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A generalization of the Blume-Emery-Griffiths model is introduced in which an entropy stabilization of the
high-temperature phase is controlled by a degeneracy parameterp>1. The model describes a first- and a
second-order phase transition as a function of temperature between two ordered phases. This is relevant for the
martensitic transition problem. Mean-field calculations and Monte Carlo simulations are presented. The model
predicts a constant entropy change at the transition for various transition temperatures in agreement with the
behavior found experimentally.

I. INTRODUCTION

Many crystals, with examples ranging from simple metals
to complicated, technologically useful alloys and ceramics,
undergo a structural phase transition from a close-packed
~CP! structure at low temperature to an open body-centered-
cubic~bcc! structure at higher temperatures. This is a generic
feature of the so-called martensitic transition.1 The stability
of the open structure is associated with a large entropy2,3 for
that phase. There is some electronic contribution. However,
we shall neglect this here since it is known from first-
principles calculations4,5 and experimentally6,7 to be smaller
than the ‘‘vibrational part.’’ That part can only in the crudest
approximation be described by a quasiharmonic phonon pic-
ture, since it is known that the relevant phonons are strongly
damped or even overdamped.6,8 The transition is displacive,
diffusionless, and weakly discontinuous, usually with negli-
gible associated change in volume. It should, therefore, be
well suited for a description in terms of lattice spin models.

A continuous spin model was proposed by Lindga˚rd and
Mouritsen9 ~LM ! in order to describe the transition between
two ordered phases. This fairly closely follows the physics
involved in the idealized martensitic transition from the hcp
to the bcc structure found in Zr. Monte Carlo simulations
showed large heterophase fluctuations, the entropy contribu-
tion of which is not well described by quasiharmonic theory
as discussed in Ref. 10. In a further study by Casta´n and
Lindgård11,12several simplifications were proposed. Here we
shall demonstrate that the models may be simplified even
further to the class of the three-state Blume-Emery-Griffiths
~BEG! model.13 We shall generalize this model to include a
whole family of simple multiple-state models with the prop-
erty that there exists an entropy-stabilized high-temperature
phase separated by a continuous or discontinuous phase tran-
sition from the low-temperature phase. We will study the
general properties of these models by means of mean-field

theory and Monte Carlo computer simulations.
Another lattice gas model explicitly including vibrational

entropy effects has been proposed by Morris and Gooding.14

It has recently been used to test a quasiharmonic approach to
determine the entropy from simulations.15 The model stabi-
lizes the high-temperature phase by lowering the vibrational
entropy of the low-temperature phase. This is done by means
of an anharmonic interparticle coupling which has almost no
effect on the high-temperature phase but, at low temperatures
confines the particles so that large amplitude vibrations are
inhibited. The symmetry-breaking term is local, and there-
fore this model has more restricted statistical properties than
a pair interaction spin model.

We shall here introduce the entropy stabilization in a
much simpler way than discussed in the previous models.
The martensitic phase has several low-temperature variants,
i.e., degenerate phases. These could describe the displace-
ments in the6x, 6y, or6z direction, respectively, leading
to six variants. The high-temperature phase corresponds to
the phase with zero average displacement, i.e.,x5y5z50.
A system in this state may choose any of the six displace-
ments, and can thus be thought of as having a high degen-
eracy with respect to large amplitude vibrations. In a given
low-temperature phase there is already a chosen direction,
for example,x, and the degeneracy is only 2, namely,6x.
There is a very large energy barrier for going from these
states to one of the other possible variants or domains6y
and6z due to strain effects~not explicitly included in the
model!. This is the physical picture behind the generalization
of the BEG model, which is discussed more in the Appendix.
In the original BEG model13 the 0-phase~bcc! has a degen-
eracy of only 1, and the other 1-phases~CP!, as in our model,
have a twofold degeneracy. With the described physical pic-
ture in mind it is straightforward to generalize the degen-
eracy of the 0-phase to any valuep>1. The parameterp
effectively describes the larger number of vibrational degrees
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of freedom in the high-temperature phase.
The BEG model, or variants thereof, has often been used

to describe the martensitic transformation. We wish to men-
tion that Yamada and co-workers19 have discussed a pseu-
dospin model which is a simplified case of the original BEG
model for the martensitic transformation with respect to pre-
cursor effects. Goicoechea and Ortı´n20 have also used a BEG
model but without including the possibilityp.1 and re-
stricted toT50. We argue that the BEG model lacks an
important part of physics involving the neglected, particu-
larly large vibrational entropy of the b.c.c phase. Another and
more pragmatic argumentation for our proposed generaliza-
tion of the model for the present purpose is thus that an effect
is needed which can add entropy to the high-temperature
phase in a self-consistent manner. In terms of computer effi-
ciency and simplicity the adding of a formal higher degen-
eracy to the phase representing the bcc phase is very advan-
tageous.

The model turns out to be interesting with several surpris-
ing, systematic properties occurring as an additional dimen-
sion of the original BEG model. We shall call this model the
degenerate BEG~DBEG! model. The main points are~i! the
bcc phase is stabilized for increasing values ofp, ~ii ! the
first-order transition region is increased for increasingp, and
~iii ! the entropy change at the first-order transition is found
to be independent of the transition temperature, although the
latter is strongly dependent on the model parameters. Point
~iii ! has been found experimentally for the martensitic trans-
formation in Cu-based shape memory alloys, where the tran-

sition temperature can be strongly varied by introducing
small amounts of impurities.16

The DBEG model contains the (q5p12)-state Potts
model for particular values of the interaction parameters.
However, we shall not pursue that less natural relation fur-
ther. The main motivation for deriving the DBEG model is to
find a simple model which shows a discontinuous transition
between ordered phases as a function of temperature. This is
a characteristic feature of the martensitic transformation.
Thus one can study hysteresis effects as a function of tem-
perature. Recently, hysteresis effects have been discussed in
terms of a spin-glass model.17Although the analogy between
the spin-glass and martensitic problems, pointed out by
Kartha et al.,18 leads to interesting results, it is not com-
pletely clear how close that model is to the martensitic prob-
lem. In particular, the driving force for the spin-glass transi-
tion is a magnetic, external field instead of the temperature,
which is not a field. In a subsequent paper we plan to study
the effect of disorder on the DBEG model.

The paper is organized as follows. In Sec. II, we introduce
the simplified and generalized version of the original LM
model and show that it can be mapped onto the three-state
BEG model. In Sec. III we solve and discuss the resulting
DBEG model using the mean-field approximation~Sec. III
A! and Monte Carlo techniques~Sec. III B!. Finally, in Sec.
IV we discuss the relation with the martensitic transforma-
tion problem and conclude.

II. THE DBEG MODEL

The minimal model for describing a transition between an
energy-stabilized low-temperature state and an entropy-

FIG. 1. Order parameter behavior as a function ofT* for
p52 and two different values ofK* : ~a! K*50.15 and ~b!
K*50.30. The tricritical point is at (Tt* ,Kt* )5(0.4219,0.2298).
Dashed lines correspond toM and solid lines tom. One observes
hysteresis effects at the first-order transition.

FIG. 2. Mean-field phase diagram for the DBEG model for
p51, 2, 3, and 4. Thick lines indicate equilibrium first-order
~dashed line! and second-order~solid line! phase transitions be-
tween the bcc (m50) and the martensitic (mÞ0) phases. Thin
lines represent the metastability limits~spinodal lines! of both
phases.
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stabilized high-temperature ordered state is found to be gov-
erned by the Hamiltonian derived in the Appendix,

H52(̂
i j &

$KSizSjz1JSixSjx%. ~2.1!

The spin variables are discrete, with valuesSix561, and
Siz511 with a degeneracy factorp>1. The physical rea-
soning behind this Hamiltonian and the degeneracy factor
pÞ1 is outlined in the Appendix. We redefine the state
Siz51 as a states i50 and the statesSix561 as the states
s i561, which are the states in the BEG model.13 Then Eq.
~2.1! becomes

H52(̂
i j &

$K~12s i
2!~12s j

2!1Js is j%, ~2.2!

where the states i50 has degeneracyp. By expanding the
first term one gets

H52J(̂
i j &

s is j2K(̂
i j &

s i
2s j

21zK(
i

s i
22zKN/2,

~2.3!

where z is the number of nearest neighbors andN is the
number of points on the lattice. Renormalizing the param-
eters, the Hamiltonian can be written in terms of just one
parameterK*5K/J. We shall restrict ourselves in this paper
to the caseK*>0. Consequently, Eq.~2.1! is exactly
mapped onto a particular case of the degenerate Blume-
Emery-Griffiths model, which can be written

H*5H/J52(̂
i j &

s is j2K* (̂
i j &

s i
2s j

21zK*(
i

s i
2

2zK*N/2. ~2.4!

The ground state is one of the phases with eithers i51 or
s i521 if K*,1 and the phase withs i50 if K*.1. This

can, of course, be also seen directly from Eq.~2.1!. However,
since the BEG model is standard in statistical physics, we
will follow the notation of Eq.~2.4! in the remainder of this
paper.

III. PHASE DIAGRAM OF THE DBEG MODEL

In this section we obtain the phase diagram of the DBEG
model @Eq. 2.4# by using first a mean-field approximation
and then Monte Carlo simulation techniques. The DBEG
model is very suitable for analysis because it has only two
parametersK* andp, limiting the space to explore in order
to get the phase diagram. This together with the discrete
character of the variables makes it ideal for computer simu-
lation. However, to obtain an overall physical picture it is
useful to start with the mean-field analysis. In addition, this
can provide an analytical expression for the entropy change
at the transition, which is an important experimental quantity
not easily obtainable from Monte Carlo simulations.

A. Mean-field solution

It is convenient to define the following two order param-
eters:

m[( s i /N5~N12N21!/N, ~3.1!

M[( s i
2/N512N0/N, ~3.2!

where Ns is the number of points in the state
s5$11,21,0%. The entropy of the system can be written as

SMF5kBlnS N!

N1!N21!N0!
pN0D , ~3.3!

which yields to the following expression for the mean-field
free energy per particle:

FMF*

N
5
FMF

zJN
5
E MF*

N
2T*

S

NkB
52

1

2
~m21K*M222K*M !2

K*

2
1
T*

2 F ~M1m!lnSM1m

2 D
1~M2m!lnSM2m

2 D12~12M !ln~12M !22~12M !lnp ], ~3.4!

whereT*5kBT/zJ is the temperature in units ofzJ/kB ~we
shall in general let an asterisk~* ! indicate this unit!. Standard
minimization of Eq.~3.4! gives the following two coupled
equations for the temperature dependence of the order pa-
rametersm andM :

M5mcoth
m

T*
, ~3.5!

2K* ~M21!5T* lnS p2~M1m!~M2m!

4~12M !2 D . ~3.6!

There exist two possible solutions: the phase withm50
~bcc!, which is stable for large values ofT* andK* , and the
phase withmÞ0 ~CP!, which is stable for low values of
T* and K* . The phases are separated by a transition line
which can be of either first or second order. The first-order
transition temperatureT0* (K* ) is found by equality of the
free energies of the two phases. Figure 1 shows two ex-
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amples, forp52, of the dependence of the order parameters
m and M with T* for two different values ofK* . The
change from a second-order@Fig. 1~a!# to a first-order@Fig.
1~b!# transition indicates the existence of a tricritical point.
To determine it analytically we perform a Landau expansion
in m andMz5M2Mc , whereMc is the value ofM at the
transition point. The expansion contains, beside the usual
even terms, a term of the formMzm

2. A term of this kind
was discussed in connection with the martensitic transforma-
tion by the introduction of the LM model.9 Its presence
shows the importance of two coupled strains, and it implies
that the transitions need not be accompanied by mode soft-
ening. These generic features are thus preserved in
the present highly simplified model. By eliminatingmz
@substituting~3.5! into ~3.4!# we may write the Landau ex-
pansion in terms of the variablem around m50 as
f ; f 0(T* ,K* )1a(T* ,K* )m21b(T* ,K* )m41c(T* ,K* )
3m6. In the second-order region the transition temperature
is given by the conditiona(Tc* ,K* )50, which gives the
relation

ln
2~12Tc* !

pTc*
5K*

12Tc*

Tc*
. ~3.7!

In the first-order transition region this equation gives the
spinodal line separating the regions for different growth
mechanisms. The tricritical point is obtained by imposing
simultaneously the conditions a(Tt* ,Kt* )50 and
b(Tt* ,Kt* )50, leading to

Kt*5
3Tt*21

2~12Tt* !
. ~3.8!

The complete phase diagram is presented in Fig. 2 for
p51, 2, 3, and 4. A thick solid line indicates a second-
order transition whereas a thick dashed line represents a first-
order transition. Thin lines represent the metastability limits
~or spinodal lines! of the two phases. ForK*50 the critical
temperature isTc*52/(p12). It is interesting that the model
can describe the existence of two different kinds of growth of
martensitic phase:~i! spontaneous~exponential! growth for
K*.Kt* for ‘‘internal’’ quenches to temperatures inside the
lower spinodal line @a(Tc* ,K* )50# and ~ii ! nucleation
growth for either very deep or very shallow ‘‘external’’
quenches. The relative size of the region of exponential
growth increases for increasingp. The influence of the de-
generacy parameterp is quite dramatic. First, increasingp
leads to an increasing range of values ofK* for which the
transition is first order. Second, forp>4 there is no second-
order transition in the mean-field approximation.

We have also calculated the entropy changeDS/NkB at
the transition pointT0* (K* ) for different values ofp. The
numerical results are shown in Fig. 3. It is interesting to note
the existence of a plateau with constantDS; lnp for a large
region of T* . This comes from the fact that the transition
line for low values ofT0* exhibits a linear behavior,T0*
}(12K* ), exactly as the dependence of the difference in
internal energy between the two phases,DE*}(12K* ). To
understand this behavior it is convenient to rewrite the self-
consistent equations~3.5! and ~3.6! for the order parameters
in energy-level form. For them50 phase one finds

12M5
peK* ~12M !/T*

peK* ~12M !/T*12
. ~3.9!

This directly shows thatM→0 exponentially for low tem-
peratures. For themÞ0 phase one gets

12M5
peK* ~12M !/T*

peK* ~12M !/T*1em/T*1e2m/T* , ~3.10!

m5
em/T*2e2m/T*

peK* ~12M !/T*1em/T*1e2m/T* . ~3.11!

This shows that for low temperatures bothm andM tend
exponentially to 1. By expanding at low temperatures we
find the entropy change at the transition line

DS

NkB
5 lnp1

2

p
e2K* /T* F11

K*

T* G2pe21/T* F11
1

T* G .
~3.12!

Accordingly, for K*,1 and smallT* , we find thatDS
shows an exponentially weak increase as a function ofT*
before tending to zero at the tricritical point. The implica-
tions of this plateau in relation to martensitic transformations
will be discussed later.

B. Monte Carlo simulation

The standard Metropolis algorithm for Monte Carlo simu-
lations has been used to solve numerically the DBEG model.

FIG. 3. Mean-field entropy change at the transition for different
values of the first-order transition temperature,T0* (K* ), for p51,
2, 3, and 4.
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We have used a vectorial algorithm on an IBM3090 super-
computer. We have restricted to the study of the two-
dimensional~2D! square lattice for casesp51, 2, 4, and
6. The results have been obtained on a 64364 lattice and are
averaged over 104 Monte Carlo steps per system~MCS!. We
have located the phase transitions on the (T* ,K* ) plane by
calculating the averaged order parameters^umu& and ^M &.
The metastability limits have been estimated by starting the
simulations from a configuration equilibrated at one side or
another of the transition line and changing~in small steps
lasting for 103 MCS! the parametersT* and K* until the
jump to the new phase is observed. This has been possible
due to the difference in the growth mechanism mentioned
before. The phase diagrams forp51, 2, 4, and 6 are shown
in Fig. 4. The temperature dependence of the simulated order
parameters is found to be similar to the mean-field behavior.
The entropy change given by Eq.~3.12! is exact forT50.
Accordingly, we can deduce that the entropy change at the
transition simulated by the Monte Carlo method is almost
identical to the mean-field results~Fig. 3! at low tempera-
tures. It was found in a detailed study of entropy effects in a
modified LM model21 that the entropy obtained by mean-
field theory and by Monte Carlo simulation is in good agree-
ment forT not too close toTc .

In Fig. 4 it is consistent with the data to assume that the
first-order transition temperature follows T0* (K* )
}(12K* ) at low temperatures, as in the mean-field case.
We notice that forp51 ~the BEG model! the fluctuations
renormalize the tricritical point toK*.1. Therefore it is
very difficult to cross the first-order line by varying the tem-
perature. This problem is not present in the mean-field phase

diagram. This shows that it is important to allow larger val-
ues ofp since, in this case, one can cross the first-order line
for a large range ofK* values. Further, for larger values of
p, the maximum in the lower spinodal line occurs at higher
values ofK* than in the mean-field case. It is higher than the
tricritical point, thus allowing for the two different growth
mechanisms after quenches as discussed. The tricritical point
remains in the positive region ofK* at least up top56,
contrary to the mean-field approximation.

IV. DISCUSSION AND CONCLUSION

We have introduced a model which shows both a first-
order and a second-order transition between two ordered
phases as a function of temperature. The model exhibits a
strong dependence of the transition temperature as a function
of the only energy parameterK* . The high-temperature
phase is stabilized by an entropic part controlled by a degen-
eracy factorp. In the standard Blume-Emery-Griffiths model
one hasp51, but we have generalized this to higher values
with the intention of including additional entropy in a phase
due to a richer space for vibrational degrees of freedom. In
the simplest casep is an integer, but it may also be thought
of as having any valuep>1. For increasing values ofp the
region of stability of the high-temperature phase is increased
both in K* andT* space. Further, the first-order transition
region is increased. On the other hand the entropy change
across the transition line exhibits a plateau with almost no
temperature dependence.

The model was introduced in order to describe the perti-
nent features of martensitic transitions. For these, it is
known6 that there is a low-energy valley in the phonon spec-
trum with corresponding high density of states. Although no
mode goes completely soft, this plays an important role in
the transition. In our model this feature has been simplified
by discrete energy levels with a temperature dependence of
the effective frequencies given by the self-consistent tem-
perature dependence of the order parameters. This leads to
the entropy plateau. In the presence of impurities the bcc
phase shows static deformations, tweed patterns. Only after a
spatial average is the simple bcc phase obtained. The excess
‘‘configurational’’ entropy due to this deformation is well
described by the degeneracy factorp. It has in fact been
observed,16 but not understood, that the martensitic transition
in Cu-based shape memory alloys takes place at a point
where the entropy change assumes a characteristic value
(DS/kBN;0.2), although the transition temperature may
vary strongly due to alloying with small amounts of impuri-
ties. This alloying does not modify the symmetry of the
problem, and so we expect that the vibrational-
configurational entropy excess is the same irrespective of the
concentration. That means the value ofp is independent of
concentration. On the other hand the local forces, in the
model represented byK* , are strongly modified. Thus, for
fixedp, the introduction of impurities corresponds to varying
K* , which does not influence the entropy change. One may
therefore conclude either that our model gives a first expla-
nation of the observed constant entropy change criterion16 or
that these measurements do support our proposed simple
way of including the complicated vibrational entropy, ex-
pected to be essential in stabilizing the bcc phase. A second

FIG. 4. Phase diagrams forp51, 2, 4, and 6 obtained from
Monte Carlo simulations for a 64364 lattice. Lines are guides to
the eye indicating first-order transition~thick dashed line!, second-
order transition~thick solid line!, and spinodal~thin line! lines.
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important element of real martensitic transformations in im-
pure systems is that they exhibit a coexistence region where,
for a given temperature, given amounts of both phases are in
equilibrium. When the temperature is changed the transition
proceeds spontaneously to a new equilibrium. We expect this
is associated with the impurity influence on the forces, which
would give rise to an inhomogeneous distribution of transi-
tion temperatures. This phenomenon is not observed in pure
systems like Zr.6 By extending the model to include random-
ness we expect to be able to describe the transition region
characteristic for conventional shape memory alloys.
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APPENDIX: BASIS AND SIMPLIFICATION
OF THE LM MODEL

The LM model was introduced by Lindga˚rd and
Mouritsen9 in order to simulate the coupling between an in-
ternal shuffle strain and a uniform strain. These strains were
identified as the most important agents for the martensitic
transformation in a model case like the hcp→ bcc transfor-
mation occurring in Zr. The atomic positions within a unit
cell were mapped onto continuous spin variables. Only the
projection onto a plane was considered, thus reducing the
problem to a two-dimensional one. The price one pays for
this is that the model no longer contains the blocking effect
which is important in the presence of conflicting long-range
acting uniform strains. The LM model thus simplifies the real
martensitic problem by only considering four nonconflicting
variants of the hcp phase. The bcc phase is represented by a
ferromagnetic phase with the spins pointing in thez direction
out of the plane of a square mesh corresponding to the pro-
jection onto thê 110& bcc plane. The shuffle mode, shuffling
every second plane,^11̄0&, in the bcc structure is needed in
order to produce the hcp structure. This can be represented in
the projection by the spins ordering antiferromagnetically, in
antiparallel chains in the projection plane, in either the6x or
6y direction, corresponding to four variants~described by
the J term below!. Because of the projections, we call the
considered states hcp and bcc in the following.

In a more complete paper10 the model was further ana-
lyzed using advanced spin-wave theory. It was demonstrated
that the model described the atomic motion in the unit cell
with the exception of the freedom to move in the energeti-
cally most unfavorable direction. The free energy and the
contribution from the vibrational entropy were discussed. It
was found that in a quasiharmonic theory, the vibrational
entropy does not play a dominant role for the model. The
Monte Carlo simulations include those effects more faith-
fully. The continuous, two-dimensional LM spin model is
described by the Hamiltonian

HLM5(̂
i j &

$2KSizSjz1J@Si•Sj2P~r i j •Si !~r i j •Sj !#%

2D(
i

~Six
4 1Sjx

4 !. ~A1!

The parametersK.0 and J.0 favor the bcc and hcp
phases, respectively. TheJ term is obviously of the dipole
form and by the parameterP ~usually equal to 3! we can
vary the interface energy for domain boundaries between the
variants. Finally, theD term was introduced in order to avoid
the principal lack of order in two dimensions for the
Heisenberg-type continuous spin models. It restricts the spins
in the hcp phase to lie predominantly in the6x or the6y
direction. This term is in fact important for the description of
the transition at a given temperatureTM for a fixed ratio
K/J, since it causes the first-order phase separation line to
curve as a function of temperature, stabilizing the bcc phase
at high temperatures. This is due to the higher powers of the
involved spin operators in that term than in the second-order
interaction terms. A modified version of the model was
used21 in which theK term was replaced by a single-site field
term for describing the transition from a ferromagnetically
polarized ~disordered! state to an antiferromagnetic state.
The phase separation line shows a tricritical point, separating
a discontinuous transition at high fields and at low tempera-
tures from a continuous transition at low fields and at higher
temperatures. Below we shall restrict thez componentSiz of
the spins to positive values. This makes the problem similar
to the just-mentioned field problem, although theK term
then represents a self-consistent, internal field. In the papers
by Casta´n and Lindga˚rd the model was studied with respect
to domain growth kinetics11 and pinning properties.12 Here it
became clear that the model could be simplified considerably
without changing the most fundamental goal, the description
of a transition between a bcc and a hcp phase. However, the
domain growth kinetics and the pinning properties are
strongly affected by simplifications. With the aim of con-
structing a minimal model for the martensitic transformation,
without internal pinning properties, we shall now simplify
the model even further.

First of all, we letD→` which is equivalent to consid-
ering only a discrete spin model. By doing this the model no
longer describes the vibrational entropy. Second, it is not
necessary to consider an antiferromagnetic order for repre-
senting the hcp phase, since we can formally reverse every
second chain. One then gets domains of the simpler ferro-
magnetic structure, without loss in the description of the do-
main properties. Let us therefore replace the dipole term by a
simple Ising term favoring a ferromagnetic order in the plane
alongx or 2x. Finally, we let the bcc phase be represented
by only one variable1z. The presence of the possibility
2z in Eq. ~A1! is somewhat artificial, but it allows a transi-
tion from the bcc phase to a disordered one at high tempera-
tures~corresponding to the melting transition!. Since we are
not interested in that, it is preferential to consider only the
state1z. We have now reducedHLM to just the first two
terms with discrete variables@i.e., eliminating theD andP
terms in Eq.~A1!#. Let us now, in addition, allow that the
system can adopt the state1z with an arbitrary high prob-
ability, corresponding to a higher degeneracy. This adds a
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self-consistent entropy to the high-temperature phase, which
mimics the now neglected vibrational entropy in a general
way. This entropy is very difficult to calculate in a realistic
model, since it includes the ordinary quasiharmonic phonon
contribution as well as the effects due to their damping and
from the soft mode and central peak phenomena. For the
purpose of simplicity in modeling this, we give the1z phase
the degeneracy numberp>1. For the low-temperature
phases, on the other hand, we only consider two variants,
say,6x, since anyway the domain wall properties between
the different variants are not faithfully described by the

model after the strong simplifications. Finally, we have re-
duced Eq.~A1! to a HamiltonianH involving only three
states, one of which has an arbitrary degeneracyp>1,

H52(̂
i j &

$KSizSjz1JSixSjx%. ~A2!

In this we have for simplicity used the opposite sign forJ
than in Eq.~A1!. This Hamiltonian is analyzed in the main
part of the paper.
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