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A generalization of the Blume-Emery-Griffiths model is introduced in which an entropy stabilization of the
high-temperature phase is controlled by a degeneracy parapeter The model describes a first- and a
second-order phase transition as a function of temperature between two ordered phases. This is relevant for the
martensitic transition problem. Mean-field calculations and Monte Carlo simulations are presented. The model
predicts a constant entropy change at the transition for various transition temperatures in agreement with the
behavior found experimentally.

[. INTRODUCTION theory and Monte Carlo computer simulations.
Another lattice gas model explicitly including vibrational

Many crystals, with examples ranging from simple metalsentropy effects has been proposed by Morris and Gooding.
to complicated, technologically useful alloys and ceramics]t has recently been used to test a quasiharmonic approach to
undergo a structural phase transition from a close-packedetermine the entropy from simulatiof’sThe model stabi-
(CP) structure at low temperature to an open body-centeredizes the high-temperature phase by lowering the vibrational
cubic (bco structure at higher temperatures. This is a generi@ntropy of the low-temperature phase. This is done by means
feature of the so-called martensitic transitfofihe stability — of an anharmonic interparticle coupling which has almost no
of the open structure is associated with a large entrdfyr  effect on the high-temperature phase but, at low temperatures
that phase. There is some electronic contribution. Howeveonfines the particles so that large amplitude vibrations are
we shall neglect this here since it is known from first- inhibited. The symmetry-breaking term is local, and there-
principles calculatiorfs® and experimentalfy’ to be smaller  fore this model has more restricted statistical properties than
than the “vibrational part.” That part can only in the crudest @ pair interaction spin model.
approximation be described by a quasiharmonic phonon pic- We shall here introduce the entropy stabilization in a
ture, since it is known that the relevant phonons are stronglynuch simpler way than discussed in the previous models.
damped or even overdamp®8The transition is displacive, The martensitic phase has several low-temperature variants,
diffusionless, and weakly discontinuous, usually with negli-i.e., degenerate phases. These could describe the displace-
gible associated change in volume. It should, therefore, beents in thexx, *y, or =z direction, respectively, leading
well suited for a description in terms of lattice spin models.to six variants. The high-temperature phase corresponds to

A continuous spin model was proposed by Lindhand the phase with zero average displacement, xe.y=z=0.
Mouritser? (LM) in order to describe the transition between A system in this state may choose any of the six displace-
two ordered phases. This fairly closely follows the physicsments, and can thus be thought of as having a high degen-
involved in the idealized martensitic transition from the hcperacy with respect to large amplitude vibrations. In a given
to the bcce structure found in Zr. Monte Carlo simulationslow-temperature phase there is already a chosen direction,
showed large heterophase fluctuations, the entropy contribdier example,x, and the degeneracy is only 2, nametyx.
tion of which is not well described by quasiharmonic theoryThere is a very large energy barrier for going from these
as discussed in Ref. 10. In a further study by Oastad states to one of the other possible variants or domaigs
Lindgard**'2several simplifications were proposed. Here weand +z due to strain effectgnot explicitly included in the
shall demonstrate that the models may be simplified evemode). This is the physical picture behind the generalization
further to the class of the three-state Blume-Emery-Griffithsof the BEG model, which is discussed more in the Appendix.
(BEG) model*® We shall generalize this model to include a In the original BEG modéf the 0-phaseébcc) has a degen-
whole family of simple multiple-state models with the prop- eracy of only 1, and the other 1-phag€$), as in our model,
erty that there exists an entropy-stabilized high-temperaturbave a twofold degeneracy. With the described physical pic-
phase separated by a continuous or discontinuous phase traofe in mind it is straightforward to generalize the degen-
sition from the low-temperature phase. We will study theeracy of the O-phase to any valyge=1. The parametep
general properties of these models by means of mean-fielefffectively describes the larger number of vibrational degrees
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FIG. 2. Mean-field phase diagram for the DBEG model for
0-%'00 0.'10 0.‘20 - 0.50 0.;0 0.50 p=1, 2, 3 and 4. Thick lines i_ndigate equilibrium_first-order
T (dashed ling and second-ordefsolid line) phase transitions be-

tween the bcc ihp=0) and the martensiticnf#0) phases. Thin
FIG. 1. Order parameter behavior as a function Tf for lines represent the metastability limi{spinodal liney of both
p=2 and two different values oK*: (a) K*=0.15 and(b)  Phases.
K* =0.30. The tricritical point is atT} ,K{)=(0.4219,0.2298). ) ) _
Dashed lines correspond M and solid lines tan. One observes ~ Sition temperature can be strongly varied by introducing

hysteresis effects at the first-order transition. small amounts of impuritie¥’
The DBEG model contains theqEp+2)-state Potts
of freedom in the high-temperature phase. model for particular values of the interaction parameters.

The BEG model, or variants thereof, has often been usetiowever, we shall not pursue that less natural relation fur-
to describe the martensitic transformation. We wish to menther. The main motivation for deriving the DBEG model is to
tion that Yamada and co-workéfshave discussed a pseu- find a simple model which shows a discontinuous transition
dospin model which is a simplified case of the original BEGbetween ordered phases as a function of temperature. This is
model for the martensitic transformation with respect to pre-a characteristic feature of the martensitic transformation.
cursor effects. Goicoechea and @ffihave also used a BEG Thus one can study hysteresis effects as a function of tem-
model but without including the possibilitp>1 and re- perature. Recently, hysteresis effects have been discussed in
stricted toT=0. We argue that the BEG model lacks anterms of a spin-glass mod¥&|Although the analogy between
important part of physics involving the neglected, particu-the spin-glass and martensitic problems, pointed out by
larly large vibrational entropy of the b.c.c phase. Another ancKartha et al,*® leads to interesting results, it is not com-
more pragmatic argumentation for our proposed generalizgpletely clear how close that model is to the martensitic prob-
tion of the model for the present purpose is thus that an effedem. In particular, the driving force for the spin-glass transi-
is needed which can add entropy to the high-temperaturdon is a magnetic, external field instead of the temperature,
phase in a self-consistent manner. In terms of computer effiwhich is not a field. In a subsequent paper we plan to study
ciency and simplicity the adding of a formal higher degen-the effect of disorder on the DBEG model.
eracy to the phase representing the bcc phase is very advan-The paper is organized as follows. In Sec. Il, we introduce
tageous. the simplified and generalized version of the original LM

The model turns out to be interesting with several surprismodel and show that it can be mapped onto the three-state
ing, systematic properties occurring as an additional dimenBEG model. In Sec. Il we solve and discuss the resulting
sion of the original BEG model. We shall call this model the DBEG model using the mean-field approximatit®ec. Il|
degenerate BEG@BEG) model. The main points arg) the  A) and Monte Carlo techniquéSec. Il B). Finally, in Sec.
bcc phase is stabilized for increasing valuespof(ii) the IV we discuss the relation with the martensitic transforma-
first-order transition region is increased for increagip@nd  tion problem and conclude.

(iii) the entropy change at the first-order transition is found

to be independent of the transition temperature, although the Il. THE DBEG MODEL

latter is strongly dependent on the model parameters. Point

(iif) has been found experimentally for the martensitic trans- The minimal model for describing a transition between an
formation in Cu-based shape memory alloys, where the trarenergy-stabilized low-temperature state and an entropy-
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stabilized high-temperature ordered state is found to be gowan, of course, be also seen directly from E41). However,

erned by the Hamiltonian derived in the Appendix, since the BEG model is standard in statistical physics, we
will follow the notation of Eq.(2.4) in the remainder of this
paper.
T= —(iEj) {KS;;Sj;+ISxSix}- (2.1)

Ill. PHASE DIAGRAM OF THE DBEG MODEL

The spin variables are discrete, with valugg==*1, and ) ) ] )

S,=+1 with a degeneracy factqy=1. The physical rea- In this section we obtain the phase diagram of the DBEG
soning behind this Hamiltonian and the degeneracy factofodel [Eq. 2.4 by using first a mean-field approximation
p#1 is outlined in the Appendix. We redefine the state@nd then Monte Carlo simulation techniques. The DBEG
S,=1 as a stater,=0 and the stateS,,= + 1 as the states Model is very suitable for analysis because it has only two

o;=+1, which are the states in the BEG mod&Then Eq. parameter&* andp, limiting the space to explore in order
(2.1) becomes to get the phase diagram. This together with the discrete

character of the variables makes it ideal for computer simu-
lation. However, to obtain an overall physical picture it is
T=—, {K(l—o-iz)(l—a-jz)+Jo-io-j}, (2.2)  useful to start with the mean-field analysis. In addition, this

{p) can provide an analytical expression for the entropy change
where the stater;=0 has degeneragy. By expanding the at the transition, which is an important experimental quantity
first term one gets not easily obtainable from Monte Carlo simulations.

A. Mean-field solution

o _ o 2 2 2_ . . . .
H= J% 0i0j K% 0i 0] +ZKZ oi —zKN2, It is convenient to define the following two order param-

2.3 eters:

where z is the number of nearest neighbors aNdis the
number of points on the lattice. Renor_mallzmg the. param- m=> o /N=(N;—N_;)/N, 3.1
eters, the Hamiltonian can be written in terms of just one
parameteK* =K/J. We shall restrict ourselves in this paper
to the caseK*=0. Consequently, Eq(2.1) is exactly
mapped onto a particular case of the degenerate Blume- M= oZIN=1—Ngy/N, (3.2
Emery-Griffiths model, which can be written
where N, is the number of points in the state
o={+1,—1,0}. The entropy of the system can be written as
,%’*=./‘7//J=—<2> O'iO'j—K*<E> crizo'jz-l—ZK*z o?
ij ij i
—zK*N/2. (2.9

The ground state is one of the phases with eilier1 or  which yields to the following expression for the mean-field
o;=—1 if K*<1 and the phase with;=0 if K*>1. This  free energy per patrticle:

N!
— N
Sur= ol s - 33

I:7\C/IF I:MF *MF S 1 * * M+m
W _ VR VP e T 2 * N2 __ * I T
N Tz NNk g (MrKTME—2K M)— —+ (M+m)|n( 5 )
M—m
+(M—m)In 5 +2(1-M)In(1-M)—-2(1—M)Inp], (3.9
|
whereT* =kgT/zJ is the temperature in units aJl/kg (we (M+m)(M—m)
shall in general let an asterigk) indicate this unit Standard 2K*(M—=1)=T*In DZW . (39

minimization of Eq.(3.4) gives the following two coupled

equations for the temperature dependence of the order pdhere exist two possible solutions: the phase witk=0
rameteram andM: (bco), which is stable for large values f andK*, and the

phase withm#0 (CP), which is stable for low values of
T* and K*. The phases are separated by a transition line
which can be of either first or second order. The first-order
transition temperatur@y (K*) is found by equality of the

m
MszOthT_*' @9 free energies of the two phases. Figure 1 shows two ex-
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amples, forp=2, of the dependence of the order parameters
m and M with T* for two different values ofK*. The
change from a second-ordgfig. 1(a)] to a first-ordefFig.
1(b)] transition indicates the existence of a ftricritical point.
To determine it analytically we perform a Landau expansion
inmandM,=M—M,., whereM. is the value ofM at the
transition point. The expansion contains, beside the usual
even terms, a term of the fort,m?. A term of this kind
was discussed in connection with the martensitic transforma- 1.0
tion by the introduction of the LM modél.lts presence

shows the importance of two coupled strains, and it implies Z
that the transitions need not be accompanied by mode soft- _xm
ening. These generic features are thus preserved inCT)
the present highly simplified model. By eliminating, <
[substituting(3.5) into (3.4)] we may write the Landau ex-

pansion in terms of the variablen around m=0 as 05
f ~ fo(T* K*)+a(T* K*)m?+b(T* ,K*)m*+c(T* ,K*)

xm®. In the second-order region the transition temperature

is given by the conditiora(T; ,K*)=0, which gives the

relation

1.5 T T

21-T¢)  1-T¢

In 0T T 3.7 . )
In the first-order transition region this equation gives the '
spinodal line separating the regions for different growth
mechanisms. The tricritical point is obtained by imposing
simultaneously  the conditions a(T{ ,K{)=0 and FIG. 3. Mean-field entropy change at the transition for different
b(Tf ,Kt*) =0, leading to values of the first-order transition temperatufg(K*), for p=1,

2, 3, and 4.
. 3Ty -1
Kt :Z(TT:(). (38) peK*(l_M)/T*
1-M= (3.9

The complete phase diagram is presented in Fig. 2 for peK*(lfM)/T*+2.

p=1, 2, 3, and 4. A thick solid line indicates a second- his directly shows thaM —0 exponentially for low tem-
order transition whereas a thick dashed line represents a ﬁrsI— 4 b y

. o o L peratures. For then#0 phase one gets
order transition. Thin lines represent the metastability limits
(or spinodal lines of the two phases. Fdt* =0 the critical pek* (L-MyT
temperature iF% =2/(p+2). Itis interesting that the model 1-M= . . . —,  (3.10
can describe the existence of two different kinds of growth of pel” (=MIT" 4 T 4 = m/T
martensitic phase(i) spontaneousexponential growth for
K*>K} for “internal” quenches to temperatures inside the e —e T
lower spinodal line[a(Tg ,K*)=0] and (ii) nucleation m= peK*(l—M)/T*+em/T*+e—m/T*' (3.1
growth for either very deep or very shallow “external”
guenches. The relative size of the region of exponentialhis shows that for low temperatures bathand M tend
growth increases for increasimg The influence of the de- exponentially to 1. By expanding at low temperatures we
generacy parameter is quite dramatic. First, increasing  find the entropy change at the transition line
leads to an increasing range of valueskof for which the

. . . = . _ AS 2 . " * " 1
transition is flrst'order. Seconq, fo=4 thgre is no second —Inp+ —e KT 14 |~ pe ™| 14 = |.
order transition in the mean-field approximation. NKkg T* T*

We have also calculated the entropy chadd®Nkg at (3.12

" AR .
the transition poinfTg (K*) for different values ofp. The Accordingly, for K*<1 and smallT*, we find thatAS

numerical results are shown in Fig. 3. It is interesting to note . . i
. ; shows an exponentially weak increase as a functioil*of
the existence of a plateau with constar~Inp for a large

region of T*. This comes from the fact that the transition before tending to zero at the tricritical point. The implica-

. . ) . ti f this pl in relati iti f i
line for low values of T3 exhibits a linear behaviorT? ions of this plateau in relation to martensitic transformations
. _ will be discussed later.

«(1—K*), exactly as the dependence of the difference in
internal energy between the two phas&g* «(1—-K*). To
understand this behavior it is convenient to rewrite the self-
consistent equation@.5) and(3.6) for the order parameters The standard Metropolis algorithm for Monte Carlo simu-
in energy-level form. For then=0 phase one finds lations has been used to solve numerically the DBEG model.

B. Monte Carlo simulation
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diagram. This shows that it is important to allow larger val-
ues ofp since, in this case, one can cross the first-order line
for a large range oK* values. Further, for larger values of

p, the maximum in the lower spinodal line occurs at higher

. values ofK* than in the mean-field case. It is higher than the
tricritical point, thus allowing for the two different growth
mechanisms after quenches as discussed. The tricritical point
remains in the positive region d* at least up top=6,
contrary to the mean-field approximation.

IV. DISCUSSION AND CONCLUSION

We have introduced a model which shows both a first-
order and a second-order transition between two ordered
phases as a function of temperature. The model exhibits a
strong dependence of the transition temperature as a function
of the only energy paramete*. The high-temperature
phase is stabilized by an entropic part controlled by a degen-
] eracy factomp. In the standard Blume-Emery-Griffiths model
one hagp=1, but we have generalized this to higher values
with the intention of including additional entropy in a phase
due to a richer space for vibrational degrees of freedom. In
0.5 the simplest casp is an integer, but it may also be thought

of as having any valup=1. For increasing values qf the
region of stability of the high-temperature phase is increased

FIG. 4. Phase diagrams f@=1, 2, 4, and 6 obtained from POth iNK* andT* space. Further, the first-order transition
Monte Carlo simulations for a 6464 lattice. Lines are guides to Fegion is increased. On the other hand the entropy change
the eye indicating first-order transitigthick dashed ling second- ~ across the transition line exhibits a plateau with almost no
order transition(thick solid line, and spinodalthin line) lines. temperature dependence.

The model was introduced in order to describe the perti-
We have used a vectorial algorithm on an IBM3090 supernent features of martensitic transitions. For these, it is
computer. We have restricted to the study of the two-knowrf that there is a low-energy valley in the phonon spec-
dimensional(2D) square lattice for cases=1, 2, 4, and  trum with corresponding high density of states. Although no
6. The results have been obtained on x64 lattice and are  mode goes completely soft, this plays an important role in
averaged over TOMonte Carlo steps per systefMCS). We  the transition. In our model this feature has been simplified
have located the phase transitions on thi&,K*) plane by by discrete energy levels with a temperature dependence of
calculating the averaged order parametgrs|) and(M).  the effective frequencies given by the self-consistent tem-
The metastability limits have been estimated by starting th@erature dependence of the order parameters. This leads to
simulations from a configuration equilibrated at one side otthe entropy plateau. In the presence of impurities the bcc
another of the transition line and changifigp small steps phase shows static deformations, tweed patterns. Only after a
lasting for 16 MCS) the parameter§* and K* until the  spatial average is the simple bcc phase obtained. The excess
jump to the new phase is observed. This has been possibteonfigurational” entropy due to this deformation is well
due to the difference in the growth mechanism mentionediescribed by the degeneracy factor It has in fact been
before. The phase diagrams fo=1, 2, 4, and 6 are shown observed® but not understood, that the martensitic transition
in Fig. 4. The temperature dependence of the simulated ordén Cu-based shape memory alloys takes place at a point
parameters is found to be similar to the mean-field behaviowhere the entropy change assumes a characteristic value
The entropy change given by E.12) is exact forT=0.  (AS/kgN~0.2), although the transition temperature may
Accordingly, we can deduce that the entropy change at theary strongly due to alloying with small amounts of impuri-
transition simulated by the Monte Carlo method is almostties. This alloying does not modify the symmetry of the
identical to the mean-field result&ig. 3) at low tempera- problem, and so we expect that the vibrational-
tures. It was found in a detailed study of entropy effects in econfigurational entropy excess is the same irrespective of the
modified LM modet! that the entropy obtained by mean- concentration. That means the valuepofs independent of
field theory and by Monte Carlo simulation is in good agree-concentration. On the other hand the local forces, in the
ment forT not too close tor .. model represented bi*, are strongly modified. Thus, for

In Fig. 4 it is consistent with the data to assume that thefixed p, the introduction of impurities corresponds to varying
first-order transition temperature  follows T§(K*) K*, which does not influence the entropy change. One may
«(1—K*) at low temperatures, as in the mean-field casetherefore conclude either that our model gives a first expla-
We notice that forp=1 (the BEG modal the fluctuations nation of the observed constant entropy change crit&tion
renormalize the tricritical point td&K*=1. Therefore it is that these measurements do support our proposed simple
very difficult to cross the first-order line by varying the tem- way of including the complicated vibrational entropy, ex-
perature. This problem is not present in the mean-field phasgected to be essential in stabilizing the bcc phase. A second
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important element of real martensitic transformations in im-

pure systems is that they exhibit a coexistence region where, 7im= > {—KS;zS;+I[S-§—P(rij;-S)(r;-S)1}
for a given temperature, given amounts of both phases are in i

equilibrium. When the temperature is changed the transition B DE (34 + )
proceeds spontaneously to a new equilibrium. We expect this i x T
is associated with the impurity influence on the forces, which

would give rise to an inhomogeneous distribution of transi-The parameter>0 and J>0 favor the bcc and hcp
tion temperatures. This phenomenon is not observed in purehases, respectively. Theterm is obviously of the dipole
systems like ZP. By extending the model to include random- form and by the parametd? (usually equal to Bwe can
ness we expect to be able to describe the transition regioy@ry the interface energy for domain boundaries between the

the principal lack of order in two dimensions for the

Heisenberg-type continuous spin models. It restricts the spins
in the hcp phase to lie predominantly in thex or the *y
direction. This term is in fact important for the description of
We acknowledge supercomputing support from Fundacidhe transition at a given temperatufg, for a fixed ratio
Catalana per la Recerd&CR) and Centre de Supercom- K/J, since it causes the first-order phase separation line to
putaciode Catalunygd CESCA), and financial support from curve as a function of temperature, stabilizing the bcc phase
DGCyT (Spain, Project No. MAT92-0884. P.-A.L. acknowl- at high temperatures. This is due to the higher powers of the
edges DGCyTSpain for financial supportGrant No. SAB- involved spin operators in that term than in the second-order

0036 We thank H. Richards for |inguistic comments. interaction terms. A mod|f|ed VerSiOI’l Of the mOdel was
used!in which theK term was replaced by a single-site field

term for describing the transition from a ferromagnetically
APPENDIX: BASIS AND SIMPLIEICATION polarized (disordered state to an antiferromagnetic state.
OF THE LM MODEL The phase separation line shows a tricritical point, separating
a discontinuous transition at high fields and at low tempera-
The LM model was introduced by Lindgh and tures from a continuous transition at low fields and at higher
Mouritser? in order to simulate the coupling between an in-temperatures. Below we shall restrict theomponents;, of
ternal shuffle strain and a uniform strain. These strains weréhe spins to positive values. This makes the problem similar
identified as the most important agents for the martensitito the just-mentioned field problem, although tketerm
transformation in a model case like the hep bcc transfor-  then represents a self-consistent, internal field. In the papers
mation occurring in Zr. The atomic positions within a unit by Casta and Lindgad the model was studied with respect
cell were mapped onto continuous spin variables. Only theo domain growth kinetic$ and pinning propertie¥: Here it
projection onto a plane was considered, thus reducing thbecame clear that the model could be simplified considerably
problem to a two-dimensional one. The price one pays fowithout changing the most fundamental goal, the description
this is that the model no longer contains the blocking effeciof a transition between a bce and a hep phase. However, the
which is important in the presence of conflicting long-rangedomain growth kinetics and the pinning properties are
acting uniform strains. The LM model thus simplifies the realstrongly affected by simplifications. With the aim of con-
martensitic problem by only considering four nonconflicting structing a minimal model for the martensitic transformation,
variants of the hcp phase. The bcc phase is represented bywdthout internal pinning properties, we shall now simplify
ferromagnetic phase with the spins pointing in trdirection  the model even further.
out of the plane of a square mesh corresponding to the pro- First of all, we letD—cc which is equivalent to consid-
jection onto thg 110y bce plane. The shuffle mode, shuffling ering only a discrete spin model. By doing this the model no
every second plang110), in the bcc structure is needed in longer describes the vibrational entropy. Second, it is not
order to produce the hcp structure. This can be represented irecessary to consider an antiferromagnetic order for repre-
the projection by the spins ordering antiferromagnetically, insenting the hcp phase, since we can formally reverse every
antiparallel chains in the projection plane, in eithertheor  second chain. One then gets domains of the simpler ferro-
+y direction, corresponding to four variantdescribed by magnetic structure, without loss in the description of the do-
the J term below. Because of the projections, we call the main properties. Let us therefore replace the dipole term by a
considered states hcp and bec in the following. simple Ising term favoring a ferromagnetic order in the plane
In a more complete pap€rthe model was further ana- alongx or —x. Finally, we let the bcc phase be represented
lyzed using advanced spin-wave theory. It was demonstratedy only one variable+z. The presence of the possibility
that the model described the atomic motion in the unit cell—z in Eq. (Al) is somewhat artificial, but it allows a transi-
with the exception of the freedom to move in the energetition from the bcc phase to a disordered one at high tempera-
cally most unfavorable direction. The free energy and thdures(corresponding to the melting transitjorsince we are
contribution from the vibrational entropy were discussed. Ithot interested in that, it is preferential to consider only the
was found that in a quasiharmonic theory, the vibrationalstate +z. We have now reduced?, to just the first two
entropy does not play a dominant role for the model. Theterms with discrete variablds.e., eliminating theD and P
Monte Carlo simulations include those effects more faith-terms in Eq.(Al1)]. Let us now, in addition, allow that the
fully. The continuous, two-dimensional LM spin model is system can adopt the statez with an arbitrary high prob-
described by the Hamiltonian ability, corresponding to a higher degeneracy. This adds a

(A1)

ACKNOWLEDGMENTS
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self-consistent entropy to the high-temperature phase, whicimodel after the strong simplifications. Finally, we have re-
mimics the now neglected vibrational entropy in a generabduced Eq.(Al) to a Hamiltonian.7Z involving only three
way. This entropy is very difficult to calculate in a realistic states, one of which has an arbitrary degenegel,

model, since it includes the ordinary quasiharmonic phonon

contribution as well as the effects due to their damping and

from the soft mpde _and cen_tral p_eak ph_enomena. For the ==, {KS;S;;+IS:Siu}- (A2)
purpose of simplicity in modeling this, we give thez phase (i)

the degeneracy numbep=1. For the low-temperature

phases, on the other hand, we only consider two variants$n this we have for simplicity used the opposite sign for
say, * X, since anyway the domain wall properties betweenthan in Eq.(Al). This Hamiltonian is analyzed in the main
the different variants are not faithfully described by thepart of the paper.
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