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Recent studies show that the effect of the lattice vibrations on predictions of phase stability can be important.
Because complete computations of the phonon density of states from first principles are difficult, simpler
models for the vibrational free energy have been used to incorporate these effects into phase diagram calcu-
lations. In this paper, we systematically investigate the accuracy of these approximations by studying model
systems for which the vibrational free energy can be computed exactly in the harmonic approximation. We
found that the Debye approximation, usually used in first-principles studies, fails to capture the configuration
dependence of the vibrational free energy. We explain the reason for this failure. With the same model systems,
we analyzed the effect of the lattice vibrations on the predicted phase diagrams as a function of size mismatch
and chemical affinity. By fitting our results to the available experimental information, we find that the effect of
vibrations on phase transition temperatures may be significant.

[. INTRODUCTION the approximations used in the simplified models, and to

study the trends of the effect of the lattice vibrations with

Recent advances in theoretical models and computesize mismatch and chemical affinity. In this paper, we study
power have made the first-principles calculations of alloymodel systems for which the vibrational free energy can be
phase diagrams a powerfu| tool in materials scierfcBre- computed exactly within the harmonic approximation. This
cise control of external variables, attainability of extremeallows us to derive conclusions about the different approxi-
experimenta| ConditionS, and low cost make the Computamations and the size and Origin of the vibrational effect on

tional models an attractive alternative to traditional labora-2/l0y phase stability. In addition, we estimate the effect of
tory experimentation for the design of new materials. In Or_V|brat|ons on the transition temperatures in coherent transfor-

der to compete with “real” experiments, the computationalmat'ons'

models have to be reliable and capable of producing quant—BriThe rest of the paper is organized as follows. In Sec. Il we

tative predictions. To achieve this goal, the theoretical mods efly review the formalism _used to study substitutional al-
. . _— loys and describe how a lattice model can accommodate the
els have to include all the important contributions to the

lattice vibrations. Simplified models that are usually used to
alloy free energy.

. . I . address the problem are described in Sec. Ill. The model
In particular, methods to deal with substitutional disorder

3 ; system used in the present study is presented in Sec. IV.
are well developed.Quantum mechanics can be used 10 Pa-gections V and VI present the results of the exact approach

rametrize an Ising-like Hamiltonian for an alloy with any anq the simplified models, respectively. A discussion of pos-
required accuracy. This lattice Hamiltonian allows one togjple approaches for first-principles calculations follows in
compute the configurational entropy of a material and tosec. viI. Rough estimates of the effect of the lattice vibra-
evaluate its phase diagram. Although first-principles calculations on phase diagrams are reported in Sec. VIII. Section IX
tions based on this procedure have been successful in reprexplores the roll of chemical affinity and atomic size in de-
ducing the topology of many real-alloy phase diagrams, theermining the effects of lattice vibrations on phase stability.
effect of neglecting other contributions to the free energy isFinally, the conclusions are summarized in Sec. X.
unclear. Recently, Wolverton and Zungishowed how the
character of the short-range order in Ni-V and Pd-V is modiy; \,graATIONAL FREE ENERGY AND ITS DEPENDENCE
fied by the electronic entropy. The effects of lattice vibra- ON CONEIGURATION
tions may be even more dramatic. It has been shown experi-
mentally that for the Ni-Al, Fe-Al, Fe-Cr, and Cu-Au The effect of the lattice vibrations on the phase stability of
system&~8 the change of vibrational free energy in order- substitutional alloys can be studied with an Ising-like lattice
disorder and segregating phase transformations can be comodel®*3 The only assumption needed for this transforma-
parable in magnitude to the change in the configurationafion is that every microstate of the alloy can be uniquely
entropy. Some theoretical calculatiohs? based on simpli- mapped to a configuration of the atoms on a fixed lattice.
fied models for the vibrational free energy, support theserlhis is achieved by, for every atom, finding the closest lattice
conclusions, by showing that the inclusion of the vibrationssite to its position. The mapping of the alloy problem to a
in the theoretical models can significantly alter the predictedattice model breaks down close to displacive transitions,
phase stability, bringing the predictions in closer agreemenivhere the underlying lattice changésg., from fcc to bce
with experiment. The lattice Hamiltonian can be properly defined d¢narse
Despite this realization, very little has been done to justifygraining the full Hamiltonian of the alloy system. The reduc-
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tion in the number of the degrees of freedom, from thewhere the sum is over all clustets of lattice points. The
guantum-mechanical continuous Hamiltonian to the latticecluster functionso, are defined as the product of the spin
Hamiltonian, is achieved by integrating out the fastest dewvariables on clustew, andV,, are theeffective cluster inter-
grees of freedom. For the case of a substitutional alloy, thactions (ECI's). Once the ECI's are known, the thermody-
configurational degrees of freedom evolve with much longenamic properties of the alloy can be computed using any of
time scales than the vibrational or electronic degrees of freethe standard statistical mechanics techniq(eg., Monte
dom. That means that for every substitutional arrangemenCarlo simulations, cluster variation method, low- and high-
there is a well-defined vibrational free energy. As our focustemperature expansions

is on the vibrational free energy we ignore the electronic The techniques for obtaining the ECl's have been re-
excitations. The lattice Hamiltonian contains the “chemical” viewed elsewher&~1° In most cases, the ECI's can be ob-

energy of the relaxed ground state structure and its vibragined from the values dfi(o, T) for a few (of the order of

tional free energy. Therefore, the partition function of thelo) ordered structures of thé andB atoms on the sites of

system defined by this lattice Hamiltonian includes both conype |attice. Given the above approximations, we would only
figurational and vibrational degrees of freedom. In the har'needEo and(In(w)) for these configurations.

monic approximation and for temperatures larger than the pgecause phase stability depends on differences in thermo-
characteristic Debye temperatures of the system, the |att'c§ynamic potentials, only theformation values of E,

Hamiltonian can be written &5 (In(w)), etc., are needed. For an ordered structure with com-
position ¢ (atomic fraction ofA), the formation value of a

2/ 2\~ i i i
T e D AR dfned a
AQ=Q—[cQat(1-0¢)Qgl. )
fi*(w)(0)
- W‘@T?’ +--, (1) It has been noted by several auth@se for example Ref.

20) that the value ofA(In(w)) for an ordered structure is

- . . independent of the masses of theand B atoms. Also,
whereo labels the configuration of th& andB atoms onthe  A(|n(w)) is dimensionless, independent of the units used for
lattice, () symbolizes averageper atom over the Brillouin  , " and invariant under a change in energy and length scales.
zone, E, is the fully relaxed ground state energy,is the  These properties do not hold for the other moments of the

vibrational frequency of a phonon mode, akgland# are  frequency distribution in Eq(1).
the Boltzmann and Planck constants, respectively. The terms

that are rjot dependent enhave bgen left out of the Iattipe IIl. SIMPLIFIED MODELS
Hamiltonian, as they do not contribute to the configurational
thermodynamics. The calculation ofA(In(w)) for several ordered structures

We have showt that the leading terrin(w) kg T in this  of a binary alloy from first principles is beyond the current
high-temperature expansion is enough to accurately represomputer power because it amounts to computing the full
sent the vibrational free energy for temperatures of the ordgphonon dispersion relations for structures with complex unit
of, or higher than, the Debye temperatures of the systentells. For this reason, simplified models have been developed
Since most phase transformations occur in this temperatuig recent years to reduce these calculations to tractable
range, in the rest of the paper we will concentrate on thisschemes. In this section, we review some of these models.
term, but most of the conclusions are also valid for the other
terms in Eq.(1). A. Debye model

For systems described with classical potentials, the dy- L . .
namical matrix is easily obtained from the second derivates !N the Debye model, the solid is considered as an elastic
of the total energ¥* By diagonalizing this matrix, the values cOntinuum with the same elastic constants as the true solid.
of the frequencies of the normal modes of the system can b&n€ Vibrational density of states is then parabolic, with a
obtained and the averages in Et). are easily computed. For Cutoff frequencywp given by the condition that the total
systems that require a more complex, quantum-mechanicRUMmber of frequencies should equal this 8egrees of free-
description, simplifications are necessary to get the momenf®m- The Debye temperature is defined 5= wp /K,
of the frequency distributiosee Sec. IlI, beloyw and can be computed ‘s

To study the thermodynamic properties of the alloy sys-

= 13 -13
tem, the actual dependence ldfon the configuratiorv is D:@ i E [f i3+ i3+ 33 @] . (9
parametrized using a cluster expansion technigie oc- kg \4mV Ci C; C3l4m

cupancy of sitei is labeled by a spinlike variables wherecq, C,, andcy are the three speeds of sound in a given
=41 (—1) when aB (A) atom is on sita ]. The sub- 1, 2> 3
L (1) w (") 's on sits] St direction of propagation\/V is the number density, and the

integral is over all the possible directions. The speeds of
sound can be easily computed if the elastic constants and
density of the material are knovh.

Assuming a Debye-like distribution of frequencies, the

H(E,T)=E Va(T)aa((;), ) V|brat|ona!,Z free energy of an ordered strupturepan be
@ computed? once 6 is known for that configuration. The

stitutional state(or configuration of an N-site alloy, o, is
then anN-dimensional vector of 1's and-1's. The alloy
Hamiltonian is written as
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resulting high-temperature limit of the vibrational free en- this property{see Eqs(4) and(8)]. An ad hocway of fixing

ergy has the same form as H@) with this deficiency is to drop the last term in E@). We will
refer to this scheme as the modified MQ8MJS) approxi-
(In(®)) _3 In( kBoD) 1 5) mation. To our knowledge the MMJS approximation has not
Debye % : been reported before.

Some of the effects of anharmonicifg.g., thermal expan- B. Local harmonic model

sion can be taken into account by using the Debye- . 3233 .
Grineisen modef® Since we are only evaluating the ap- !N the local harmonidLH) model,™* every atom is as-

proximations to reproduce the harmonic behavior, thes§Umed to vibrate independently from the other atoms, as if
effects will not be considered. the rest of the structure were frozen at its equilibrium posi-

In most studies wherab initio methods are used. com- tion. The vibrational density of states is then approximated
puting all the elastic constants is very difficult and furtherPY @ Set ofé functions at the Einstein frequencies of each

approximations are necessary. Assuming constant transverdm- This is equivalent to neglecting the elements in the
and longitudinal sound velocity, given b= (L/p)"2 and dynamical matrix outside the>83 block diagonal. With this

c.=(S/p)¥2 wherep is the density, and using empirical simp_lification,_th_e problem of diagonalizing_ thd%xl3<3N dy-
relationships between the bulk modulus and the sh&r ( naml_cal matrllx is reduced to the diagonalizationNof3 X 3
and longitudinal L) moduli (valid for nonmagnetic cubic Matrices. This model has been used to compute thermody-
element Moruzzi, Janak, and Schwafzderived the fol-  Namic and structural properties of perfect crystalpoint

lowing approximation to Eq(d): defects™ grain boundaried® interfacial segregatiofr, and
phase transitions at surfacts.
. v13gLe2 In the LH approximation the second moment of the vibra-
0p=0.61167°) kel M| (6)  tional density of stategw?), is obtained exactly. The second

moment can be related to the trace of the dynamical matrix
wherev is the average volume per atoiM, is the average D through* (w?)= Tr(D)/N. The trace ofD is preserved
atomic weight, and is the bulk modulus obtained from the by the LH approximation makingw?), ;={(®?)exact The

binding curve as other moments necessary to compute the free erjengpgt
5 importantly{In(w))] are approximate in the LH model.
Bzva—u @) In the next section we define a model system for which
w?| (In(w)) can be computed accurately, while in the following

sections we compare the exact results with those obtained
whereu is the energy per atom ang, is the equilibrium  using the approximations described in this section.
value ofv.

We will refer to this scheme to approximate the Debye IV. MODEL SYSTEM
model as the Moruzzi-Janak-SchwdMJS) approximation. o
The MJS approximation has been widely used in studies of 1he model system we studied is a fcc Lennard-Jghés
alloy thermodynamics. Studies of binahAg-Cu (Refs. 9 alloy, described by three .LJ functions cqrrespondlng to .the
and 24, Co-Pt(Ref. 29, Au-Ni (Ref. 26, Ni-Al (Ref. 27, A-A, A-B, andB-B interactions. The functional form used is

Ti-Al (Ref. 28, Au-Pd (Ref. 24, Au-Ag (Ref. 249, and _ 12 6

Cd-Mg (Ref. 10], pseudobinanfinP-InSb (Ref. 29, and V()= el (RIN)™=2(R/1)7]. ©
GaAs-InAs(Ref. 30], and ternarfRu-Nb-Zr (Ref. 3)] al-  To simplify the calculations, the potential functions were
loys have been reported in the literature. truncated at =2.5R.

The popularity of the MJS scheme is due to its simplicity: ~ To analyze the effect of the lattice vibrations on the phase
The quantities neede@/olume and bulk modulysare by-  stability of the model system, we studied a set of 16 ordered
products of the calculation of the relaxed formation energiestructures with up to 8 atoms in the unit cell. Once the for-
for the ordered structures. However, its validity for the cal-mation values of the chemical energy and the vibrational free
culation of formation free energies in alloys has not been energy are computed, a cluster expansion can be constructed
demonstrated. For an ordered structure with composition to obtain a convenient parametrization of the configuration-
the formation value of the coefficient of the leading term independent contributions to the lattice Hamiltonian.

Eq. (1) in the MJS scheme is TABLE I. Sets of Lennard-Jones parameters for the model alloy

3 B r systems. In all casesyp=1 andR,a= 1 without loss of generality.
A{In(w)Yis=5 In( S l—c) +In( S 1_C) Set No. 1 corresponds to a simplified model of the Ar-Kr system
2 BABz FAlB (Ref. 38.
cppl-—c
+In MAM B ) } (8) Set No. €EAB RAB €BB RBB
CMp+(1—-c)Mg) |’
1 1.437 1.003 1.371 1.062
wherer is the average Wigner-Seitz radius of the structurez 1.185 1.031 1.371 1.062
(i.e.,v=4mr33). 3 0.813 1.031 1.371 1.062
As pointed out above, the exact value &f In(w)) is 4 0.813 1.000 1.000 1.000
independent of the atomic masses of theand B atoms. 5 1.000 0.974 1.000 1.000

Both the Debye and MJS approximations fail to reproduce
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FIG. 3. Cluster expansion coefficients f(In(w)) (vibrational
ECI's) computed with the Connolly-Williamé&Ref. 1§ method for
. ~ the first set of LJ parameters in Table |. The pair clusters are labeled
FIG. 1. Formation energy for the ordered gtructures for the flrstby the order of the pair, while the triplets are labeled by the pairs
set of LJ parameters in Table |. Average spin-of (1) corre-  nat form the triplet(e.g., “112” labels the triplet formed by two

sponc:)sssto |c\)/ureA (B). The energy scale corresponds 1o first nearest neighbor pairs and one second nearest neighbpr pair
Eppn= Y. meV.

Average spin

lattice Hamiltonian will be lower than when the vibrations
V. EXACT RESULTS are neglected.

We constructed a cluster expansion fd(In(w)). The

The values of the LJ parameters used in the calculationrsmS error of the cluster expanded values Xfin(w)) is
are summarized in Table |. The values of the atomic Massgg o3 ingicating that the exact values are well reproduced by
used wereM,=39.95 andMg=83.80 (resembling Ar and 1, cjyster expansion. The values of the expansion coeffi-
Kr), unless otherwise stated. The geométit cell shape  gienis(ECI's) are shown in Fig. 3. A rough estimate of the
and size, and the internal coordinates of the ajashsll the ;0 of this effect can be computed using the method de-
ordered structures was optimized to minimize the energy. gqrined in Sec. VIII. The vibrations will lower the transition

To perform the mtegral; over the Brllloum_zone to get temperatures by approximately 5% in this model system.
(In(w)), we used the equivalent of 408 special fcc points — he ECr's are decaying with distance and number of sites
obtained with the Chadi-Cohen scherighe resulting rela- i the cluster. This is a signature that the local environments
tive integration error in\(In(w)) is less than 10°. _determine the value oA(In(w)). With the cluster expan-

We first studied the system defined by the parameters i8ion, the value oft(In(w)) for any other structure can be
set No. 1 in Table I. These parameters correspond 10 a Si,gily computed. Although convergence studies for the clus-

.- 8
plified model of the Ar-Kr systeri® The computed values of ter expansion ofAE have been widely reported in the

AE andA({In(w)) for the 16 ordered structures are shown N jiteraturel®1939-41 5 comprehensive study of the conver-

Figs. 1 and 2. With the parameters for the potentials used foto~a of the cluster expansion &fIn(w)) is still lacking.

these calculations, the system is of the ordering typ€ ap interesting question to address is what part of the fre-

(AE<O). The positive values of(In(w)) imply that the o .ency spectrum is responsible for the reported values of
transition temperatures computed with the vibrations in theA(In(w)). To answer this question, we define for every

structure the function

0.25 T T T T T T T s(w)EIn(w)Ag(a)), (10)
02 | 8 ° - whereAg(w) is the formation value of the vibrational den-
é ° ° sity of states(VDOS). Then the value ofA(In(w)) can be
5 0.15 | o . obtained as the area under the cus(e), i.e.,
é 01 ~ ¢ _ o0
= ¢ © A(ln(w)>=f S(w)dw. (11
E 005 | . 0
(o] & g
L
0 B G g 2 The values of(w) were computed using the VDOS ob-
tained with the equivalent to 408 fcc Chadi-CoHepoints
-0.05 ' ' ' : ; ' : and smoothed with a 0.02-THz-wide Lorentzian. The results

-+ -075 05 -025 O 025 05 075 1 are shown in Fig. 4.

Average spin It can be seen from these figures that the contribution of
s(w) to A{In(w)) is, in most cases, larger in the high-
FIG. 2. Formation of the logarithmic average of the frequenciesfrequency optical region of the spectrum than in the low-
for the ordered structures for the first set of LJ parameters ifrequency acoustical modes. This is in agreement with recent
Table I. experimental findings in the Fe-Al systétiThis observation
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has important consequences for the applicability of some of %
the approximate methodsee Sec. V1 o 1
To condense the results for the other sets of LJ parameters 02t . . . L
in Table I, we computed the averages/E and A{In(w)) 0 005 01 015 02
for the 16 ordered structures studied. These values are shown Exact <log(w)>
in Table Il.
T T T o —
VI. EVALUATION OF SIMPLIFIED MODELS 02 » Pt
o_.0-"
é 01 oo 0 .
For the set of ordered structures used in Sec. V, we com- 2 ol 0 0"
. v by
putedA(In(w)) using the Debye, MJS, MMJS, and LH mod- T
els. Figure 5 shows a detailed comparison of the perfor- 0.1 .
mance of these models for the first set of LJ parameters in ozl i
Table 1. A summary of the results for the other sets of LJ 0 005 01 015 02
parameters is shown in Table IlI. Exact <log(w)>

It can be seen from Table Ill that the performance of the
models varies between the various sets of LJ parameters.
However, the local harmonic model systematically outper- FiG. 5. Comparison of the exact value AfIn(w)) with the
forms the other models, for the fcc LJ alloys studied. Theprediction of the Debye, MJS, MMJS, and LH models for the 16
magnitude of the LH error il (In(w)) is acceptablécom-  ordered structures. The closer the points lie to the dashed line, the
pare Tables Il and I)l for a first attempt at including the better the approximation.
lattice vibrations in the free energy models. However, the

TABLE 1. A | (AE and Al for the 16 implementation of the LH model with first-principles ap-
- Average values oAt an (Inw)) for the ¥oaches is not straightforward. In fact, the calculation of the
ordered structures considered, using the sets of LJ parameters [é . . . . .
Table I. The energies are in units f .. Instein frgquenmes of t_he atoms in the unit gell of a given
structure is almost as difficult as the calculation of all the
spring constantirom which, the exact value din(w)) can

Average Average A

Set No. AE A(In(w)) be obtained : : )

The LH model is a very useful technique to approximate
1 —0.8610 0.0931 the vibrational properties of nonperiodic systefesy., de-
2 0.0735 —0.0816 fects, surfaces, interfacemodeled with classical potentials.
3 1.4379 —0.3270 In these cases, the dynamical matrix is easily obtained, while
4 0.6887 —0.1345 finding its eigenvalues is difficult because of the lack of pe-
5 0.0038 0.0218 riodicity. The LH model greatly facilitates this diagonaliza-

tion as described in Sec. II.B. In the case of simple ordered
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TABLE Ill. Root mean squarérms) error of the prediction of

A
the value ofA(In(w)) for 16 ordered structures using the Debye, % 0
MJS, MMJS, and LH models, for the sets of LJ parameters shown 2 o
in Table 1. v o
= -0.1
L £
rms error of approximations & 015
2 -02
Set No. Debye MJS MMJS LH c
8 -0.25
1 0.1378 0.0403 0.0848 0.0321 2 03
2 0.1036 0.0255 0.0780 0.0190 “é -0.35
3 0.1442 0.0524 0.0907 0.0280 o
4 0.0891 0.0877 0.0050 0.0026 Mass ratio
5 0.1047 0.0744 0.0175 0.0092

FIG. 6. Contribution of the masses to the valueAdin(w)) in
the MJS and Debye models, for an alloy of composition 1/2, as a

structures of binary alloys, modeled with first-principles ¢, ion of the mass ratiov , /M g

methods, the difficult part of the problem is to obtain the

dynamical matrix, while its diagonalization is simplified by troduced in the MMJS model improved the results for some
the aid of Bloch's theorem. For all these reasons, the LHcases, but it is not consistently better than the MJS model.
model, although quite accurate, is not practical for first-
principles calculations of vibrational properties of alloys. VIl. ALTERNATIVE FRAMEWORKS FOR FIRST-

The performance of the approximations based on the De- PRINCIPLES CALCULATIONS
bye model(Debye, MJS, and MMJSis not as good as the ) ) )
LH model (see Table Ill. The errors are comparable in mag- We showgd in Sec. VI that _nelther the local harmomq nor
nitude toA{In(w)). Although the MJS and MMJS models th? I;)ebye-hke m'odels provide the frarr)ewo_rk fqr first-
are approximations to the Debye model, the former perfor rinciples calculations of the effect of lattice vibrations on

systematically better than the latter for the cases studied. ge phase s_tab_lhty of aIons_. The I.‘H m(_)de_l IS relat|vely_ac-
. . Curate, but its implementation in first-principles calculations
do not understand this behavior.

. i . is difficult, whereas the Debye-like models are of very easy
we |dent|f|eq thrge sources of error in the D_ebye' and MJ mplementation, but the predictions they make are not reli-
models: contribution of high-frequency vibrations to

) i X able. Therefore, alternative approaches are needed. In this
A(In(w)), lack of sampling of certain spring constants, andgection we explore methods that could make the calculations

mass effects. _ _ both feasible and accurate.

As noted in Sec. V the high-frequency part of the vibra-  grozen phonon calculations for a few high-symmery
tional spectrum makes a very important contribution topgints are feasible with first—principles methods and have
A(In(w)). Since the Debye and MJS models are based oBeen reported for several systefage for example Ref. 42
the elastic properties, they lack information about this part ofAn important question to answer is how makypoints are
the spectrum. On the other hand, the LH model is a bettefieeded to obtain a converged value Adin(w)). To address
approximation to the optical modes. This could explain thethis question, we computed thie point convergence of
better performance of the LH model. A{In(w)) for some of the structures studied in previous sec-

The value of the bulk modulus used as input in the MJSjons for the first set of LJ parameters in Table I.
model does not depend on some of the atomic spring con- For the pure elements, thepoints were chosen according
stants. For example, in a cubic structure, the bulk modulugo the Chadi-Cohen scheméFor the ordered structures, the
only depends on the central spring constants, but not on the points corresponded to the equivalent setkapoints in
off-diagonal elements of the spring constant tensors. In casggciprocal space. Of course, due to the different symmetry
where these off-diagonal elements contribute significantly taand unit cell of the ordered structures, the actual number of
A(In(w)), the MJIS model will fail to capture the essential distinct k points varied with the ordered structures. Table IV

features of the system. summarizes the number of distinktpoints for the ordered
The third source of error in the Debye and MJS models is

the dependence di(In(w)) on the atomic masses of the  TABLE IV. Number ofk points for the different ordered struc-
constituent atoms. As pointed out in Sec. Il, the exact valugdures as a function of the iteration number in the Chadi-Cohen
of A{In(w)) is independent oM, and Mg, while the pre- scheme.
dicted value in the Debye and MJS models depends on the
masses through Eq$4) and (8). It can be shown that the ) Structures
contribution of the masses in both models has exactly thChad."COhen

'ﬁeratlon fcc L1, L1, L1, DO,,

same form. Figure 6 illustrates the size of this effect for an

alloy at composition 1/2 as a function of the mass ratio. It1 2 2 4 1 1
can be seen that for an alloy of mass ratigraughly the 2 10 12 15 4 3
Ar-Kr case the effect of the masses is of the order of thes 60 80 102 20 20
total value of A(In(w)) (see Table I, making the predic- 4 408 576 748 120 144

tions of these models unreliable. Thd hoccorrection in-
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and Chou*’ This method obtains the real-space spring con-

A
% 0.004 ' ' stant tensors by computing the forces on atoms of perturbed
2 0 - B 7 unit cells and inverting the resulting set of equations. This
§ -0.004 L10 o— - approach has been very successful in computing the phonon
T 0008 L2 Ao o frequencies and thermodynamic properties of elemental
“E o012 pL12 Berich x| semi_conductoré?“‘glt_ is very computer intensive because it
. DO22 B-rich -- requires the calculation of forces for several low-symmetry
5 -0.016 L ! - large unit cells, in order to obtaiall the non-negligible

2 Numbl\?of (e Chadi. gghen soints 408 spring constants. These unit cells would become even larger

and of lower symmetry for ordered configurations of an al-

loy. However, the knowledge ddll the spring constants is
FIG. 7. Convergence error ia(In(w)) as a function of the  not really necessary for the calculation®fIn(w)). In fact,

number of fcc Chadi-Cohek points. A(In(w)) is an integrated quantity over the density of states

structures for different numbers of iterations in the Chadi-2nd therefore does not depend on the fine details of the pho-
Cohen scheme. non dispersion relations. Exploiting this fact, we developed a

We computedA(In(w)) for some of the ordered struc- hierarchy of approximations to get(In(w)). Preliminary
tures as a function of the iteration in the Chadi-Cohen€sults for the Si-Ge system suggest that the _effort needed to
scheme to select thie points. The convergence results are COMPuteA(In(w)) for an ordered structure is, in fact, much
shown in Fig. 7. It can be seen that convergence of the forless than that required to obtain the complete set of spring
mation values within 1% is achieved for the third setkof Cconstant tensors.
points. However, if only the first iteration is used, the con-
vergence error iM({In(w)) is less than 0.016. This corre-  VIIl. ESTIMATE OF THE EFFECT OF THE LATTICE
sponds to less than 20% of the average valua @h(w)). VIBRATIONS ON THE PREDICTED PHASE STABILITY
The simplicity of the Lennard-Jones system studied pre-
cludes the extrapolation of this convergence property to mor
complex systems, for which a quantum-mechanical metho
is necessary. However, if the fast convergencA @h(w)) is
a general feature, it will open the road for first-principles
frozen phonon calculations at a very few high-symmedtry -
points, for the calculation of vibrational free energy of al- H(a,T)=(Vehenit Vuikg T)Mx(072), (12)
loys. . L ,

A second possibility to use first-principles approaches jvhereVenemandVy;, are the chemical and vibrational ECI's

to exploit the recent advances in linear responseObtalned by cluster expandirfg, and(In(«)), respectively,

method<'>* based on the pseudopotential metlitu a re- {o5) is the lattice average of the cluster functions on the

view see Ref. 45 For systems where the pseudopotentials Oineares'i ne!gﬂgor pairs of tf;ettlattlce, ang |s_'tr€13efnufrnber 3f
the two atoms forming the alloy are similar enough, the ien1€arest neighbor pairs per lattice sibeg.,m =6 for fcc and
n,=4 for bcg. The transition temperatures at composition

tity of the atoms can be treated as a perturbation. The refef! ) ) . .
ence state is a virtual crystal formed by a “virtual” atom 1/2 for systems with onlx nearest ngghbor ECI's are given
sitting at the ideal lattice sites. The virtual atom is described Te= a|V|/ke, wherec_x IS a n_umerlcal constant that only
with a pseudopotential equal to the arithmetic average of thgepends_ on the underlyl_ng lattice and on Whgther the system
pseudopotentials of the real atoms. The method allows thE¥ Ordering or segregating. For the fcc lattices=1.7 for
calculation of geometries of relaxed structures, formation en'dering systems and =9.8 for segregating systems, while
ergies, and phonon frequencies of ordered and disorderd@" Pcc, a=6.5 regardless of the ordering tenderithye bce

configurations. It has been successfully applied to the Si-GIttice is notfrustratedin the nearest neighbor approxima-

systent® The similarity of the pseudopotentials of Si and GetoD)- T
allowed these calculations. The size of the effect of the lattice vibrations can be ex-

In most cases, however, the pseudopotentials of the twhressed as the ratio between the transition temperatures com-

species are not similar enough for a perturbative treatment dtuted with and without considering the vibrations as
the atomic identity. This is the case, for instance, in
transition-metal alloys and oxide mixtures. The linear re- _
sponse method can still be used to compute the phonon fre- T 1T aVy'
guencies of specific ordered structures, but the linear re-
sponse function has to be computed for each configuration ofhere the “=" and “ +” correspond to ordering and segre-
atoms separately. The current computing power would allovgating systems, respectively. Due to the linear dependence on
only calculations of this sort for very few high-symmetry temperature of the leading term in E@), the result in Eq.
ordered structures. For simple systems, where a few orderdd3) only depends on the sign & (i.e., on the ordering
structures are enough to obtain a reliable cluster expansion g¢ndency of the systenand not on its actual value. In other
A{In(w)), this method can provide a viable approach forwords, for a rough estimate of the relative change in transi-
first-principles calculations. tion temperatures with lattice vibrations, it is enough to com-
A third option for first-principles calculations would in- pute the vibrational ECI'8/3,. The predicted values of the

volve an extension of the method recently proposed by Weielative change in transition temperaturesTShem VP

A rough estimate of the effect of the lattice vibrations on
e phase diagram of a substitutional binary alloy can be
Obtained by assuming that only the nearest neighbor pair ECI
is nonzero in the Hamiltonian of the alloy,

Tgherm—vib 1 (13)
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FIG. 8. Rough estimate of the effect of lattice vibrations on the

predicted phase stability for some alloys systems. The labels “sel% '_:rlr?e ghgéggdrz'?ot:ig::ggt gr]ittlget%/;brsaéttloor;sljn Z?:riifet f}sbllr-lat
No.” correspond to the set of LJ parameters in Table I, while the Y- 9 P P

vibrational ECI's for the other systems were estimated from experi-defme systems in which the lattice vibrations tend to increase the

o transition temperatures.
mental measurements of vibrational entropy.

and Rgg) and computing the vibrational effective interac-
tions for different sets of parameters. For simplicity, we com-
puted A{In(w)) for just one ordered structurd_{,). The
sults obtained may not be valid for more complex systems,
ut provide a guideline for analyzing simple cases.

Without losing generality, we can setispn=1 and

—Tchem ehem according to Eq(13) are shown in Fig. 8 as
a function ofV,;, for fcc and bcc alloys.

We used Eq(13) to estimate the effect of the lattice vi-
brations on the phase stability of the LJ systems described i
Table I. The predicted relative change in the transition tem-
peratures is shown in Fig. @abels “set No. 1" — “set No. S
5"). For this rough estimate, the nearest neighbor vibrationaRaa= 1 [recall that the value oA(In(w)) is independent of
ECI's were obtained by fitting a cluster expansion with onlyt"® €nergy and length scalesA power expansion of
this ECI (and an empty and point teringo the values of A{In(w)) for L1, can be constructed ngmerlcally around
A(In(w)) of the 16 ordered structures. €as=1 Rag=1, egg=1 andRgg=1. The linear term of the

Estimates of the effect of vibrations on the phase stabilitXPansion does not depend on the four variables indepen-
of real materials can be made using the experimental resul@€ntly, but only on Ae=exg—(eant €ps)/2 and AR
of Fultz and co-worker&8 They measured differences in = Ras~ (Raat Res)/2:
vibrational entropy between different configurations of sev-
eral alloys. These differences allow us to obtain an estimate A(In(w)>L10%0.84A e—2.8AR. (14
for the value of the nearest neighbor vibrational ECI’s, as-
suming a short-range cluster expansion, and recalling that
AS,ip=—kgA(In(w)) in the high-temperature limit. The re-
sulting estimates for the change in transition temperature ag
composition 1/2 are shown in Fig. 8. Note that for the alloy
systems studied, all transition temperatures are reduced by
the lattice vibrationgthis includes both ordering and segre- AE 1 ~—4.7Q0e+4.03AR. (15
gating systems

It is clear from Fig. 8 that the effect of lattice vibrations A negative value OfAE,,, corresponds to an ordering
on the transition temperatures can be significant. AIthOUghendency. Equationd4) and(15) divide the parameter space

using only nearest neighbor interactions makes this a roug \e,AR) in four areas(see Fig. 9. In the unshaded areas

estimate, the truncation of the cluster expansion is not ex; o
pected to bias the estimate towards larger effects. Therefor@,E'-lo E_indA.“n(‘_")) Llo have opposite S|gn- and the effect of
lowering transition temperatures by 30% might not be un__the lattice vibrations is to reduce tlierdering or segregat-

common. In the next section we analyze whether the trend di'9) fransition temperature. The behavior in these areas is
lowering the transition temperatures in Fig. 8 can be ex-consistent with the intuitive understanding of the vibrational

plained. effect. In ordering systems)-B bonds have lower energy
than the average of th&-A andB-B bonds. Usually lower
energy means stiffer bonds and therefore lower vibrational
entropy. This lower entropy will make the ordered structure

The simple model system of Sec. IV allows us to analyzdess stable and hence its transition temperature will be lower.
how the effect of the lattice vibrations on phase stabilityA similar argument can be applied to segregating systems
changes, when changing the size mismatch and chemical af4th the same conclusion. In a small area of parameter space
finity of the alloy species. In principle, this is achieved by (shaded areas in Fig.) Yibrations increase the transition
systematically varying the parameters that define thdemperature, indicating that the simple picture described
Lennard-Jones potentialge., ean, Raa: €, Rag: €Bg» above breaks down.

For an ordering system, a positive valueXfin(w)) re-
uces the ordering tendency of the system. A similar expres-
ion can be computed for the formatienergyof L1,:

IX. TRENDS
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X. CONCLUSIONS mation, in particular, fails because it does not contain infor-
, . Lo mation about the important high-frequency part of the spec-
or Thgaﬁ,ogggg;at;ﬁfﬁtehniegﬁgrﬁfr;ie ;"?g;t'o_ﬂiéfﬁzrﬁmrum, may not sample all the spring constants, and depends

9y ; pand . 9 9 on the masses of the atomic species. We proposed alternative
tonian. This makes it possible to compute tb&al free en-

ergy for the alloy system, including the effects of schemes that may be feasible to use with first-principles ap-

substitutional and vibrational excitations. Fits of this Hamil- proaches, and still retain enough information about the sys-

tonian to experimental data indicate that the effect of vibra-tem to produce reliable results. Although we confirmed the
) per - general trend of the lattice vibrations lowering the transition
tions on transition temperatures may be significant.

The computation of this quantity from first principles will temperature, we identified cases where the opposite effect is

be difficult. In our model system, we find that the majoreXpeCted'

contribution to the form_atlon val_ue of the_wbratlonal f_ree ACKNOWLEDGMENTS

energy comes from the intermediate and high frequencies of
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