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We study the behavior of two planes of a quantum Heisenberg antiferromagnet in the regime in which a
chiral spin liquid is stabilized in each plane. The planes are coupled by an exchange interaction of strength
J;. We show that in the regime of small (for both ferromagneti@nd antiferromagnetic coupling the
system dynamically selects amtiferromagneticordering of the ground stathiralities of the planes. For the
case of an antiferromagnetic interaction between the planes, we find that, at some criticaljvafuthe
interlayer coupling, there is a phase transition to a valence-bond state on the interlayer links. We derive an
effective Landau-Ginzburg theory for this phase transition. It contains t¢19 ghuge fields coupled to the
order parameter field. We study the low-energy spectrum of each phase. In the condensed phase an “anti-
Higgs-Anderson” mechanism occurs. It effectively restores time-reversal invariance by rendering massless one
of the gauge fields while the other field locks the chiral degrees of freedom locally. There is no phase transition
for ferromagnetic couplings.

[. INTRODUCTION magneticordered, namely, opposite signs. The Rojo-Leggett
result is due to a rather subtle edge effect. In fact, they found
The discovery of superconductivity at high temperatureso effect in the bulk.
in the otherwise insulating copper oxides has motivated a In many copper oxides, the physical situation is such that
thorough search for new physical mechanisms for both suthe planes come in groups in which the planes are closer
perconductivity and antiferromagnetism. This search hasogether than among nearby groups. This is rather common
produced a host of new possible mechanisms, many of whicim the bismuth-based copper oxides. Because in these mate-
are not yet established on solid ground. Among these newials theinterlayerexchange constant which couples the cop-
ideas, the anyon mechanismstands as, perhaps, the most per spins can be comparable to thealayer exchange con-
novel of them. For this reason, it has attracted a lot of attenstant, there is a competition between intralayer and interlayer
tion. At a microscopic level, the anyon state requires that théypes of ordering. Quite generally, one expects to find to
underlying insulating state, known as the chiral spin liquid distinct regimes in the phase diagram for bilayers. At weak
(CSL), should necessarily break time-reversh) {nvariance interlayer coupling, the ground state of the individual layers
and parity ). An experimental signature of a state with may be stable. However, if the interlayer exchange coupling
broken T and P invariance is optical dichroisth.So far, dominates, the likely ground state should be a valence-bond
however, there is no experimental evidence in support of thetate on the interlayer links. The case of two couple@INe
spontaneous breaking of eithEror P in the copper oxide$. states was considered recently by Uhbens and’ lbgeMlillis
Clearly, the simplest option is that these symmetries are nand Monien’ and by Sandvik and Scalapifid:hese authors
broken in the copper oxides and that the insulating states aonsidered the effects of an interlayer exchange interaction
unrelated to the CSL. At the present time this appears to ben the Nel ground states of the planes.
the case. In this paper we will reconsider the problem of a bilayer
In this paper we will explore the possibility that and  of quantum antiferromagnets in a regime in which there is
P may be broken in one individual plane but not on theenough frustration to drive each plane separately into a chiral
system as a whole. Individual isolated planes may still be irspin liquid. The planes will be assumed to be coupled by an
states which break andP but thesignof this breaking may antiferromagnetic exchange interaction of strenggh The
not be the same from plane to plane. The simplest case is @oblems that we want to address are the followiayDoes
imagine that the copper oxide planes are coupled by somée interlayer exchange interaction select the relative order-
interaction and that this coupling is responsible for the selecing of the chiralities andb) what is the phase diagram for
tion of the state. A version of this problem has been studiedhis system as a function of the interlayer interaction? We
by Rojo and Leggett. They considered two planes with a consider a situation in which there is a CSL ground state on
dopedCSL on each plane and, hence, hadasaiyon super- each plane, with fixed chirality but arbitrary sign. We find
conductor on each plane They further assumed that the that quantum fluctuations around this state selecraifer-
planes were coupled together only by a direct Coulomb infomagneticordering of the chiralities. This is a rather inter-
teraction between the anyons on each plane. They did not figsting result. It means that even if on each plane the system
a priori the relative sign of the statistics of the anyons onwas allowed to break andT, the dynamics selects the state
each plane but, instead, asked whiekative signwas pre-  which is on the whole® and Tinvariant. We also find that,
ferred by the Coulomb interactions. They found that the Couas J; increases, there is phase transition to a state that we
lomb interactions prefer the relative statistics todngiferro-  identify as a valence-bond state on the interlayer links,
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namely, aT- and P-invariant spin gap state very similar to phase¢ gauge symmetry at a critical value of the interlayer
the one found by Ubbens and L&&/illis and Monien! and  coupling constant. This phenomenon is strongly reminiscent
Sandvik and ScalapifbThe problem of the ordering of of the breaking of chiral symmetry in the relatéout not
chiralities by an interlayer exchange interaction was considequa) field theoretic Gross-Neveu and Nambu-Jona Lasinio
ered previously by Gaitondet al® By means of a perturba- models* Also, within this 1N expansion, we find a phase
tive expansion in powers of; they concluded that the transition from a regime in which the two planes have CSL

chiralities ordefferromagnetically The results that we report 9round states with opposite signs, to a state in which the

here disagree with those of Gaitoneteal. interlayer order parameter field condenses. We further inves-
As is by now well knowr?1%-22the CSL state and its tigate the physics of this phase transition by deriving an ef-

low-lying excitations can be described in terms of an effecfective Landau-Ginzburg-type field theory, valid in the vicin-

tive continuum field theory which is very much analogous tolty Of the phase transition, i.e., faky~J5. o
a set of Dirac self-interacting fermions in two space and one The degrees of freedom of the Landau theory, which is
time dimensions. We find that the essential physics of thigully quantum mechanical, are the interlayer order parameter
system can be understood in terms of the properties of afield and the gauge fields of the two planes. We present a
effective continuum theory of Dirac fermions on each planedualitative study of the fluctuation spectrum of the two
provided that a physically sensible cutoff is introduced. ThePhases. The weak coupling phase lfabnos) the same
effective model contains two sets of massive Dirac fermion$Pectrum as that of two CSL's with opposite chiralities: semi-
on each plane. The chirality of the state is given by the sigrP"$ With opposite chiralities and gapped gauge fluctuations.
of the mass term. As in Ref. 2, the fluctuations around thdiowever, the phase with broken symmetip which the
CSL of each plane are represented by gauge fi@de for m_terlayer field condenspsdlsplays an interesting “anti-
each plang By a detailed microscopic analysis we find that Higgs-Anderson” mechanism: The condensation of the order
the interlayer exchange fluctuations are represented by %arameter field causes a gauge fluctuation, WhICh IS massive
complexorder parameter field. The effective theory is con-in the unbroken phase due to the Chern-Simons terms, to
trolled by three parameterét) the magnitude of the fermion Pecome massless. This, in turn, implies that any excitation
mass on each plar(ee., the fermion gap in the CSL(2) the which couples to the gauge fiel@the semions, in p_arnc;ul};r
interlayer exchange constatwhich determines the energy 0 become confined by strong, long-range, logarithmic inter-
gap for fluctuations of the order paramet@mnd (3) the num- actions. The resulting spectrum of the condensed phase is
ber of fermionic specie¢which we take to beN). In this equwal_entto th_e low-lying spectrum of a ground s_tate of
picture, the phase transition to the valence-bond state bé2cal singlets, i.e., a valence-bond state on the interlayer
comes the phase transition to a state in which the complelifnks. The interlayer gauge field remains massive and it ef-
order parameter acquires a nonvanishing expectation valuectively disappears from the spectrum. Thus, the “anti-
Our basic strategy is to first derive this effective theory andi99s-Anderson” mechanism wipes out all trace of broken
then use it to address the issues of the ordering of chiralitieime-reversal-invariance in the system. Unexpectedly, in this
and of the nature of the phase diagram. phase the system is actually more symmetric than in the
Mean-field theorieMFT’s) of frustrated antiferromag- noncondensed state. .
nets on a single plane have yielded a host of possible non- The paper is orggmzed as follows. In Sec. Il we introduce
magnetic variational ground states. The actual phase diagrafi€ model for the bilayer and develop the mean-field theory
is not known in detail although it is generally accepted tha@"d briefly discuss the phase diagram. In Sec. lll we address
nonchiral states are somewhat favored by variational calcih® pProblem of the dynamical selection of chiralities. In Sec.
lations. In this paper we will not consider how interlayer |V We derive a gradient expansion for the low-energy modes
couplings may alter this competition among possible single®f the (two) gauge fields and the relevafstcalay channel of
layer variational states. Rather, we will describe how interthe field coupling the planes. In Sec. V we discuss the prop-
layer interactions disrupt the CSL in favor of an interlayer€rties of the symmetric phase where the field coupling the
valence-bond state, which is clearly favored at strong couP!@nes does not condense, and an effective action for the
pling. The determination of the global phase diagram fordauge fields is derived and stumed. Sgctlon VI deals with the
bilayers is an interesting problem which is, however, stillbroken-symmetry phase. Section VIl is devoted to the con-
outside the reach of present theoretical tools and beyond tHfdusions. We also include appendixes which contain techni-
scope of this article. cal details of the mapping onto the effe(_:tlve continuum
The effective field theory of fermions can be studiedtheory and the computation of Feynman diagrams relevant
within a 1N expansion. We use this expansion for two dif- for the phase transition, th_e ordering of the chiralities, and
ferent purposes. First we look at the quantum corrections t§1€ gradient and I expansions.
the ground state energy of a system in which the two CSL's
are decoupled. We find that, at leading order in thé @- | \EAN-FIELD THEORY FOR TWO COUPLED CHIRAL
pansion, the state with antiferromagnetapposite chirali- SPIN STATES
ties is degenerate with the state with ferromagnetic chirali-
ties. However, we find that for the leading corrections, due to Our model consists of two square-lattice spin-1/2 Heisen-
fluctuations of interlayer exchange processes, the state witherg antiferromagnets coupled through an exchange interac-
antiferromagnetic ordering of chiralities is selected. In addition of nearest-neighbor spins between planes with strength
tion to the spontaneous breaking of this discrete symmetry;, and nearest-neighbofNN) (J;) and next-nearest-
(the relative chirality, the fermionic theory for the bilayers neighbor(NNN) (J,) interactions on each plane. The lattice
undergoes a dynamical breaking of the interlayeut-of-  Hamiltonian reads
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single occupancy. We decouple the quartic terms by using a

H=H_+Hy+J:2 S.(X)-Sy(x+6,), (2.))  standard Hubbard-Stratonovi¢hlS) transformation. Up to
X an integration over the HS fields, the original theory is
whereH,  is the usual Heisenberg Hamiltonian, equivalent to the one that follows from the action given by

the Lagrangian

HL,U:Jl_Z §L,U()Z)'§L,U()z+éj)
x,j=1,2 , , 1 A
,%Zf%L‘FT%?U_J_sZ |Xz(X)|2
+3, 2 SuX)-S u(xtetie,). (2.2 x
X,j=+,—

_ _ _ +2 [cf (x(X)cu(x+e)+Hel, (23
Using the slave fermion approach, the spin operator can X

be written in terms of fermionic creation and anihilation op-
eratorsS(x)=c! (x) 7*Pc,4(x) with the usual constraint of where

- s s R - 1 R 1 .
=2t () (dt+pe () + 2 eL(cf (e () —1]1-— X [ 0P—— X2 |xj (0[?

X J1 X;j=12 J2 Xjj=+,—
+ 2 [eFx e (x+e)+H.ecl+ 2 [cF(X)x; L (X)cL(x+e+]e,)+H.cl, (2.4
X;j=1,2 X;j=+,—
|
where we have dropped the spin indiee$3 to simplify the Wen, Wilczek, and Z€e(WW2Z) have given a construc-

notation, with a similar definition for”,. Here u is the tion of the chiral spin state, which was first proposed by

chemical potential ank means {,t). The constraint of Kalmeyer and Laughlin. WWZ begin with the flux phases,
Sing'e occupancy is enforced by the bosonic Lagrange muM’h|Ch have a uniform value for the amp|ltude of the NN HS

tiplier field o(X). This type of factorization was originally fields, say,p(X)=p. This amplitude, however, can fluctuate.
proposed by Affleck and Marstéhand by Kotliar: The HS ~ The phases of the Bose fields on the NN links of an elemen-

fields can be parametrized in terms of an amplitlpqe?) tary plaquette have a circulation equal#oor — 7 in mean-

N . ) . field value. This feature produces a collapse of the Fermi
and a phasé(x). This Lagrangian has a local symmetry if giface into four discrete points of the Brillouin zone

the Lagrange multiplier fielg transforms as thd, compo- (-« 7243, + 7/2a) at which two bands of statépositive and
nent of a U1) gauge field. negative energy, “conduction” and “valence” bandbe-

The MFT consists in integrating out the fermions, at acome degenerate. At these points, the excitation spectrum is
fixed density, and treating the fielgiﬁ(i) within a saddle- linear and gapless. This allows for a mapping onto a discrete
point expansion. As is well known, one serious problem withversion of the Dirac theory with two massless fermion spe-
this mean-field theory is that there is no small parameter ifies of two-component spinors, with the “speed of light”
powers of which to organize the semiclassical expansiorequal to the Fermi velocity=2ap. This gapless state can
Following Affleck and Marstort? we will allow the number become unstable due to the effects of fluctuations. Several
of spin species to run tNl instead of 2, which is the case for channels are known to be possible. If the staggered part of

the spin-1/2 Heisenberg model. After rescaling the couplin he fluctuations of the amplitude of the Bose fields on the NN
constant strength¥'s and the fluctuating part of the fields, a '|nks picks up a nonzero gxpectatlon value, gaps W.'” open up
one-loop expansion of the fermionic determinant around thd! the elementary excitation spectrum and they will provide

& : ; masses(or gaps$ to the Dirac-like fermionic excitations.
N._m mean-field solution can be performed by keeping the"I'hese fluctuations can be seen to drive the flux phase into a
diagrams up to order B We have Y @,xj]

N " A4 dimer or Peierls state and do not break time-reversal invari-
=N’T[¢,x;], and the quantum partition function is zce or parity.
Z=[DxDx* YpeN . A mass term in a Dirac equation for single two-
There exists a whole family of solutions of the saddle-component spinor Fermi field in21 dimensions generally
point equations. The simplest solutions are the valence-bonlreaksT andP since the Hamiltonian, while Hermitian, be-
states and the flux phases. These may or may not be chiral. tomes complex. Since all three Pauli matrices are involved
this work we consider the problem of the selection of the(two for the gradient terms and the third one for the mass
relative chirality of a state in which there is a chiral spin term), there is no basis in which the Hamiltonian could be
liguid on each plane. Thus, wehoosea saddle point which real. Therefore, the Hamiltonian is not self-conjugate @nd
represents chiral spin states on each plane and we will invess broken. However, in the case in which two species of
tigate which configuration of chiralities is chosen dynami-fermions are present, the presence of such mass terms does
cally. not necessarily breaR andT since they may have opposite
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signs for the different species. This is the case of the soare responsible for the behavior of the low-energy excitations
called Peierls mass, which occurs in dimer phases. It is heref the system. In the case of only one square lattice bearing
where frustration comes to play a crucial role. By turning ona chiral spin state, we arrive a{2+1)-dimensional effective
NNN interactions, WWZ allowed for additional HS fields on action involving two massive relativistic fermions coupled to
the diagonals of the elementary plaquettes. The MF configua gauge field:*>*¥The form of this action is given by
ration for the phases can be arranged so that each triangle in
an elementary plaquette is pierced by a flux equattd. In — _
this way, a time-reversal and parity-breaking mass can bé&” = dxof dx{ g (10— A—my) iy + Po(i b= A—my) ).
generated,; i.e., one can provide a mass withstrae sigrto (2.6)
both fermion species in the plane. In order to perform the
mapping onto the Dirac theory it is necessary to introduce
four different field amplitudes at each unitary cell of four - - . i
sites. This procedure can be done on the real space lattice a PY #a(X)=Va(x)/a. We use a representation of Dirac
defining four sublattices and assigning an independent field@mma matrices in whichy,=0s, 7y,=—io,, and
amplitude to each one and expanding in gradients of the fiel@2= —101, wherea;, j=1,2,3, are the usual Pauli matrices.
amplitudes:2 or on the reciprocal lattic& by expanding the | he coupling to the gauge fielthe statistical vector poten-
lattice amplitude at each point as a linear combination ofial) A, comes through the covariant derivatile=4—iA.
four independent Fourier component amplitudes. On the relhe _ statistical ~ vector  potential is given by
ciprocal lattice these fields are the Fourier components of th&j=¢j/a=2p¢;/lve andAg= /v, Whereg; is the fluc-
lattice amplitude centered at the four Fermi points. The lowuating part of the phase of the Hubbard-Stratonovich fields
energy physics of the system is determined by the scatterin@n the NN links ¢ is the Lagrange multiplier fieléi/**®and
processes among these four amplitudes. Any of these proc¥e=UFrt.
dures is equivalent to a folding of the first Brillouin zone. The masses of the fermions come from the amplitude of
In the chiral Spin statféCSS, the mean-field ansatz for the HS field on the NNN links and give a measure of the
the amplitudes and phases of the HS fields on the NN an@mount of frustration present in the system. These masses,

The continuum fieldy, is related to the lattice amplitude

NNN links is given b8 although not necessarily equal in magnitude, have the same
_ _ . . B sign for both species. We assume that these amplitudes are
xi(e,e)=—x1(0,8)=x,(e,0)=—x41(0,0)=ip, fixed at their mean-field values, since we are interested only
_ _ _ _ _ in the effects of interlayer fluctuations.

X2(€,8)=—x2(0,6)=— x»(€,0)=x(0,0)= —ip, In what follows we adapt the methods of Refs. 2 and 12 to

_ _ _ _ ] the bilayer problent® We have a duplication of terms due to

x+(ee)=x.(0,e)=—x.(e,0)=—x,(0,0)=ixA, the inclusion of the second plane and new terms arising from
_ _ _ _ ) the interplanar interaction. In the continuum limit, the action
x-(e,e)=x-(0,6)=—x_(e,0)=—x-(0,0)=—iA. for the fermions in the low-energy theory has two species of

(2.5 Dirac fermionson each planeoupled to both théntralayer
The fields;j, with j=1,2 or j=+,— are the HS fields and interlayer Hubbard-Stratonovich fields which mediate
sitting on the NN and NNN links, respectively. The four the interactions among the fermionic degrees of freedom. For
different sublattices are denoted bwg,€), (0,e), (e,0),  simplicity we will assume that the degree of chiral breaking
(0,0), wheree ando mean even or odd site, respectively. is fixed and parametrized by two nonfluctuating massgs

Once the mean-field HS ansatz has been used into tr@ndm,_ . Thesemassesre given bym_ ,=4x, y/ve, being
Hamiltonian for one plane, a convenient linear combinationX, , the mean-field amplitude of the Hubbard-Stratonovich
of the four field amplitudes can be arranged in the form offields on the NNN links. We assume that the mean-field ap-
two two-componenspinors and one can rewrite the Lagrang- proximation amplitude of the HS fields on the NN lingss
ian for a single plane in the form of a lattice Dirac Lagrang-the same for both planes. Consequently the Fermi velocity is
ian with two massive fermion species. So far we did notalso the same. The only low-energy intralayer bosonic de-
include any fluctuations of the HS fields. We will be inter- grees of freedom left are the gauge fields of the upper and
ested in the fluctuating part of thghaseof the HS fields. lower planesA; andA, and the interlayer fieldgy, .

In order to capture the physics of the system in the regime The continuum action for the bilayer consists essentially
of long-wavelength, low-energy of the spectrum, we do notof Eg. (2.6) written twice with labeld. andU for lower and
need the full lattice theory, but a linearized version aroundipper planes and an interlayer part given by the coupling
the Fermi points that keeps all the scattering processes thhetween planes,

Vinterlayer:f dxof AXH{ YL (@oYolt @1y1Ti+ @2y2T2+ @3lrs) Py +H.Ch

1
== ax [ 6ol Ulleal?)+ Ul + Ulgof?)] @7
O3

In this expression), and i represent the two Diratavors zptﬁ that live on the lower and upper planes of the bilayer. The
7 matrices mix Dirac flavors inside each plane.
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The intralayer gauge fields, which represent intralayer 1 o %= . Y- R
phase fluctuations on NN links, have to be kept since they /b= — g_f dx“L g (X) @o(X) + @1 (X) @1(X)
enter at the leading order in the continuum limit. There are 3
other operators, with the f(_)rm of fermion mass terms, Fhat + @3 (X) @2(X) + 0% (X) 03(X) ]
have not been included which do not contain any derivatives

but they describe other types of intralayer ordering which B do? - - - -
compete with the CSL. To include such effects would require =-N (2m)° [Meo () eo(@)+Aei (@ eu(a)

a theory of the full phase diagram which is beyond the scope . . . .

of this paper. N3 (A) () + N3 () e3(q)]. (2.13

The bpsonic part of the interlayer action shown in_ theln the second line of Eq(2.13, Fourier transforms have
second line of Eq.(2.7) comes from the corresponding peen taken and the coupling constgghas been rescaled by
bosonic terms in Eq(2.3), 1/N in order to allow a IN expansion(see below. In other

1 - - - words A=1/g;, where g;=g3/N. The fields ¢;
7 2 2 X 3 3=Us i
S b= Jgf dXOa_E {Ix001°+ | xz(x+e) j=0,1,2,3, also have been rescaledsfo . As a result, the
x=(ee) effective coupling constant that controls the interlayer fluc-
+|XZ()Z+§2)|2+|XZ()Z+§1+§2)|2}, (2.9 tuations is gSEZan,/_szS(Za)Z/vF and ha_s units of
. length. Throughout this work we use dimensions such that
wherex is an even-even site on the lattice at, say, the lowefh]=[e]=[vg]=1 whereh, e, andv are the Planck’s con-
plane. However, in going to the continuum limit it proves stant, the unit of charge, and the Fermi velocity, respectively.
more convenient to introduce the rotation given by the lineaWe have a natural scale in our theory, which is the lattice
combinations of the four HS fieldg,(x) which link corre- ~ constantap, or the inverse lattice constant which we shall

spondingplaquettesof the planes, call A, and characterizes the momentum cutoff.
1 From the free part of the action, and the fact that we are
@o(X)~ Z[Xz()z) + X (X+€1) + XX+ E5) working in 2+ 1 dimensions, it is clear that the dimension of

the fermion operators must be~ (length) *. The dimen-
sion of the operatop is also that ofA. The coupling con-

TxzAxtetey)], 2.9 stantgs is dimensional with A\ ]=[1/g3]=A. This dimen-
- 1 - 5 - > sional analysis tells us that the effective four-fermion
@100~ 7[x2(X) = Xo(X+€1) + xo(X+ &) operator which represents the interactions between the fermi-
o ons of the two planes is irrelevant at the weak coupling fixed
—x(Xtejt+ey)l, (2.10 point and that, if a phase transition exists, it should happen at
1 some finite value of the interlayer coupling. We will see that
@o(X)=~ = [ xo(X) + xo(X+€1) — xo(X+Ep) this is indeed the case.
4 Now we integrate out the fermions and obtain the effec-
. s tive action
—XAX+e ey, (2.11) : .
1 Vs iNTem D™ f Ly
N N N N - N . f= — ~ . b
®3(X)~ Z[Xz(x)_XZ(X+el)_Xz(X+e2) ¢ e* iDy—my
(2.19
+xAX+e,+€)]. (2.12  where we have defined
In terms of the rotated fields, and after taking the continnum =3T3t @oYot P1Y1T1t P2Y2T2- (2.19
limit, the bosonic part of the action takes the form The saddle-point equations are
5¢(k)

1 dK? k—AL-m. ek) 7P
o) =—i | —— o¢(0
g, 91 (0= (2w>3”< o eaem) || (219

Formally, this integral diverges linearly with the momentum cutoff sealeAs in all theories of critical phenomena, we
will absorb the singular dependence on the microscopic scale in a renormalization of the coupling constant. We can define a
critical coupling constang, as the value of the coupling constant at which the expectation values for the fields coupling the
planes first become different from zero. Clearly the solution Wigli)=0 is allowed for any finite value of the cutoff, no
matter how large. This is the phase where the interplane field is not condensed. The nontrivial solution will first occur at the
value of the coupling constalgf]? given by

S¢(k)
o¢(0) | |, (2.17
0 0

1

9;

o
5(,01-*

K—m_ &’(k))l 0

f dk®
22 " Lo k-my
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evaluated at the point where tlges vanish. In the case of ferromagnetic interplane coupliing., in
Notice that although the bare value of the coupling con-the casel;<0) there is no transition, since the critical cou-
stants are originally the same and equabtg they are as- pling constants always remain positive. The exact values of
sociated with operators which do not scale in the same wayhe critical coupling constants are not universal and they de-
Their critical values are different as well. As an abuse ofpend on the cutoff procedure that is being used. Our con-
notation, from now on we are calling “scalar” the interaction tinuum approximation is not very sensitive to these short-
channel given by the fielep;, “frequency-vector channel” distance features. However, the theory has a natural built-in
the fieldgy, and “spatial-vector channels” the ones given by regulator since the model comes from a lattice theory. In
@1 and ;. other words, the qualitative feature of the existence of critical
Without coupling between the planes we have a degenenralues for the coupling constants is independent of the type
ate situation between a state in which both planes have thef cutoff procedure, although their precise value is not. The
same amount of frustratiofi.e., the fermion masses are the question of whether these critical values can be physically
same in magnitudebut their relative sign could be the same reachable is a different issue that needs a more detailed
or opposite. We are going to call these two states ferromagspecification of the short-distance properties of the model.
netic (FM) or antiferromagnetic(AFM) ordered, respec- We do not attempt to address this point here. We obtain the
tively, understanding that we refer to the relative ordering ofregularized saddle-point equations by subtracting the value
the sign of the chiralities. We want to investigate how theof 1/g. on both sides of E¢2.16),
degeneracy between the FM and the AFM arrangement of
masses is removed. For simplicity, we give the results forthe [ 1 1
case of|m_|=|my|=m>0. They may carry any sign. We gs E)
define the variabls=sgn(m,)sgn(my), which takes values !

* _ S 5§DA”* S e Sxy—1
¢;=—igtr &5—%_8@ (1-S.eSye™)

+1. The critical values for the coupling constants are given ol 2 8o ~ S0*

by pjtr SLa—%SU% . (2.23
1 R ~ 1 1 The simplest nontrivial solution is the one where only the
— =i tr[S.(K)m3Sy(K) m3]= —=A— 2—m(1+s), scalar channep; is condensed. This channel has the lowest
93 2\/; ™ critical coupling, and it will be the first to pick a nonvanish-

(218 ing expectation value. For an antiferromagnetic relative or-
dering of the chiralities, which we will show it is favored in

1 . N 1 the case of antiferromagnetic Heisenberg exchange between
E:| tr[ S (K) yoSu(K) yol= 277m(1_s)' (2.19 the planes, we find
0

( 1 « gl ok f dk® 1
1 . N 1 1 T | P3T4les 3 2 2
i o 1= ——A— —m(1— 03 ¢ (27)° | (k. k*—m?—|e5|?)
gj: I tr[SL(k)')/J TjSJ(k)yJTJ] 4\/;/\ 27Tm(1 s), 3 . H
(2.20 s

) kﬂk”“—mz . (2.29

whereS,(k)=1/(k—m,), with a=L,U andj=1,2.
When the interaction between the planes is antiferromagWhen solving Eq(2.24) one gets

netic (i.e., J3>>0) the physical coupling constants remain
positive. We are interested in the regime where <A. For Ng=[m—Vm?+]|¢5?] . (2.25
the case of an AFM relative ordering of chiralitiése., for
s=—1) we obtain In Eq. (2.25, A3=m/g3— m/g5 is the distance to the critical

point. This is our equation of state. The nontrivial solution is
oA I m I A M g [ ¢al?=Na(Ag—2m). (2.26
J3 2\/; o T gj 4\/; ™

It is clear from EqQ.(2.25 that A;<0. When\;<0, i.e,,
For m<A, we haveg§<gf<gg hence the channel which wheng;>g3, we find a phase where the scalar channel field
will first undergo a transition within the mean-field approxi- has a nonvanishing expectation value given by 6.

mation is the scalar channel, given by the fielgl. The physics of this state is the following. The fact that
On the other hand, for the case of FM relative ordering ofe3 acquires an expectation value means that, on average, the
chiralities, we obtain interlayer Hubbard-Stratonovich field is different from zero.

Thus, it appears that in this state the fermions from one layer
A are free to go onto the other layer. However, the corrections
: , -=0, -=——. (222 to this mean-field picture should, among other things, en-
O3 2Jm T Y g9j N force the constraint of single-occupancy at each site of each
layer. The only state which is compatible with the single-
Form<A, again we have € g3<gj<gg. Again the chan- occupancy constrairgnd with interlayer fermion hopping is
nel which will first undergo a transition, if any, will be the a state in which, oeachlink between the two layers, there is
scalar one. a spin-singletor valence-bondstate. Thus, the phase transi-
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tion that we found is a transition between two CSL states orHere

each layer(with antiferromagnetic ordering of the relative

chiralities and aspin gapstate with spin singlets on the

interlayer links. A number of recent wofk€ have predicted R
a similar phase transition in bilayers but betweereNgates . [1d=mg 0o \* - 0 -0
and spin gap state with properties which are virtually indis- °~| g i9—my and Q=| _ 0
tinguishable from ours.

At this point it is convenient to rescale the fluctuating
fields by 14/N. Under this transformation all the terms in
Ill. RELATIVE ORDERING OF CHIRALITIES Eq. (3.1) that are quadratic in the fields's and.”}, as ex-
panded in Eq(2.13 become contributions of’(1), being
In this section we show that there exists a dynamical wayn€ classical energy of the ground stéte., the classical part
in which the physical system selects a particular ordering off the euclidean actignof ©(N). To study the selection of
the chiralities in the planes. We assume that in each plane € ordering of chiralities we need to compute thi¢1)
CSS is stabilized. Thus, at each plane both Dirac fermiorgorrection to the ground-state energy due to the effect of the
species are coupled to the mass term with the same sign. vilictuations of the fields couplllng. the planes. We_ first need ?o
assume that the mass is the same for both fermionic flavo@@lculate the one-loop contribution to the fermion determi-
in each particular plane, say, andmy, respectively. This nant. There is (_)nly one dlagram to this orde_r, which has two
is consistent with the fact that there is no explicit anisotropyeXtérnal bosonic legs and two internal fermion propagators,
present. As in Sec. Il, the magnitudes of the masses are the
same but their signs could be either the same or opposite. We
neglect fluctuations of the NN amplitude of the HS fields 3 3
S ) X ann 11 dk dq
inside the planes, which can generate a difference between ;= | 4,3 == — [
; F=LETC [ X*(SQSQ) =i 3 3

the masses of the Dirac species inside each plane, and even 2 2) (2m)®) (2m)
drive the CSS into a dimer phaésee, for example, Ref. 12

Our goal is to compute the correction to the energy of the XTI S(k)Q(a)S(k—=a)Q(—a)]
ground state of the bilayer system, due to the quantum fluc- 1( dg? _
tuations of the fields coupling the planes. We work in the EiJ (277)3715“)(q)<pj*(q)<pj(q).

phase where no field is condensed. Thus, the effective action
derived in Sec. Il will describe the fluctuating part of these (3.2
bosonic fields with zero expectation value. The strategy is,

therefore, to expand this action in powers(ife small fluc- As we saw before, this diagram has an ultraviolet divergence
tuating part of the fieldse, to 3 and keep up to the Gauss- which will be absorbed in a renormalization of the coupling

ian terms, then integrate the bosonic fields out, and, after 0 . .
reexponentiating the expression, obtain the desired corre onstants. S0 the kernel#")(q) in Eq. (3.2 include both

tion to the ground-state energy density. This correction will he finite part of the diagram and a contribution linearly di-

contain a divergent part which is symmetric in the sign of theyergent in the integration momentum. The computation of

masses of the fermions in different planes and a finite con’i%(q)’ although rather cumbersome, is fairly straightfor-

tribution which is a function of the fermion masses of both Ward- Let us recall th_at we haye four Cha.””eﬁ%: can bg
planesm, |, , with their signs. At this point, we look for the regarded as a scalarlike coupling to the _D|ra(_: ferm|on_s, the
configuraﬁon of masses which minimizes the energy. Th ther_three,goo—goz, resemble a gauge-ﬂeld-hkg coqplmg..
case of zero mass at any plane is excluded since we assum H'S is not the case, however, since Lc_)rentz Invariance 15
beforehand that a CSS is stabilized at each plane. This faroken bY the_ presence of t_hematnces in the expression
important since these masses provide the energy gap whidA" Q- This pointis crucial. Since we do not have to preserve
is necessary for our saddle-point approximation to be stableOrentz invariance when regulating the divergent diagrams,
and to allow for a semiclassical expansion. time and space components.do not enter on equal grounds.
The integration over the fermionic degrees of freedomQuUr theory is in fact the continuum limit of a lattice theory.

gives the following contribution to the effective actifsee At that level it is very clear that the only physically sensible
Eq. (2.14]. We have cutoff at hand is the inverse lattice spacing. As a result, our

regulating procedure consists of integrating over frequency
first and then using an isotropic Gaussian cutoff for the spa-
tial part of the momentum. In this way we expect to recover

—iN Trin '&A M ¢ the qualitative features of théinite) lattice theory in the
@* id—my continuum limit. Let us also mention that the only two spa-
- 0 tially symmetric combinations of the interlayer amplitudes
=—iNTr In( L ) within a plaquettdsee Eq(2.12)] are given byps; and ¢;.
0 id—my From now on, the expressions will be given in their Wick-

rotated (i.e., imaginary timg¢ form. Consequently

FINS 1 TH(EO)™. 3.0) q°=q3+q2+0q3, wheregqo=—iw. We obtain(see Appen-
n=1 N dix A)
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7/‘3>(q)———— [P mR(1+9)]7 (3.3
SO 2\/— 2 2 0> .
/{0) 1 q2 4 1, 2 2( .2 3 4 qz 4
J5Nq)= m(l+2Ko+3K0)+ (KO KO)-I—EJO 2mes+4m<| x5+ 5 Ko —7(l+3K0) , (3.9
Al ————{m(1+2 2+3“+0'—2 2_ 81 27 omis 2,34 ¢ 143« 3
7B9(q)= 4\/_ 5 m( K; ki) 2m(KJ- ki) 570 m?s+4m? K 2KJ 2( k)| 3.9

In Eqg. (3.4) and Eq.(3.9) «;] quz/qz, with j=0,1,2. Notice that the expression corresponding to the channel givern, by
(loosely speaking, the frequency chanriehs an overall opposite sign to the expression for the channels given apd
@, for the finite part of the diagrams. However, the frequency channel does not have a divergent contribution. This sign will
turn out to be quite important for the phase diagram.

On the other hand?j is

o]
m) ] 39

At this point, in Euclidean space, we have

) : dq )
@:f b ex —EO—JZO jw@,— (WA=ZP (D) ]ej(q)
3
:e*EOJl:[ fj@l J(,DJeXp{ J'(Z 3 Pj (CI)[)\ 4 (q)]‘Pl(q)]

3
=#eE0exp{ —20 In[A—.%“)(q)]]. (3.7
1= q

From Eq.(3.7), the correction to the energy of the ground state due to the fluctuations of thedisldsgiven by

AE—f—dsq In| A —
~ ) 2o"

1 2
<2m+ [g%+m?(1+5)]7, f(z )3In( Zw[m(1+2Kg+3Kg)+;—m(Kg—Kg)

\/— 2

1 q? 2 d3q 1
g 2 2 2, - 41 _ 1 4 -
+ 57| 2m?s+4m?| k+ 5 g | = — (1+3k5) ])+jEl f Zm A \/_ P [m(1+2K +3k})
q2 1 3 q2
+ 5o (K] = k) 570 2mPs+Am?| wf+ Sk | = —(1+3&]) |1 |. (3.8

We want to study the weak coupling regime, which corresponds to the case ofNaimgeEq. (3.8). Moreover, this is
presumably the only regime for which E(3.8) is valid, since as we show later, there is a critical value of the coupling
constant at which there is an onset of condensation for some of the interaction channels between the planes.

By expanding in powers of 1/ to first order we obtain that the energy correction does not depend on the relative sign of
the masses and it is completely symmetric with respect to the exchamgento my, . This result remains true even when the
magnitude of the masses are different. To second order we get
1 dq ( m? )

AE@=f To|s| 4 4_mg” 292 4m27 3.9
~Tomnt X2 | 23| 272705 M 3 g gz P2 1T gz o) R

The coefficient ofs, wheres is the relative sign of the theory in the interlayer exchange coupling. They found that
massedi.e., of the chiralitiey is a function always positive. the ferromagnetic ordering was selected and that this result
Thus, a minimum in the energy is obtained whena —1,  only appeared in third order ifs. This result disagrees with
which indicates that the chiralities of the planes have oppoeurs[see Eq.(3.9)]. It is unclear to us what is the origin of
site sign. This is the main result of this section. Recentlythis discrepancy. The work by Gaitond al. relies on a
Gaitonde, Jajktar, and Rstudied the problem of the selec- rather complex lattice perturbation theory calculation of the
tion of the relative chirality by means of a perturbation interlayer correlation effects. In our work we have evaluated



8716 CARLOS R. CASSANELLO AND EDUARDO H. FRADKIN 53

the same correlation effects but within a continuum approxi-and a phase in which at least the scalar channel acquires an
mation which makes the computation more transparent anexpectation value. The Landau-Ginzburg theory to be de-
easy to check. We have used a cutoff only for the spacéved in this section will allow us to study the actual nature
components of the momentum transfers in our Feynman digof this phase transition. We expand the fermionic determi-
grams. The form of the cutoff that we chose closely mimicshant in a gradient expansion for slow varying modes of the
the effects of the lattice. Thus, it is unlikely that the discrep-fields in which we are interested.

ancy could be due to different choices of cutoffs. Similarly,  We derive an effective action only for the scalar channel.
the discrepancy appears at very weak interlayer coupling NiS particular channel is the one that first undergoes a con-
whereJ;<|m|, where|m| is the magnitude of the mass of densation, for the case of an antiferromagnetic ordering of
the chiral excitations on each layer. Although it is conceiv-11€ chiralities, since it has the lowest critical coupling con-
able that this discrepancy could be due to highly energetigtant with a positive value. The other three channels will

processes which may be treated differently by both cutoff chain massive modes and consequently they can be inte-

q thi 0 b likelv si the rivaks grated out of the theory. This process will involve renormal-
procedures, Inis appears 1o be uniikely since e rasss ization of the parameters of the system but it will not affect
very large in this regime. Barring some numerical difficulty

7 L , . dramatically the underlying physics. On the contrary, the sca-
(which is possible in such involved calculationthe absence |5 channel effectively undergoes a transition as the critical

of a correction which depends on the relative sign of theajye of the coupling constant is approached and crossed.
mass in the lattice calculatidito the same order as the one The posonic excitations become massless at the transition
given by Eq.(3.9] points to the occurrence of a special hoint and we want to study the physics on both sides of this
cancellation which we do not see in the effective continuumy,nsition. We use the definitiond” (x) = A%(x) + Al (X)
theory. We have also checked our result with other choices g Bl — ALY  AM ;

cutoﬁyon the space components and we have always foun nd AZ()=AL() —AG(x) for the in-phase and out-of-
the same effect. Only in one instance, when we used a rel
tivistic form of the cutoff, isotropic in both space and time,
we found it necessary to go to third orderJds, which re-

‘hase gauge fields, respectively. The covariant derivative is
defined as7,=d,—iA , .
The details of the calculation are described roughly in

sembles the result reported by Gaitoreteal,, but even in éggfigrqI;nlﬁir;r?s?f;?rlr:?r\:wn%:fgicrﬂ\r/iiuig:fsn cl)? %t?gtag;\zﬂfg
that case we found that thantiferromagneticordering of . g . . loop
diagrams up to order B, whereN is the fermion species

chiralities is the one energetically favored. However, the L . .
relativistic cutoff is certainly the one which is most unlike number. This includes bubble diagrams with up 1o four legs,

the lattice cutoff. In view of these considerations, Wesince each of these legs represent; the fluctuating part of
strongly believe that our treatment is robust and reliable. either a matter or a gauge field, Wh'Ch h:?\s been previously
rescaled by a factor 1N. The loop integration adds a factor
of N coming from the number of fermions propagating in the
loop. From these diagrams we keep terms up to second order
We want to study the behavior of the low-energy modesn the external momenta. In real space we find various terms;
for this system. The approach we are taking here is to derivee get a contribution involving only the gauge fields which
an effective theory for the fluctuations of tefields and the we call .Yg%Lge This arises from the fermion loops corre-
gauge fields. We want to study and characterize the phasponding to the propagation of spinon-hole pairs inside each
diagram at the tree level approximation or Landau-Ginzburglane, without mixing. It contains the usual square of the
approximation, and further on, investigate the effects of thdield strength tensor and the induced Chern-Simons term. In
fluctuations. We showed that there exist critical values fortheA,,- A, coordinates this term is off diagonal, since the
the coupling constants which possibly mark a transition besign of time-reversal invariance is opposite between the
tween a symmetric or noncondensed phase for¢ttfeelds  planes,

IV. LANDAU-GINZBURG EFFECTIVE THEORY

1 1
(%%LgsxF—lewf dngM[Ff’fxx)A?-)(xwFé‘-”><x>A?+><x>]——64w|m‘|f LR (X)FLL 00+ FE (0F, (0]
4.1

The following term has a free part for the fiejdand another part coupling this field to the gauge fields. A term coupling the
gauge-invariant current for the matter fiekdto the field strength tensor of the in phase gauge field is also present,

¢(x)

1 1 3 v N
327 [m? dxZe, \F{H (X)) (X).
(4.2

L .
,,‘/((pl)(X) = WJ dx® (P*(X)< o+ — \/I_NA#(X)

P
(9M+ \/_NAM(X)

In Eq. (4.2 we have defined the current operator for the figlds

2
I =i[@* (X) 3y 0(X) — @(X) 3y 0* (x) ]+ J—NA;-><x)|¢(x>|2. 4.3
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Notice that all the terms are manifestly gauge invariant as it should be, since this symmetry was present before we integrated
out the fermions. Notice also that the matter field couples only to the out-of-phase or relative gauge field. This is consistent
with the symmetry of plane exchange which remains intact if the magnitude of the fermion mass is the same on both planes.
In other words, the original theory was invariant under the exchange ahdA and the sign of the masses. This invariance
should remain at this level for our approximation to be consistent. Howéyey, changes sign under this operation. This
amounts to a reversal of the sign of the charge, or charge conjugation, and consegueaglyo be conjugated. This renders

the covariant derivative term and the gauge-invariant current unchanged. On the otheF figrid, invariant under plane
exchange. All the other terms are evenAgn and our effective action verifies the plane interchange symmetry. Finally, from

the contributions coming from the four-leg diagrams which are of second order in the external momenta we can derive the
higher-derivative terms

1
#900= 15 s [ e =2 [ 00U, 2oL 0001+ 5 [ AR 0FE 002
1
+gf dx3F () () F )(X)|(p(X)|2] (4.9
We also get a self-interacting term fergiven by
11
«Vsen(x)——ﬁmf dx®e(x)]*~ (a—g—c)fdx3|go(x)|2 (4.5

In Eq. (4.5 above, we use the definition fg, introduced in Sec. 11, i.e., @ézA/Z\/;. In order to rewrite this effective
action in a simplified way we introduce some field rescaling and define the coupling costants

1) 4ar|m|
A

e(X)=v4m|m|p(x), Al (X)= \/—Aﬂ)' mp= 4w|m|(§_g_ N

N t6mm 1 e
“on S TN 0 CATgm AT

By plugging all of these in, we obtain

1
Lgaugeg SIELI00A 00+ JALH 0] 72 [FEH 00+ FE ()], (4.6

wherelEAEeﬂVAF’” is the dual of the field strength tensor. We also get a Lagrangian density for thebfagilen by
L y= 0" p* dub—mgl ¢12= N g+ 7, 4.7
where

=i 6% (X),$(X) = (X)d,¢* () TTAL (X)— GaFE, (X)]

4.8

+p(x)4 AL (x) — ZGAF(+)(X)A (X +G F( X))+ = Fm(X))

In Eqg. (4.8 we dropped the higher-derivative terms which linked through the fluctuations of the fietbl This field rep-
appear in Eq(4.4), except for the antisymmetric parts which resents a massive boson-like mode with mass givempy
involve renormalizations of théiffereny effective charges defined in the previous section by
for the in-phase and out-of-phase gauge fields.
1 1 VE A P
mo=

V. SYMMETRIC PHASE g g (2823 2z 2al; 2z

In this section we want to study the physics of the regimeThe magnitude of this mass measures the distance to the
in which there is no condensation of the fieftl for the  critical point. In this phase we are on the side of the transi-
effective theory derived in the previous section, i.e., wherdion in which m3>0. It clearly corresponds to a weakly in-
¢ has a vanishing vacuum expectation value. This phasterplane coupling regime, i.e., the limit of smdl. The ¢
consists of the bilayer system with relatively opposite brokerfield can be integrated out to get an effective action for the
time-reversal invariance between both planes, but the differgauge fields only. However, for our approximations to be
ence with the case of decoupled planes is that they are noeonsistent we need to assume th"%t is much smaller that

. (5.0
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the fermion mass. In other words, our results are valid on they break parity and time-reversal invariance, and are
a window not to close to the phase transitiovhere ¢ be-  very effective in taming the fluctuations of the gauge fields.
comes massless @s—g. andmy—0) but also not too far In a sense we still have pretty much the same physical
from the transition so that the mass of the collective modepicture corresponding to two decoupled chiral spin liquid
represented by never becomes comparable to the fermionwith opposite relative breaking of time-reversal invariance.
mass. Consequently we will still have deconfined spinon as the
We are going to show that there is no renormalizationelementary excitations of the system. The issue of the statis-
of coefficient of the Chern-Simons terms that had been intic of the quasiparticles is a little more involved as we dis-
duced by the fermionic fluctuations on the planes, arisinguss below.
from the fluctuations ofp, at least to order N. There are Starting from the effective action derived in the previous
“charge” renormalizations in the sense that the coefficientssection we can integrate out perturbatively the figldThis
of the field strength tensor for botk ., andA_, get renor-  gives a result valid within the region of applicability of the
malized. Furthermore, we will show that the spectrum ofgradient expansion.
low-energy excitations in this phase has two massive pho- The integration over¢ gives the effective actior{for
tons, whose masses do not violate the gauge symmetry bamallA,) We have

f DpDP* expg S (p,A,) =X 1. gaugdAL)] f 5%¢£Z¢*ex+ f dx® 7, 1+i,(/;’,—%((%"|)2”

= Z0eXp(1.7 gaugd | 1+1(i (6" 9,6~ 3, 8% NIAL ~ GaFE, ]

+i<|¢|2){A(2 —2GAFA AT+ G

1
2 2
2F<>+5F<+>)

1
— S2(B* 3,6 — $3,6") (8" 0,6— o, 8" DAL~ GAF I TTAL ~ GAFH)]] (5.2

The cumulant coefficients can be computed in the usuatould have given a renormalization of the cross Chern-
way* to find Simons terms gets canceled. In a sense, it is also gauge in-
variance which prevents the cross Chern-Simons terms from
) e 3 i being renormalized.
i ¢001%)= _f dq Pomg g 2-m 63 A minimal subtraction procedure will consist in the com-
0 plete removal of the singular part. In fact, any cutoff proce-
and dure which preserves gauge invariance would work as well.
It can be shown that our regularization prescription is en-
) ) tirely equivalent to the introduction of a Gaussian spherical
— 5[{(¢* ohd— o\*)[($% 0y p— pd,d™)]) cutoff in the imaginary frequencyor Euclidean reciprocal
phase space. A term of the form éxi{m/A?)(g2+mg)] does
i the job for us. One should be aware, however, that this cutoff
(#smg+ g |m|)9m, (5.4 s not exactly the same used in Secs. Il and Il since there the
cutoff was Gaussian isotropic on the spatial components of
Both integrals in Eq(5.3) and Eq.(5.4) have a linear ultra- the momentum but the frequency range was unbounded.
violet divergence and need to be regularized. One can uddere that cutoff procedure would not work because it breaks
any of the usual regulators, for example Pauli-Villars orgauge invariance. In Secs. Il and Il gauge invariance was
minimal subtraction(which is equivalent to an analytical not at stake and we were trying to implement a regularization
continuation of the negative argumenfunction) However, that resembles closely what happens on a lattice. It should
the finite part of both integrals after we treated them with thealso be noticed that, although aparently the same field
same regulating scheme is exactly the same but with oppdnvolved in both cases, we were dealing before with ultra-
site sign. This should be the case since it is required to previolet divergences of a fermion loop integral, while here the
serve gauge invariance. In other words, we cannot generatefigld propagating is the bosonic fielditself. In other words,
A, A* term in the symmetric phase because such a terrwe were dealing in the previous sections with the self-energy
would manifestly break gauge invariance and we know thif the field ¢ while here we are dealing with the self-energy
is not the case. Therefore, the teA, x(|¢|?) in the  of the photon or the gauge fields. Finally we do get renor-
right-hand side(RHS) of Eq. (5.2 should cancel exactly malizations for theF ) andF _) terms.
(and it doep the term AMA™(i%(¢* 9\ p— pd\d*) (d* 9,0 After this procedure is applled, we are left with the regu-
—¢d,¢*)). Notice that by the same token the term which larized (finite) form of Eq. (5.2,
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J

G G
2 2 22
2 P T g Fn = 2GaF()

i
1+ E|m|

Zeq= eXP(1.7 gaugd

~exp(if dx Zeg |, (5.9
where
0 . . 1 1 G 1 1 J[G
o _ 2 () AN (=)aN \_ T iml=lEr2 _ _ = 2 2
zzeﬁ—B(Fh AL FHFTAL) (—e24 47T|m|2)|=() (_e24 477|m|{6 2G4 )F(H. (5.6)

In Eq. (5.6) we used thafF{"F}, = 2F2,, .

We now explore the energy momentum dispersion relation. The low-energy collective modes are fluctuations of the gauge
fields. We will show that there exists a photonlike mode but it is massive. This is of great importance for the survival of
spinons in the energy spectruisee for example Ref. 12The regularizedfinite) theory has the form

0
f/éﬁ(AM)=J dx®| —c_F{ ) —C.FEy + geun(FEOAL +FEAL ) |, (5.7)
where
C_Zw(N—Z)
and
B 1 N 1
= amm |~ 6/
In momentum space we have
2¢_(P%g,—PuP,) 2 e
Zel(A,) f[Au oAl asn? (Aé‘—>(—9))
"( f == - p p v
effl M\ 0 (=) (+) f N 2¢. (p%g, — ) A(+)(—p)
|4EM)\Vp +(P gMV p,upv
= prﬂp)[co(ngW—pﬂpy>lab+c3<ngw—p#py>T§b+ Ko€un P TITIAL, (5.8
|
with a,b=(-),(+) and u,v the usual Lorentz indices, 1
Co=—(c_+c,), cz3=—(c_—c,), andko=—1i6/4. ~ o PuPv

This is a bilinear form inA4 and the propagator for the
gauge fields is just the inverse of the matrix shown in Eqand
(5.8). However, this matrix is singular unless we fix a gauge.
This is so because the gauge field propagéfdfA}) is not — ip D, .
a gauge-invariant operator and does not have a physical B
meaning unless we are working in a particular gauge. Wel’he
need to add gauge fixing terms in order get the propagato
We may add for example,

three operatorsP,,=p,p,, G, .= ng,w, and
I?MVE elmpk satisfy a closed algebra, and now the matrix
can be inverted. After some lengthy though fairly straightfor-
ward algebra one gets

1 o N2

— (ALY D)) D))
D(c-.cs.0.0.8)=| 5(+)-) ‘<+><+>)' ©9
and D,uv DMV
given by

1
_ = M~ \2

IB((;,U-A(Jr))' 6(_)(_):_ 1 (g _p,upv) 1 _ap,u.pv

nv 2c_ 2% p2 pZ_MIZJh p2 )

which in momentum space take the simple form (5.10
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- 1 p.p 1 p.p
D(+)(+):__( — M V) _ M V,
mv 20+ g,u. p2 pZ_MSh ﬂ p2
(5.1)
- . 6 1 1 1
() _pEN(D = 2~ — A
P =Pt g 46 c, e 2oz,
(5.12
where we defined
8m|m| 6

02
Mon=N6ac_c,

JIN=2)(N=1/6)

Afm|
= (5.13
N 6N

as the “photon” mass? To leading order in N we can
rotate back to thé\ , Ay coordinates to getin the Lorentz

gaugea= 3=0)

3 1 1 PPy | p!
DLL=641TN|m|p2_—MSh (g/“,— SZ )+4||m|emuF
(5.19
and
Buu=64m i 9,0~ 2222 im0,
uu ﬂ-N pZ_MSh g;/,v p2 e,u)\VpZ .

(5.19

To next order in IN corrections we find additional off-
diagonal symmetric mixing terms.

VI. BROKEN-SYMMETRY PHASE

In this section we want to study the phase where the mat-

ter field ¢ condenses. Let us assume that we went throug
the critical point into the phase wheng} in Eq. (5.1) be-
comes negative. From E¢4.7) we now have another pos-
sible solution with finite{¢), which actually minimizes the
energy. This is the usual nontrivial solution for a double-well
effective potential of ap* theory. Wherm(z) becomes nega-
tive, the solutiongp=0 now becomes a local maximum in-

stead of a minimun. The value of the new local minimun can

be obtained by minimizing Eq4.7) to be ¢3=—m3/2\,
where we are using the definitions given in Sec. IV. If we
plug in this constant value ab,, Eq. (4.8) becomes

L= g5 AL ()~ 2GR (AL (%)
~ 2 1 2
+G EF(_)(X)+€F(+)(X) . (6.1
As in the symmetric case we have
& 4 E(+) A F(—) A
=£gauge:§[|:>\ (X)A(—)(X)_H:)\ (X)A(+)(X)]
1 2 2
— 22 Flo 0 +FE (0], 6.2
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Now our effective action for the gauge fields reads

0 2
§ - ¢OGA

Ven(AL)= f dx3| poAT +

wY A N
X €un(FEOAL) TREAT))

—c_FZ —c.FZ,, (6.3
where the new coefficients are
2
m, N
2___0__ " 2
P0= T o T Bajm 0" ©.4
where nowm3<0
1 ,G N LM .
C-=2& %05 = Ganm | 1T m2) ©.9
1 ,G N Lo L -
¢+=3& %8 " 6amm |\ 1T 3mz)s (9
and we define¢, to be
(o 6 1 ma
K0:_2| g_d)OGA :_lz 1+Zm7
N ) 1m .
g1 A ©.7

We still need a gauge fixing term fé .. In this way we
recover the structure of E@5.8) with minor changes. The
photon mass has changed to
2
1-5 1-

M ph= \/16m2 3 3

The propagator for the out of phase fiedq_, still corre-
sponds to a massive field, which also has a longitudinal com-
ponent

2

o

0
m?

mg
m?

4

). (6.9

“()()Z_i(g _pupv) 1 pupy
oL s T
(6.9
N 1_‘*;3 1 CPup| 1
mv 2c, 2c_ Vg; Guv p2 pz_MTph
¢ (g _pﬂpv)i_ PP,
4C_C+Mgh g p2 p2 p2’
(6.10
A+ /-y ? m) 1 1
Dl =B =13 M g 70 92
S (6.11
6 14 . .
uavP p?—M2,

Equations (6.9),(6.10,(6.11) give the propagators of the
gauge fields in the condensed phase. By assummﬁais a
small parameter, since our approximation is valid for the
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vicinity of the phase transition whemg is small(in units of  and Scalapirfband Millis and Monier'. In fact, we believe

the fermion magsand measures the distance to the criticalthat the two phases are the same phase and that the broken-

point. Notice that, in this phase, the expansion in powers ofymmetry phase is a phase with spin singlets connecting the

1/N has become an expansion in powers of this new paranfwo layers.

eter. This is consistent with our approximation because a

gradient expansion amounts to an expansion in powers of an VIl. CONCLUSIONS

inverse(large length scale, which in our case is set by the

fermion mass or, in other words, by the spinon gap of the In this paper we have reconsidered the problem of the

decoupled system. On the other hand, the “photon” mass iselection of the relative sign of the chiralities of two planes

fairly large in this phase. with chiral spin liquid states coupled via an exchange inter-
We conclude this section with a qualitative description ofaction. We found that the exchange coupling selectsathe

the excitation spectrum in the broken-symmetry phase. Lefiferromagneticordering of chiralities and, thus, that and

us look first at the gauge excitations. In looking at E&110 P are not broken in bilayers. This result holds for both signs

we notice the existence of masslesggauge mode in the of the interlayer exchange constaht. Hence, even if each

spectrum. The existence of this massless mode implies thglane has a net chirality, the bilayer system does not. Such a

any excitation which couples to th& ) component of the system will not give rise to any unusual optical activity in

gauge field experiences an effectieag-range(logarithmig  light scattering experiments. We determined the phase dia-

force mediated by the massless mode. In particular, thgram of the bilayer system and found a phase transition to a

spinonexcitations of the individual plangsvhich are semi-  valence bondor spin gap state. Our analysis reveals the

ons in the unbroken phaskecome permanently confined by presence of an unusual “anti-Higgs-Anderson” mechanism

the massless gauge fields. Recall that the logarithmic force ighich is responsible for wiping out all trace of broken time-

actually replaced by a confinig potential due to the strongeversal invariance in the valence-bond state. In a separate

fluctuations of the gauge fields dominated by monopolelikgoublication we will report on results on the quantum num-

configurations?*>*°In a sense, this makes fractional statis- bers of the excitations and on the form of the wave function

tics unobservable since the quasiparticles which were able f@r the bilayer system.

bear it are no longer present in the spectrum. This spectrum

is consistent_ with the fact that the stati;ti_cal paramétes ACKNOWLEDGMENTS
not well defined anymore in this phasi is no longer a
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now modified by a term proportional to the magnitude of thethe ordering of chiralities. This work was supported in part
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the time-reversal-breaking mass coming from the coefficienPhysics of the University of Illinois at Urbana-Champaign

of the Chern-Simons term is no longer effective in controlingand No. DMR89-20538/24 at the Materials Research Labo-

the fluctuations of this particular mode. Actually, in this ratory of the University of lllinois.

phase, the Higgs mechanism that takes place conspires to

give a mass to the gauge fiedq_) , breaking spontaneously APPENDIX A: COMPUTATION OF THE BUBBLE

its gauge symmetry, while leaving the in-phase figld DIAGRAMS

untouched. In some sense the breaking of the phase symme- ] ) .

try enables the in-phase gauge field to become massless.  In this appendix we go through the computation of the
This phenomenon is in striking contrast with the conven-correction to the energy of the ground state. The expressions

tional Higgs-Anderson mechanism in which a spontaneouslig@iven by Eqs(3.3-(3.5 are obtained from a one-loop dia-

broken symmetry renders a gauge field massive. The remai@ram. In momentum space,

ing out-of-phase component is massive and its mass is huge . .

[see Eq.(6.9)], i.e., of the order of the fermion mass. This T =i dk® T, [(k+m)e(q)(k—g+my)e*(—q)]

(2m)* (k= m)[ (K= ) (k—d) —m{]

huge mass supresses the fluctuations of the field and, in
this manner, it restores the broken time-reversal invariance (A1)
that was present in the decoupled bilayer system. In particu-

lar, this spectrum implies that the only allowed fluctuationswith the definitions of Sec. Il. In computing the expression
of the bilayer system are such that the chiralities of thegiven above the following identities involving2+1)-
planes become rigidly lockelbcally. Only in-phase, long- dimensional Diracy matrices will be important:

wavelength fluctuations of the chiralities are allowed. Since

the two chiralities have opposite sign, we conclude that, in Ya¥b=0abt i €anc?’s  1(Va¥b) =20ap,

this phase, there is lacal cancellationof the chiralities of

the planes. Hence, chiral fluctuations are eliminated from the tr( Yaypye) = 2i €ape,

physical spectrum. Recll that if a Chern-Simons term

were to be present, the monopole configurations would be tr(va¥pYeYd) =2(9ab9cdt JadObc— JacOba). (A2)

suppressed and fractional statistics would become observ- . ] )

able. This is precisely what happens in the symmetric phasd.he integral in Eq.(1.1) needs to be regularized; i.e., we
The spectrum that results from our analysis of the phasg€€d to cut off the unphysical ultraviolet divergence due to

with broken symmetry is strikingly similar to the spectrum of the integration over momentukn There is a natural cutoff

the bilayer system in the singlet phase discussed by Sandvik the original theory, which is the lattice spacing. However,
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in going to the continuum approximation we encounter the

A e A 1 1
usual field theory divergences. F3(0)=i tr[ S (K)73Sy(K) 13]= —=A— 2—m(1+s),
There are several methods for regulating this type of in- 2\/; 77
tegral. The important point is that they should preserve the (Ada)

physical symmetries involved in the problem. For the case of
a gauge field there are well-established procedures such as
the Pauli-Villars or the dimensional regularization methods. Ho(0)=i tr[éL(IZ) éU(IZ) 1= im(l—s)

It can be shown that they preserve transversaiigy, gauge o Yo Yol=on ’
invariance. In the case of the fields, we do not have such (Adb)
a symmetry to preserve. In fact, not even Lorentz invariance

is preserved. We have a length scale given by the lattice

spacing, vyhich i'n turn provides the momentum cutbfthat Z(0)=i tr[éL(IZ) Y TjAS_J(lZ) ¥i7i]

was mentioned in Sec. Il. On the lattice there is no cutoff for

the frequency integral. Thus, our regulating procedure is as 1

follows. First we perform a subtraction at the level of the == —4\/;/\— >-m(1-s), (Adc)

integrands. This is equivalent to writing the kernels in Eg.

(1.2) in the following way: .
wherej=1,2. To get75(q) —.7%3(0) we need to integrate

FH(D=T0)+[Z (@~ T (0] (A
In this expression only the first term has an ultraviolet diver- SE_ dk®
gence. The term between brackets is convergent and can be 3™ (2m)3
calculated using standard methods. In the computation of L L
2;(0) we integrate first over frequency without any cutoff. (k*+m?)q-(q—k)+m?(1+s)q-(2k—q)
This integral is still finite. After this step, we introduce an X (k®+m?)?[(k—q)%+m?] '

isotropic Gaussian cutoff for the space directions of order
A~1/ay wherea, is the lattice spacing. However, once the
integration over frequency has been performed, the finite R R
contribution of the divergent term#;(0) is independent of where k2, g2, k, andq refer to the imaginary frequency
the particular form of the cutoff being used. rotated form of the trivectorsk, and g,, and
The computation ofZ;(0) with j=0,1,2,3 is nothing but  s=sgn(m) - sgn(my).

the calculation of the critical coupling constants performed For the frequency channel given kpy we get after rotat-
in Sec. Il. We have ing to an imaginary frequency

(A5)

.7§=—4f

k

[ [2KoGo+ G- (K—G)](K2+m?) — G- (2K—q)[2k3+ m*(1—s)] ”6)

(2 +m?) 7 (k—q)%+m?] '
For the channels given by, and ¢, we obtain expressions similar to the one {gy with k, exchanged bk, or k, in each

case. The kernel for the spatial channels also have an opposite s@’@(@)—né‘o(O).
We may write down the denominators in Eq.5 and Eq.(1.6) in the form

i jldu(l—u)ka 2gne M P MM ru-ua? (A7)
Delm?] ™ Jo 0 '

In Eq. (A7) we performed the change of variables: a+ 8 andu= g8/(a+ ), we definedi=k—ugq, and once again, for
simplicity, we restricted to the casgen |=|my|=m. After integrating overk (or, rather,l) and\ and a simple change of
variables, Eq(A5) becomes

e_ 1L 2 1 g 2 1-,
.ﬁ—z[m(ﬂs)——sm (—)(m(l+s)+§q

g Vam?+q 2

] : (A8)

For the vector channels we get
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1 2mg?
SE_ 2 4 4 2
.JF—Eg“[m(s+2f<j+3Kj)+4m2+a2(,<j—,<j)}
_ig.. 2mzs+4m2< K2+ i&") —6—2(1—3K4) L sinl(L> (A9)
2=V 22 lal Vam?+q?

In Eqg. (A9), gj; only indicates that the channels given by However, instead of computing the loop diagrams exactly as

¢1 and ¢, give a contribution with sign opposite to the one we did in order to calculate the correction to the ground-state

given by ¢,. Also, we have definedszqj/|ﬁ| and energy in Sec. lll, we expand up to second order in the

c=1+4m?/q2 The expressions given by Eq8.3—(3.5  external momenta. Notice that we are integrating out neither

can now be obtained simply by combining E44) with Eq.  the gauge fields nor the fields in this case.

(A8) and Eq.(A9).

APPENDIX B: GRADIENT EXPANSION 1. Diagrams with two external legs
In order to obtain an effective theory valid for long- We showed in Sec. Il that the classical energy is of

wavelength excitations, in momentum space we only need afi(N). From the expansion of the logarithm of the determi-

expansion to the few lowest orders in the external moment&ant, to second order in powers of tiemal) fluctuating

of the diagrams, since each external momentum will generatkelds contained in the operat@ of Sec. Ill, which now also

a space derivative in the Fourier antitransformed expressiomcludes the gauge fields in the planes—or¢1) in the

Here we pursue further the expansion indicated by(Bd). 1/N expansion—we have

i 3[ dx3<éé‘s€9>=i—f ftr[“&(IZ)A (D& R+ DA—)]
2 2)q ) Lq q)AL(—(

i ~A . -
+§quktr[SJ(k)AU(q)SJ(k+Q)AU(_Q)]

i A A e
+2§f fktr[&(k)qo(q)%(kw)qo(—q)]- (B1)
q
|
As a shorthand we have used the notation 1 1 2|m| 4m2
JdII(2m) = 0= 57 72| ~ I ( 2)
For the gauge fields alone, the diagram has an ultraviolet 77 \/q— \/q—

divergence that needs to be treated. We use dimensional

regularization to ensure transversality, i.e., to preserve gauge

invariance. The calculation is similar to the one shown in < sinh- 1 (B4)
Chap. VII of Ref. 12. The first two lines of the RHS of Eq. '

(B1) give [IT,5(a)AF(a)AY(—q) where — =

and the corresponding expressidny) for the upper plane.

LL, 2\ _ - ATTLL, o2 a2 LL, 2
(@) =i€un g Ta7(a%) +(0,9,~67°9,.,) s (a7, This is the full expression for the polarization tensor for the

(B2) gauge fields. The small momentum limit for E@2) is
. given by
with
1 m. ny 1 1 )
1 m 1 Emlfwxq Em(qﬂqu q°9,.)-
(0= 5— - sinh™ | ———| (B3
TN 4m 1 Notice that the fermion mass with its sign enters the antisym-
— -

q metric part ofI1;;. Therefore, for an antisymmetric order-
ing of chiralities in the ground statél;- andII:" will bear
and opposite signs. In fact, the ratio/|m| in our case is actually
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always positive 1, since the signs of the masses have alreagyhich gives the result

been taken into account when definiBgandS; in Sec. lll,

and we are considering the case when the magnitude of the

masses is the same on both planes. From now on, we give 1 1 1

the details for the computation of the one-loop diagrams in- fql%(q”z[;( VAZ+m?— Jm?) + 4 Wﬁquqﬂ .
volving exclusively the scalar channel. The third line in Eq. (B7)
(B1) can be rewritten as

i S (K) 7S (k+ 2 B5 The above expressions are valid up to secqnd qrder in the
Iquk TS0 758y (k@) 73]l ¢(a)] (B5) external momenta of the one-loop diagram, i.e., in the mo-

. S . menta of the fieldp or in the momenta of the gauge fields.
This expression is similar to the ones we encountered in the

previous appendix. Since we are interested in a small exter-
nal momentum expansion, the exact expression shown above
can be approximated by

2. Diagrams with three external legs

; C _1\n/ & ne 2
ZIJqutr[SL(k)nEo( DSd) &(k)}|¢3(q)| ' The next term in the expansion of the logarithm of the
(B6) fermionic determinant is

—ii—f dx3<éé>3=—i><i—f”ﬂ{“&<kw 8.(k+p)a() &y(k+ p+ [ H(p+ Q)T JAK(P)
JN 3 N 3JpJqJx g :

3 i - - R el A u
—\/—ngfpqukﬂ{SJ(k)nSJ(ker)[@D(—Q)] S.(k+p+a)e(—p—a)tAi(p). (BY)

Both terms in the RHS of Eq2.8) are similar. It can easily be shown that the zeroth-order term in external momenta vanishes.
For the scalar channel only, up to second order in the external momenta, the three-leg one-loop diagrams give the contribution

1 1 1
_J_NEW qSp(qﬂ—sﬂ)[At‘(p)—A{j(p)]é(p+8+p)cp(q)[cp(—S)]*

i 1 1
+ N 87 WGM%LM[A’((D)+A’J(D)]DVSA5(P+ s+p)e([e(—s)]*. (B9)

3. Diagrams with four external legs

The fourth order in the expansion of the logarithm of the fermionic determinant gives

an) P =g J T {50 7,8 (k+p) 7,8 (k+p+ D (@) Sy (k- S)[6(— )1 JALP)AL()
I,p,q,k
* INJl ok {Su(K) 7, Su(k+p) 7, Su(k+p+ D e() S (k=) $(— )] JAL(PAL()
i T B0 A G PE@S ke Py Sk 9o~ 5 ALPIAL)

+ 2|_N o 18,0 3(p)S,(k+P)L&(q]* S.(k+p+q) 5(1)S,(k—S)[H(—$)]*}

+terms involving four gauge fields. (B10)

From this expression we are going to consider only the four first lines on the RHS ¢BHEQ). as they will show to be the
relevant terms for our gradient expansion. As we did before, we consider only the scalar channel. The third term on the RHS
of Eq. (B10) gives a total contribution, valid to first order in the external momenta, that looks like
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11 1 m
_NE(m2)172[89/w+Wtr[%ﬁv(ﬁ”ﬂ ALPIAG() ea(@)@a(—9)]* (B1Y)

The contribution coming from the first term on the RHS of E§10) is

11 1 m
"N 167 W[ —49,,+ T Ly, v, (b+4) ] ALP)AL(D e3(Q)[ @3(—S)]*. (B12)
The second term on the RHS of E®10) gives
11 1 m oA (| .
N 6w (| 49 [ M7 (B T AGRIAL(D es( s —S)1*- (B13)

The origin of the relative sign between the antisymmetric parts of BB2) and (B13) is the relative sign of the fermion
masses on the planes.
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