational free
energy are computed, a cluster expansion can be constructed
to obtain a convenient parametrization of the configuration-
dependent contributions to the lattice Hamiltonian.

TABLE I. Sets of Lennard-Jones parameters for the model alloy
systems. In all cases,eAA51 andRAA51 without loss of generality.
Set No. 1 corresponds to a simplified model of the Ar-Kr system
~Ref. 38!.

Set No. eAB RAB eBB RBB

1 1.437 1.003 1.371 1.062
2 1.185 1.031 1.371 1.062
3 0.813 1.031 1.371 1.062
4 0.813 1.000 1.000 1.000
5 1.000 0.974 1.000 1.000
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V. EXACT RESULTS

The values of the LJ parameters used in the calculations
are summarized in Table I. The values of the atomic masses
used wereMA539.95 andMB583.80 ~resembling Ar and
Kr!, unless otherwise stated. The geometry~unit cell shape
and size, and the internal coordinates of the atoms! of all the
ordered structures was optimized to minimize the energy.

To perform the integrals over the Brillouin zone to get
^ ln(v)&, we used the equivalent of 408 special fcc points
obtained with the Chadi-Cohen scheme.37 The resulting rela-
tive integration error inD^ ln(v)& is less than 1023.

We first studied the system defined by the parameters in
set No. 1 in Table I. These parameters correspond to a sim-
plified model of the Ar-Kr system.38 The computed values of
DE andD^ ln(v)& for the 16 ordered structures are shown in
Figs. 1 and 2. With the parameters for the potentials used for
these calculations, the system is of the ordering type
(DE,0). The positive values ofD^ ln(v)& imply that the
transition temperatures computed with the vibrations in the

lattice Hamiltonian will be lower than when the vibrations
are neglected.

We constructed a cluster expansion forD^ ln(v)&. The
rms error of the cluster expanded values ofD^ ln(v)& is
0.03, indicating that the exact values are well reproduced by
the cluster expansion. The values of the expansion coeffi-
cients~ECI’s! are shown in Fig. 3. A rough estimate of the
size of this effect can be computed using the method de-
scribed in Sec. VIII. The vibrations will lower the transition
temperatures by approximately 5% in this model system.

The ECI’s are decaying with distance and number of sites
in the cluster. This is a signature that the local environments
determine the value ofD^ ln(v)&. With the cluster expan-
sion, the value ofD^ ln(v)& for any other structure can be
easily computed. Although convergence studies for the clus-
ter expansion ofDE have been widely reported in the
literature,18,19,39–41 a comprehensive study of the conver-
gence of the cluster expansion ofD^ ln(v)& is still lacking.

An interesting question to address is what part of the fre-
quency spectrum is responsible for the reported values of
D^ ln(v)&. To answer this question, we define for every
structure the function

s~v![ ln~v!Dg~v!, ~10!

whereDg(v) is the formation value of the vibrational den-
sity of states~VDOS!. Then the value ofD^ ln(v)& can be
obtained as the area under the curves(v), i.e.,

D^ ln~v!&5E
0

`

s~v!dv. ~11!

The values ofs(v) were computed using the VDOS ob-
tained with the equivalent to 408 fcc Chadi-Cohenk points
and smoothed with a 0.02-THz-wide Lorentzian. The results
are shown in Fig. 4.

It can be seen from these figures that the contribution of
s(v) to D^ ln(v)& is, in most cases, larger in the high-
frequency optical region of the spectrum than in the low-
frequency acoustical modes. This is in agreement with recent
experimental findings in the Fe-Al system.6 This observation

FIG. 1. Formation energy for the ordered structures for the first
set of LJ parameters in Table I. Average spin of21 (1) corre-
sponds to pureA (B). The energy scale corresponds to
eAA59.83 meV.

FIG. 2. Formation of the logarithmic average of the frequencies
for the ordered structures for the first set of LJ parameters in
Table I.

FIG. 3. Cluster expansion coefficients forD^ ln(v)& ~vibrational
ECI’s! computed with the Connolly-Williams~Ref. 16! method for
the first set of LJ parameters in Table I. The pair clusters are labeled
by the order of the pair, while the triplets are labeled by the pairs
that form the triplet~e.g., ‘‘112’’ labels the triplet formed by two
first nearest neighbor pairs and one second nearest neighbor pair!.
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has important consequences for the applicability of some of
the approximate methods~see Sec. VI!.

To condense the results for the other sets of LJ parameters
in Table I, we computed the averages ofDE andD^ ln(v)&
for the 16 ordered structures studied. These values are shown
in Table II.

VI. EVALUATION OF SIMPLIFIED MODELS

For the set of ordered structures used in Sec. V, we com-
putedD^ ln(v)& using the Debye, MJS, MMJS, and LH mod-
els. Figure 5 shows a detailed comparison of the perfor-
mance of these models for the first set of LJ parameters in
Table I. A summary of the results for the other sets of LJ
parameters is shown in Table III.

It can be seen from Table III that the performance of the
models varies between the various sets of LJ parameters.
However, the local harmonic model systematically outper-
forms the other models, for the fcc LJ alloys studied. The
magnitude of the LH error inD^ ln(v)& is acceptable~com-
pare Tables II and III! for a first attempt at including the
lattice vibrations in the free energy models. However, the

implementation of the LH model with first-principles ap-
proaches is not straightforward. In fact, the calculation of the
Einstein frequencies of the atoms in the unit cell of a given
structure is almost as difficult as the calculation of all the
spring constants@from which, the exact value of^ ln(v)& can
be obtained#.

The LH model is a very useful technique to approximate
the vibrational properties of nonperiodic systems~e.g., de-
fects, surfaces, interfaces! modeled with classical potentials.
In these cases, the dynamical matrix is easily obtained, while
finding its eigenvalues is difficult because of the lack of pe-
riodicity. The LH model greatly facilitates this diagonaliza-
tion as described in Sec. III.B. In the case of simple ordered

FIG. 4. Contribution to the formation value of the logarithmic
average of the frequencies for some structures with the first set of
LJ parameters in Table I. The plots correspond to the following
structures in the Strukturbericht notation:~a! L10 , ~b! L11 , ~c!
A-rich L12 , ~d! B-rich L12 , ~e! A-rich DO22, and ~f! B-rich
DO22. The frequency scale corresponds toeAA59.832 meV and
RAA53.87 Å.

TABLE II. Average values ofDE and D^ ln(v)& for the 16
ordered structures considered, using the sets of LJ parameters of
Table I. The energies are in units ofeAA .

Average Average
Set No. DE D^ ln(v)&

1 20.8610 0.0931
2 0.0735 20.0816
3 1.4379 20.3270
4 0.6887 20.1345
5 0.0038 0.0218

FIG. 5. Comparison of the exact value ofD^ ln(v)& with the
prediction of the Debye, MJS, MMJS, and LH models for the 16
ordered structures. The closer the points lie to the dashed line, the
better the approximation.
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structures of binary alloys, modeled with first-principles
methods, the difficult part of the problem is to obtain the
dynamical matrix, while its diagonalization is simplified by
the aid of Bloch’s theorem. For all these reasons, the LH
model, although quite accurate, is not practical for first-
principles calculations of vibrational properties of alloys.

The performance of the approximations based on the De-
bye model~Debye, MJS, and MMJS! is not as good as the
LH model ~see Table III!. The errors are comparable in mag-
nitude toD^ ln(v)&. Although the MJS and MMJS models
are approximations to the Debye model, the former perform
systematically better than the latter for the cases studied. We
do not understand this behavior.

We identified three sources of error in the Debye and MJS
models: contribution of high-frequency vibrations to
D^ ln(v)&, lack of sampling of certain spring constants, and
mass effects.

As noted in Sec. V the high-frequency part of the vibra-
tional spectrum makes a very important contribution to
D^ ln(v)&. Since the Debye and MJS models are based on
the elastic properties, they lack information about this part of
the spectrum. On the other hand, the LH model is a better
approximation to the optical modes. This could explain the
better performance of the LH model.

The value of the bulk modulus used as input in the MJS
model does not depend on some of the atomic spring con-
stants. For example, in a cubic structure, the bulk modulus
only depends on the central spring constants, but not on the
off-diagonal elements of the spring constant tensors. In cases
where these off-diagonal elements contribute significantly to
D^ ln(v)&, the MJS model will fail to capture the essential
features of the system.

The third source of error in the Debye and MJS models is
the dependence ofD^ ln(v)& on the atomic masses of the
constituent atoms. As pointed out in Sec. II, the exact value
of D^ ln(v)& is independent ofMA andMB , while the pre-
dicted value in the Debye and MJS models depends on the
masses through Eqs.~4! and ~8!. It can be shown that the
contribution of the masses in both models has exactly the
same form. Figure 6 illustrates the size of this effect for an
alloy at composition 1/2 as a function of the mass ratio. It
can be seen that for an alloy of mass ratio 2~roughly the
Ar-Kr case! the effect of the masses is of the order of the
total value ofD^ ln(v)& ~see Table II!, making the predic-
tions of these models unreliable. Thead hoccorrection in-

troduced in the MMJS model improved the results for some
cases, but it is not consistently better than the MJS model.

VII. ALTERNATIVE FRAMEWORKS FOR FIRST-
PRINCIPLES CALCULATIONS

We showed in Sec. VI that neither the local harmonic nor
the Debye-like models provide the framework for first-
principles calculations of the effect of lattice vibrations on
the phase stability of alloys. The LH model is relatively ac-
curate, but its implementation in first-principles calculations
is difficult, whereas the Debye-like models are of very easy
implementation, but the predictions they make are not reli-
able. Therefore, alternative approaches are needed. In this
section we explore methods that could make the calculations
both feasible and accurate.

Frozen phonon calculations for a few high-symmetryk
points are feasible with first–principles methods and have
been reported for several systems~see for example Ref. 42!.
An important question to answer is how manyk points are
needed to obtain a converged value forD^ ln(v)&. To address
this question, we computed thek point convergence of
D^ ln(v)& for some of the structures studied in previous sec-
tions for the first set of LJ parameters in Table I.

For the pure elements, thek points were chosen according
to the Chadi-Cohen scheme.37 For the ordered structures, the
k points corresponded to the equivalent set ofk points in
reciprocal space. Of course, due to the different symmetry
and unit cell of the ordered structures, the actual number of
distinct kpoints varied with the ordered structures. Table IV
summarizes the number of distinctk points for the ordered

TABLE III. Root mean square~rms! error of the prediction of
the value ofD^ ln(v)& for 16 ordered structures using the Debye,
MJS, MMJS, and LH models, for the sets of LJ parameters shown
in Table I.

rms error of approximations

Set No. Debye MJS MMJS LH

1 0.1378 0.0403 0.0848 0.0321
2 0.1036 0.0255 0.0780 0.0190
3 0.1442 0.0524 0.0907 0.0280
4 0.0891 0.0877 0.0050 0.0026
5 0.1047 0.0744 0.0175 0.0092

FIG. 6. Contribution of the masses to the value ofD^ ln(v)& in
the MJS and Debye models, for an alloy of composition 1/2, as a
function of the mass ratioMA /MB .

TABLE IV. Number of k points for the different ordered struc-
tures as a function of the iteration number in the Chadi-Cohen
scheme.

Chadi-Cohen
iteration

Structures

fcc L10 L11 L12 DO22

1 2 2 4 1 1
2 10 12 15 4 3
3 60 80 102 20 20
4 408 576 748 120 144
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structures for different numbers of iterations in the Chadi-
Cohen scheme.

We computedD^ ln(v)& for some of the ordered struc-
tures as a function of the iteration in the Chadi-Cohen
scheme to select thek points. The convergence results are
shown in Fig. 7. It can be seen that convergence of the for-
mation values within 1% is achieved for the third set ofk
points. However, if only the first iteration is used, the con-
vergence error inD^ ln(v)& is less than 0.016. This corre-
sponds to less than 20% of the average value ofD^ ln(v)&.
The simplicity of the Lennard-Jones system studied pre-
cludes the extrapolation of this convergence property to more
complex systems, for which a quantum-mechanical method
is necessary. However, if the fast convergence ofD^ ln(v)& is
a general feature, it will open the road for first-principles
frozen phonon calculations at a very few high-symmetryk
points, for the calculation of vibrational free energy of al-
loys.

A second possibility to use first-principles approaches is
to exploit the recent advances in linear response
methods,43,44based on the pseudopotential method~for a re-
view see Ref. 45!. For systems where the pseudopotentials of
the two atoms forming the alloy are similar enough, the iden-
tity of the atoms can be treated as a perturbation. The refer-
ence state is a virtual crystal formed by a ‘‘virtual’’ atom
sitting at the ideal lattice sites. The virtual atom is described
with a pseudopotential equal to the arithmetic average of the
pseudopotentials of the real atoms. The method allows the
calculation of geometries of relaxed structures, formation en-
ergies, and phonon frequencies of ordered and disordered
configurations. It has been successfully applied to the Si-Ge
system.46 The similarity of the pseudopotentials of Si and Ge
allowed these calculations.

In most cases, however, the pseudopotentials of the two
species are not similar enough for a perturbative treatment of
the atomic identity. This is the case, for instance, in
transition-metal alloys and oxide mixtures. The linear re-
sponse method can still be used to compute the phonon fre-
quencies of specific ordered structures, but the linear re-
sponse function has to be computed for each configuration of
atoms separately. The current computing power would allow
only calculations of this sort for very few high-symmetry
ordered structures. For simple systems, where a few ordered
structures are enough to obtain a reliable cluster expansion of
D^ ln(v)&, this method can provide a viable approach for
first-principles calculations.

A third option for first-principles calculations would in-
volve an extension of the method recently proposed by Wei

and Chou.47 This method obtains the real-space spring con-
stant tensors by computing the forces on atoms of perturbed
unit cells and inverting the resulting set of equations. This
approach has been very successful in computing the phonon
frequencies and thermodynamic properties of elemental
semiconductors.47–49It is very computer intensive because it
requires the calculation of forces for several low-symmetry
large unit cells, in order to obtainall the non-negligible
spring constants. These unit cells would become even larger
and of lower symmetry for ordered configurations of an al-
loy. However, the knowledge ofall the spring constants is
not really necessary for the calculation ofD^ ln(v)&. In fact,
D^ ln(v)& is an integrated quantity over the density of states
and therefore does not depend on the fine details of the pho-
non dispersion relations. Exploiting this fact, we developed a
hierarchy of approximations to getD^ ln(v)&. Preliminary
results for the Si-Ge system suggest that the effort needed to
computeD^ ln(v)& for an ordered structure is, in fact, much
less than that required to obtain the complete set of spring
constant tensors.

VIII. ESTIMATE OF THE EFFECT OF THE LATTICE
VIBRATIONS ON THE PREDICTED PHASE STABILITY

A rough estimate of the effect of the lattice vibrations on
the phase diagram of a substitutional binary alloy can be
obtained by assuming that only the nearest neighbor pair ECI
is nonzero in the Hamiltonian of the alloy,

H~sW ,T!5~Vchem1VvibkBT!m2^s2&, ~12!

whereVchemandVvib are the chemical and vibrational ECI’s
obtained by cluster expandingE0 and^ ln(v)&, respectively,
^s2& is the lattice average of the cluster functions on the
nearest neighbor pairs of the lattice, andm2 is the number of
nearest neighbor pairs per lattice site~e.g.,m256 for fcc and
m254 for bcc!. The transition temperatures at composition
1/2 for systems with only nearest neighbor ECI’s are given
by Tc5auVu/kB , wherea is a numerical constant that only
depends on the underlying lattice and on whether the system
is ordering or segregating. For the fcc lattice,a51.7 for
ordering systems anda59.8 for segregating systems, while
for bcc,a56.5 regardless of the ordering tendency~the bcc
lattice is notfrustrated in the nearest neighbor approxima-
tion!.

The size of the effect of the lattice vibrations can be ex-
pressed as the ratio between the transition temperatures com-
puted with and without considering the vibrations as

Tc
chem1vib

Tc
chem 5

1

17aVvib
, ~13!

where the ‘‘2 ’’ and ‘‘ 1 ’’ correspond to ordering and segre-
gating systems, respectively. Due to the linear dependence on
temperature of the leading term in Eq.~1!, the result in Eq.
~13! only depends on the sign ofVchem ~i.e., on the ordering
tendency of the system! and not on its actual value. In other
words, for a rough estimate of the relative change in transi-
tion temperatures with lattice vibrations, it is enough to com-
pute the vibrational ECI’sVvib . The predicted values of the
relative change in transition temperatures, (Tc

chem1vib

FIG. 7. Convergence error inD^ ln(v)& as a function of the
number of fcc Chadi-Cohenk points.
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2Tc
chem)/Tc

chem, according to Eq.~13! are shown in Fig. 8 as
a function ofVvib for fcc and bcc alloys.

We used Eq.~13! to estimate the effect of the lattice vi-
brations on the phase stability of the LJ systems described in
Table I. The predicted relative change in the transition tem-
peratures is shown in Fig. 8~labels ‘‘set No. 1’’ – ‘‘set No.
5’’ !. For this rough estimate, the nearest neighbor vibrational
ECI’s were obtained by fitting a cluster expansion with only
this ECI ~and an empty and point terms! to the values of
D^ ln(v)& of the 16 ordered structures.

Estimates of the effect of vibrations on the phase stability
of real materials can be made using the experimental results
of Fultz and co-workers.4–8 They measured differences in
vibrational entropy between different configurations of sev-
eral alloys. These differences allow us to obtain an estimate
for the value of the nearest neighbor vibrational ECI’s, as-
suming a short-range cluster expansion, and recalling that
DSvib52kBD^ ln(v)& in the high-temperature limit. The re-
sulting estimates for the change in transition temperature at
composition 1/2 are shown in Fig. 8. Note that for the alloy
systems studied, all transition temperatures are reduced by
the lattice vibrations~this includes both ordering and segre-
gating systems!.

It is clear from Fig. 8 that the effect of lattice vibrations
on the transition temperatures can be significant. Although
using only nearest neighbor interactions makes this a rough
estimate, the truncation of the cluster expansion is not ex-
pected to bias the estimate towards larger effects. Therefore,
lowering transition temperatures by 30% might not be un-
common. In the next section we analyze whether the trend of
lowering the transition temperatures in Fig. 8 can be ex-
plained.

IX. TRENDS

The simple model system of Sec. IV allows us to analyze
how the effect of the lattice vibrations on phase stability
changes, when changing the size mismatch and chemical af-
finity of the alloy species. In principle, this is achieved by
systematically varying the parameters that define the
Lennard-Jones potentials~i.e., eAA , RAA , eAB , RAB , eBB ,

and RBB) and computing the vibrational effective interac-
tions for different sets of parameters. For simplicity, we com-
putedD^ ln(v)& for just one ordered structure (L10). The
results obtained may not be valid for more complex systems,
but provide a guideline for analyzing simple cases.

Without losing generality, we can seteAA51 and
RAA51 @recall that the value ofD^ ln(v)& is independent of
the energy and length scales#. A power expansion of
D^ ln(v)& for L10 can be constructed numerically around
eAB51,RAB51, eBB51, andRBB51. The linear term of the
expansion does not depend on the four variables indepen-
dently, but only on De5eAB2(eAA1eBB)/2 and DR
5RAB2(RAA1RBB)/2:

D^ ln~v!&L10'0.84De22.86DR. ~14!

For an ordering system, a positive value ofD^ ln(v)& re-
duces the ordering tendency of the system. A similar expres-
sion can be computed for the formationenergyof L10:

DEL10
'24.70De14.05DR. ~15!

A negative value ofDEL10
corresponds to an ordering

tendency. Equations~14! and~15! divide the parameter space
(De,DR) in four areas~see Fig. 9!. In the unshaded areas,
DEL10

andD^ ln(v)&L10 have opposite sign and the effect of
the lattice vibrations is to reduce the~ordering or segregat-
ing! transition temperature. The behavior in these areas is
consistent with the intuitive understanding of the vibrational
effect: In ordering systems,A-B bonds have lower energy
than the average of theA-A andB-B bonds. Usually lower
energy means stiffer bonds and therefore lower vibrational
entropy. This lower entropy will make the ordered structure
less stable and hence its transition temperature will be lower.
A similar argument can be applied to segregating systems
with the same conclusion. In a small area of parameter space
~shaded areas in Fig. 9! vibrations increase the transition
temperature, indicating that the simple picture described
above breaks down.

FIG. 8. Rough estimate of the effect of lattice vibrations on the
predicted phase stability for some alloys systems. The labels ‘‘set
No.’’ correspond to the set of LJ parameters in Table I, while the
vibrational ECI’s for the other systems were estimated from experi-
mental measurements of vibrational entropy.

FIG. 9. Trends in the effect of lattice vibrations on phase stabil-
ity. The shaded region corresponds to the set of LJ parameters that
define systems in which the lattice vibrations tend to increase the
transition temperatures.
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X. CONCLUSIONS

The configurational dependence of the vibrational free en-
ergy can be expanded with a short-range Ising-like Hamil-
tonian. This makes it possible to compute thetotal free en-
ergy for the alloy system, including the effects of
substitutional and vibrational excitations. Fits of this Hamil-
tonian to experimental data indicate that the effect of vibra-
tions on transition temperatures may be significant.

The computation of this quantity from first principles will
be difficult. In our model system, we find that the major
contribution to the formation value of the vibrational free
energy comes from the intermediate and high frequencies of
the phonon spectrum. This prohibits the use of simplified
models for the vibrational free energy which are based solely
on information of the elastic constants. The Debye approxi-

mation, in particular, fails because it does not contain infor-
mation about the important high-frequency part of the spec-
trum, may not sample all the spring constants, and depends
on the masses of the atomic species. We proposed alternative
schemes that may be feasible to use with first-principles ap-
proaches, and still retain enough information about the sys-
tem to produce reliable results. Although we confirmed the
general trend of the lattice vibrations lowering the transition
temperature, we identified cases where the opposite effect is
expected.
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