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Starting with the three-band extended Hubbard model~or d-p model! widely used to represent the CuO2
planes in the high-Tc cuprates, we make a systematic reduction to an effective single-band model using a
previously developed cell-perturbation method. The range of parameters for which this mapping is a good
approximation is explored in the full Zaanen-Sawatzky-Allen diagram~copper Coulomb repulsionUd versus
charge-transfer energy«), together with an investigation of the validity of a further mapping to an effective
charge-spin (t-J-V) model. The variation of the effective single-band parameters with the parameters of the
underlying multi-band model is investigated in detail, and the parameter regime where the model represents the
high-Tc cuprates is examined for specific features that might distinguish it from the general case. In particular,
we consider the effect of Coulomb repulsions on oxygen (Up) and between copper and oxygen (Vpd). We find
that the reduction to an effective single-band model is generally valid for describing the low-energy physics,
and thatVpd and Up ~unless unrealistically large! actually slightly improve the convergence of the cell-
perturbation method. Unlike in the usual single-band Hubbard model, the effective intercell hopping and
Coulomb interactions are different for electrons and holes. We find that this asymmetry, which vanishes in the
extreme Mott-Hubbard regime (Ud!«), is quite appreciable in the charge-transfer regime (Ud.«), particu-
larly for the effective Coulomb interactions. We show that for doped holes~forming Zhang-Rice singlets! on
neighboring cells the interaction induced byVpd can even be attractive due to locally enhancedpd hybridiza-
tion, while this cannot occur for electrons. The Coulomb interaction induced byUp is always repulsive; in
addition Up gives rise to a ferromagnetic spin-spin interaction which opposes antiferromagnetic superex-
change. We show that for hole-doped systems this leads to a subtle cancellation of attractive and repulsive
contributions, due to antiferromagnetic and charge-polarization effects, to the net static interaction in a charge-
spin (t-J-V) model, and we discuss the significance of this result. The asymmetry in theee, hh, and eh
effective hopping parameters can be particularly large for next-nearest neighbors. Specializing to cuprate
parameters, we find that the asymmetry in the nearest-neighbor hopping parameters almost vanishes~acciden-
tally!, while the next-nearest-neighbor hopping parametert8 is close to zero for electrons but is appreciable for
holes (t8'20.06 eV!. The effective Coulomb interaction between doped holes is found to be repulsive, and
even slightly larger than for electrons.All the underlyingd-p parameters make significant contributions to the
effective interactions and it is shown that certain approximations, such asUd5` and tpp50, can be qualita-
tively incorrect.

I. INTRODUCTION

Since the discovery of high-Tc superconductivity, there
has been a great deal of discussion about the choice of an
effective model suitable to describe the properties of the cop-
per oxide planes in the perovskite structure. Anderson1 con-
jectured that a single-band Hubbard model may be the route
to understanding the origin of the unusual behavior of these
materials. In the regime of strong correlations (U@t), the
Hubbard model reduces to the so calledt-J model, with the
exchange interactionJ arising in second order in perturba-
tion theory,J54t2/U. The validity of an effective single-
band model was questioned by Emery2 following convincing
experimental evidence that mobile holes go predominantly in
oxygen 2px and 2py orbitals.

3,4 He proposed a three-band
extended Hubbard model~often referred to as the Emery
model! and went on to describe processes, based on strong-
coupling perturbation theory, which did not appear to have
an analog in the single-band description. A similar model

was proposed by Varmaet al.,5 who emphasized the impor-
tance of charge-transfer excitations.

However, Zhang and Rice6 showed, at least in the limit of
sufficiently large Coulomb copper repulsion (Ud) and
charge-transfer energy («5«p2«d), that the Emery model
does indeed reduce to an effective single-band model for the
low-energy physics because doped holes would form local
singlets. Although their treatment was again based on strong-
coupling perturbation theory~and neglected Coulomb repul-
sions on oxygen, between oxygen and copper, and the oxy-
gen bandwidth!, which, as demonstrated explicitly by Eskes
and Jefferson,7 is clearly not valid for realistic parameter
values, the concept of local@Zhang-Rice~ZR!# singlets nev-
erthelessis valid. Indeed, impurity calculations8 as well as
exact calculations on finite clusters9,10 have demonstrated
that the ZR singlets are well separated in energy from a
manifold of higher-lying two-hole states.8 Further support for
the equivalence of a single-band description came from exact
diagonalizations of small clusters which showed directly, by
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suitably fitting the parameters of the single-band model, that
the low-energy states could be made to match closely those
of the Emery model.10–12 This was taken further by Batista
and Aligia who combined results on finite clusters with a
strong-coupling canonical expansion of the Emery model to
get improved estimates of the effective parameters.13

A more explicit derivation was given by Jefferson, Eskes,
and Feiner14 and independently by Lovtsov and
Yushankhai15 and by Schu¨ttler and Fedro16 by means of the
cell-perturbation method introduced by Jefferson.17 The great
advantage of this approach is that, unlike the conventional
perturbation approach, it is highly convergent, giving accu-
rate results in second order over a wide range of parameters.
A further advantage is that the method also generates explic-
itly all terms of the effective single-band Hamiltonian, show-
ing unequivocally the occurrence of residual interactions be-
tween the effective particles in the single-band model. This
could be relevant, for example, in identifying interactions,
absent in the ordinary Hubbard model, which might give rise
to superconductive pairing. This controversial issue is of cur-
rent interest in view of the apparent absence of superconduc-
tivity in the ordinary Hubbard model as demonstrated by
quantum Monte Carlo studies,18,19 with similar studies,20 as
well as mean-field approaches,21–23 indicating that a super-
conducting phase does occur in the Emery model.

Since its introduction, the cell approach has been further
exploited for various purposes. This has included estimations
of triplet admixtures into the ZR singlets,24,25 an investiga-
tion of residual effective hole-hole interactions,26 a more ac-
curate estimate of« for the cuprates in the presence of addi-
tional Coulomb repulsions~on-site oxygenUp and copper-
oxygenVpd),

27,28 an investigation of the influence of those
Coulomb interactions on the metal-insulator transition,29,30

and an analysis of the relation between the single-particle
spectra in the Emery model and in the effective single-band
model.31

Nevertheless, the issue of the validity of an effective
single-band description has remained controversial~see, e.g.,
the discussion in Refs. 19,32!, in particular if the d→p
charge-transfer excitations promoted byVpd were
important,5 since the oxygen degrees of freedom are in a
sense integrated out in going to the single-band model, and
this issue is taken up in the present paper. The above inves-
tigations focused mainly on the particular set of parameters
appropriate for the cuprates. In the present work we take a
somewhat different perspective and explore the range of pa-
rameters in extended Hubbard models for which a mapping
to an effective single-band model or, more restrictively, an
effective charge-spin model, may be justified by the cell-
perturbation method. This includes the metallic as well as the
insulating side of the Mott transition. In particular, we ask
whether the low-energy physics of charge-transfer~CT! sys-
tems is basically equivalent to that of Mott-Hubbard~MH!
systemsin general, or just for a selected parameter regime in
the Zaanen-Sawatzky-Allen~ZSA! phase diagram.33 One
motivation is to possibly find a clue for high-Tc supercon-
ductivity by ascertaining what, if anything, is special about
the cuprates. Do they behave effectively like a Hubbard sys-
tem while an arbitrary CT system would not, or is it, for
example, that the residual interactions after mapping on a
Hubbard model are unusually strong? We also present a de-

tailed investigation of the effect of the various Coulomb re-
pulsion terms (Ud , Up , andVpd) on the parameters of the
effective single-band model, with simple arguments~and ex-
pressions! which highlight the physics behind the effects
they produce. This extends our previous treatment14 for
which Ud5` andUp5Vpd50.

The plan of the paper is as follows. In Sec. II we briefly
recapitulate the cell approach showing how the original
multi-band model may be expressed in the cell basis. In Sec.
III we outline the derivation of an effective single-band
model, stressing the similarities and differences to the usual
Hubbard model and exploring the range of parameters for
which such a mapping may be justified. We investigate in
particular whether the mapping can break down because of
the presence of the ‘‘Emery-Reiter triplet’’34 or the Frenkel-
type charge-transfer exciton.31 The mapping is actually from
a two-band model which includes only one orbital on copper
(3dx22y2) and one ‘‘molecular’’ orbital on the surrounding
oxygen ions which transforms in the same way~i.e., like
b1). The validity of this restriction to two bands will be
discussed in the following companion paper,35 henceforth re-
ferred to as II, where we consider further orbitals, including
pz orbitals on apical oxygen. In Sec. III we also make a
detailed investigation of the dependence of the parameters of
the effective models on those of the original two-band
model. This includes the effective hopping parameters, the
superexchange, and the residual effective Coulomb interac-
tions. In particular we investigate the physical consequences
of varying the Coulomb repulsion terms (Ud , Up , and
Vpd) together with the charge-transfer energy« and oxygen
bandwidth. For the effective single-band model this includes
the metallic as well as the insulating side of the metal-
insulator~Mott! transition and a discussion of the asymmetry
between electron and hole doping. Here we discuss in detail
the remarkable result that the effective Coulomb interaction
between doped holes can be attractive due to the hybridized
nature of the ZR singlets, while the interaction between
doped electrons is invariably repulsive, to which we recently
drew attention.36 A further reduction of the effective single-
band model, to an effective charge-spin model, is performed
in Sec. IV where it is shown that the range of initial param-
eters for which this is justified is significantly more restric-
tive. Finally, in Sec. V we summarize the main results and
discuss their implications. Mathematical details are collected
in the Appendices of the companion paper II.

II. HAMILTONIAN IN THE CELL BASIS

We start with a multi-band, tight-binding model for the
Cu-O planes of the high-temperature superconductors, which
includes orbitals on both copper and oxygen. Only nearest-
neighbor Cu-O and O-O hopping terms are included together
with on-site Coulomb repulsion~Hubbard-U) terms on Cu
and O and between Cu and O. Relative to a ‘‘vacuum’’ of
filled 3d shells on the copper and 2p shells on oxygen, the
most important orbitals are the 3dx22y2(dx) orbitals on Cu
and 2px/2py s orbitals on O. It is believed that holes in
~antibonding! hybrids of these orbitals are primarily respon-
sible for both magnetism and conduction in the Cu-O planes,
at least for hole concentrations relevant to the insulating and
superconducting regimes. Since there are just three orbitals

8752 53L. F. FEINER, J. H. JEFFERSON, AND R. RAIMONDI



per unit cell ~i.e., a dx orbital on the Cu site withpx and
py orbitals on neighboring oxygen ions with lobes pointing
towards the copper!, thisd-p model is sometimes referred to
as the three-band model~or as the Emery model!.

The Hamiltonian2,5 may be written in the form

H5(
i

« ini1(̂
i j &

(
s

t i j ~cis
† cjs1H.c.!

1(
i
Uini↑ni↓1(̂

i j &
Vi j ninj . ~2.1!

The index i runs over all localized orbitals in the Cu-O
plane, i.e.,ci[dx,i , thedx orbital located at copper sitei , or
px,i(py,i), thepx(py) orbital on the nearest-neighbor oxygen
site to Cu sitei in the positivex(y) direction;« i5«d or «p
are the local energies on Cu and O;t i j are nearest-neighbor
hopping matrix elements, i.e.,t i j56tpd or 6tpp , with due
regard to the phase of the orbitals~direct Cu-Cu hopping is
neglected!; Ui5Ud or Up is the on-site Coulomb repulsion
energy; andVi j5Vpd is the Coulomb repulsion energy be-
tween nearest-neighbor Cu and O ions~all other Coulomb
matrix elements are neglected!. In later sections we will
make plots of various quantities which depend on these pa-
rameters, in which one or more are varied from a ‘‘standard
set’’ typical of the cuprates. We take this standard set to be
~in units of tpd'1.3 eV! «p2«d52.7, tpd51, tpp50.5,
Ud57, Up53, andVpd51.37–41

The first stage in obtaining a representation of the Hamil-
tonian in the cell basis is to transform the oxygen orbitals
to a form which reflects the local symmetry. Although this
is readily done by forming the ‘‘molecular’’ orbitals
1
2(px2py2p2x1p2y) ~transforming like b1) and
1
2(px1py2p2x2p2y) ~transforming likea1), these local
oxygen orbitals are not orthogonal. It is actually more con-
venient to transform to orthogonal~Wannier! orbitals using
the ‘‘canonical fermions’’ of Shastry42 or a variation thereof.
~See Appendix A of II for further details.! The whole prob-
lem now reduces to a square planar array of ‘‘cells,’’ each of
which contains three~hole! orbitals:dx , a ~transforming like
a1), andb ~transforming likeb1). As pointed out by Zhang
and Rice,6 much of the essential physics is retained if we
reduce this to a two-band model by simply dropping the
terms involving thea orbitals, since with the ‘‘canonical’’
choice for the oxygen Wannier orbitals thedx orbital on a Cu
ion hybridizes only, via hopping, with theb orbitals, and the
a-b coupling is weak.14 The resulting two-band model may
be written in the formH5H01Hcc, whereH0 is the Hamil-
tonian for noninteracting cells andHcc the cell-cell interac-
tion. Explicitly, H0 has the formH05( ihi , whereh is the
Hamiltonian for a single cell:

h5 «̄n~b!2t(
s

~dx,s
† bs1H.c.!1Udn↑

~d!n↓
~d!

1Ubn↑
~b!n↓

~b!1Vdbn
~d!n~b!, ~2.2!

with «̄5«p2«d22n00tpp5«p2«d21.4536tpp ~the effective
charge-transfer energy of theb band!, t52m00tpd
51.9162tpd , Ub5c0000Up50.2109Up , and Vdb
5f000Vpd50.9180Vpd .

43 The cell-cell interactionHcc is
conveniently decomposed as

Hcc5Hhopping1Hpd1Hp , ~2.3!

where the three parts are

Hhopping522tpd(
i j

8(
s

m i j ~dx,is
† bjs1bis

† dx, js!

22tpp(
i j

8(
s

n i j bis
† bjs , ~2.4!

Hpd5Vpd(
l i j

8(
s

f l i j nl
~d!bis

† bjs , ~2.5!

Hp5Up(
kli j

8ckli j bk↑
† bl↑bi↓

† bj↓ , ~2.6!

where the coefficientsm i j , n i j , f l i j , andckli j follow from
the Wannier transformation~see Appendix A of II for further
details!, and the primes on the summations indicate that the
intracell terms (i5 j , l5 i5 j , andk5 l5 i5 j , respectively!
should be omitted, since they are already included in
~2.2!. It is easy to see that while the tight-binding model in
the original basis@Eq. ~2.1!# had only nearest-neighbor inter-
actions, the transformed Hamiltonian has no such restriction
and the summations are over all cells. This is to some extent
artificial, being a consequence of the orthogonalization of the
oxygen molecular orbitals, described above, which generates
long-range, but quite rapidly decaying interactions. In prac-
tice we shall restrict the interaction range to nearest- and
next-nearest-neighbor cells. Note that the retention of next-
nearest-neighbor interactions is important and represents a
real physical effect, since their main contribution comes
from directO-O hopping (tpp) of the in-plane oxygen holes.

We also see directly from~2.5! and ~2.6! that the trans-
formed Hamiltonian will, in addition to the two-cell interac-
tions, contain three- and four-cell interactions arising from
the O-O and Cu-O Coulomb terms. Since the Wannier coef-
ficientsf l i j and ckli j are in general somewhat smaller for
three- and four-cell terms than for two-cell terms
(f l i j !f i i j , etc., e.g., f180150.0296, while f001
520.1342, where 1 denotes a cell that is nearest neighbor
to cell 0!, then it is tempting to drop simply all terms involv-
ing such Wannier coefficients with more than two different
indices. However, this isnot necessarily a good approach
since the summation of all such terms is not small, in gen-
eral, and may be comparable with the two-cell terms due to
the sum rules ( l (Þ i , j )f l i j 522f i i j and ( l (Þ i , j )c l l i j
522c i i i j ~see Appendix A of II!. We cannot apply this di-
rectly in Eqs.~2.5! and~2.6! due to the presence of the num-
ber operatorsnl

(d) andnls
(b) , respectively, in the summation.

However, we may assume that some ‘‘reference’’ values
n̄(d), n̄s

(b) are available for these densities, from which devia-
tions are small or few. For example, for low doping most
cells will have just one hole and one would set
n̄(d)5ng

(d)[^gsun(d)ugs&, etc., whereugs& is the one-hole
ground state of the single-cell Hamiltionianh, Eq. ~2.2!.
~See also below.! It is then expedient to perform the summa-
tion of the three-cell terms with all summed-over cells as-
sumed at the reference densities, and include the result with
the two-hole terms. Performing this rearrangement in Eq.
~2.5! and invoking the above sum rule together with the re-
lation f j i j 5f i i j yields, directly,
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Hpd5Vpd(
i j

8f i j j ni
~d!nj

~b!

1Vpd(
i j

8(
s

f i i j ~ni
~d!1nj

~d!22n̄~d!!bis
† bjs

1Vpd(
l i j

9(
s

f l i j ~nl
~d!2n̄~d!1l !bis

† bjs , ~2.7!

with the double prime indicating that both intracell and two-
cell terms are excluded. Note that we have explicitly sepa-
rated contributions which do not transfer charge~the first
sum, which gives rise to effective Coulomb interactions be-
tweend holes andb holes! and contributions which give rise
to effective hopping ofb holes~the second sum!. These will
be considered further in Secs. III E and III B, respectively. In
exactly the same way we can rearrange Eq.~2.6! as

Hp5Up(
i j

8c i i j j ~ni↑
~b!nj↓

~b!2bi↑
† bi↓bj↓

† bj↑!1Up(
i j

8(
s

c i i i j ~ni s̄
~b!1nj s̄

~b!22n̄s̄
~b!!bis

† bjs

1Up(
kli j

9ckli j ~bk↑
† bl↑2n̄↑

~b!1ldkl!~bi↓
† bj↓2n̄↓

~b!1id i j !. ~2.8!

We have again separated contributions which do not and
which do transfer charge. The former~first sum! contains
effective intercell spin interactions between holes on oxygen,
in addition to effective Coulomb terms. These will be con-
sidered further in Sec. III D. The remaining three- and four-
cell interactions in Eqs.~2.7! and ~2.8! are expected to be
weak44 and we shall further ignore them.

The essence of the cell method is to express the two-band
Hamiltonian in terms of the eigenstates of the single-cell
Hamiltonianh @Eq. ~2.2!#, which already include most of the
electron correlation that results from the competition be-
tween Coulomb repulsion andp-d hybridization. Let us de-
note the cell eigenstates byun&, with corresponding eigen-
values En . The parametern denotes collectively the
quantum numbers for the cell eigenstate which includes the
number of particles as well as the orbital and spin quantum
numbers. Since there are two independent orbitals per cell,
these states consist of a vacuum~zero-hole! stateu0&, two
one-hole statesugs& and ues& ~doublets!, three two-hole sin-
glet statesuS&, uS8&, and uS9&, and a two-hole triplet state
uTm&. ~See Appendix B of II for details.! There are further
states with three and four holes per cell, but these are higher
in energy and will not be considered further.~The effect of
these multiple-hole states may be estimated by perturbation
theory and shown to be very small.!

The Hamiltonian may now be readily expressed in terms
of the cell eigenstates,un&, using Hubbard’s so-calledX

operators45 Xi
n8n[u in8&^ inu,

H5(
i

(
n

En Xi
nn

1(̂
i j &

(
nn8mm8

^ in8, jm8 uHccu in, jm& Xi
n8n Xj

m8m , ~2.9!

where the second sum is over all pairs of sites~but not re-
stricted to nearest neighbors!. As pointed out by Hayn

et al.,24 the matrix elementŝ in8, jm8uH ccu in, jm& may be
computed explicitly by first calculating the cell-independent
coefficients in the expansionsdx,is5(n8n^n8udx,sun&Xi

n8n

andbis5(n8n^n8ubsun&Xi
n8n and then substituting these ex-

pansions into the cell-cell interactionHcc in two-bandd-b
representation, Eqs.~2.4!,~2.7!,~2.8!. We emphasize that the
Hamiltonian expressed in this cell basis is entirely equivalent
to the Hamiltonian in thed-b basis @except that we have
omitted now the three- and four-site terms, which would sim-
ply have added to Eq.~2.9! terms containing products of
three and four Hubbard operators#.

Finally in this section, we note that the cell-cell interac-
tion terms fall into two classes. In the first class the occupa-
tion numbers of the cell states remain unchanged under the
action of Hcc. They include diagonal matrix elements
^ in, jmuHccu in, jm&5v i j

nm , which are independent of the
spin of any of the states involved, such as
^ igs , jSuHccu igs , jS&[v i j

gS. These may be regarded as ef-
fective Coulomb interactions between cells. There are also
effective exchange interactions between cells, such as
^ igs , jg s̄uHccu ig s̄ , jgs&[ j i j

g . The second class involves the
transfer of a hole from one cell to another and these terms
may be regarded as effective tight-binding hopping terms
between cells. Our convention for the corresponding matrix

elements iŝ in8, jm8uHccu in, jm&[t i j
n8nm8m , where the cell

state un8& (um8&) contains one more ~less! hole
than un& (um&). For example, the matrix element
^ iS, j0uHccu ig↓ , jg↑&[t i j

Sg0g represents a hole hopping from
cell j to cell i , for the case where each cell contains one hole
in the initial state, whereaŝiS, jgsuHccu igs , jS&[t i j

SggSrep-
resents the exchange of a ZR singlet with a spin.

III. EFFECTIVE SINGLE-BAND MODEL
BY THE CELL METHOD

A. Form of the effective Hamiltonian

In this section we will describe how the two-band model
may be reduced to an effective single-band Hubbard model
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and present detailed results on the variation of the effective
single-band parameters with the parameters of the underlying
d-p model ~i.e., tpd , tpp , «̄, Ud , Up , andVpd). We will,
where possible, give physical reasons for the behavior ob-
served and emphasize any special properties of the effective
model for the parameter range appropriate to the cuprates.
The parameter range for which the mapping is expected to be
valid will also be discussed. This essentially extends our ear-
lier work in which we considered only the mapping to a
charge-spin model by the cell method with the approxima-
tionsUd5` andUp5Vpd50.14

The simplest way to construct an effective single-band
Hamiltonian from the two-band model described in the pre-
vious section is to simply restrict the cell basis set in Eq.
~2.9! to the lowest-energy states on each cell, i.e., the
‘‘vacuum’’ state u0&, the lowest one-hole stateugs&[us&,
and the lowest two-hole stateuS& ~the Zhang-Rice singlet!.
This is equivalent to first-order perturbation theory giving an
effective HamiltonianHeff5PHP, whereP is the projection
operator for all many-cell states in this restricted basis set.
Explicitly, Heff is, from Eq.~2.9!,

Heff5~Eg2E0!(
is

Xi
ss1@2~Eg2E0!1Ueff#(

i
Xi
SS

1 (
^ i j &s

$@ t i j
g00gXi

s0Xj
0s1t i j

SggSXi
SsXj

sS1t i j
Sg0gls~Xi

s0Xj
s̄S1Xi

Ss̄Xj
0s!#1@ i↔ j #%

1(̂
i j &

@v i j
00Xi

00Xj
001v i j

SSXi
SSXj

SS1v i j
0S~Xi

00Xj
SS1Xi

SSXj
00!#

1 (
^ i j &s

@v i j
0g~Xi

00Xj
ss1Xi

ssXj
00!1v i j

Sg~Xi
SSXj

ss1Xi
ssXj

SS!#

1 (
^ i j &s

@v i j
ggXi

ssXj
ss1 v̄ i j

ggXi
ssXj

s̄s̄1 j i j Xi
ss̄Xj

s̄s #, ~3.1!

whereUeff[ES22Eg1E0 , l↑52l↓51, and^ i j & denotes
a pair of cells~not necessarily nearest neighbors!. Note that,
as implied by the notation, thev matrix elements are inde-
pendent of spin when one of the two cells is either unoccu-
pied or doubly occupied with holes, but depend on whether
the spins are parallel or antiparallel when both cells are sin-
gly occupied. As we show later, this spin dependence comes
entirely from theUp term in the original Hamiltonian~2.1!.
With the help of some Hubbard-operator identities14 and ex-
ploiting rotational invariance, we can, quite generally, make
this spin dependence explicit and rewrite the last summation
in ~3.1! in the form

(̂
i j &

@v i j
ggXi

ggXj
gg1Ji j ~Si•Sj2

1
4Xi

ggXj
gg!#, ~3.2!

where Xgg[(s Xss, the projector onto the singly oc-
cupied cell subspace, andJi j52(v i j

gg2 v̄ i j
gg)52 j i j . We have

chosen the usual convention of including the term
2 1

4(^ i j & Ji j Xi
ggXj

gg with the spin part rather than absorbing
it in the first term in~3.2!. This ensures that the spin part
makes no contribution for purely ferromagnetic states.

Comparing~3.1! with the expression one would obtain
from the usual single-band Hubbard model46 when expressed
in terms ofX operators, one sees that there is a direct corre-
spondence for both the single-cell terms and the two-cell
hopping terms. The only essential difference is the electron-
hole asymmetry in the hopping terms of~3.1!. The extrav
~effective Coulomb! terms and thej ~effective exchange!
term in ~3.1! do not appear in the usual Hubbard model.

Similar terms do, however, occur in a more general single-
band Hubbard model~and were indeed considered by
Hubbard!. They would give rise to the same forms of
interactions present in~3.1!, as can be seen explicitly
by adding the Coulomb and exchange terms(^ i j &Vi j ninj
1( i j s Ji j cis

† ci s̄cj s̄
† cjs to the usual Hubbard model and ex-

pressing the result in terms ofX operators. ThusHeff given in
this ‘‘first-order’’ approximation has exactly the form ex-
pected from a single-band Hubbard model, apart from some
asymmetry in the effective parameters.

B. Validity of the effective single-band model

We now discuss the validity and possible breakdown of
the effective single-band form given in Eq.~3.1!. As with
any first-order perturbation approximation, it is reasonably
accurate provided that the base states neglected have suffi-
ciently high energies. This is not the case here. However, for
a wide range of parameters the base states omitted are suffi-
ciently high in energy that they may be accounted for by
perturbation theory or, equivalently, by a Schrieffer-Wolff
transformation. Such perturbation corrections have two ef-
fects. They renormalize the effective parameters in~3.1! and
they give rise to new terms~such as spin-flip scattering
terms!. In this section we shall include renormalization ef-
fects to second order in perturbation theory, deferring a brief
discussion of the most important new terms until Sec. IV. In
order that a second-order perturbative treatment be reason-
able the corresponding expansion parameters must be small.
In our case the critical expansion parameters are of the form
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ut/DEu wheret is a matrix element corresponding to a tran-
sition from a state in the ‘‘model subspace’’ to states in
which one or more cells are in higher-energy excited cell
states, andDE is the~unperturbed! energy to make this tran-
sition.

In order to understand the dependence of the expansion
parametersut/DEu ~and also of the hopping parameters oc-
curring in the effective single-band model; see next section!
on the parameters of the underlyingd-p model, it is helpful
to write down explicitly the various contributions to the ef-
fective hopping parameters. Not surprisingly, the main con-
tribution comes from the barepd andpp hopping:

thop,i j
n8nm8m522tpdm i j(

s
@^n8udx,s

† un&^m8ubsum&

1^n8ubs
† un&^m8udx,sum&#

22tppn i j(
s

^n8ubs
† un&^m8ubsum&, ~3.3!

as obtained directly from~2.4! by substituting the Hubbard-
operator expansion fordx,is andbis . Also the Coulomb in-
teractions involving oxygen holes contribute, in particular to
nearest-neighbor hopping, because each oxygen, being in a
position bridging two cells, contributes to the cell states of
both. The contribution made byVpd is, from Eq.~2.7!,

tpd,i j
n8nm8m5Vpdf i i j(

s
@^n8un~d!bs

† un&^m8ubsum&

1^n8ubs
† un&^m8un~d!bsum&

22ng
~d!^n8ubs

† un&^m8ubsum&#, ~3.4!

whereng
(d)[^gsun(d)ugs&. We recall that the first two terms

correspond to ‘‘direct’’ hopping from celli to cell j , while
the last, ‘‘indirect,’’ term arises from the hops via allother
cells l , and the choicen̄(d)5ng

(d) assumes that those cells all
carry a one-hole cell stateugs&. Obviously, therefore, Eq.
~3.4! embodies a specific assumption about the ‘‘back-
ground’’ in which the hop is taking place. Such an assump-
tion is inevitable because of the occurrence of what are for-
mally three-cell terms@compare Eq.~2.5!#, so that strictly
speaking any hopping matrix element induced byVpd de-
pends on the occupation ofall cells, not just of the cells
between which the hop actually occurs. In the low doping
regime the choice implied by~3.4! seems most appropriate,
since it takes the half-filled band insulator as reference sys-
tem. Then only deviations from that uniform one-hole-per-
cell background, such as the presence of a nearby ZR singlet,
give rise to ‘‘true’’ three-cell terms in the effective Hamil-
tonian@compare Eq.~2.7!# which we argued to be small and
further ignored. Note that omitting the ‘‘indirect’’ term in
~3.4! on the formal ground that it is a three-cell term would
actually amount to taking the fully electron-doped system as
reference and must lead to larger three-cell corrections near
half-filling. Similarly, theUp contribution is, using Eq.~2.8!,

tp,i j
n8nm8m5Upc i i i j (

s
@^n8uns̄

~b!bs
† un&^m8ubsum&

1^n8ubs
† un&^m8uns̄

~b!bsum&

2ng
~b!^n8ubs

† un&^m8ubsum&#. ~3.5!

Again, the first two terms correspond to direct hopping from
cell i to cell j , while the last, indirect, term arises from the
hops via allother cells l . Here we have setn̄↑

(b)5n̄↓
(b)5

1
2ng

(b) , equivalent to the assumption that all those cells carry
a ugs& cell state with equal probability for the spin to be up
or down. This choice of a ‘‘paramagnetic’’ background, al-
though probably not realized at half-filling, seems to be the
only obvious way to keep~3.5! spin independent, i.e., to put
all spin dependence in the ‘‘true’’ three-cell terms~which we
further ignore!.

Equations~3.3!, ~3.4!, and ~3.5! clearly show that the
magnitude of any hopping matrix element, and in particular
the relative contributions made bytpd andtpp , depends criti-
cally on the precise composition of the cell states involved.
More specifically, there will be interference between contri-
butions coming from the various component basis states in
each cell state. One further observes from Eqs.~3.4! and

~3.5! that for the direct terms intpd,i j
n8nm8m and tp,i j

n8nm8m to be
nonzero, at least one of the cell states must be a two-hole
state, while there is no such restriction for the indirect terms.
One thus expects the contributions fromVpd andUp to hop-
ping parameters for two-hole states to be significantly
smaller than to hopping involving only zero-hole and one-
hole states, because of partial cancellation in the former case.
As regards the Wannier transformation coefficients, those
relevant for nearest-neighbor hopping arem01520.1401,
n01520.2732, f001520.1342, c0001520.0303, those
for next-nearest-neighbor hoppingm02520.0235, n02
510.1221,f002520.0225, c0002520.0052. This shows
that the hopping contributions coming fromVpd and~in par-
ticular! Up will be generally smaller than those fromtpd and
tpp . The relative signs imply that the Coulomb terms oppose
the effect ofpd hopping and therefore reduce the magnitude
of the hopping matrix elements when the direct terms are
larger than the indirect term and vice versa. Note, however,
thatVpd andUp also affect the magnitude of~3.3! by modi-
fying the wave functions of the two-hole cell states.

An examination of the eigenspectrum of the single-cell
Hamiltonian, Eq.~2.9!, shows that, over the whole parameter
range of interest, there is one ‘‘excited’’ cell state which is
closer to the states in the ground manifold than the remaining
excited states. This is the two-hole triplet state, the impor-
tance of which was first pointed out by Emery and Reiter.34

We shall refer to it as the Emery-Reiter~ER! triplet. The
important perturbation expansion parameters involving these
triplet cell states areutTg0g/(ET22Eg1E0)u and utTggS/
(ET2ES)u, where tTg0g5^T0,0uHccugs ,gs̄& and tTggS

5ls̄^T0 ,gsuHccugs ,S&. Plots of these ratios for various pa-
rameters are shown in Figs. 1 and 2.~Here, as in all figures to
follow, all quantities are dimensionless, energies being plot-
ted in units oftpd .) We see that over the whole parameter
range, which includes both the insulating and metallic re-
gimes in the half-filled band case, these ratios remain quite
small, hardly exceeding 0.1. Thus we expect second-order
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perturbation theory to be reasonably accurate. The present
results confirm previous investigations forVpd5Up50,24,25

and in addition show that over the parameter range of inter-
est the net effect of the Coulomb termsUp andVpd actually
is to decreasethese ratios, thereby improving the conver-
gence. As pointed out above, this is due mainly to a reduc-
tion of the hopping matrix elements, in agreement with the
expectation that Coulomb repulsion suppresses kinetic en-
ergy. Note, however, that this trend must eventually reverse
since we can make the hopping matrix elements arbitrarily
large by suitably increasing the Coulomb parametersUp and
Vpd @compare Eqs.~3.4! and~3.5!#. This would indeed signal
a breakdown of the cell method. It is fortunate, and rather
surprisinga priori, that this breakdown does not occur for
any reasonable values of the Coulomb parameters. We give a
simple explanation of this below when we discuss the first-
order contribution to superexchange.

In Fig. 1 the variation ofutTg0g/(ET22Eg1E0)u with «̄ is
plotted for different values ofVpd andUp . The curves pass
through a maximum sinceET22Eg1E0 decreases initially
as «̄ is increased from zero~becauseEg increases due to
reducedd-p hybridization!, but must eventually increase for
large «̄ since ET5 «̄1Vdb . The suppression of the ratio
when Vpd is increased is due both to the reduction of the
hopping parameter~which always has aVpd contribution of
opposite sign to that due totpd andtpp) and to the increased
triplet energy. The small opposite effect ofUp is caused by
the indirect contribution to the hopping parameter, the direct
term being zero for the triplet@compare Eq.~3.5!#. The ratio
is, of course, unaffected byUd since the triplet state has no
component with two holes on copper.

The contour plots in Fig. 2 are similar, showing again a
rather strong suppression ofutTggS/(ET2ES)u with the Cou-
lomb parameterVpd , with a somewhat weaker dependence
onUp . The ratio remains small when eitherUd and/or«̄ are
small, because the ZR singlet can then lower its energy by
hybridization with udx,↑dx,↓& and/or ub↑b↓&, making
ET2ES large. Only whenboth Ud and «̄ are large is the
energy lowering of the ZR singlet small and the ratio be-
comes large.~Note that in the limit Ud ,«→`, while
Ud.«, the ZR singlet and the ER triplet become degener-
ate.! The large effect ofVpd is again due to the suppression
of the hopping matrix element (tTggS) and the increase in

triplet energy relative to the singlet~since the latter has a
component in the stateub↑b↓& which does not make aVpd
contribution to the energy!.

In addition to the ER triplet, there is one further excited
cell state which could influence the convergence of the per-
turbation expansion to an effective single-band model,
namely, the excited state of a singly occupied cell,ues&.
Propagation of this state leads to a transport of energy but
not of charge and in this sense it may be regarded as a Fren-
kel exciton. Compared to the one-hole ground stateugs& the
excited stateues& is anintracell kind of d→p charge-transfer
excitation, the correspondingintercell excitation being the
simultaneous creation of a ‘‘free’’ (d-like! electronu0& in the
upper Hubbard band and a ‘‘free’’ (p-like! Zhang-Rice hole
uS& in the lower Hubbard band. Actually, the Frenkel exciton
is ‘‘created’’ when neighboring cells containing a ZR singlet
uS& and an electron stateu0& are transformed to a one-hole
ground stateugs& on one cell and a one-hole excited state
ues̄& on the other by a hole hopping process. The transfer
matrix element for this process iste0gS[^es̄ ,gsuHccu0,S&
and hence the relevant expansion parameter is
ute0gS/(Eg1Ee2ES2E0)u. Contour plots of this quantity
with respect toUd and «̄ are shown in Fig. 3 for various
Up andVpd . We see that the sensitivity toUp is quite small,
but the effect ofVpd is significant. Near the top of the ZSA
plot ~whereUd and «̄ are relatively large! the expansion

FIG. 1. utTg0g/(ET22Eg1E0)u vs «̄ for Up50 ~solid line! and
Up53 ~dot-dashed line! andVpd50, 1, 2, 3~from top to bottom!.
Note that«̄ is in units oftpd , as all quantities with the dimension of
energy will be in all figures to follow.

FIG. 2. Contour plots ofutTggS/(ET2ES)u vs Ud and «̄ for
Vpd5Up50 ~dotted line!, Vpd51, Up50 ~dot-dashed line!, and
Vpd51, Up53 ~solid line!.

FIG. 3. Contour plots ofute0gS/(Eg1Ee2ES2E0)u vs Ud and
«̄ for Vpd5Up50 ~dotted line!, Vpd51, Up50 ~dot-dashed line!,
andVpd51, Up53 ~solid line!.
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parameter can be quite appreciable. The main reason is the
decrease in the energy denominator, since when«̄ is very
large thed-p hybridization is small, and henceEg→«d ,
Ee→«p , andES→«d1«p , providedUd is also large. The
regime where this occurs is shifted to significantly smaller
values of «̄ and Ud when Vpd is increased. Indeed, for
Vpd52 the ratio even diverges in the range covered in Fig. 3.
The reason is thatVpd raises the energy of the Zhang-Rice
singlet but leaves the energy ofues& ~being a single-hole
state! unaffected. Thus the charge-transfer exciton (g→e),
which for smallVpd is antiboundwith respect to the inter-
band excitation (gg→S0) because of the large energy gain
from hybridization by the free ZR singlet, becomes degener-
ate with it for sufficiently largeVpd ~and finally falls below
it!. So when the copper-oxygen Coulomb interaction is
strong, the presence of the charge-transfer exciton state
ues& can no longer be ignored if alsoUd and «̄ are fairly
large, and formally this invalidates the description of the
charge-transfer system by an effective single-band model.
However, under these conditionsUeff is so large~compare
Fig. 4! that all charge-transfer excitations are strongly sup-
pressed; i.e., for hole doping bothu0& andues& become irrel-
evant, for electron doping bothuS& and ues& can be ignored,
and one can make a further reduction to a charge-spin model
~see Sec. IV!. Note that for the parameter range actually of
interest for the cuprates the validity of the perturbation ex-
pansion is not an issue. Nevertheless, the charge-transfer ex-
citon can give rise to appreciable perturbation corrections
which are at least comparable with those due to the Emery-
Reiter triplet.

C. Effective Hubbard-U and hopping terms

If we ignore the the ‘‘static’’ interactions between neigh-
boring cells@i.e., thev interactions in Eq.~3.1!# and switch
off the hopping between cells~the t terms!, then the energy
required to take a hole from a singly occupied cell and place
it on another singly occupied cell with opposite spin is
ES22Eg1E0[Ueff , as shown in Eq.~3.1!. By analogy with
the usual single-band Hubbard model, we regard this quan-
tity as an effective Coulomb repulsion between two holes on
the same cell.~We show later that this definition is not ap-
propriate when thev terms are finite and we must correct
Ueff . This correction is relatively small over the parameter
regime of interest though not negligible. See Sec. III E.! In
Fig. 4 we show contour plots ofUeff of the type considered
by Zaanen, Sawatzky, and Allen~ZSA!,33 who used them for
characterizing Mott insulators and charge-transfer insulators.
These show clearly the expected behavior in the charge-
transfer regime («̄!Ud), and Mott-Hubbard regime
( «̄@Ud). In the latterUeff→Ud and becomes independent of
«̄, Up , and Vpd , whereas in the extreme CT regimeUd
becomes irrelevant though bothUp and Vpd increaseUeff
significantly. For the parameter regime of physical interest,
in which the corrections to the effective single-band picture
may be accounted for perturbatively,Ueff spans a broad
range of values ('2215 eV!. For the special case of an
‘‘effective’’ half-filled band ~i.e., an average of one hole per
cell! this includes both metallic and insulating phases. The
interesting region of the metal-insulator transition will be

discussed further in Sec. III F. For the ‘‘standard’’ set of
cuprate parameters we find forUeff a value of 2.5 in units of
tpd , amounting to' 3.2 eV.

Let us now consider the variousnearest-neighboreffec-
tive hopping matrix elements in the single-band Hamiltonian
~3.1!. These are labeledthh[tSggS, tee[tg00g, and
teh[tg0gS. This suggestive notation signifies electron and
hole hoppingrelative to cell states containing one hole (spin)
in which uS& represents a hole,u0& represents an electron,
and us&[ugs& represents a spin. Thus,thh is the matrix ele-
ment for a hopping process in which a Zhang-Rice singlet
changes places with a spin on a neighboring cell, which is
equivalent to a hole hop. Similarlytee represents an electron
hop andteh represents the creation of an electron-hole pair
from two spins, or vice versa (us,s̄&↔u0,S&).47 In Fig. 5 we
show the variation ofthh, tee, and teh with «̄ for various
Ud and for tpp50 and 0.5. ~In these graphs we set
Up5Vpd50.) The purpose of these plots is to show the
magnitude and asymmetry of the three hopping matrix ele-
ments and their dependence on copper Coulomb repulsion
Ud and oxygen bandwidthtpp . In all cases~except for
«̄@Ud when hopping viatpd dominates! the effect of finite
oxygen bandwidth is to increase the effective hopping con-
siderably, as recognized in earlier estimates for the
cuprates.10,11,13,14,16This is expected sincetpp provides a new
channel for hopping between cells. We see further that, in
general, there can be a significant asymmetry except for
smallUd @Fig. 5~c!#.

Although the dependence on the parameters via the matrix
elements is quite complicated@see Eq.~3.3!#, for finite tpp
the electron hopping parametertee is in general smaller than
the hole hopping parameterthh due to the fact that the prob-
ability for a hole to be on oxygen is greater for a Zhang-Rice
singlet than for the doublet state (ugs&) ~with the exception
of Ud5`). Note that in the parameter region corresponding
to the cuprates@Fig. 5~b! with «̄'2# the asymmetry is quite
large with thh.teh.tee. However, this situation changes
when we consider the further Coulomb termsUp andVpd .
This is shown in Fig. 6 where we plotthh andtee in the same
way but include the effects ofUp andVpd ~with tpp50.5 and
for the typical caseUd57, the behavior being very similar
for other values ofUd). The effect of these Coulomb terms is
as expected from the considerations following Eqs.~3.4! and

FIG. 4. Contour plots ofUeff vs Ud and «̄ for Vpd5Up50
~dotted line!, Vpd51, Up50 ~dot-dashed line!, Vpd51, Up53
~solid line!, Vpd52, Up50 ~dashed line!, and Vpd52, Up53
~multidot-dashed line!.
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~3.5!. Hole hopping is little affected, the direct and indirect
terms coming fromVpd ~although each about 0.1 in magni-
tude forVpd51) nearly canceling each other. Moreover, at
small «̄ where theub↑b↓& component inuS& becomes sizable
and the indirectVpd term wins, the resulting small increase
in thh due toVpd is partially canceled by the contribution
from Up for which the direct term is always the larger. By
contrast, electron hopping is enhanced, in particular byVpd
and especially at small«̄ where @compare Eq. ~3.4!#
ng
(d)5cos2u and the squared matrix element, which equals
ng
(b)5sin2u, become equally large. The interband matrix ele-
mentteh is enhanced as well. This enhancement can be quite
appreciable in the expected parameter range of the cuprates.
For example, withUp'4 eV andVpd'1.3 eV, tee is in-
creased from'0.42 eV ~whenUp5Vpd50) to '0.50 eV,
and teh from '0.51 eV to'0.56 eV, while thh remains
virtually unchanged at'0.51 eV. It is clear from Figs. 5 and
6 that the almost exact equality ofthh andtee, i.e., thenearly
perfect electron-hole symmetryfor cuprate parameters, which
has also been found in cluster calculations,10–12 is purely
coincidental. The present values, although a little larger, are
in good agreement with that work@ thh5tee5 0.40 eV~Ref.
10!; thh5 0.41 eV, tee5 0.44 eV ~Ref. 11!; thh5 0.22 eV,
tee5 0.30 eV~Ref. 12!#.

In Fig. 7 we considernext-nearest-neighborhopping
(t8) for both holes and electrons. Here we again see a sig-
nificant asymmetry and, in particular, for the parameters cor-
responding to the cuprates the magnitude of these effective
hopping parameters is much smaller for electrons than for
holes. As comparison between Figs. 7~a! and 7~b! immedi-
ately shows, this large asymmetry is caused by the rather
different effect oftpp on t8

hh andt8ee. This is mainly due to
the fact that for next-nearest-neighbor hopping the first-order
contribution@Eq. ~3.3!# from tpp opposes that fromtpd , be-
cause the relevant coefficientsn02510.1221 and

FIG. 5. Nearest-neighbor hopping for electrons~dashed lines!, for holes~solid lines!, and for electron-hole transitions~multidot-dashed
lines! showing the effect of finite oxygen bandwidth@ tpp50.5 for upper curves~markedee, hh, andeh) andtpp50 for lower curves#: ~a!
Ud5`, ~b! Ud57, ~c! Ud52.

FIG. 6. Nearest-neighbor hopping for electrons~dashed lines for
Up50 and multidot-dashed lines forUp53), for holes~solid lines
for Up50 and dot-dashed lines forUp53), and for electron-hole
transitions ~long-dashed lines forUp50 and dotted lines for
Up53), for Vpd50 and Vpd51 as indicated, forUd57 and
tpp50.5.

FIG. 7. Next-nearest-neighbor hopping for~a! tpp50 and ~b!
tpp50.5, showing the effect of finite oxygen bandwidth. Electrons:
dashed lines forVpd5Up50, long-dashed lines forVpd51 and
Up50. Holes: solid lines forUp50 and dot-dashed lines@in ~b!
only# for Up53. In ~b! lower line for Vpd50 and upper line for
Vpd51, for each value ofUd .
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m02520.0235 have opposite sign due to the phasing of the
Wannier orbitals. Since the coefficient fortpp is much larger
because it involves a direct hopping process,tpp makes the
dominant contribution to next-nearest-neighborholehopping
as long as«̄&Ud ~so that the ZR singlet is predominantly
b like, with the db-singlet component larger than the
udx,↑dx,↓& component!, and consequentlyt8hop

hh ,0. By con-
trast,tpd dominateselectronhopping as long as«̄*1 ~so that
the one-hole state is predominantlyd like, i.e., cosu.sinu in
ugs&5cosuudx,s&1sinuubs&, and pd hopping }sinu cosu is
larger thanpp hopping}sin2u), and t8hop

ee .0. Note further
that for electronsVpd always enhancespd hopping and
therefore supports the tendency fort8ee to remain positive.

The results shown in Figs. 6 and 7 not only include the
first-order contributions to the effective hopping parameters,
i.e., from Eqs.~3.3!, ~3.4!, and ~3.5!, but also second-order
corrections, such as considered in Ref. 14, arising from in-
termediate states that contain an excited cell state. By far the
most important contributions come from the ER triplet,
which generates for example a correction to hole~i.e., ZR
singlet! hopping via the process uS,g,g&→ug,T,g&
→ug,g,S&; i.e. the ZR singlet on cell 1 exchanges with a
spin (ugs&) on cell 3 via an intermediate state involving an
ER triplet on cell 2. Similarly the excited singletsuS8& and
uS9& contribute via the processuS,g,g&→ug,S8,g&
→ug,g,S&. For the corrections to electron hopping one has
to consider processes likeu0,g,g&→u0,T,0&→ug,g,0&, etc.
As explained in Ref. 14 these second-order processes actu-
ally lead to three-cell terms: their contribution to hopping
from cell i to cell j depends on the orientation of the spin on
the intervening celll and may also involve a spin flip.~In
addition, we require that celll carry a spin, and not a zero-
hole state or a ZR singlet, in which case different processes
would contribute, such as uS,S,gs&→ugs , f̄ s̄ ,gs&
→u gs ,S,S&, where f̄ s is a three-hole cell state.! One there-
fore faces here a similar problem as with the hopping terms
generated by the Coulomb interactions, namely, what to in-
clude in the hopping terms proper, and what to consider as
‘‘true’’ three-cell terms. In order to have consistency with the
choice made above, we again assume a reference paramag-
netic ‘‘background’’; i.e. all other cells carry a one-hole state
with equal probability for spin up or spin down. We thus
include the mean of spin-parallel and spin-antiparallel non-
spin-flip terms in the second-order renormalization of the
hopping parameters, thus designating their difference as well
as the spin-flip terms as true three-cell terms.

For nearest-neighbor hopping (thh, tee, teh) the ensuing
modification is negligibly small (& 2%!, because one of the
virtual hops in the second-order process is itself a~first-
order! next-nearest-neighbor~or more distant! hop. However,
for next-nearest-neighbor hopping the correction can be
comparable with the first-order contribution. The explanation
for this large effect is, first, that the two virtual hops can now
be both nearest-neighbor hops, and second, that the first-
order results are fairly small themselves due to the cancella-
tions discussed above. The fact that first- and second-order
contributions are of similar size does not imply that the per-
turbation expansion is poorly convergent, but is merely a
consequence of the fact that first- and second-order contribu-
tions arise from physically distinct processes. Higher-order

corrections are much smaller, as may be seen from the plots
of the relevant expansion parameters in Figs. 1 and 2.

An interesting consequence is that while the second-order
corrections make the hole hopping parametert8hh simply
more negative, they switch the sign of the electron hopping
parametert8ee from positive to~just! negative. For example,
for the ‘‘standard’’ cuprate parameter set we find
t8hh520.06 eV, t8ee520.01 eV. Comparing with the ear-
lier work on clusters@ t8hh520.17 eV,t8ee520.10 eV~Ref.
10!; t8hh520.06 eV, t8ee520.07 eV ~Ref. 11!;
t8hh520.12 eV,t8ee520.06 eV~Ref. 12!# we see that there
is some discrepancy here, in particular for the electron hop-
ping parameter. We believe that the present cell-method val-
ues are more accurate, since, as pointed out before,14,48 the
cluster calculations either miss or underestimate~in clusters
containing two copper ions10,12or five copper ions,11 respec-
tively! the contribution frompd hopping, which always in-
volves physically a hopping process via a third copper
atom.49 They therefore tend to give estimates for the effec-
tive next-nearest-neighbor hopping that are too negative, in
particular fort8ee, where thetpd contribution actually domi-
nates, as argued above. We stress that the very small value
for t8ee, much smaller than that fort8hh, is a very robust
result of our calculations, which is also rather insensitive to
the precise way in which the second-order corrections are
handled. The significance of these results for next-nearest-
neighbor hopping will be discussed in Sec. V.

D. Spin-dependent terms

We now consider the Coulomb and exchange terms in the
effective Hamiltonian, i.e., thev terms and thej term in Eq.
~3.1!, starting with the spin-dependent terms, which are po-
tentially important for the low-energy states when the effec-
tive single band is close to being half full. Indeed, exactly at
half-filling ~i.e., when the number of holes equals the number
of sites!, there is a 2N-fold degenerate set of noninteracting
cell states with one hole~spin! on each cell which are lowest
in energy, being separated from excited states by a gap of
orderUeff . Within this degenerate manifold all interactions
in ~3.1! are zero or constant, apart from some contributions
to the last two terms in~3.1! which depend on spin~and thus
split the degenerate manifold.! Thus, whenUeff is large we
expect such spin-dependent interactions to become impor-
tant.

It is clear that, in first order, they arise only from theUp
term in the originald-p model, i.e., from the interaction

Hp5Up(
i

~px,i↑
† px,i↑px,i↓

† px,i↓1py,i↑
† py,i↑py,i↓

† py,i↓!.

~3.6!

Furthermore, it is only the matrix elements of this operator
between two cell states in which both cells are singly occu-
pied with holes ~spins! that are spin dependent, i.e.,
^ i↑, j↑uHpu i↑, j↑&50, whereas ^ i↑, j↓uHpu i↑, j↓&
52^ i↑, j↓uHpu i↓, j↑&Þ0, etc., for any two cells located at
i and j . These matrix elements fall off rapidly with distance,
as do other Coulomb matrix elements, and in what follows
we shall restrict ourselves to only nearest-neighbor cell in-
teractions. Substituting these results into the last term in Eq.
~3.2! yields directly the sum of all spin-dependent terms,
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Hspin
~p! 5Jp(̂

i j &
~Si•Sj2

1
4Xi

ggXj
gg!, ~3.7!

whereJp522^↑,↓uHpu↑,↓&,0 , and the sum is restricted
to nearest-neighbor pairs. Hence the direct spin-dependent
terms in first order give rise to a Heisenberg interaction with
a ferromagnetic exchange. This is, of course, due directly to
the Pauli principle and the oxygen Coulomb repulsion: when
the spins are antiparallel there is always some probability in
the ground state that an oxygen site will be doubly occupied
and this pushes up the energy by a factor proportional to
Up . Now Up can be quite large ('326 eV! and we might
thus expecta priori that this would render a cell-perturbation
expansion poorly convergent or even divergent. This, how-
ever, is not the case as can be seen from an examination of
the nearest-neighbor two-cell matrix element
^↑,↓uHpu↑,↓&. Expanding this in terms of thedx andb or-
bitals for the two cells using us&[ugs&5cosu u dx,s&
1sinuubs& we get

^↑,↓uHpu↑,↓&.Upsin
4u^b↑ ,b↓up↑

†p↑p↓
†p↓ub↑ ,b↓&,

~3.8!

wherep refers to the relevant oxygenp orbital ~i.e., either
px or py) on the oxygen site bridging the two copper sites.
The matrix element in this form has a simple physical inter-
pretation. The factor sin4u is the probability that both holes
occupy ab orbital and the last factor is the further probabil-
ity that the bridging oxygen is doubly occupied.~Actually
this is not quite correct since there will be a small probability
of double occupation of other sites. See below.! Now a hole
in an oxygenb orbital spends approximately 1/4~actually
slightly less! of its time on the four oxygen sites surrounding
the copper. Hencêb↑ ,b↓up↑

†p↑p↓
†p↓ub↑ ,b↓&.1/16, resulting

in

uJpu.
1

8
Upsin

4u,
1

32
Up , ~3.9!

where the last inequality follows since the probability sin2u
of oxygen occupation in the single-hole cell state is always
less than that of copper for the cases of interest. It is these
‘‘reduction factors’’ for double occupation of oxygen which
render the cell perturbation scheme convergent, even when
Up is quite large. Starting fromHp in d-b representation, Eq.
~2.8!, which accounts for double occupation of oxygen sites
in addition to the bridging oxygen, gives

Jp522c0011Upsin
4u520.1179Upsin

4u, ~3.10!

rather than~3.9!, justifying the above reasoning.~Also, co-
efficients c i i j j for further neighbors are indeed much
smaller!. From Eq. ~3.10! it follows immediately that, for
fixed Up , the magnitude of the first-order contribution is
strongly dependent on«̄, since

sin4u5
112x222xA11x2

4~11x2!
, ~3.11!

wherex5 «̄/(4m00tpd)5 «̄/(3.8324tpd).
We now consider higher-order corrections to this spin-

dependent~Heisenberg! interaction. As shown in Ref. 14, the
most important correction, which is accounted for very ac-

curately in second order, is due to double cell occupation~as
intermediate state! of the ER triplet. It arises from the pro-
cessesus,s̄&→u0,T0&→us̄,s& and us,s̄&→u0,T0&→us,s̄&,
which contribute to j i j and v̄ i j

gg , respectively, and
us,s&→u0,T2s&→us,s&, which contributes tov i j

gg . @There
is therefore also a separate spin-independent interaction gen-
erated; compare Eq.~3.2!#. As with the first-order contribu-
tion, this gives rise to a ferromagnetic Heisenberg interaction
which is independent ofUd , but, unlike the first-order con-
tribution, it is also nearly independent ofUp ~since double
occupation of oxygen is not allowed in the triplet state, so
that only the hopping parameter involved,tTg0g, depends
weakly onUp , but the energy denominatorET1E022Eg
does not!. There are also~antiferromagnetic! contributions
from the other two-hole states~i.e., the singletsuS8& and
uS9&), which do give rise to aUd andUp dependence, though
mainlyUd . In Fig. 8 we plot these second-order corrections
~for Vpd5Up50), showing explicitly its variation with«̄,
and demonstrating the dependence onUd and the significant
effect of oxygen bandwidth. The latter we expect because
tpp must enhance the hopping parameters involved.

In Fig. 9 we plot the total exchange for the effective
single-band model, i.e., including both first-order and
second-order contributions, for variousUp and Vpd at

FIG. 8. Second-order contributionJ2 to single-band exchange
JSB vs «̄ for Ud52 ~dot-dashed line!, Ud55 ~dashed line!,
Ud57 ~solid line!, Ud5` ~long-dashed line!, and Vpd5Up50,
showing also the effect of finite oxygen bandwidth:tpp50 ~upper
curves!, tpp50.5 ~lower curves!.

FIG. 9. Exchange in single-band model,JSB, vs «̄, for Up50
~solid line! andUp53 ~dot-dashed line! for Vpd50 andVpd52 as
indicated, forUd57.
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Ud57 ~the behavior for otherUd being similar!. This shows
how Up can induce a large«̄ dependence~through the first-
order contribution! for «̄&4, whereas the«̄ dependence at
larger «̄, coming almost entirely from the second-order con-
tributions, is much weaker. Note further thatVpd suppresses
the ferromagnetic exchange at large«̄ by enhancing the hop-
ping parameters connecting to the singlets, but that its effect
is negligible for small«̄, in particular for parameters corre-
sponding to the cuprates. Figure 9 further shows that in gen-
eral the total exchange parameter in the effective single-band
model is given to a very good approximation by

JSB5J1~ «̄,Up!1J2~ «̄,tpp ,Ud ,Vpd!, ~3.12!

whereJ1 is the first order contribution, linear inUp as dis-
cussed above, andJ2 is the second-order contribution and
almost independent ofUp . We further see that for the pa-
rameters corresponding to the cuprates, these first- and
second-order contributions are of a similar order. As with the
next-nearest-neighbor hopping above this merely reflects that
they arise from physically distinct processes, and does not
indicate poor convergence of the perturbation expansion.

E. Effective Coulomb interactions

In addition toUeff , the effective ‘‘on-cell’’ Coulomb re-
pulsion discussed above, there are furtherintercell effective
Coulomb interactions which are potentially important. These
effective interactions depend, of course, on all the parameters
in the underlyingd-p model but, as we shall see, they de-
pend most crucially on the charge-transfer gap«5«p2«d
and the nearest-neighbor Coulomb repulsionVpd . This is not
surprising since extensive studies of thed-p model indicate
that its behavior can be fundamentally different when
Vpd /« is sufficiently large, possibly leading to phase

separation,21,23,50 superconductivity,5,51–60 or non-Fermi-
liquid behavior.61–65We shall not consider the possibility of
such behavior in this paper but will simply point out the
equivalence to an effective single-band model and show the
dependence of the effective Coulomb parameters on those of
the underlyingd-p model.

In Eq. ~3.1! the effective Coulomb (v) parameters repre-
sent the direct interaction~repulsion! between electrons,
holes, and spins on neighboring cells. In the region of inter-
est, for which the number of sites with electrons and/or holes
is small compared with sites with spins, the physically im-
portant quantities are thedifferencesin energies when the
mobile carriers~electrons and holes! are on neighboring cells
compared with when they are far apart. Consider, for ex-
ample, the case of two holes in a background of spins. When
the holes are far apart they each interact with four neighbor-
ing spins through the Coulomb termv01

Sg in Eq. ~3.1!. When
they are on neighboring cells, they each interact with three
neighboring spins and with each other throughv01

SSand there
is also an extra spin-spin bond in the system. Hence, the
interaction energy between two holes on neighboring cells
relative to when they are far apart is

V01
hh5v01

SS1v01
gg22v01

Sg. ~3.13!

This relative interaction energy, and the corresponding ex-
pressions for two electrons, and an electron and hole, may be
made explicit in the effective Hamiltonian by eliminating the
electron-spin and hole-spin interactions through the identity

Xi
gg1Xi

001Xi
SS51i . ~3.14!

Using this in Eq.~3.1! leads directly to the following expres-
sion forHeff in first order@apart from an unimportant overall
constant which is dropped; cf. Eq.~3.1!#:

Heff5~Ēg2E0!(
i
Xi
gg1@2~Ēg2E0!1Ūeff#(

i
Xi
SS

1Teff1Hspin
~p! 1(̂

i j &
@Vi j

eeXi
00Xj

001Vi j
hhXi

SSXj
SS1Vi j

eh~Xi
00Xj

SS1Xi
SSXj

00!#, ~3.15!

whereTeff are the hopping terms and have the same form as
in ~3.1!, Hspin

(p) are the spin-dependent terms given by Eq.
~3.7!, and

Ēg5Eg2 (
j ~Þ0!

~v0 j
0g2v0 j

gg!, ~3.16!

Ūeff5Ueff1 (
j ~Þ0!

~v0 j
Sg1v0 j

0g22v0 j
gg!, ~3.17!

Vi j
ee5v i j

001v i j
gg22v i j

0g , ~3.18!

Vi j
hh5v i j

SS1v i j
gg22v i j

Sg, ~3.19!

Vi j
eh5v i j

0S1v i j
gg2v i j

0g2v i j
Sg, ~3.20!

where thev matrix elements were defined in the previous
section.

In the usual single-band Hubbard model supplemented by
a nearest-neighbor Coulomb interaction(^ i j &Vninj one has
v005v0g5v0S50, vgg5V, vSg52V, andvSS54V, giving

Vee5Vhh52Veh5V; ~3.21!

i.e., electron-electron repulsion, hole-hole repulsion, and
electron-hole attraction are all equal in magnitude. This is
not usually true for the interactions between the effective
holesuS& and electronsu0& we are considering here and it is
this asymmetry in the V’s ~and thet ’s! which is the main
difference between the usual single-band model and the ef-
fective single-band models derived from multi-band models.
We further note that this asymmetry also leads to a renormal-
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ization of the on-cell effective Coulomb repulsion~and hence
the Mott-Hubbard gap!, as seen directly from Eq.~3.17!,
whereas this is unaffected byV in the ordinary Hubbard
model as pointed out recently by Meinderset al.,66,67 clari-
fying some earlier confusion on this issue.68,69For the ‘‘stan-
dard’’ cuprate parameters the renormalization is rather small:
we find Ūeff'2.6 ~as compared toUeff'2.5) corresponding
to '3.4 eV.

We now derive explicit expressions for the dependence of
these effective Coulomb interactions between electrons and
holes on the underlying Coulomb interactions in thed-p
model, starting withVpd . This gives a contribution in first
order, which is obtained from thed-b representation of
Hpd , i.e., the first term in Eq.~2.7!:

Hpd
Coul5Vpd(

i , j
8f i j j ni

~d!nj
~b! . ~3.22!

The on-cell term (f00050.9180) is already included in the
diagonalization of the two-hole cell states and need not be
considered further. The only relevant intercell interaction
term is that for nearest neighbors with coefficient
f01150.2430, since this is much larger than any other coef-
ficient (f02250.0094, etc.!. With this nearest-neighbor ap-
proximation ~and dropping therefore cell indices from now
on! we can easily calculate the correspondingv matrix ele-
ments appearing in~3.1!, having first obtained the cell eigen-
statesu0&,ugs&, anduS& by explicit diagonalization, i.e.,

vpd
nm5Vpdf011~nn

~d!nm
~b!1nm

~d!nn
~b!!, ~3.23!

wheren,m50,S, org, with nn
(d)[^nun(d)un&, etc. Hence the

Coulomb matrix elements are determined by thed and b
densities of the cell states involved. Note that for two-~or
more-! hole states, these densities depend themselves also on
Vpd , and the dependence of thev ’s onVpd is thus nonlinear.

Inserting the expression~3.23! into Eqs. ~3.18!, ~3.19!,
and ~3.20!, we obtain

Vpd
ee52Vpdf011~n0

~d!2ng
~d!!~n0

~b!2ng
~b!!

52Vpdf011ng
~d!ng

~b! , ~3.24!

Vpd
hh52Vpdf011~nS

~d!2ng
~d!!~nS

~b!2ng
~b!!, ~3.25!

and

Vpd
eh5Vpdf011@~nS

~d!2ng
~d!!~n0

~b!2ng
~b!!1~d↔b!#

52Vpdf011@~nS
~d!2ng

~d!!ng
~b!1~nS

~b!2ng
~b!!ng

~d!#,

~3.26!

showing that, as one would expect, the effective Coulomb
interaction between doped particles is precisely the interac-
tion between theaddedcharges. Since the copper vs oxygen
character of an added hole~i.e.,nS

(d)2ng
(d) vsnS

(b)2ng
(b)) will

usually be different from that of an added electron~i.e., a
removed hole,ng

(d) vs ng
(b)), in generalVpd

hh , Vpd
ee , and

2Vpd
eh will not be equal. In particular, becausef011.0, it

follows from these equations that the electron-electron inter-
action is always repulsive and the electron-hole interaction is
generally attractive, as with the ordinary Hubbard model
containing a nearest-neighbor Coulomb repulsionV @see Eq.

~3.21!#. However, the hole-hole interaction can be eitherat-
tractive or repulsive, depending on the values of the densi-
ties, which in turn are determined by the hybridization of the
statesuS& andugs&. @This should again be contrasted with the
ordinary Hubbard model where the hole-hole interaction is
always repulsive, Eq.~3.21!.# We illustrate this in Figs. 10~a!
(Vpd51) and 10~c! (Vpd52), which are contour plots of
Vhh in the ZSA (Ud ,«̄) diagram.@These plots also contain
second-order corrections~see below!.# They show the cross-
over from repulsive to attractive interaction as we move from
the bottom right of the diagrams~i.e., Mott-Hubbard regime!
to the top left~i.e., charge-transfer regime!, with the attrac-
tive region increasing withVpd .

This behavior can be understood as follows. As is well
known, in the charge-transfer regime the holes present in the
undoped system are predominantlyd like, but in going from
the one-hole state to the ZR singlet the increase inp density
is larger than the increase ind density because of the copper
Coulomb repulsion~‘‘the second hole is more oxygen like
than the first’’!; i.e., the ZR singlet is more hybridized than
the one-hole state. It is actually possible thatnS

(d),ng
(d) ; i.e.

when a hole is added, thep density increases by more than
one hole while thed densitydecreases.This can occur be-
cause the intracell interaction generated byVpd suppresses
the amplitude of thepd singlet in the ZR singlet, i.e., forces
the charge to go on oxygen, when«̄/tpd is small enough~and
Ud sufficiently larger than«̄). Under these conditions, i.e., in
the extreme CT regime close to thedp-metal region in the

FIG. 10. Contour plots of effective hole-hole interactionVhh vs
Ud and «̄. Solid line is whereVhh50, andVhh is attractive above
this ~dashed lines! and repulsive below~dot-dashed lines! as indi-
cated. The dotted lines in~a! are contours forUp5Vpd50, increas-
ing from 0.025 ~bottom left! to 0.100 ~top right!. ~a!
Vpd51,Up50, ~b! Vpd51,Up51, ~c! Vpd52,Up50, ~d!
Vpd52,Up52.
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ZSA phase diagram, it is favorable for two ZR singlets to
share thisd→p CT polarization. Since they are both very
oxygen like, thepd repulsion between them is then very
weak, much weaker than the repulsion experienced by a ZR
singlet from a backgroundg state.

In this context it should be pointed out that the CT re-
gime, usually understood33 asUd.«, can be subdivided in
two rather distinct subregions, separated by the line
Ud52«̄1Ub in the ZSA diagram. At this line
nS
(d)5nS

(b)51, as follows immediately from the Hamiltonian
matrix determininguS& @see Appendix B of II, Eq.~B2!#, so
that nS

(d)2ng
(d)512ng

(d)5ng
(b) and nS

(b)2ng
(b)5ng

(d) , and
thus theVpd generated effective Coulomb interactions show
electron-hole symmetry,Vpd

hh5Vpd
ee ~although Vpd

eh52Vpd
hh

2Vpdf011cos
22u Þ2Vpd

hh). Below the dividing line the ZR
singlets are still predominantlyd like, although less so than
the one-hole states, while above it the oxygenp-hole content
of the ZR singlets is larger than the copperd-hole content.
Simple algebra then shows thatVpd

hh.Vpd
ee below that line,

while above itVpd
hh,Vpd

ee . It is only in the latter region that
Vpd
hh can possibly be attractive and it is noteworthy that the

cuprates are actually in that region. However, it should be
pointed out that, even forUp50 as shown in Figs. 10~a! and
10~c!, the region ofattraction only occurs for relatively large
values of Ud ~and even largerUd whenUpÞ0; see below!.
Also, to obtain an attraction of a given strength requires
much largerVpd at finite Ud than atUd5`. Theoretical
treatments which setUd5` ~applications of the slave boson
method, for example, both to thed-p model proper21,23 and
to the multi-bandt-J models derived from it70,71!, therefore
tend to overestimate the tendency towards phase separation
or superconductivity induced by effective hole-hole attrac-
tion. In the opposite~Mott-Hubbard! case whereUd, «̄ the
situation is more straightforward since the charge will shift
to thed orbital andVhh is always repulsive.

We now consider the first-order contribution made by
Up , which may be analyzed by the same reasoning. The
appropriate effective Coulomb interaction is given in the first
sum of Eq.~2.8!, i.e.,

Hp
Coul5Up(

i j
8c i i j j ni↑

~b!nj↓
~b! . ~3.27!

Again, the large on-cell term (c000050.2109) is already ab-
sorbed in the single-cell Hamiltonian, which is diagonalized
explicitly. As explained in the section on spin-dependent
terms, the nearest-neighbor two-cell interactions~with
c001150.0590) are by far the largest since these arise from
two holes on the bridging oxygen site (c002250.0044, etc.!.
Retaining only these, the effective Coulomb matrix may be
calculated as with theVpd interactions and we get

vp
mn5Upc0011~nm

~b↑ !nn
~b↓ !1nm

~b↓ !nn
~b↑ !!. ~3.28!

For m5gs , n5gs̄ , this Coulombic term, when combined
with the spin-dependent terms inHp @see Eq.~2.8!#, gives
rise to the exchange contribution discussed earlier, and thus
makes no contribution to the spin-independent interactions
we are now considering. The terms originating from other
combinations ofm and n, when inserted into Eqs.~3.18!,
~3.19!, ~3.20!, yield

Vp
ee50, ~3.29!

Vp
hh5Upc0011~

1
2nS

~b!2ng
~b!!nS

~b! , ~3.30!

Vp
eh52 1

2Upc0011nS
~b!ng

~b! . ~3.31!

The nonsymmetric form of these expressions is the result of
our including part of the spin-independent interaction, viz.,
1
2 Upc0011(ng

(b))2, with the exchange@compare Eqs.~3.7! and
~3.10!#. The full spin-independent interaction hasVp

ee

}(ng
(b))2, Vp

hh}(nS
(b)2ng

(b))2, and Vp
eh}(nS

(b)2ng
(b))ng

(b) ,
which is again interpretable as the interaction between the
added charges. Sincec0011.0, we find that the effective
Coulomb interaction between neighboring cells due toUp is
always attractive between electrons and holes and repulsive
between ZR singlets throughout the charge-transfer regime
in the ZSA diagram. As argued above, this is because the
presence ofUd guarantees thatnS

(b).2ng
(b) . Physically the

repulsion comes about because nearest-neighbor ZR singlets,
in optimizing hybridization and avoiding the copper Cou-
lomb repulsion, necessarily pile up charge on the oxygen
atom bridging the two copper sites. Actually,Up suppresses
attraction between ZR singlets much more effectively than
would be expected from Eq.~3.30! alone. The oxygen Cou-
lomb repulsion not only generates the intercell interaction
~3.30! but also modifies the wave function of the two-hole
stateuS& through theintracell term. This rapidly reduces the
oxygen hole content of the ZR singlet, thus counteracting the
effect of Vpd . The effect ofUp is demonstrated in Figs.
10~b! and 10~d!, where the region of attractiveVhh is seen to
be shifted to considerably higher values ofUd compared to
Up50. However, this suppression of an effective hole-hole
attraction is overestimated somewhat in the present treat-
ment, because the ZR singlets are not allowed to relax, i.e.,
to modify their wave function, when brought next to one
another.

Of course there are also second-order contributions~in-
cluded in Fig. 10!, arising in perturbation theory. These may
be interpreted, in view of Eqs.~3.18!, ~3.19!, and~3.20!, as
the difference in self-energy between an added particle~say,
a hole, i.e., a ZR singlet! placed next to another particle or
surrounded only by spins~i.e., one-hole cells!, and arising
from the different virtual transitions that are available.14,26

These interactions, which are already generated in the pure
Emery model~i.e., with Vpd5Up50) are always repulsive
@see Fig. 10~a!, dotted lines#, essentially because the number
of virtual states available is larger when the particle is next to
a one-hole cell. For example, for a ZR singlet,
Sg→ḡ0,ē0;gT,gS8,gS9,eS,eT,eS8,eS9, as compared with
SS→ḡg,ḡe,ēg,ēe ~where ḡ and ē denote the three-hole
ground and excited state!. MoreoverSg→gT is a relatively
low-energy excitation, thus making a significant contribution
to the effective interaction between neighboring ZR singlets.
Since these second-order contributions can be appreciable,
the choice made for the ‘‘background’’ is important here. If a
zero-hole background is assumed, i.e., if the ‘‘indirect’’ terms
in Eqs. ~3.4! and ~3.5! are omitted, the second-order repul-
sive contribution is considerably weaker because the effec-
tive hopping parameters are reduced, leading to a much
larger attractive regime in the ZSA diagram.
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As regards the cuprates, Fig. 10 shows that forUp50, in
spite of the repulsive second-order terms, a net attractive
interaction between ZR singlets can still be induced by a
Vpd of order 1–2 eV~as estimated for the cuprates

37–41,72! in
the extreme CT regime close to thedp-metal region in the
ZSA diagram. One must further bear in mind thatVpd in-
creasesUeff ~see Fig. 4! and thus the charge-transfer gap, so
that in order to describe a system with a particular gap value,
one has to decrease«̄ when increasingVpd , thus coming
closer to~or within! the attractive regime in Fig. 10. How-
ever, attraction occurs only at fairly large values ofUd , and
although the first-order interaction generated by Vpd is
clearly attractive in the region where the cuprates are esti-
mated to be located(Ud /tpd'7, «̄/tpd'2 whenVpd50), it
is obvious from Figs. 10~a! and 10~c! that a net attraction is
already doubtful when the second-order corrections are in-
cluded. Moreover, Figs. 10~b! and 10~d! show that the attrac-
tion is rapidly suppressed by the oxygen Coulomb interac-
tion, and for realisticUp ~3–6 eV, taking screening into
account37–41! the interaction is likely to berepulsiveeven
without the second-order contributions, and certainly so
when they are included. For example, for the ‘‘standard’’
cuprate parameter set we findVhh510.17 eV. In this respect
it is noteworthy that investigations into the effect ofVpd
have sometimes been done forUp50,21,22,58~and occasion-
ally also withUd5` where the condition for attractive in-
teraction is considerably less stringent than for realistic
Ud). Phase separation or superconducting correlations found
in such studies, if induced by effective hole-hole attraction,
may then not survive for a more realistic choice of param-
eters, or only in a more restricted range of doping. For ex-
ample, stabilization of the system against phase separation
by Up has been found explicitly in the high doping
regime.23,70,71

However, we should also point out that a negativeVhh

doesnot necessarily imply that the holes will be attracted to
each other; nor does a positiveVhh imply that they will not.
For one thing these are only static interactions which, of
course, have to compete with the kinetic energy~hopping!
terms in determining the phase behavior of the system. In
addition to this, the ferromagnetic Heisenberg interaction,
arising from theUp interaction in first order and the Emery
triplet in second order, will lead to an effective repulsion
between holes. This is@compare Eq.~3.2!# because the

Heisenberg interaction contributes for any two adjacent spins
an energy lying between zero and2JSB (.0) and this en-
ergy only vanishes when the spins are ferromagnetically
aligned ~a situation which does not arise for the cases of
interest!. Hence, the system may lower its~static! energy by
minimizing the number of pairs of sites which are occupied
with spins. For a given number of holes, this occurs when the
holes do not occupy adjacent sites. Thus this ferromagnetic
interaction between spins is equivalent to a repulsive inter-
action between holes. Indeed, this is just the other~spin-
dependent! part of the effective cell-cell interaction due to
Up further suppressing any attraction~as doesVp

hh). ~See
also Sec. IV B for a further discussion of effective hole-hole
interactions.!

In Fig. 11 we show the effective electron-hole interaction
Veh, including the second-order contributions. The calcula-
tions show that it is strongly dominated by the first-order
Vpd contribution, the contributions from second order and
from Up being relatively small~as can be seen in the figure!.
It is also clear that strong excitonic effects should be ex-
pected as soon asVpd were large enough to generate any
sizable hole-hole attraction in the extreme charge-transfer re-
gime ~compare Fig. 10!. Finally, Fig. 12 shows the electron-
electron interactionVee which, as already mentioned, is al-
ways repulsive. The repulsion is independent ofUd , and
almost independent ofUp which affects only the effective
hopping parameters entering the second-order contributions.
Comparison with Fig. 10 reveals the considerable difference
from the hole-hole interaction, except in the extreme Mott-
Hubbard regime («̄@Ud) where of course all Coulomb in-
teractions related to oxygen occupation tend to zero. In par-
ticular the magnitude ofVee is seen to be quite large in the
charge-transfer regime precisely where the hole-hole interac-
tion is weak.

We thus see that there is a strong asymmetry between
doped holes and doped electrons as far as the residual inter-
actions are concerned, in particular in the extreme CT
regime. This is to be contrasted with the behavior of
the hopping ~Sec. III C! and the single-particle spectral
properties,73,74,31where precisely in that regime electron-hole
symmetry is almost completely restored by the hybridization.
We emphasize that the presence of theseasymmetric effective
Coulomb interactionsrepresents a significant qualitative dif-
ference between an effective single-band model derived from
the three-bandd-p charge-transfer model and the ordinary
Hubbard model.

FIG. 11. Contour plot of effective electron-hole interactionVeh

vs Ud and «̄ for Vpd51. Solid lines are forUp50 and dot-dashed
lines forUp53. (Up5Vpd50 is shown as a dotted line.!

FIG. 12. Effective electron-electron repulsionVee vs «̄.
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F. Insulator-metal transition

In Sec. III B we showed that the reduction of thed-p
model to an effective single-band model by perturbation
theory is valid over a wide range of parameters and that the
effective single-band parameters are given to reasonable ac-
curacy in second order. For the special case of one hole per
cell ~on average! it is clear that this parameter range for
which the mapping is valid includes metallic as well as in-
sulating regimes. In fact, for the regime which is expected to
be metallic~smallUd and/or small«̄) the expansion param-
eters are actually smaller and truncation at second order is
more accurate. The case of the charge-transfer metal is par-
ticularly interesting. If we go back to thed-p model, then we
expect to get metallic behavior when«p2«d becomes com-
parable withtpd or smaller and charge will ‘‘transfer’’ from
Cu to O where it becomes mobile. How can this simple
picture be reconciled with an effective single-band model? It
might be expected that the two descriptions are incompatible
since, if the mobile holes on oxygen were to execute their
normal band motion, then we would expect cell states with
three or more holes to become important, whereas the effec-
tive single-band model only allows unoccupied, singly occu-
pied, or doubly occupied~in Zhang-Rice singlets! cell states.
The reason that the effective single-band description remains
valid down to«p2«d'0 is due to the strong effect of Cu-O
hybridization (tpd) which pushes down the energy of single-
hole and two-hole~ZR! cell states, leaving cell states with
three or more holes sufficiently high in energy to be ac-
counted for as small perturbative corrections. The physics is
that the system can already gain energy significantly by hy-
bridizing only locally, rather than promoting holes to band
states, thus avoiding the higher price of Coulomb energy that
would result from a large amplitude for double Cu~and O!
occupancy. There are, of course, regimes where this would
break down and a more appropriate description would be an
oxygen band perturbed by the Cu spins. An example would
be tpd!tpp , which is appropriate for heavy fermion and
mixed valence compounds~with p°d andd° f ) for which
an effective single-band model would certainlynot be valid.
The description would also eventually break down for
«p2«d sufficiently negative since the hybridization effects
of tpd would become smaller and again a weakly perturbed
oxygen band of mobile holes would become more appropri-
ate. However, for the range of parameters considered in this
paper, withtpp /tpd50.5 and«p2«d>0, the equivalence of
the d-p model to an effective single-band model remains
valid andincludes both insulating and metallic regimes.This
thus spans the insulator-metal~IM ! transition.

The precise region where the IM transition occurs is not
known even for the ordinary Hubbard model, though it is
expected to occur for a critical ratio of 8t/U of around
unity.75 This may be justified by the simple~but approxi-
mate! argument that it requires an energyU to create an
electron-hole pair in the atomic limit. The electron and hole
can each further lower their energies by half the bandwidth
@i.e., 4t in a two-dimensional~2D! system# giving a net cre-
ation energy ofU28t, which vanishes at the IM transition.
Since correlations between the mobile particles and the spin
background are known to reduce the effective bandwidth,
one underestimates the gap in this way and the critical value

of 8t/U will actually be somewhat larger than 1. If we apply
a similar argument to the effective single-band model de-
rived above@see Eq.~3.15!#, then the appropriate ratio is
4(tee1thh)/Ūeff.8teh/Ūeff and we expect an IM transition
when this ratio is of order unity. In Fig. 13 we present con-
tour ~ZSA! plots of this ratio versusUd and «̄ for various
Up andVpd with tpp50.5. This shows clearly the crossover
from Mott-Hubbard behavior~large«̄) to CT behavior~large
Ud) with the parameters corresponding to the cuprates being
in the CT regime, but not significantly so. Furthermore, the
cuprates correspond to 8teh/Ūeff'1, i.e., quite close to the
expected IM transition regime. Note that the Coulomb inter-
actionsUp andVpd shift the contours to the left in the CT
region because they significantly increaseUeff ~see Fig. 4!,
but have little effect in the Mott-Hubbard region. This agrees
with the general expectation that these Coulomb interactions
inhibit kinetic energy but are only effective when the prob-
ability of oxygen occupation is high. A more detailed study
of the effect ofVpd andUp within the Hubbard I approxi-
mation has recently been made by Simo´n et al.29,30

IV. FURTHER REDUCTION TO A CHARGE-SPIN MODEL

A. t-J-V model

In much the same way as the ordinary Hubbard model
may be reduced to thet-J model76 for U/t@1, the effective
single-band model derived from thed-p model in the previ-
ous section may be reduced to a charge-spin model provided
Ueff is sufficiently large. Applying second-order degenerate
perturbation theory to~3.15! leads directly to what we will
call the t-J-V model,

HtJV5PH (
^ i j &s

2t i j @cis
† cjs1H.c.#

1(̂
i j &

@J~Si•Sj2
1
4ninj !1Vninj #J P, ~4.1!

where the summationŝi j & are over pairs of sites~cells!,
which we will restrict to nearest- and next-nearest neighbors
for the hopping terms and nearest-neighbor only for the
‘‘static’’ terms. This form isexactlythat which would result
from a single-band Hubbard model with a nearest-neighbor
Coulomb interactionV, except that we have omitted, for

FIG. 13. Contour plots of teh/Ueff vs Ud and «̄ for
Up5Vpd50 ~dotted lines!, Vpd51, Up50 ~dot-dashed lines!, and
Vpd51, Up53 ~solid lines!.
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clarity, the three-site terms, which occur in all cases.~These
will be discussed briefly below.! Actually, such a t-J-V
model has recently been investigated,77,78 considered as a
natural generalization of thet-J model.

The precise meaning of the symbols in Eq.~4.1! in the
context of the generalized single-band model@Eq. ~3.15!#
and the quantitative differences between~4.1! and thet-J
model resulting from the ordinary single-band Hubbard
model require further explanation. First, thec operators in
~4.1! may be regarded as ordinary Fermi operators provided
P forbids double occupancy, the usual convention for thet-
J model. For hole-doped materials, zero-hole states must be
precluded, and since these are equivalent to two-electron
states, we must choose the electron picture to adopt the usual
convention. Thuscs[es(5hs̄

†) andP[P(e) precludes two-
electron states. @Formally, P(e)[) i(12ni↑ni↓).# Con-
versely, for electron-doped materials, two-hole states must be
precluded and we thus retain the hole picture withc[h and
P[P(h). The correctness of~4.1! is then proved formally by
first obtainingHtJV in its X operator form@directly from
~3.15! using second-order perturbation theory# and then
invoking the identities Xi

SsXj
sS5(his

† his)hi s̄
† hj s̄(hjs

† hjs)
[P(e)eisejs

† P(e) ~hole doped!, Xi
s0Xj

0s

5(12hi s̄
† hi s̄)his

† hjs(12hj s̄
† hj s̄)[P(h)his

† hjsP
(h) ~electron

doped!, Xi
ggXj

gg[P(•••)ninjP
(•••) ~holes or electrons!, Xi

SS

5hi↑
† hi↑hi↓

† hi↓5(12ei↓
† ei↓)(12ei↑

† ei↑)[P(e)(12ni)P
(e)

~hole doped!, and Xi
005(12hi↑

† hi↑)(12hi↓
† hi↓)[P(h)

3(12ni)P
(h) ~electron doped!. The relationP(•••)(12ni)

3(12nj )P
(•••)→P(•••)ninjP

(••), which is simply a shift of
the single-particle energy or the chemical potential, has also
been used.

Consequently, the hopping matrix elements in~4.1! are
those for ‘‘holes’’ in the case of hole-doped materials@i.e.,
t i j[t i j

hh[t i j
SggS, Eq. ~3.1!# and those for ‘‘electrons’’ for the

case of electron-doped materials~i.e., t i j[2t i j
ee[2t i j

g00g). In
the ordinary Hubbard model no distinction is made between
holes and electrons since thet ’s are the same for both, as
explained in Sec. III A. Similarly,V5Vhh for hole-doped
materials andV5Vee for electron-doped materials@see Eqs.
~3.19! and~3.18!#. Since there can be a significant asymme-
try in theset andV parameters, we can expect at least quan-
titative differences between electron- and hole-doped mate-
rials and, possibly even significant qualitative differences.
~We come back to this point below.! The superexchange is
given by

J5
4~ teh!2

Ūeff1Veh
1JSB, ~4.2!

i.e., by the usual second-order expression to which we must
add the ferromagnetic contribution from the effective single-
band model, which arose fromUp in first order and the ER
triplet in second order@see Eq.~3.12!#.

As already mentioned, the reduction of the single-band
model~3.15! to a charge-spin model generates in addition to
~4.1! also three-site hopping terms,

HK
three site5PH(

i j l
(
s

@Kli j
11cis

† nlscjs1Kli j
22cis

† nl s̄cjs

1Kli j
12ci s̄

† cls
† cl s̄cjs#J P. ~4.3!

Although the three-site terms are often neglected in studies
of the t-J model, they are not necessarily unimportant if one
wants to consider thet-J model as the strong-coupling
(U/t@1) limit of the ordinary Hubbard model. For example,
their inclusion could make a significant difference in the for-
mation of magnetic polarons.79 Recently, it has also been
shown that they are essential in describing the spectral
weights in the optical spectra.80,81One expects similar argu-
ments to apply for the presentt-J-V model as the strong-

FIG. 14. Total superexchange int-J model for tpp50.5;
Vpd5Up50 ~dotted line!, Vpd50, Up53 ~dashed line!, Vpd51,
Up50 ~dot-dashed line!, Vpd51, Up53 ~solid line!: ~a! Ud5`,
~b! Ud57, and~c! Ud52.
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coupling (Ueff /t
eh@1) limit of the d-p model. We defer a

study of the terms~4.3! to future work, and restrict ourselves
here to the remark that the familiar relations between three-
site hopping and superexchange76 (Kli j

1150 and
Kli j

2252Kli j
1252J/4 when l is neighbor to bothi and j )

are only obtained when one starts from the ordinary Hubbard
model, but do not hold for the charge-spin model derived
from thed-p model.

In Fig. 14 we plot the total superexchange vs«̄ for vari-
ousVpd , Up , andUd . We see the general expected trend
that increasing any of the Coulomb terms reducesJ by either
suppressing the probability of double occupation on a cell or
by reducing the effective hoppingteh, or both. Conversely,
reducing«̄ increasesJ for exactly the opposite reasons. Over
quite a broad range of parameters all Coulomb interactions
make significant contributions. It should also be noted that,
in the region of the cuprates, the ferromagnetic contribution
coming from the effective single-band part of the Hamil-
tonian, JSB, is quite appreciable, being;20% that due to
the antiferromagnetic second-order term. ThereforeJ is ap-
preciably smaller than would be obtained from an ordinary
Hubbard model with parameterst5teh andU5Ūeff . This
explains why Hybertsenet al.,11 when fitting their numerical
results for eigenvalues in finite clusters to a Hubbard model
and comparing with cuprate data, had to increaseU above
the value estimated from the gap in order to get a reasonable
fit to the magnetic splittings. For the ‘‘standard’’ cuprate pa-
rameters we findJ50.22 eV, in reasonable agreement with
earlier estimates,9–12 though somewhat larger, and also larger
than the accepted experimental value ofJ'0.13 eV.82,83The
difference could be due to the direct Cu-Cu exchange, as
pointed out early on by Stechel and Jennison,9 or might in-
dicate that the ‘‘standard’’ set should be slightly modified.
For example, it is well known thatJ is very sensitive to
Up ~Refs. 10,27! @compare also Eq.~3.10!#, and a somewhat
different combination of«, Up , and Vpd could bring the
calculatedJ closer to the experimental value, without appre-
ciably changingUeff and thus the gap.

We now consider the validity and accuracy of this second-
order expansion to a charge-spin model. We see from Eq.
~4.2! that an appropriate expansion parameter is
4teh/(Ūeff1Veh).4teh/Ūeff . This parameter was discussed
in the previous section and contour plots are given for it in
Fig. 13. We expect reasonably accurate second-order results
when this ratio is less than unity. For the cuprates it takes a
value of order 1/2 which is within the convergence radius,
giving a second-order contribution toJ which is in error by
'6% ~as can be estimated by comparing the exact two-cell
result with the second-order result, as discussed in Ref. 14!.

B. Asymmetry: Hole doping versus electron doping

Finally let us return to the question of differences between
hole-doped and electron-doped systems when both are de-
scribed by Eq.~4.1!, and the differences are reflected in the
parameters for hopping (t5thh or t52tee) and nearest-
neighbor effective Coulomb interactions (V5Vhh or
V5Vee). One distinct advantage of expressing the hole-hole
or electron-electron interaction in the context of an effective
single-band model is that it is straightforward to make a
quantitative comparison with effective attraction between

added particles due to superexchange. This effective interac-
tion has received some attention recently because of its ten-
dency to promote phase separation84–87 and possibly
superconductivity.88–90This tendency is due to the fact that
there is one extra magnetic bond when two carriers are on
neighboring cells compared with when they are further sepa-
rated, leading to an effective attraction. However, this is op-
posed by the kinetic energy terms which tend to favor un-
bound carriers and, while there is little doubt that phase
separation does occur whenJ/t is sufficiently large, whether
or not this is possible for parameters appropriate to the cu-
prates remains an open question. One measure of the ten-
dency to phase separation or pairing is the mean ‘‘static’’
energy between carriers when they are on neighboring cells
compared with when they are far apart. For the puret-J
model this is justDEtJ5J(^S1•S2&2 1

4) where the angular
brackets denote the expectation value with respect to some
magnetic background.91 Since DEtJ<0, with the upper
bound corresponding to a ferromagnetic background, this
static interaction is generally attractive in thet-J model with
DEtJ52 1

4J for a paramagnetic~PM! background and
DEtJ52 1

2J for an antiferromagnetic~AFM! Néel-state
background. For very low doping~or for true phase separa-
tion! we might expect the background to be close to the
ground state of a pure 2D Heisenberg antiferromagnet which,
using the ground-state energy from quantum Monte Carlo
simulations,92 gives DEtJ520.585J. Thus, based on the
above criterion, the puret-J model favors phase separation
and, furthermore, there is no distinction between electron-
and hole-doped systems. If we apply this same criterion to
the effective charge-spin model derived from thed-p model,
Eq. ~4.1!, we see that the situation can be quite different due
to the ‘‘spin-independent’’ effective Coulomb interaction
term (^ i j &Vninj . Now the relevant quantity is
DEtJV[J(^S1•S2&2 1

4)1V, whereV is eitherVhh or Vee.
For electron-doped systemsV is always repulsive and

therefore the value and in particular the sign ofDEtJV simply
depend on whether this effective Coulomb repulsion is suf-
ficiently large to cancel the attraction between electrons due
to the superexchange. The resulting variation ofDEtJV with
Ud and «̄ is shown for a typical case withVpd51 and
Up50 in Fig. 15, both for a PM and an AFM background.
We see thatDEtJV is negative for eitherUd or «̄ small, where
the superexchange is large~compare Fig. 14!, but this attrac-
tive regime is steadily reduced with increasingVpd because
of the continuous increase ofV ~compare Fig. 12!. In the
repulsive regime the net repulsion is weak because bothJ
andV are small. We further note that the type of magnetic
background has a large effect, essentially because it affects
only the attractive contribution, so that in a PM background
a much largerJ and therefore a considerably smaller«̄ is
required in order to have the same net interaction as in an
AFM background.

On the other hand, for hole-doped systemsV can be posi-
tive or negative, so thatDEtJV can now be negative either
because the attractive superexchange is larger than a repul-
sive effective Coulomb interaction as in the electron-doped
case, or becauseV is itself attractive and adds toJ. As a
consequenceDEtJV depends sensitively on all underlying pa-
rameters. This is illustrated in Fig. 16, where we see that in
the charge-transfer regime (Ud. «̄) attraction persists up to
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considerably larger values of«̄ than in the electron-doped
case. This is exactly as we would expect, since it is in that
regime thatVhh becomes small or even attractive, as we have
seen in Sec. III E. This difference between doped holes and
doped electrons in the charge-transfer regime becomes even
more pronounced at largerVpd , where electrons become in-
creasingly more repulsive and holes increasingly more at-
tractive. Note further that when in the repulsive regime the
repulsion between holes is much stronger than between elec-
trons. The effect of changing the background is seen to be
smaller in the hole-doped case, in particular in the charge-
transfer regime, since such a change does not affect an at-
tractive contribution fromV when present.

The rather different effect of the magnetic background can
be seen more clearly in Figs. 17 and 18, where we show, for
electrons and holes, respectively, the contours where
DEtJV50 for PM and AFM backgrounds, for two character-
istic values ofVpd and various values ofUp . ThusDEtJV is
negative~positive! to the left ~right! of these curves. The
shift of these boundaries upon going from AFM to PM is
significantly smaller for holes, especially whenUd@ «̄ and at
the larger value forVpd . These figures also demonstrate the
large difference in the influence ofUp . For electrons an
increase inUp has little effect, because this only reducesJ
slightly. By contrast, in the case of holesUp makes a large
repulsive contribution toV as we have seen in Sec. III E, and
thus the contours are shifted to significantly smaller«̄ where
the extra repulsion is compensated by a larger value ofJ.

Note that for givenVpd and Up there is, between the
contours, a band where the static interaction wouldchange

from attractive to repulsiveupon a change in the magnetic
order of the background fromAFM to PM, which is expected
to occurwith increasing doping, suggesting that a transition
might occur from a phase-separated or superconductive state
at low doping to a metallic state at higher doping. Figures
18~b! and 17~b! show that it is even possible that such a
situation is realized for holes but not for electrons, for which
the static interaction would be repulsive for any magnetic
background, suggesting that such a system might support
superconductivity for doped holes but not for doped elec-
trons. Furthermore, this ‘‘critical’’ region withDEtJV'0, al-
though rather narrow for holes, can bevery close to the d-
p parameter set estimated for the cuprates.

The variation ofDEtJV with Vpd in this boundary region
is also of interest since there is a subtle cancellation of ten-
dencies to attraction and repulsion which depends strongly
on «̄. From Fig. 10 we see thatVpd tends to favor attraction
~or reduce repulsion! in agreement with our earlier discus-
sions on polarization due tod→p charge transfer. However,
Vpd also reduces superexchange as shown in Fig. 14 and this
reduces the effective hole-hole attraction. The result is that as
Vpd increases from zero, the quantityDEtJV always increases
at first; i.e. a more repulsive~less attractive! interaction re-
sults, due to the reduction inJ. In the case of dopedelec-
trons this increase ofDEtJV simply continues, because of the
simultaneous reduction ofJ and enhancement ofV. How-
ever, in the case of dopedholes for «̄ sufficiently small
(&2), increasingVpd will reverse this trend when the attrac-
tion due toVhh ~the charge-polarization effect! more than
compensates the decrease inJ. Again, for the expected pa-
rameters of the cuprates,DEtJV passes through a maximum

FIG. 15. Contour plots of the static electron-electron interaction
DEtJV

ee for ~a! a paramagnetic background (Vee2
1
4J), ~b! an antifer-

romagnetic background (Vee20.585J), for Vpd51, Up50.

FIG. 16. Contour plots of the static hole-hole interaction
DEtJV

hh for ~a! a paramagnetic background (Vhh2
1
4J), ~b! an antifer-

romagnetic background (Vhh20.585J), for Vpd51, Up50.
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aroundVpd52; i.e., below this valueVpd is expected to
contribute to repulsion between holes, only reenforcing at-
traction forVpd.2. This maximum shifts to lowerVpd with
increasingUd , but it is only at considerably larger values of
Ud thatVpd makes an attractive contribution whenever non-
zero. This makes a scenario for superconductive pairing5

based upon the charge-transfer excitations associated with
Vpd within the two-band model unlikely for the cuprates and,
as mentioned in Sec. III E, shows that settingUd5` can
give qualitatively incorrect results.

V. SUMMARY AND CONCLUSIONS

The purpose of this paper has been to demonstrate that a
multi-orbital d-p model of copper-oxide planes may be re-
duced to an effective single-band model over a wide range of
parameters and to show explicitly the dependency of effec-
tive parameters on those of the underlyingd-p model. The
parameter range has been deliberately extended beyond that
expected for the cuprates in order to cover Mott-Hubbard
and charge-transfer regimes. This has enabled us to identify
the causes of the different behavior in these regimes and to
be in a position to ascertain what, if anything, is special
about the cuprates. Both electron and hole doping cases have
been investigated, enabling us to identify the origins and
reasons for different behavior and to discuss the possible

consequences. The method and results also provide a unify-
ing theme to a number of apparently disparate approaches to
modeling copper-oxide planes and associated physics. It jus-
tifies the usual single-band Hubbard model and thet-J
model, conjectured by Anderson,1 as the generic model for
these systems. It also enables corrections and asymmetry in
effective parameters to be justified and computed explicitly.
Many of these, such as nearest-neighbor Coulomb
interactions93 and occupation-dependent hopping terms,94–98

have been incorporated in the Hubbard model in a somewhat
ad hocway. Another potentially important effect which has
only been investigated directly in terms of thed-p model is
d-p charge polarization, due to copper-oxygen repulsion.
This has the potential to give rise to non-Fermi-liquid behav-
ior in the normal state62–65 and a possible mechanism for
superconducting pairing.5,21,23,51–60In the present approach,
these effects are completely accounted for in the hopping and
(particularly) Coulomb terms in the effective single-band
model.

The main results of this work may be summarized as fol-
lows.

~1! For a wide range of parameters a multi-orbitald-p
model may be accurately reduced to an effective single-band
model by a cell perturbation method to second order. This
includes Mott-Hubbard and charge-transfer regimes for un-
doped, electron-doped, and hole-doped cases. The undoped
case~or effective half-filled band! includes the metallic re-
gime; i.e., it incorporates the insulator-metal transition. The
form of the effective single-band model is the same for all

FIG. 17. Boundaries where the static electron-electron interac-
tion DEtJV

ee is zero with a paramagnetic background (Vee2
1
4J50,

left-hand curve! and with an antiferromagnetic background
(Vee20.585J50, right-hand curve!: ~a! Vpd51; Up50 ~long-
dashed lines!, Up51.5 ~multidot-dashed lines!, Up53 ~solid lines!,
Up54.5 ~dashed lines!, ~b! Vpd52; Up50 ~long-dashed lines!,
Up52 ~solid lines!, Up54 ~dashed lines!.

FIG. 18. Boundaries where the static hole-hole interaction
DEtJV

hh is zero with a paramagnetic background (Vhh2
1
4J50, left-

hand curve! and with an antiferromagnetic background
(Vhh20.585J50, right-hand curve!; parameter values and curves
as in Fig. 17.
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cases, any differences being only in the magnitudes of the
effective parameters and~particularly! their asymmetry.

~2! In all cases we find thatall the underlying parameters
in the d-p model are important in determining the effective
single-band parameters. Thus, the often used approximations
of Ud5` and Up5tpp5Vpd50 give significant errors in
the effective parameters and their variation with charge-
transfer energy («[«p2«d).

~3! The behavior in the extreme Mott-Hubbard (Ud!«)
and charge-transfer (Ud@«) regimes is quite different. The
former reduces to an effective single-band Hubbard model
with Ueff'Ud andteff'tpd

2 /«. As «/Ud is decreased and we
move towards and into the charge-transfer regime, the effec-
tive parameters become increasingly dependent on all the
underlying d-p parameters and anappreciable asymmetry
between electrons and holesdevelops.

~4! In the charge-transfer regime, whereUeff is basically
the charge-transfer gap,Ueff is also quite sensitive toVpd and
Up . Then the interplay between« and Vpd is particularly
striking withUeff remaining invariant for a wide range of the
ratio Vpd /«. This is potentially very important for the cu-
pratessince the observed gap may be due to a somewhat
larger Vpd (and smaller«) than is generally believed.This
would have a large influence on the effective Coulomb inter-
action between doped holes.~See below.!

~5! Increasing the Coulomb parametersVpd andUp will
also increase the effective Coulomb interaction between
doped electrons and holes on nearest-neighbor cells in most
cases. However, in the charge-transfer regimeVhh is reduced
with increasing Vpd . This is the effective single-band mani-
festation of the so-called oxygen charge-polarization
effect.5,21,23,51–60The trend is for the attractive tendency due
toVpd to be opposed byUp andtpp but enhanced byUd . For
realistic cuprate parameters we find that the effective hole-
hole interaction isrepulsiveand in fact comparable with the
corresponding electron-electron interaction~which is always
repulsive!. However, we emphasize that this small residual
repulsion between holes is due to a subtle interplay between
the variousd-p parameters and certain approximations~for
example, settingUd5`, Up50, or tpp50) can give the
opposite result.

~6! The other main effect ofUp in first-order is to give
rise to a ferromagnetic spin-spin interaction which opposes
antiferromagnetic superexchange. This can be quite appre-
ciable and its contribution is necessary in order to get rea-
sonable agreement with the observed exchange constant for
the cuprates.

~7! The asymmetry in theee, hh, and eh nearest-
neighbor hopping terms in the effective single-band model
can also be quite appreciable with differences up to a factor
of 2 between electron and hole hopping. While the magni-
tudes of these hopping parameters depend sensitively on the
underlyingd-p hopping termstpp and tpd , as expected, the
Coulomb parameters are also important and can have a large
effect on the asymmetry. It is notable that for the expected
parameter range of the cuprates there is, what appears to be,
an accidental cancellation of the various contributions which
results inalmost perfect electron-hole symmetry(tee'thh)
and only a very small difference between these intraband
hopping parameters and the interbandteh. This casts some
doubt on the viability of occupation-dependent hopping as a

mechanism for pairing as proposed by Hirsch and
co-workers94–97and others.98

~8! The next-nearest-neighbor hopping termsare particu-
larly sensitive to all the underlyingd-p parameters and the
second-order contributions make a significant, sometimes
dominant, contribution. These effective hoppings can be of
the same or opposite sign for doped holes or electrons, de-
pending on the underlying parameters. For the cuprates we
find that they have the same sign~when the same sign con-
vention, e.g. for holes, is used for both cases!, in agreement
with earlier findings in small clusters.10,12 In the context of
t-t8-J models describing either hole doping or electron dop-
ing ~where it is common practice to use different sign con-
ventions! the signs would therefore beopposite.Recently
Tohyama and Maekawa99 have argued that this asymmetry is
responsible for the stabilization~destabilization! of antiferro-
magnetic order for electron doping~hole doping!, whereas
also the spatial distribution of the doped carriers100 and the
damping of quasiparticles101 have been shown to be very
sensitive to the sign oft8. As a small but finitet8 is appar-
ently a real feature, since it has been found to be essential in
reproducing various experimental observations~magnetic
structure factor,102,103flat quasiparticle dispersion and shape
of the Fermi surface,104 sign change in the Hall effect,105!
these findings support the claim99 that the sign oft8 is rel-
evant for the thermodynamics, in agreement with the more
general arguments by Lee106 that the propagation within one
sublattice without spin flip allowed by nonzerot8 would sig-
nificantly change the physics. We should, however, point out
that the previous estimates based on cluster calculations have
probably overestimated the asymmetry, and we find that set-
ting t850 for electrons is a more accurate approximation
than assumingt8 to have similar magnitude but opposite sign
for electrons and holes. Nevertheless, it is thiselectron-hole
asymmetry in the next-nearest-neighbor hopping combined
with almost perfect symmetry of all other effective param-
eters that seems to distinguish the cuprates from a general
charge-transfer insulator in the ZSA diagram.

In conclusion, the results of the present investigation
leave little doubt that the reduction of a multi-bandd-p
model to an effective single-band model is a valid and trac-
table problem for a very wide range ofd-p parameters, also
in the presence of Coulomb repulsion on oxygen and be-
tween copper and oxygen. The only remaining doubt as to its
validity is the effect of extra orbitals not included in the
two-band model, since there is always the possibility that
these may give rise to cell states which could be sufficiently
low in energy that their effect may not be accounted for
perturbatively. One possible source of such low-energy cell
states is provided by apical oxygen ions with a low-energy
pz orbital. As we show in the companion paper II, with re-
alistic estimates ofd-p parameters a breakdown of the effec-
tive single-band model cannot be ruled out for some materi-
als, though it is unlikely for most of the high-Tc cuprates.
Another possible mechanism may be provided by a large
copper-oxygen Coulomb repulsionVpd ~considerably greater
than 2 eV for the cuprates! if the resulting relative lowering
of the in-plane oxygen orbitals ofa1-symmetry were able to
overcome the stabilization of the Zhang-Rice singlet by the
pd hybridization. Indeed, Varma and co-workers64,65 have
argued from a different viewpoint that more than one type of
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oxygen orbital may be important for the cuprates and instru-
mental in giving rise to non-Fermi-liquid behavior by a
multi-channel Kondo effect. This largeVpd regime is diffi-
cult to treat by the cell method, though not prohibitively so,
and may lead to greater insight into why the effective single-
band model might break down and what it could be replaced
with. Firm experimental evidence for a large Cu-O repulsive
interaction would make an investigation of the cell method
into this extended parameter regime worthwhile.
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