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We study the behavior of two planes of a quantum Heisenberg antiferromagnet in the regime in which a
chiral spin liquid is stabilized in each plane. The planes are coupled by an exchange interaction of strength
J3 . We show that in the regime of smallJ3 ~for both ferromagneticand antiferromagnetic coupling!, the
system dynamically selects anantiferromagneticordering of the ground statechiralities of the planes. For the
case of an antiferromagnetic interaction between the planes, we find that, at some critical valueJ3

c of the
interlayer coupling, there is a phase transition to a valence-bond state on the interlayer links. We derive an
effective Landau-Ginzburg theory for this phase transition. It contains two U~1! gauge fields coupled to the
order parameter field. We study the low-energy spectrum of each phase. In the condensed phase an ‘‘anti-
Higgs-Anderson’’ mechanism occurs. It effectively restores time-reversal invariance by rendering massless one
of the gauge fields while the other field locks the chiral degrees of freedom locally. There is no phase transition
for ferromagnetic couplings.

I. INTRODUCTION

The discovery of superconductivity at high temperatures
in the otherwise insulating copper oxides has motivated a
thorough search for new physical mechanisms for both su-
perconductivity and antiferromagnetism. This search has
produced a host of new possible mechanisms, many of which
are not yet established on solid ground. Among these new
ideas, the anyon mechanism1 stands as, perhaps, the most
novel of them. For this reason, it has attracted a lot of atten-
tion. At a microscopic level, the anyon state requires that the
underlying insulating state, known as the chiral spin liquid2

~CSL!, should necessarily break time-reversal (T) invariance
and parity (P). An experimental signature of a state with
broken T and P invariance is optical dichroism.3 So far,
however, there is no experimental evidence in support of the
spontaneous breaking of eitherT or P in the copper oxides.4

Clearly, the simplest option is that these symmetries are not
broken in the copper oxides and that the insulating states are
unrelated to the CSL. At the present time this appears to be
the case.

In this paper we will explore the possibility thatT and
P may be broken in one individual plane but not on the
system as a whole. Individual isolated planes may still be in
states which breakT andP but thesignof this breaking may
not be the same from plane to plane. The simplest case is to
imagine that the copper oxide planes are coupled by some
interaction and that this coupling is responsible for the selec-
tion of the state. A version of this problem has been studied
by Rojo and Leggett.5 They considered two planes with a
dopedCSL on each plane and, hence, had ananyon super-
conductor on each plane. They further assumed that the
planes were coupled together only by a direct Coulomb in-
teraction between the anyons on each plane. They did not fix
a priori the relative sign of the statistics of the anyons on
each plane but, instead, asked whichrelative signwas pre-
ferred by the Coulomb interactions. They found that the Cou-
lomb interactions prefer the relative statistics to beantiferro-

magneticordered, namely, opposite signs. The Rojo-Leggett
result is due to a rather subtle edge effect. In fact, they found
no effect in the bulk.

In many copper oxides, the physical situation is such that
the planes come in groups in which the planes are closer
together than among nearby groups. This is rather common
in the bismuth-based copper oxides. Because in these mate-
rials theinterlayerexchange constant which couples the cop-
per spins can be comparable to theintralayer exchange con-
stant, there is a competition between intralayer and interlayer
types of ordering. Quite generally, one expects to find to
distinct regimes in the phase diagram for bilayers. At weak
interlayer coupling, the ground state of the individual layers
may be stable. However, if the interlayer exchange coupling
dominates, the likely ground state should be a valence-bond
state on the interlayer links. The case of two coupled Ne´el
states was considered recently by Uhbens and Lee,6 by Millis
and Monien,7 and by Sandvik and Scalapino.8 These authors
considered the effects of an interlayer exchange interaction
on the Néel ground states of the planes.

In this paper we will reconsider the problem of a bilayer
of quantum antiferromagnets in a regime in which there is
enough frustration to drive each plane separately into a chiral
spin liquid. The planes will be assumed to be coupled by an
antiferromagnetic exchange interaction of strengthJ3 . The
problems that we want to address are the following:~a! Does
the interlayer exchange interaction select the relative order-
ing of the chiralities and~b! what is the phase diagram for
this system as a function of the interlayer interaction? We
consider a situation in which there is a CSL ground state on
each plane, with fixed chirality but arbitrary sign. We find
that quantum fluctuations around this state select anantifer-
romagneticordering of the chiralities. This is a rather inter-
esting result. It means that even if on each plane the system
was allowed to breakP andT, the dynamics selects the state
which is on the wholeP and T invariant. We also find that,
as J3 increases, there is phase transition to a state that we
identify as a valence-bond state on the interlayer links,
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namely, aT- andP-invariant spin gap state very similar to
the one found by Ubbens and Lee,6 Millis and Monien,7 and
Sandvik and Scalapino.8 The problem of the ordering of
chiralities by an interlayer exchange interaction was consid-
ered previously by Gaitondeet al.9 By means of a perturba-
tive expansion in powers ofJ3 they concluded that the
chiralities orderferromagnetically. The results that we report
here disagree with those of Gaitondeet al.

As is by now well known,2,10–12 the CSL state and its
low-lying excitations can be described in terms of an effec-
tive continuum field theory which is very much analogous to
a set of Dirac self-interacting fermions in two space and one
time dimensions. We find that the essential physics of this
system can be understood in terms of the properties of an
effective continuum theory of Dirac fermions on each plane
provided that a physically sensible cutoff is introduced. The
effective model contains two sets of massive Dirac fermions
on each plane. The chirality of the state is given by the sign
of the mass term. As in Ref. 2, the fluctuations around the
CSL of each plane are represented by gauge fields~one for
each plane!. By a detailed microscopic analysis we find that
the interlayer exchange fluctuations are represented by a
complexorder parameter field. The effective theory is con-
trolled by three parameters:~1! the magnitude of the fermion
mass on each plane~i.e., the fermion gap in the CSL!, ~2! the
interlayer exchange constant~which determines the energy
gap for fluctuations of the order parameter!, and~3! the num-
ber of fermionic species~which we take to beN). In this
picture, the phase transition to the valence-bond state be-
comes the phase transition to a state in which the complex
order parameter acquires a nonvanishing expectation value.
Our basic strategy is to first derive this effective theory and
then use it to address the issues of the ordering of chiralities
and of the nature of the phase diagram.

Mean-field theories~MFT’s! of frustrated antiferromag-
nets on a single plane have yielded a host of possible non-
magnetic variational ground states. The actual phase diagram
is not known in detail although it is generally accepted that
nonchiral states are somewhat favored by variational calcu-
lations. In this paper we will not consider how interlayer
couplings may alter this competition among possible single-
layer variational states. Rather, we will describe how inter-
layer interactions disrupt the CSL in favor of an interlayer
valence-bond state, which is clearly favored at strong cou-
pling. The determination of the global phase diagram for
bilayers is an interesting problem which is, however, still
outside the reach of present theoretical tools and beyond the
scope of this article.

The effective field theory of fermions can be studied
within a 1/N expansion. We use this expansion for two dif-
ferent purposes. First we look at the quantum corrections to
the ground state energy of a system in which the two CSL’s
are decoupled. We find that, at leading order in the 1/N ex-
pansion, the state with antiferromagnetic~opposite! chirali-
ties is degenerate with the state with ferromagnetic chirali-
ties. However, we find that for the leading corrections, due to
fluctuations of interlayer exchange processes, the state with
antiferromagnetic ordering of chiralities is selected. In addi-
tion to the spontaneous breaking of this discrete symmetry
~the relative chirality!, the fermionic theory for the bilayers
undergoes a dynamical breaking of the interlayer~out-of-

phase! gauge symmetry at a critical value of the interlayer
coupling constant. This phenomenon is strongly reminiscent
of the breaking of chiral symmetry in the related~but not
equal! field theoretic Gross-Neveu and Nambu-Jona Lasinio
models.14 Also, within this 1/N expansion, we find a phase
transition from a regime in which the two planes have CSL
ground states with opposite signs, to a state in which the
interlayer order parameter field condenses. We further inves-
tigate the physics of this phase transition by deriving an ef-
fective Landau-Ginzburg-type field theory, valid in the vicin-
ity of the phase transition, i.e., forJ3;J3

c .
The degrees of freedom of the Landau theory, which is

fully quantum mechanical, are the interlayer order parameter
field and the gauge fields of the two planes. We present a
qualitative study of the fluctuation spectrum of the two
phases. The weak coupling phase has~almost! the same
spectrum as that of two CSL’s with opposite chiralities: semi-
ons with opposite chiralities and gapped gauge fluctuations.
However, the phase with broken symmetry~in which the
interlayer field condenses! displays an interesting ‘‘anti-
Higgs-Anderson’’ mechanism: The condensation of the order
parameter field causes a gauge fluctuation, which is massive
in the unbroken phase due to the Chern-Simons terms, to
become massless. This, in turn, implies that any excitation
which couples to the gauge fields~the semions, in particular!
to become confined by strong, long-range, logarithmic inter-
actions. The resulting spectrum of the condensed phase is
equivalentto the low-lying spectrum of a ground state of
local singlets, i.e., a valence-bond state on the interlayer
links. The interlayer gauge field remains massive and it ef-
fectively disappears from the spectrum. Thus, the ‘‘anti-
Higgs-Anderson’’ mechanism wipes out all trace of broken
time-reversal-invariance in the system. Unexpectedly, in this
phase the system is actually more symmetric than in the
noncondensed state.

The paper is organized as follows. In Sec. II we introduce
the model for the bilayer and develop the mean-field theory
and briefly discuss the phase diagram. In Sec. III we address
the problem of the dynamical selection of chiralities. In Sec.
IV we derive a gradient expansion for the low-energy modes
of the ~two! gauge fields and the relevant~scalar! channel of
the field coupling the planes. In Sec. V we discuss the prop-
erties of the symmetric phase where the field coupling the
planes does not condense, and an effective action for the
gauge fields is derived and studied. Section VI deals with the
broken-symmetry phase. Section VII is devoted to the con-
clusions. We also include appendixes which contain techni-
cal details of the mapping onto the effective continuum
theory and the computation of Feynman diagrams relevant
for the phase transition, the ordering of the chiralities, and
the gradient and 1/N expansions.

II. MEAN-FIELD THEORY FOR TWO COUPLED CHIRAL
SPIN STATES

Our model consists of two square-lattice spin-1/2 Heisen-
berg antiferromagnets coupled through an exchange interac-
tion of nearest-neighbor spins between planes with strength
J3 , and nearest-neighbor~NN! (J1) and next-nearest-
neighbor~NNN! (J2) interactions on each plane. The lattice
Hamiltonian reads
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H5HL1HU1J3(
xW
SW L~xW !•SWU~xW1eW z!, ~2.1!

whereHL,U is the usual Heisenberg Hamiltonian,

HL,U5J1 (
xW , j51,2

SW L,U~xW !•SW L,U~xW1eW j !

1J2 (
xW , j51,2

SW L,U~xW !•SW L,U~xW1eW11 jeW2!. ~2.2!

Using the slave fermion approach, the spin operator can
be written in terms of fermionic creation and anihilation op-
eratorsSW (xW )[ca

†(xW )sW abcb(xW ) with the usual constraint of

single occupancy. We decouple the quartic terms by using a
standard Hubbard-Stratonovich~HS! transformation. Up to
an integration over the HS fields, the original theory is
equivalent to the one that follows from the action given by
the Lagrangian

L5LL1LU2
1

J3
(
xW

uxz~xW !u2

1(
xW

@cL* ~xW !xz~xW !cU~xW1eW z!1H.c.#, ~2.3!

where

LL5(
xW
cL* ~xW !~ i ] t1m!cL~xW !1(

xW
wL~xW !@cL* ~xW !cL~xW !21#2

1

J1
(

xW ; j51,2

ux j ,L~xW !u22
1

J2
(

xW ; j51,2

ux j ,L~xW !u2

1 (
xW ; j51,2

@cL* ~xW !x j ,L~xW !cL~xW1eW j !1H.c.#1 (
xW ; j51,2

@cL* ~xW !x j ,L~xW !cL~xW1eW11 jeW2!1H.c.#, ~2.4!

where we have dropped the spin indicesa,b to simplify the
notation, with a similar definition forLU . Herem is the

chemical potential andxW means (rW,t). The constraint of
single occupancy is enforced by the bosonic Lagrange mul-

tiplier field w(xW ). This type of factorization was originally
proposed by Affleck and Marston10 and by Kotliar.11 The HS

fields can be parametrized in terms of an amplituder j (xW )

and a phaseAj (xW ). This Lagrangian has a local symmetry if
the Lagrange multiplier fieldw transforms as theA0 compo-
nent of a U~1! gauge field.

The MFT consists in integrating out the fermions, at a

fixed density, and treating the fieldsx j (xW ) within a saddle-
point expansion. As is well known, one serious problem with
this mean-field theory is that there is no small parameter in
powers of which to organize the semiclassical expansion.
Following Affleck and Marston,10 we will allow the number
of spin species to run toN instead of 2, which is the case for
the spin-1/2 Heisenberg model. After rescaling the coupling
constant strengthsJ’s and the fluctuating part of the fields, a
one-loop expansion of the fermionic determinant around the
N→` mean-field solution can be performed by keeping the
diagrams up to order 1/N. We have S eff@w,x j #

5NS̄ @@w,x j #, and the quantum partition function is

Z5*DxDx*DweiNS̄ .
There exists a whole family of solutions of the saddle-

point equations. The simplest solutions are the valence-bond
states and the flux phases. These may or may not be chiral. In
this work we consider the problem of the selection of the
relative chirality of a state in which there is a chiral spin
liquid on each plane. Thus, wechoosea saddle point which
represents chiral spin states on each plane and we will inves-
tigate which configuration of chiralities is chosen dynami-
cally.

Wen, Wilczek, and Zee2 ~WWZ! have given a construc-
tion of the chiral spin state, which was first proposed by
Kalmeyer and Laughlin.1 WWZ begin with the flux phases,
which have a uniform value for the amplitude of the NN HS

fields, say,r(xW )5 r̄. This amplitude, however, can fluctuate.
The phases of the Bose fields on the NN links of an elemen-
tary plaquette have a circulation equal top or 2p in mean-
field value. This feature produces a collapse of the Fermi
surface into four discrete points of the Brillouin zone
(6p/2a,6p/2a) at which two bands of states~positive and
negative energy, ‘‘conduction’’ and ‘‘valence’’ bands! be-
come degenerate. At these points, the excitation spectrum is
linear and gapless. This allows for a mapping onto a discrete
version of the Dirac theory with two massless fermion spe-
cies of two-component spinors, with the ‘‘speed of light’’
equal to the Fermi velocityvF52ar̄. This gapless state can
become unstable due to the effects of fluctuations. Several
channels are known to be possible. If the staggered part of
the fluctuations of the amplitude of the Bose fields on the NN
links picks up a nonzero expectation value, gaps will open up
in the elementary excitation spectrum and they will provide
masses~or gaps! to the Dirac-like fermionic excitations.
These fluctuations can be seen to drive the flux phase into a
dimer or Peierls state and do not break time-reversal invari-
ance or parity.

A mass term in a Dirac equation for asingle two-
component spinor Fermi field in 211 dimensions generally
breaksT andP since the Hamiltonian, while Hermitian, be-
comes complex. Since all three Pauli matrices are involved
~two for the gradient terms and the third one for the mass
term!, there is no basis in which the Hamiltonian could be
real. Therefore, the Hamiltonian is not self-conjugate andT
is broken. However, in the case in which two species of
fermions are present, the presence of such mass terms does
not necessarily breakP andT since they may have opposite
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signs for the different species. This is the case of the so-
called Peierls mass, which occurs in dimer phases. It is here
where frustration comes to play a crucial role. By turning on
NNN interactions, WWZ allowed for additional HS fields on
the diagonals of the elementary plaquettes. The MF configu-
ration for the phases can be arranged so that each triangle in
an elementary plaquette is pierced by a flux equal top/2. In
this way, a time-reversal and parity-breaking mass can be
generated; i.e., one can provide a mass with thesame signto
both fermion species in the plane. In order to perform the
mapping onto the Dirac theory it is necessary to introduce
four different field amplitudes at each unitary cell of four
sites. This procedure can be done on the real space lattice by
defining four sublattices and assigning an independent field
amplitude to each one and expanding in gradients of the field
amplitudes,12 or on the reciprocal lattice18 by expanding the
lattice amplitude at each point as a linear combination of
four independent Fourier component amplitudes. On the re-
ciprocal lattice these fields are the Fourier components of the
lattice amplitude centered at the four Fermi points. The low-
energy physics of the system is determined by the scattering
processes among these four amplitudes. Any of these proce-
dures is equivalent to a folding of the first Brillouin zone.

In the chiral spin state~CSS!, the mean-field ansatz for
the amplitudes and phases of the HS fields on the NN and
NNN links is given by2,18

x̄1~e,e!52x̄1~o,e!5x̄1~e,o!52x̄1~o,o!5 i r̄,

x̄2~e,e!52x̄2~o,e!52x̄2~e,o!5x̄~o,o!52 i r̄,

x̄1~e,e!5x̄1~o,e!52x̄1~e,o!52x̄1~o,o!5 i|,

x̄2~e,e!5x̄2~o,e!52x̄2~e,o!52x̄2~o,o!52 i|.
~2.5!

The fields x̄ j , with j51,2 or j51,2 are the HS fields
sitting on the NN and NNN links, respectively. The four
different sublattices are denoted by (e,e), (o,e), (e,o),
(o,o), wheree ando mean even or odd site, respectively.

Once the mean-field HS ansatz has been used into the
Hamiltonian for one plane, a convenient linear combination
of the four field amplitudes can be arranged in the form of
two two-componentspinors and one can rewrite the Lagrang-
ian for a single plane in the form of a lattice Dirac Lagrang-
ian with two massive fermion species. So far we did not
include any fluctuations of the HS fields. We will be inter-
ested in the fluctuating part of thephaseof the HS fields.

In order to capture the physics of the system in the regime
of long-wavelength, low-energy of the spectrum, we do not
need the full lattice theory, but a linearized version around
the Fermi points that keeps all the scattering processes that

are responsible for the behavior of the low-energy excitations
of the system. In the case of only one square lattice bearing
a chiral spin state, we arrive at a~211!-dimensional effective
action involving two massive relativistic fermions coupled to
a gauge field.2,12,18The form of this action is given by

S 5E dx0E dx2$c̄1~ i ]”2A”2m1!c11c̄2~ i ]”2A”2m2!c2%.

~2.6!

The continuum fieldca is related to the lattice amplitude
Ca by ca(xW )[Ca(xW )/a. We use a representation of Dirac
gamma matrices in whichg05s3 , g152 is2 , and
g252 is1 , wheres j , j51,2,3, are the usual Pauli matrices.
The coupling to the gauge field~the statistical vector poten-
tial! Am comes through the covariant derivativeD” []”2 iA” .
The statistical vector potential is given by
Aj[f̃ j /a52r̄f̃ j /vF andA05w/vF , wheref̃ j is the fluc-
tuating part of the phase of the Hubbard-Stratonovich fields
on the NN links,w is the Lagrange multiplier field,2,12,18and
x0[vFt.

The masses of the fermions come from the amplitude of
the HS field on the NNN links and give a measure of the
amount of frustration present in the system. These masses,
although not necessarily equal in magnitude, have the same
sign for both species. We assume that these amplitudes are
fixed at their mean-field values, since we are interested only
in the effects of interlayer fluctuations.

In what follows we adapt the methods of Refs. 2 and 12 to
the bilayer problem.18We have a duplication of terms due to
the inclusion of the second plane and new terms arising from
the interplanar interaction. In the continuum limit, the action
for the fermions in the low-energy theory has two species of
Dirac fermionson each planecoupled to both theintralayer
and interlayer Hubbard-Stratonovich fields which mediate
the interactions among the fermionic degrees of freedom. For
simplicity we will assume that the degree of chiral breaking
is fixed and parametrized by two nonfluctuating massesmU
andmL . Thesemassesare given bymL,U[4|L,U /vF , being
|L,U the mean-field amplitude of the Hubbard-Stratonovich
fields on the NNN links. We assume that the mean-field ap-
proximation amplitude of the HS fields on the NN linksr̄ is
the same for both planes. Consequently the Fermi velocity is
also the same. The only low-energy intralayer bosonic de-
grees of freedom left are the gauge fields of the upper and
lower planesAU andAL and the interlayer fieldsxz .

The continuum action for the bilayer consists essentially
of Eq. ~2.6! written twice with labelsL andU for lower and
upper planes and an interlayer part given by the coupling
between planes,

S interlayer5E dx0E dx2$c̄L~w0g011w1g1t11w2g2t21w31t3!cU1H.c.%

2
1

g3
E dx0E dx2@U~ uw0u2!1U~ uw1u2!1U~ uw2u2!1U~ uw3u2!#. ~2.7!

In this expressioncL andcU represent the two DiracflavorscL,U
1,2 that live on the lower and upper planes of the bilayer. The

t matrices mix Dirac flavors inside each plane.
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The intralayer gauge fields, which represent intralayer
phase fluctuations on NN links, have to be kept since they
enter at the leading order in the continuum limit. There are
other operators, with the form of fermion mass terms, that
have not been included which do not contain any derivatives
but they describe other types of intralayer ordering which
compete with the CSL. To include such effects would require
a theory of the full phase diagram which is beyond the scope
of this paper.

The bosonic part of the interlayer action shown in the
second line of Eq.~2.7! comes from the corresponding
bosonic terms in Eq.~2.3!,

S b52
1

J3
E dx0 (

xW5~e,e!

$uxz~xW !u21uxz~xW1eW1!u2

1uxz~xW1eW2!u21uxz~xW1eW11eW2!u2%, ~2.8!

wherexW is an even-even site on the lattice at, say, the lower
plane. However, in going to the continuum limit it proves
more convenient to introduce the rotation given by the linear
combinations of the four HS fieldsxz(xW ) which link corre-
spondingplaquettesof the planes,

w0~xW !'
1

4
@xz~xW !1xz~xW1eW1!1xz~xW1eW2!

1xz~xW1eW11eW2!#, ~2.9!

w1~xW !'
1

4
@xz~xW !2xz~xW1eW1!1xz~xW1eW2!

2xz~xW1eW11eW2!#, ~2.10!

w2~xW !'
1

4
@xz~xW !1xz~xW1eW1!2xz~xW1eW2!

2xz~xW1eW11eW2!#, ~2.11!

w3~xW !'
1

4
@xz~xW !2xz~xW1eW1!2xz~xW1eW2!

1xz~xW1eW11eW2!#. ~2.12!

In terms of the rotated fields, and after taking the continnum
limit, the bosonic part of the action takes the form

S b52
1

g3
E dx3@w0* ~xW !w0~xW !1w1* ~xW !w1~xW !

1w2* ~xW !w2~xW !1w3* ~xW !w3~xW !#

52NE dq3

~2p!3
@lw0* ~qW !w0~qW !1lw1* ~qW !w1~qW !

1lw2* ~qW !w2~qW !1lw3* ~qW !w3~qW !#. ~2.13!

In the second line of Eq.~2.13!, Fourier transforms have
been taken and the coupling constantg3 has been rescaled by
1/N in order to allow a 1/N expansion~see below!. In other
words l[1/g38 , where g38[g3 /N. The fields w j ,
j50,1,2,3, also have been rescaled tow/vF . As a result, the
effective coupling constant that controls the interlayer fluc-
tuations is g3[2aJ3 / r̄5J3(2a)

2/vF and has units of
length. Throughout this work we use dimensions such that
@h#5@e#5@vF#51 whereh, e, andvF are the Planck’s con-
stant, the unit of charge, and the Fermi velocity, respectively.
We have a natural scale in our theory, which is the lattice
constanta0 , or the inverse lattice constant which we shall
call L, and characterizes the momentum cutoff.

From the free part of the action, and the fact that we are
working in 211 dimensions, it is clear that the dimension of
the fermion operators must beL'(length)21. The dimen-
sion of the operatorŵ is also that ofL. The coupling con-
stantg3 is dimensional with@l#[@1/g3#5L. This dimen-
sional analysis tells us that the effective four-fermion
operator which represents the interactions between the fermi-
ons of the two planes is irrelevant at the weak coupling fixed
point and that, if a phase transition exists, it should happen at
some finite value of the interlayer coupling. We will see that
this is indeed the case.

Now we integrate out the fermions and obtain the effec-
tive action

S eff[2 iN Tr lnF iD” L2mL ŵ

ŵ* iD” U2mU
G1S b ,

~2.14!

where we have defined

ŵ[w3t31w0g01w1g1t11w2g2t2 . ~2.15!

The saddle-point equations are

1

g3
w j* ~0!52 i E dk3

~2p!3
trF S k”2A” L2mL ŵ~k!

ŵ* ~k! k”2A” U2mU
D 21S 0 dŵ~k!

dw~0!

0 0
D G . ~2.16!

Formally, this integral diverges linearly with the momentum cutoff scaleL. As in all theories of critical phenomena, we
will absorb the singular dependence on the microscopic scale in a renormalization of the coupling constant. We can define a
critical coupling constantgc as the value of the coupling constant at which the expectation values for the fields coupling the
planes first become different from zero. Clearly the solution with^w j* &50 is allowed for any finite value of the cutoff, no
matter how large. This is the phase where the interplane field is not condensed. The nontrivial solution will first occur at the
value of the coupling constantgj

c given by

1

gj
c[2 i S d

dw j*
D E dk3

~2p!3
trF S k”2mL ŵ~k!

ŵ* ~k! k”2mU
D 21S 0 dŵ~k!

dw~0!

0 0
D G , ~2.17!
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evaluated at the point where thew ’s vanish.
Notice that although the bare value of the coupling con-

stants are originally the same and equal tog3 , they are as-
sociated with operators which do not scale in the same way.
Their critical values are different as well. As an abuse of
notation, from now on we are calling ‘‘scalar’’ the interaction
channel given by the fieldw3 , ‘‘frequency-vector channel’’
the fieldw0 , and ‘‘spatial-vector channels’’ the ones given by
w1 andw2 .

Without coupling between the planes we have a degener-
ate situation between a state in which both planes have the
same amount of frustration~i.e., the fermion masses are the
same in magnitude! but their relative sign could be the same
or opposite. We are going to call these two states ferromag-
netic ~FM! or antiferromagnetic~AFM! ordered, respec-
tively, understanding that we refer to the relative ordering of
the sign of the chiralities. We want to investigate how the
degeneracy between the FM and the AFM arrangement of
masses is removed. For simplicity, we give the results for the
case ofumLu5umUu5m.0. They may carry any sign. We
define the variables5sgn(mL)sgn(mU), which takes values
61. The critical values for the coupling constants are given
by

1

g3
c 5 i tr@ŜL~k!t3ŜU~k!t3#5

1

2Ap
L2

1

2p
m~11s!,

~2.18!

1

g0
c 5 i tr@ŜL~k!g0ŜU~k!g0#5

1

2p
m~12s!, ~2.19!

1

gj
c 5 i tr@ŜL~k!g jt j ŜU~k!g jt j #5

1

4Ap
L2

1

2p
m~12s!,

~2.20!

whereŜa(k)[1/(k”2ma), with a5L,U and j51,2.
When the interaction between the planes is antiferromag-

netic ~i.e., J3.0) the physical coupling constants remain
positive. We are interested in the regime wherem,,L. For
the case of an AFM relative ordering of chiralities~i.e., for
s521) we obtain

1

g3
c 5

L

2Ap
,

1

g0
c 5

m

p
,

1

gj
c 5

L

4Ap
2
m

p
. ~2.21!

For m,L, we haveg3
c,gj

c,g0
c hence the channel which

will first undergo a transition within the mean-field approxi-
mation is the scalar channel, given by the fieldw3 .

On the other hand, for the case of FM relative ordering of
chiralities, we obtain

1

g3
c 5

L

2Ap
2
m

p
,

1

g0
c 50,

1

gj
c 5

L

4Ap
. ~2.22!

Form,L, again we have 0,g3
c,gj

c,g0
c . Again the chan-

nel which will first undergo a transition, if any, will be the
scalar one.

In the case of ferromagnetic interplane coupling~i.e., in
the caseJ3,0) there is no transition, since the critical cou-
pling constants always remain positive. The exact values of
the critical coupling constants are not universal and they de-
pend on the cutoff procedure that is being used. Our con-
tinuum approximation is not very sensitive to these short-
distance features. However, the theory has a natural built-in
regulator since the model comes from a lattice theory. In
other words, the qualitative feature of the existence of critical
values for the coupling constants is independent of the type
of cutoff procedure, although their precise value is not. The
question of whether these critical values can be physically
reachable is a different issue that needs a more detailed
specification of the short-distance properties of the model.
We do not attempt to address this point here. We obtain the
regularized saddle-point equations by subtracting the value
of 1/gc on both sides of Eq.~2.16!,

S 1g3 2
1

gj
cDw j*52 i H trF ŜL dŵ

dw j
Ŝŵ* ~12ŜLŵŜUŵ* !21G

2w j* trF ŜL dŵ

dw j
ŜU

dŵ*

dw j*
G J . ~2.23!

The simplest nontrivial solution is the one where only the
scalar channelw3 is condensed. This channel has the lowest
critical coupling, and it will be the first to pick a nonvanish-
ing expectation value. For an antiferromagnetic relative or-
dering of the chiralities, which we will show it is favored in
the case of antiferromagnetic Heisenberg exchange between
the planes, we find

S 1g3 2
1

g3
cDw3*54iw3* E dk3

~2p!3 H 1

~kmk
m2m22uw3u2!

2
1

kmk
m2m2 J . ~2.24!

When solving Eq.~2.24! one gets

l35@m2Am21uw3u2# . ~2.25!

In Eq. ~2.25!, l3[p/g32p/g3
c is the distance to the critical

point. This is our equation of state. The nontrivial solution is

uw3u25l3~l322m!. ~2.26!

It is clear from Eq.~2.25! that l3<0. When l3,0, i.e.,
wheng3.g3

c , we find a phase where the scalar channel field
has a nonvanishing expectation value given by Eq.~2.26!.

The physics of this state is the following. The fact that
w3 acquires an expectation value means that, on average, the
interlayer Hubbard-Stratonovich field is different from zero.
Thus, it appears that in this state the fermions from one layer
are free to go onto the other layer. However, the corrections
to this mean-field picture should, among other things, en-
force the constraint of single-occupancy at each site of each
layer. The only state which is compatible with the single-
occupancy constraintandwith interlayer fermion hopping is
a state in which, oneachlink between the two layers, there is
a spin-singletor valence-bondstate. Thus, the phase transi-

53 8713BILAYERS OF CHIRAL SPIN STATES



tion that we found is a transition between two CSL states on
each layer~with antiferromagnetic ordering of the relative
chiralities! and aspin gapstate with spin singlets on the
interlayer links. A number of recent works6–8 have predicted
a similar phase transition in bilayers but between Ne´el states
and spin gap state with properties which are virtually indis-
tinguishable from ours.

III. RELATIVE ORDERING OF CHIRALITIES

In this section we show that there exists a dynamical way
in which the physical system selects a particular ordering of
the chiralities in the planes. We assume that in each plane a
CSS is stabilized. Thus, at each plane both Dirac fermion
species are coupled to the mass term with the same sign. We
assume that the mass is the same for both fermionic flavors
in each particular plane, say,mL andmU , respectively. This
is consistent with the fact that there is no explicit anisotropy
present. As in Sec. II, the magnitudes of the masses are the
same but their signs could be either the same or opposite. We
neglect fluctuations of the NN amplitude of the HS fields
inside the planes, which can generate a difference between
the masses of the Dirac species inside each plane, and even
drive the CSS into a dimer phase~see, for example, Ref. 12!.

Our goal is to compute the correction to the energy of the
ground state of the bilayer system, due to the quantum fluc-
tuations of the fields coupling the planes. We work in the
phase where no field is condensed. Thus, the effective action
derived in Sec. II will describe the fluctuating part of these
bosonic fields with zero expectation value. The strategy is,
therefore, to expand this action in powers of~the small fluc-
tuating part of! the fieldsw0 to w3 and keep up to the Gauss-
ian terms, then integrate the bosonic fields out, and, after
reexponentiating the expression, obtain the desired correc-
tion to the ground-state energy density. This correction will
contain a divergent part which is symmetric in the sign of the
masses of the fermions in different planes and a finite con-
tribution which is a function of the fermion masses of both
planes,mL,U , with their signs. At this point, we look for the
configuration of masses which minimizes the energy. The
case of zero mass at any plane is excluded since we assumed
beforehand that a CSS is stabilized at each plane. This is
important since these masses provide the energy gap which
is necessary for our saddle-point approximation to be stable
and to allow for a semiclassical expansion.

The integration over the fermionic degrees of freedom
gives the following contribution to the effective action@see
Eq. ~2.14!#. We have

2 iN Tr lnF i ]”2mL ŵ

ŵ* i ]”2mU
G

52 iN Tr lnS i ]”2mL 0

0 i ]”2mU
D

1 iN(
n51

`
1

n
Tr$~ŜQ̂!n%. ~3.1!

Here

Ŝ5S i ]”2mL 0

0 i ]”2mU
D 21

and Q̂5S 0 2ŵ

2ŵ* 0 D .
At this point it is convenient to rescale the fluctuating

fields by 1/AN. Under this transformation all the terms in
Eq. ~3.1! that are quadratic in the fieldsw ’s andS b as ex-
panded in Eq.~2.13! become contributions ofO (1), being
the classical energy of the ground state~i.e., the classical part
of the euclidean action! of O (N). To study the selection of
the ordering of chiralities we need to compute thisO (1)
correction to the ground-state energy due to the effect of the
fluctuations of the fields coupling the planes. We first need to
calculate the one-loop contribution to the fermion determi-
nant. There is only one diagram to this order, which has two
external bosonic legs and two internal fermion propagators,

i
1

2E dx3~ŜQ̂ŜQ̂!5 i
1

2E dk3

~2p!3
E dq3

~2p!3

3Tr@Ŝ~k!Q̂~q!Ŝ~k2q!Q̂~2q!#

[
1

2E dq3

~2p!3
K ~ j !~q!w j* ~q!w j~q!.

~3.2!

As we saw before, this diagram has an ultraviolet divergence
which will be absorbed in a renormalization of the coupling
constants. So the kernelsK ( j )(q) in Eq. ~3.2! include both
the finite part of the diagram and a contribution linearly di-
vergent in the integration momentum. The computation of
K (q), although rather cumbersome, is fairly straightfor-
ward. Let us recall that we have four channels:w3 can be
regarded as a scalarlike coupling to the Dirac fermions; the
other three,w0–w2 , resemble a gauge-field-like coupling.
This is not the case, however, since Lorentz invariance is
broken by the presence of thet matrices in the expression
for Q̂. This point is crucial. Since we do not have to preserve
Lorentz invariance when regulating the divergent diagrams,
time and space components do not enter on equal grounds.
Our theory is in fact the continuum limit of a lattice theory.
At that level it is very clear that the only physically sensible
cutoff at hand is the inverse lattice spacing. As a result, our
regulating procedure consists of integrating over frequency
first and then using an isotropic Gaussian cutoff for the spa-
tial part of the momentum. In this way we expect to recover
the qualitative features of the~finite! lattice theory in the
continuum limit. Let us also mention that the only two spa-
tially symmetric combinations of the interlayer amplitudes
within a plaquette@see Eq.~2.12!# are given byw3 andw0 .

From now on, the expressions will be given in their Wick-
rotated ~i.e., imaginary time! form. Consequently
q 2[q0

21q1
21q2

2 , whereq052 iv. We obtain~see Appen-
dix A!
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K ~3!~q!5
L

2Ap
2

1

2p H 12 @q21m2~11s!#I 0J , ~3.3!

K ~0!~q!5
1

2p Hm~112k0
213k0

4!1
q2

2m
~k0

22k0
4!1

1

2
I 0F2m2s14m2S k0

21
3

2
k0
4D2

q2

2
~113k0

4!G J , ~3.4!

K ~ j !~q!5
L

4Ap
2

1

2p Hm~112k j
213k j

4!1
q2

2m
~k j

22k j
4!1

1

2
I 0F2m2s14m2S k j

21
3

2
k j
4D2

q2

2
~113k j

4!G J . ~3.5!

In Eq. ~3.4! and Eq.~3.5! k j
2[qj

2/q2, with j50,1,2. Notice that the expression corresponding to the channel given byw0

~loosely speaking, the frequency channel! has an overall opposite sign to the expression for the channels given byw1 and
w2 for the finite part of the diagrams. However, the frequency channel does not have a divergent contribution. This sign will
turn out to be quite important for the phase diagram.

On the other hand,I 0 is

I 05
2

uqu H sin21S uqu

A4m21q 2D J . ~3.6!

At this point, in Euclidean space, we have

Z5E Db expS 2E02(
j50

3 E d3q

~2p!3
w j* ~q!@l2K ~ j !~q!#w j~q!D

5e2E0)
j50

3 E Dw j*Dw jexpH 2E d3qE
~2p!3

w j* ~q!@l2KE
j ~q!#w j~q!J

5#e2E0expH 2(
j50

3 E
q
ln@l2K ~ j !~q!#J . ~3.7!

From Eq.~3.7!, the correction to the energy of the ground state due to the fluctuations of the fieldsw ’s is given by

DE5E d3q

~2p!3
lnFl2

L

2Ap
1

1

2p S 2m1
1

2
@q21m2~11s!#I 0D G1E d3q

~2p!3
lnS l2

1

2p Hm~112k0
213k0

4!1
q2

2m
~k0

22k0
4!

1
1

2
I 0F2m2s14m2S k0

21
3

2
k0
4D 2

q2

2
~113k0

4!G J D 1(
j51

2 E d3q

~2p!3
lnFl2

L

4Ap
2

1

2p Hm~112k j
213k j

4!

1
q2

2m
~k j

22k j
4!1

1

2
I 0F2m2s14m2S k j

21
3

2
k j
4D 2

q 2

2
~113k j

4!G J D . ~3.8!

We want to study the weak coupling regime, which corresponds to the case of largel in Eq. ~3.8!. Moreover, this is
presumably the only regime for which Eq.~3.8! is valid, since as we show later, there is a critical value of the coupling
constant at which there is an onset of condensation for some of the interaction channels between the planes.

By expanding in powers of 1/l, to first order we obtain that the energy correction does not depend on the relative sign of
the massess and it is completely symmetric with respect to the exchangemL intomU . This result remains true even when the
magnitude of the masses are different. To second order we get

DE~2!5 f symm1
1

l2E d3q

~2p!3 S m
2

4p2I 0D sF4m2
4

3

mq2

4m21q 212q 2S 12
4m2

q 2 DI 0G . ~3.9!

The coefficient ofs, wheres is the relative sign of the
masses~i.e., of the chiralities!, is a function always positive.
Thus, a minimum in the energy is obtained whens521,
which indicates that the chiralities of the planes have oppo-
site sign. This is the main result of this section. Recently,
Gaitonde, Jajktar, and Rao9 studied the problem of the selec-
tion of the relative chirality by means of a perturbation

theory in the interlayer exchange coupling. They found that
the ferromagnetic ordering was selected and that this result
only appeared in third order inJ3 . This result disagrees with
ours @see Eq.~3.9!#. It is unclear to us what is the origin of
this discrepancy. The work by Gaitondeet al. relies on a
rather complex lattice perturbation theory calculation of the
interlayer correlation effects. In our work we have evaluated
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the same correlation effects but within a continuum approxi-
mation which makes the computation more transparent and
easy to check. We have used a cutoff only for the space
components of the momentum transfers in our Feynman dia-
grams. The form of the cutoff that we chose closely mimics
the effects of the lattice. Thus, it is unlikely that the discrep-
ancy could be due to different choices of cutoffs. Similarly,
the discrepancy appears at very weak interlayer coupling
whereJ3!umu, whereumu is the magnitude of the mass of
the chiral excitations on each layer. Although it is conceiv-
able that this discrepancy could be due to highly energetic
processes which may be treated differently by both cutoff
procedures, this appears to be unlikely since the massumu is
very large in this regime. Barring some numerical difficulty
~which is possible in such involved calculations!, the absence
of a correction which depends on the relative sign of the
mass in the lattice calculation@to the same order as the one
given by Eq. ~3.9!# points to the occurrence of a special
cancellation which we do not see in the effective continuum
theory. We have also checked our result with other choices of
cutoff on the space components and we have always found
the same effect. Only in one instance, when we used a rela-
tivistic form of the cutoff, isotropic in both space and time,
we found it necessary to go to third order inJ3 , which re-
sembles the result reported by Gaitondeet al., but even in
that case we found that theantiferromagneticordering of
chiralities is the one energetically favored. However, the
relativistic cutoff is certainly the one which is most unlike
the lattice cutoff. In view of these considerations, we
strongly believe that our treatment is robust and reliable.

IV. LANDAU-GINZBURG EFFECTIVE THEORY

We want to study the behavior of the low-energy modes
for this system. The approach we are taking here is to derive
an effective theory for the fluctuations of thew fields and the
gauge fields. We want to study and characterize the phase
diagram at the tree level approximation or Landau-Ginzburg
approximation, and further on, investigate the effects of the
fluctuations. We showed that there exist critical values for
the coupling constants which possibly mark a transition be-
tween a symmetric or noncondensed phase for thew fields

and a phase in which at least the scalar channel acquires an
expectation value. The Landau-Ginzburg theory to be de-
rived in this section will allow us to study the actual nature
of this phase transition. We expand the fermionic determi-
nant in a gradient expansion for slow varying modes of the
fields in which we are interested.

We derive an effective action only for the scalar channel.
This particular channel is the one that first undergoes a con-
densation, for the case of an antiferromagnetic ordering of
the chiralities, since it has the lowest critical coupling con-
stant with a positive value. The other three channels will
remain massive modes and consequently they can be inte-
grated out of the theory. This process will involve renormal-
ization of the parameters of the system but it will not affect
dramatically the underlying physics. On the contrary, the sca-
lar channel effectively undergoes a transition as the critical
value of the coupling constant is approached and crossed.
The bosonic excitations become massless at the transition
point and we want to study the physics on both sides of this
transition. We use the definitionsA1

m (x)[AL
m(x)1AU

m(x)
and A2

m (x)[AL
m(x)2AU

m(x) for the in-phase and out-of-
phase gauge fields, respectively. The covariant derivative is
defined asDm[]m2 iAm

2 .
The details of the calculation are described roughly in

Appendix B. The following effective action is obtained by
Fourier antitransforming the contributions of the one-loop
diagrams up to order 1/N, whereN is the fermion species
number. This includes bubble diagrams with up to four legs,
since each of these legs represents the fluctuating part of
either a matter or a gauge field, which has been previously
rescaled by a factor 1/AN. The loop integration adds a factor
of N coming from the number of fermions propagating in the
loop. From these diagrams we keep terms up to second order
in the external momenta. In real space we find various terms;
we get a contribution involving only the gauge fields which
we call S gauge

(0) . This arises from the fermion loops corre-
sponding to the propagation of spinon-hole pairs inside each
plane, without mixing. It contains the usual square of the
field strength tensor and the induced Chern-Simons term. In
theA(1)- A(2) coordinates this term is off diagonal, since the
sign of time-reversal invariance is opposite between the
planes,

S gauge
~0! ~x!5

1

16pE dx3emnl@F ~1 !
mn ~x!A~2 !

l ~x!1F ~2 !
mn ~x!A~1 !

l ~x!#2
1

64pumu E dx3@F ~1 !
mn ~x!Fmn

~1 !~x!1F ~2 !
mn ~x!Fmn

~2 !~x!#.

~4.1!

The following term has a free part for the fieldw and another part coupling this field to the gauge fields. A term coupling the
gauge-invariant current for the matter fieldw to the field strength tensor of the in phase gauge field is also present,

S w
~1!~x!5

1

4pumu E dx3F S ]m1
i

AN
Am

2~x!D w* ~x!S ]m2
i

AN
A2

m ~x!D w~x!G2
1

32p

1

umu2E dx3emnlF ~1 !
mn ~x!J~2 !

l ~x!.

~4.2!

In Eq. ~4.2! we have defined the current operator for the fieldw as

Jl
~2 !~x!5 i @w* ~x!]lw~x!2w~x!]lw* ~x!#1

2

AN
Al

~2 !~x!uw~x!u2. ~4.3!
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Notice that all the terms are manifestly gauge invariant as it should be, since this symmetry was present before we integrated
out the fermions. Notice also that the matter field couples only to the out-of-phase or relative gauge field. This is consistent
with the symmetry of plane exchange which remains intact if the magnitude of the fermion mass is the same on both planes.
In other words, the original theory was invariant under the exchange ofAL andAU and the sign of the masses. This invariance
should remain at this level for our approximation to be consistent. However,A(2) changes sign under this operation. This
amounts to a reversal of the sign of the charge, or charge conjugation, and consequentlyw has to be conjugated. This renders
the covariant derivative term and the gauge-invariant current unchanged. On the other hand,F (1)

mn is invariant under plane
exchange. All the other terms are even onA(2) and our effective action verifies the plane interchange symmetry. Finally, from
the contributions coming from the four-leg diagrams which are of second order in the external momenta we can derive the
higher-derivative terms

S ~2!~x!5
1

16p

1

umu3 H E dx3uD2w~x!u22
2

3E dx3@$Dm ,Dn%w~x!#* @$Dm,Dn%w~x!#1
1

2E dx3Fmn
~2 !~x!F ~2 !

mn ~x!uw~x!u2

1
1

6E dx3Fmn
~1 !~x!F ~1 !

mn ~x!uw~x!u2J . ~4.4!

We also get a self-interacting term forw given by

S self~x!52
1

N

1

4pumu E dx3uw~x!u42S 1g2
1

gc
D E dx3uw~x!u2. ~4.5!

In Eq. ~4.5! above, we use the definition forgc introduced in Sec. II, i.e., 1/gc5L/2Ap. In order to rewrite this effective
action in a simplified way we introduce some field rescaling and define the coupling costants

w~x![A4pumuf~x!, A~2 !
m ~x![ANA~2 !

m , m0
2[4pumuS 1g2

1

gc
D , l[

4pumu
N

,

u[
N

2p
, e2[

16pumu
N

, GA[
1

8umu
, and Ḡ[

1

4m2 .

By plugging all of these in, we obtain

Lgauge5
u

8
@ F̃l

~1 !~x!A~2 !
l ~x!1F̃l

~2 !~x!A~1 !
l ~x!#2

1

4e2
@F ~1 !

2 ~x!1F ~2 !
2 ~x!#, ~4.6!

whereF̃l[emnlF
mn is the dual of the field strength tensor. We also get a Lagrangian density for the fieldf given by

Lf5]mf* ]mf2m0
2ufu22lufu41L I , ~4.7!

where

L I[ i @f* ~x!]mf~x!2f~x!]mf* ~x!#@A~2 !
m ~x!2GAF̃ ~1 !

m ~x!#

1uf~x!u2FA~2 !
2 ~x!22GAF̃ ~1 !

m ~x!Am
~2 !~x!1ḠS 12F ~2 !

2 ~x!1
1

6
F ~1 !
2 ~x! D G . ~4.8!

In Eq. ~4.8! we dropped the higher-derivative terms which
appear in Eq.~4.4!, except for the antisymmetric parts which
involve renormalizations of the~different! effective charges
for the in-phase and out-of-phase gauge fields.

V. SYMMETRIC PHASE

In this section we want to study the physics of the regime
in which there is no condensation of the fieldf for the
effective theory derived in the previous section, i.e., where
f has a vanishing vacuum expectation value. This phase
consists of the bilayer system with relatively opposite broken
time-reversal invariance between both planes, but the differ-
ence with the case of decoupled planes is that they are now

linked through the fluctuations of the fieldf. This field rep-
resents a massive boson-like mode with mass given bym0
defined in the previous section by

m0
25

1

g
2

1

gc
5

vF
~2a!2J3

2
L

2Ap
5

r

2aJ3
2

L

2Ap
. ~5.1!

The magnitude of this mass measures the distance to the
critical point. In this phase we are on the side of the transi-
tion in whichm0

2.0. It clearly corresponds to a weakly in-
terplane coupling regime, i.e., the limit of smallJ3 . Thef
field can be integrated out to get an effective action for the
gauge fields only. However, for our approximations to be
consistent we need to assume thatm0

2 is much smaller that

53 8717BILAYERS OF CHIRAL SPIN STATES



the fermion massm. In other words, our results are valid on
a window not to close to the phase transition~wheref be-
comes massless asg→gc andm0→0) but also not too far
from the transition so that the mass of the collective mode
represented byf never becomes comparable to the fermion
mass.

We are going to show that there is no renormalization
of coefficient of the Chern-Simons terms that had been in-
duced by the fermionic fluctuations on the planes, arising
from the fluctuations off, at least to order 1/N. There are
‘‘charge’’ renormalizations in the sense that the coefficients
of the field strength tensor for bothA(1) andA(2) get renor-
malized. Furthermore, we will show that the spectrum of
low-energy excitations in this phase has two massive pho-
tons, whose masses do not violate the gauge symmetry but

they break parity and time-reversal invariance, and are
very effective in taming the fluctuations of the gauge fields.
In a sense we still have pretty much the same physical
picture corresponding to two decoupled chiral spin liquid
with opposite relative breaking of time-reversal invariance.
Consequently we will still have deconfined spinon as the
elementary excitations of the system. The issue of the statis-
tic of the quasiparticles is a little more involved as we dis-
cuss below.

Starting from the effective action derived in the previous
section we can integrate out perturbatively the fieldf. This
gives a result valid within the region of applicability of the
gradient expansion.

The integration overf gives the effective action~for
smallAm) We have

E DfDf* expiS ~f,Am!5exp@ iS gauge~Am!#E DfDf* expF i E dx3LfS 11 iL I2
1

2
~L I !

2D G
5Z0exp~ iS gauge!H 11 i ^ i ~f* ]mf2f]mf* !&@A~2 !

m 2GAF̃ ~1 !
m #

1 i ^ufu2&FA~2 !
2 22GAF̃ ~1 !

m Am
~2 !1ḠS 12F ~2 !

2 1
1

6
F ~1 !
2 D G

2
1

2
^ i 2~f* ]mf2f]mf* !~f* ]nf2f]nf* !&@A~2 !

m 2GAF̃ ~1 !
m #@A~2 !

n 2GAF̃ ~1 !
n #J . ~5.2!

The cumulant coefficients can be computed in the usual
way12 to find

i ^uf~x!u2&52E dq3
1

q22m0
2 52#sing2

i

4p
umu ~5.3!

and

2
1

2
^@ i ~f* ]lf2f]lf* !#@ i ~f* ]hf2f]hf* !#&

5S #sing1 i

4p
umu Dglh . ~5.4!

Both integrals in Eq.~5.3! and Eq.~5.4! have a linear ultra-
violet divergence and need to be regularized. One can use
any of the usual regulators, for example Pauli-Villars or
minimal subtraction~which is equivalent to an analytical
continuation of the negative argumentg function.! However,
the finite part of both integrals after we treated them with the
same regulating scheme is exactly the same but with oppo-
site sign. This should be the case since it is required to pre-
serve gauge invariance. In other words, we cannot generate a
AmA

m term in the symmetric phase because such a term
would manifestly break gauge invariance and we know this
is not the case. Therefore, the termAlAl3^ufu2& in the
right-hand side~RHS! of Eq. ~5.2! should cancel exactly
~and it does! the termAlAh^ i 2(f* ]lf2f]lf* )(f* ]hf
2f]hf* )&. Notice that by the same token the term which

could have given a renormalization of the cross Chern-
Simons terms gets canceled. In a sense, it is also gauge in-
variance which prevents the cross Chern-Simons terms from
being renormalized.

A minimal subtraction procedure will consist in the com-
plete removal of the singular part. In fact, any cutoff proce-
dure which preserves gauge invariance would work as well.
It can be shown that our regularization prescription is en-
tirely equivalent to the introduction of a Gaussian spherical
cutoff in the imaginary frequency~or Euclidean! reciprocal
phase space. A term of the form exp@2(p/L2)(qE

21m0
2)# does

the job for us. One should be aware, however, that this cutoff
is not exactly the same used in Secs. II and III since there the
cutoff was Gaussian isotropic on the spatial components of
the momentum but the frequency range was unbounded.
Here that cutoff procedure would not work because it breaks
gauge invariance. In Secs. II and III gauge invariance was
not at stake and we were trying to implement a regularization
that resembles closely what happens on a lattice. It should
also be noticed that, although aparently the same fieldw is
involved in both cases, we were dealing before with ultra-
violet divergences of a fermion loop integral, while here the
field propagating is the bosonic fieldw itself. In other words,
we were dealing in the previous sections with the self-energy
of the fieldw while here we are dealing with the self-energy
of the photon or the gauge fields. Finally we do get renor-
malizations for theF (1)

2 andF (2)
2 terms.

After this procedure is applied, we are left with the regu-
larized ~finite! form of Eq. ~5.2!,
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Zreg5exp~ iS gauge!H 11
i

4p
umuF Ḡ2 F ~2 !

2 1
Ḡ

6
F ~1 !
2 22GA

2F ~1 !
2 G J

'expS i E dx3LeffD , ~5.5!

where

Leff5
u

8
~ F̃l

~1 !A~2 !
l 1F̃l

~2 !A~1 !
l !2S 1

4e2
2

1

4p
umu

Ḡ

2 DF ~2 !
2 2S 1

4e2
2

1

4p
umuF Ḡ6 22GA

2 G DF ~1 !
2 . ~5.6!

In Eq. ~5.6! we used thatF̃l
(1)F̃ (1)

l 52F (1)
2 .

We now explore the energy momentum dispersion relation. The low-energy collective modes are fluctuations of the gauge
fields. We will show that there exists a photonlike mode but it is massive. This is of great importance for the survival of
spinons in the energy spectrum~see for example Ref. 12!. The regularized~finite! theory has the form

S eff~Am!5E dx3F2c2F ~2 !
2 2c1F ~1 !

2 1
u

8
emnl~F ~1 !

mn A~2 !
m 1F ~2 !

mn A~1 !
m !G , ~5.7!

where

c25
1

64pumu ~N22!

and

c15
1

64pumu SN2
1

6D .
In momentum space we have

S eff~Am!52E
p
@A~2 !

m ~p!A~1 !
n ~p!#F 2c2~p2gmn2pmpn! i

u

4
emlnp

l

i
u

4
emlnp

l 2c1~p2gmn2pmpn!
G S A~2 !

m ~2p!

A~1 !
n ~2p!

D
[E

p
Aa

m~p!@c0~p
2gmn2pmpn!Iab1c3~p

2gmn2pmpn!T3
ab1k0emlnp

lT1
ab#Ab

n , ~5.8!

with a,b5(2),(1) and m,n the usual Lorentz indices,
c052(c21c1), c352(c22c1), andk052 i u/4 .

This is a bilinear form inAa
m and the propagator for the

gauge fields is just the inverse of the matrix shown in Eq.
~5.8!. However, this matrix is singular unless we fix a gauge.
This is so because the gauge field propagator^Aa

mAb
n& is not

a gauge-invariant operator and does not have a physical
meaning unless we are working in a particular gauge. We
need to add gauge fixing terms in order get the propagator.
We may add for example,

2
1

a
~]mA~2 !

m !2

and

2
1

b
~]mA~1 !

m !2,

which in momentum space take the simple form

2
1

a
pmpn

and

2
1

b
pmpn .

The three operatorsP̂mn[pmpn , Ĝmn[p2gmn , and
K̂mn[emlnp

l satisfy a closed algebra, and now the matrix
can be inverted. After some lengthy though fairly straightfor-
ward algebra one gets

D~c2 ,c1 ,u,a,b!5S D̂mn
~2 !~2 ! D̂mn

~2 !~1 !

D̂mn
~1 !~2 ! D̂mn

~1 !~1 !D , ~5.9!

given by

D̂mn
~2 !~2 !52

1

2c2
S gmn2

pmpn

p2 D 1

p22Mph
2 2a

pmpn

p2
,

~5.10!
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D̂mn
~1 !~1 !52

1

2c1
S gmn2

pmpn

p2 D 1

p22Mph
2 2b

pmpn

p2
,

~5.11!

D̂mn
~2 !~1 !5D̂mn

~1 !~2 !5 i
u

4

1

4c2c1

1

p2
emlnp

l
1

p22M ph
2 ,

~5.12!

where we defined

Mph5A u2

64c2c1
5

8pumuu

A~N22!~N21/6!

5
4umu

AS 12
2

ND S 12
1

6ND
~5.13!

as the ‘‘photon’’ mass.13 To leading order in 1/N we can
rotate back to theAL , AU coordinates to get~in the Lorentz
gaugea5b50)

D̂LL564p
1

N
umu

1

p22Mph
2 F S gmn2

pmpn

p2 D14i umuemln

pl

p2G
~5.14!

and

D̂UU564p
1

N
umu

1

p22Mph
2 F S gmn2

pmpn

p2 D24i umuemln

pl

p2G .
~5.15!

To next order in 1/N corrections we find additional off-
diagonal symmetric mixing terms.

VI. BROKEN-SYMMETRY PHASE

In this section we want to study the phase where the mat-
ter field f condenses. Let us assume that we went through
the critical point into the phase wherem0

2 in Eq. ~5.1! be-
comes negative. From Eq.~4.7! we now have another pos-
sible solution with finitê f&, which actually minimizes the
energy. This is the usual nontrivial solution for a double-well
effective potential of af4 theory. Whenm0

2 becomes nega-
tive, the solutionf50 now becomes a local maximum in-
stead of a minimun. The value of the new local minimun can
be obtained by minimizing Eq.~4.7! to be f̄0

252m0
2/2l,

where we are using the definitions given in Sec. IV. If we
plug in this constant value off0 , Eq. ~4.8! becomes

L I5f0
2FA~2 !

2 ~x!22GAF̃ ~1 !
m ~x!Am

~2 !~x!

1ḠS 12F ~2 !
2 ~x!1

1

6
F ~1 !
2 ~x! D G . ~6.1!

As in the symmetric case we have

Lgauge5
u

8
@ F̃l

~1 !~x!A~2 !
l ~x!1F̃l

~2 !~x!A~1 !
l ~x!#

2
1

4e2
@F ~1 !

2 ~x!1F ~2 !
2 ~x!#. ~6.2!

Now our effective action for the gauge fields reads

S eff~Am!5E dx3Ff0
2A~2 !

2 1S u

8
2f0

2GAD
3emnl~F ~1 !

mn A~2 !
m 1F ~2 !

mn A~1 !
m !G

2c2F ~2 !
2 2c1F ~1 !

2 , ~6.3!

where the new coefficients are

f0
252

m0
2

2l
52

N

8pumu
m0
2 , ~6.4!

where nowm0
2,0

c25
1

4e2
2f0

2 Ḡ

2
5

N

64pumu S 11
m0
2

m2D , ~6.5!

c15
1

4e2
2f0

2 Ḡ

6
5

N

64pumu S 11
1

3

m0
2

m2D , ~6.6!

and we definek0 to be

k0522i S u

8
2f0

2GAD 52 i
u

4 S 11
1

4

m0
2

m2D
52 i

N

8p S 11
1

4

m0
2

m2D . ~6.7!

We still need a gauge fixing term forA(1) . In this way we
recover the structure of Eq.~5.8! with minor changes. The
photon mass has changed to

M ph5A16m2S 12
4

3

m0
2

m2D'4umuS 12
2

3

m0
2

m2D . ~6.8!

The propagator for the out of phase fieldA(2) still corre-
sponds to a massive field, which also has a longitudinal com-
ponent

D̂mn
~2 !~2 !52

1

2c1
S gmn2

pmpn

p2 D 1

p22Mph
2 2

pmpn

f0
2 ,

~6.9!

D̂mn
~1 !~1 !52

1

2c1
S 12

f0
2

2c2

1

Mph
2 D S gmn2

pmpn

p2 D 1

p22Mph
2

2
f0
2

4c2c1Mph
2 S gmn2

pmpn

p2 D 1

p2
2b

pmpn

p2
,

~6.10!

D̂mn
~2 !~1 !5D̂mn

~1 !~2 !5 i
u

4 S 11
m0
2

4m2D 1

4c2c1

1

p2

3emlnp
l

1

p22M ph
2 . ~6.11!

Equations ~6.9!,~6.10!,~6.11! give the propagators of the
gauge fields in the condensed phase. By assumptionm0

2 is a
small parameter, since our approximation is valid for the
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vicinity of the phase transition wherem0
2 is small~in units of

the fermion mass! and measures the distance to the critical
point. Notice that, in this phase, the expansion in powers of
1/N has become an expansion in powers of this new param-
eter. This is consistent with our approximation because a
gradient expansion amounts to an expansion in powers of an
inverse~large! length scale, which in our case is set by the
fermion mass or, in other words, by the spinon gap of the
decoupled system. On the other hand, the ‘‘photon’’ mass is
fairly large in this phase.

We conclude this section with a qualitative description of
the excitation spectrum in the broken-symmetry phase. Let
us look first at the gauge excitations. In looking at Eq.~6.10!
we notice the existence of amasslessgauge mode in the
spectrum. The existence of this massless mode implies that
any excitation which couples to theA(1) component of the
gauge field experiences an effectivelong-range~logarithmic!
force mediated by the massless mode. In particular, the
spinonexcitations of the individual planes~which are semi-
ons in the unbroken phase! become permanently confined by
the massless gauge fields. Recall that the logarithmic force is
actually replaced by a confinig potential due to the strong
fluctuations of the gauge fields dominated by monopolelike
configurations.12,15,16In a sense, this makes fractional statis-
tics unobservable since the quasiparticles which were able to
bear it are no longer present in the spectrum. This spectrum
is consistent with the fact that the statistical parameteru is
not well defined anymore in this phase~it is no longer a
topological number! since, as can be seen in Eq.~6.3!, it is
now modified by a term proportional to the magnitude of the
order parameterf0 . Also, in the broken-symmetry phase,
the time-reversal-breaking mass coming from the coefficient
of the Chern-Simons term is no longer effective in controling
the fluctuations of this particular mode. Actually, in this
phase, the Higgs mechanism that takes place conspires to
give a mass to the gauge fieldA(2) , breaking spontaneously
its gauge symmetry, while leaving the in-phase fieldA(1)
untouched. In some sense the breaking of the phase symme-
try enables the in-phase gauge field to become massless.

This phenomenon is in striking contrast with the conven-
tional Higgs-Anderson mechanism in which a spontaneously
broken symmetry renders a gauge field massive. The remain-
ing out-of-phase component is massive and its mass is huge
@see Eq.~6.8!#, i.e., of the order of the fermion mass. This
huge mass supresses the fluctuations of the fieldA(2) and, in
this manner, it restores the broken time-reversal invariance
that was present in the decoupled bilayer system. In particu-
lar, this spectrum implies that the only allowed fluctuations
of the bilayer system are such that the chiralities of the
planes become rigidly lockedlocally. Only in-phase, long-
wavelength fluctuations of the chiralities are allowed. Since
the two chiralities have opposite sign, we conclude that, in
this phase, there is alocal cancellationof the chiralities of
the planes. Hence, chiral fluctuations are eliminated from the
physical spectrum. Recall17 that if a Chern-Simons term
were to be present, the monopole configurations would be
suppressed and fractional statistics would become observ-
able. This is precisely what happens in the symmetric phase.

The spectrum that results from our analysis of the phase
with broken symmetry is strikingly similar to the spectrum of
the bilayer system in the singlet phase discussed by Sandvik

and Scalapino8 and Millis and Monien.7 In fact, we believe
that the two phases are the same phase and that the broken-
symmetry phase is a phase with spin singlets connecting the
two layers.

VII. CONCLUSIONS

In this paper we have reconsidered the problem of the
selection of the relative sign of the chiralities of two planes
with chiral spin liquid states coupled via an exchange inter-
action. We found that the exchange coupling selects thean-
tiferromagneticordering of chiralities and, thus, thatT and
P are not broken in bilayers. This result holds for both signs
of the interlayer exchange constantJ3 . Hence, even if each
plane has a net chirality, the bilayer system does not. Such a
system will not give rise to any unusual optical activity in
light scattering experiments. We determined the phase dia-
gram of the bilayer system and found a phase transition to a
valence bond~or spin gap! state. Our analysis reveals the
presence of an unusual ‘‘anti-Higgs-Anderson’’ mechanism
which is responsible for wiping out all trace of broken time-
reversal invariance in the valence-bond state. In a separate
publication we will report on results on the quantum num-
bers of the excitations and on the form of the wave function
for the bilayer system.
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APPENDIX A: COMPUTATION OF THE BUBBLE
DIAGRAMS

In this appendix we go through the computation of the
correction to the energy of the ground state. The expressions
given by Eqs.~3.3!–~3.5! are obtained from a one-loop dia-
gram. In momentum space,

K ~qW !5 i E dk3

~2p!3
Tr@~k”1mL!ŵ~qW !~k”2q”1mU!ŵ* ~2qW !#

~k”k”2mL
2!@~k”2q” !~k”2q” !2mU

2 #
,

~A1!

with the definitions of Sec. II. In computing the expression
given above the following identities involving~211!-
dimensional Diracg matrices will be important:

gagb5gab1 i eabcg
c, tr~gagb!52gab ,

tr~gagbgc!52i eabc ,

tr~gagbgcgd!52~gabgcd1gadgbc2gacgbd!. ~A2!

The integral in Eq.~1.1! needs to be regularized; i.e., we
need to cut off the unphysical ultraviolet divergence due to
the integration over momentumkW . There is a natural cutoff
in the original theory, which is the lattice spacing. However,
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in going to the continuum approximation we encounter the
usual field theory divergences.

There are several methods for regulating this type of in-
tegral. The important point is that they should preserve the
physical symmetries involved in the problem. For the case of
a gauge field there are well-established procedures such as
the Pauli-Villars or the dimensional regularization methods.
It can be shown that they preserve transversality~i.e., gauge
invariance!. In the case of thew fields, we do not have such
a symmetry to preserve. In fact, not even Lorentz invariance
is preserved. We have a length scale given by the lattice
spacing, which in turn provides the momentum cutoffL that
was mentioned in Sec. II. On the lattice there is no cutoff for
the frequency integral. Thus, our regulating procedure is as
follows. First we perform a subtraction at the level of the
integrands. This is equivalent to writing the kernels in Eq.
~1.1! in the following way:

K j~qW ![K j~0!1@K j~qW !2K j~0!#. ~A3!

In this expression only the first term has an ultraviolet diver-
gence. The term between brackets is convergent and can be
calculated using standard methods. In the computation of
K j (0) we integrate first over frequency without any cutoff.
This integral is still finite. After this step, we introduce an
isotropic Gaussian cutoff for the space directions of order
L'1/a0 wherea0 is the lattice spacing. However, once the
integration over frequency has been performed, the finite
contribution of the divergent termK j (0) is independent of
the particular form of the cutoff being used.

The computation ofK j (0) with j50,1,2,3 is nothing but
the calculation of the critical coupling constants performed
in Sec. II. We have

K 3~0!5 i tr@ŜL~kW !t3ŜU~kW !t3#5
1

2Ap
L2

1

2p
m~11s!,

~A4a!

K 0~0!5 i tr@ŜL~kW !g0ŜU~kW !g0#5
1

2p
m~12s!,

~A4b!

K j~0!5 i tr@ŜL~kW !g jt j ŜU~kW !g jt j #

52
1

4Ap
L2

1

2p
m~12s!, ~A4c!

where j51,2. To getK 3(qW )2K 3(0) we need to integrate

I 3
E524E dk3

~2p!3

3
~k21m2!qW •~qW 2kW !1m2~11s!qW •~2kW2qW !

~k21m2!2@~k2q!21m2#
,

~A5!

where k2, q2, kW , and qW refer to the imaginary frequency
rotated form of the trivectors km and qm , and
s5sgn(mL)•sgn(mU).

For the frequency channel given byw0 we get after rotat-
ing to an imaginary frequency

I 0
E524E

k
H @2k0q01qW •~kW2qW !#~k21m2!2qW •~2kW2qW !@2k3

21m2~12s!#

~k21m2!2@~k2q!21m2#
J . ~A6!

For the channels given byw1 andw2 we obtain expressions similar to the one forw0 with k0 exchanged byk1 or k2 in each
case. The kernel for the spatial channels also have an opposite sign toK 0(qW )2K 0(0).

We may write down the denominators in Eq.~1.5! and Eq.~1.6! in the form

1

DE@m2#
5E

0

1

du~12u!E
0

`

l 2dle2l lW 2e2l@m21u~12u!qW 2#. ~A7!

In Eq. ~A7! we performed the change of variablesl5a1b andu5b/(a1b), we definedlW[kW2uqW , and once again, for
simplicity, we restricted to the caseumLu5umUu5m. After integrating overk ~or, rather,l ) andl and a simple change of
variables, Eq.~A5! becomes

I 3
E5

1

2p Hm~11s!2
2

uqW u
sin21S uqW

A4m21qW 2
D Sm2~11s!1

1

2
qW 2D J . ~A8!

For the vector channels we get
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I j
E5

1

2p
gj j Hm~s12k j

213k j
4!1

2mqW 2

4m21qW 2
~k j

42k j
2!J

2
1

2p
gj j F2m2s14m2S k j

21
3

2
k j
4D 2

qW 2

2
~123k4!G 1uqW u

sin21S uqW u

A4m21qW 2
D . ~A9!

In Eq. ~A9!, gj j only indicates that the channels given by
w1 andw2 give a contribution with sign opposite to the one
given by w0 . Also, we have definedk j[qj /uqW u and
c[114m2/qW 2. The expressions given by Eqs.~3.3!–~3.5!
can now be obtained simply by combining Eq.~A4! with Eq.
~A8! and Eq.~A9!.

APPENDIX B: GRADIENT EXPANSION

In order to obtain an effective theory valid for long-
wavelength excitations, in momentum space we only need an
expansion to the few lowest orders in the external momenta
of the diagrams, since each external momentum will generate
a space derivative in the Fourier antitransformed expression.
Here we pursue further the expansion indicated by Eq.~3.1!.

However, instead of computing the loop diagrams exactly as
we did in order to calculate the correction to the ground-state
energy in Sec. III, we expand up to second order in the
external momenta. Notice that we are integrating out neither
the gauge fields nor thew fields in this case.

1. Diagrams with two external legs

We showed in Sec. III that the classical energy is of
O (N). From the expansion of the logarithm of the determi-
nant, to second order in powers of the~small! fluctuating
fields contained in the operatorQ̂ of Sec. III, which now also
includes the gauge fields in the planes—or toO (1) in the
1/N expansion—we have

i
1

2E dx3~ŜQ̂ŜQ̂!5
i

2EqEktr@ŜL~kW !A” L~qW !ŜL~kW1qW !A” L~2qW !#

1
i

2EqEktr@ŜU~kW !A” U~qW !ŜU~kW1qW !A” U~2qW !#

12
i

2EqEktr@ŜL~kW !ŵ~qW !ŜU~kW1qW !ŵ~2qW !#. ~B1!

As a shorthand we have used the notation
*dk3/(2p)3[*k .

For the gauge fields alone, the diagram has an ultraviolet
divergence that needs to be treated. We use dimensional
regularization to ensure transversality, i.e., to preserve gauge
invariance. The calculation is similar to the one shown in
Chap. VII of Ref. 12. The first two lines of the RHS of Eq.
~B1! give *qPmn

LL(q)AL
m(q)AL

n(2q) where

Pmn
LL~qW !5 i emnlq

lPA
LL~q2!1~qmqn2q2gmn!PS

LL~q2!,
~B2!

with

PA
LL~q2!5

1

2p

m

Aq2
sinh21S 1

A4m2

q2
21

D ~B3!

and

PS
LL~q2!5

1

8p

1

Aq2F 2
2umu

Aq2
1S 11

4m2

q2 D

3sinh21S 1

A4m2

q2
21

D G , ~B4!

and the corresponding expression (UU) for the upper plane.
This is the full expression for the polarization tensor for the
gauge fields. The small momentum limit for Eq.~B2! is
given by

1

4p

m

umu
i emnlq

l1
1

16p

1

umu ~qmqn2q2gmn!.

Notice that the fermion mass with its sign enters the antisym-
metric part ofPmn

LL . Therefore, for an antisymmetric order-
ing of chiralities in the ground state,PA

LL andPA
UU will bear

opposite signs. In fact, the ratiom/umu in our case is actually
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always positive 1, since the signs of the masses have already
been taken into account when definingŜL andŜU in Sec. III,
and we are considering the case when the magnitude of the
masses is the same on both planes. From now on, we give
the details for the computation of the one-loop diagrams in-
volving exclusively the scalar channel. The third line in Eq.
~B1! can be rewritten as

i E
q
E
k
tr@ŜL~k!t3ŜU~k1q!t3#uw~q!u2. ~B5!

This expression is similar to the ones we encountered in the
previous appendix. Since we are interested in a small exter-
nal momentum expansion, the exact expression shown above
can be approximated by

2i E
q
E
k
trF ŜL~k! (

n50

`

~21!n~ŜU~k!q” !nŜU~k!G uw3~q!u2,

~B6!

which gives the result

E
q
uw3~q!u2F 1p ~AL21m22Am2!1

1

4p

1

~m2!1/2
qmq

mG .
~B7!

The above expressions are valid up to second order in the
external momenta of the one-loop diagram, i.e., in the mo-
menta of the fieldw or in the momenta of the gauge fields.

2. Diagrams with three external legs

The next term in the expansion of the logarithm of the
fermionic determinant is

2
1

AN
i

3E dx3~ŜQ̂!352
3

AN
3
i

3EpEqEkTr $ŜL~k!gmŜL~k1p!ŵ~q!ŜU~k1p1q!@ŵ~p1q!#* %AL
m~p!

2
3

AN
3
i

3EpEqEkTr $ŜU~k!gmŜU~k1p!@ŵ~2q!#* ŜL~k1p1q!ŵ~2p2q!%AU
m~p!. ~B8!

Both terms in the RHS of Eq.~2.8! are similar. It can easily be shown that the zeroth-order term in external momenta vanishes.
For the scalar channel only, up to second order in the external momenta, the three-leg one-loop diagrams give the contribution

2
1

AN
1

4p

1

umu Eq,s,p~qm2sm!@AL
m~p!2AU

m~p!#d~p1s1p!w~q!@w~2s!#*

1
i

AN
1

8p

1

umu2
emnlE

q,s,p
@AL

m~p!1AU
m~p!#pnsld~p1s1p!w~q!@w~2s!#* . ~B9!

3. Diagrams with four external legs

The fourth order in the expansion of the logarithm of the fermionic determinant gives

i

4NE dx3~ŜQ̂!451
i

NEl ,p,q,kTr $ŜL~k!gmŜL~k1p!gnŜL~k1p1 l !ŵ~q!ŜU~k2s!@ŵ~2s!#* %AL
m~p!AL

m~ l !

1
i

NEl ,p,q,kTr $ŜU~k!gmŜU~k1p!gnŜU~k1p1 l !ŵ~q!ŜL~k2s!@ŵ~2s!#* %AU
m~p!AU

m~ l !

1
i

NEl ,p,q,kTr $ŜL~k!gmŜL~k1p!ŵ~q!ŜU~k1p1q!gnŜU~k2s!@ŵ~2s!#* %AL
m~p!AU

m~ l !

1
i

2NEl ,p,q,kTr $ŜL~k!ŵ~p!ŜU~k1p!@ŵ~q#* ŜL~k1p1q!ŵ~ l !ŜU~k2s!@ŵ~2s!#* %

1terms involving four gauge fields. ~B10!

From this expression we are going to consider only the four first lines on the RHS of Eq.~B10! as they will show to be the
relevant terms for our gradient expansion. As we did before, we consider only the scalar channel. The third term on the RHS
of Eq. ~B10! gives a total contribution, valid to first order in the external momenta, that looks like
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2
1

N

1

16p

1

~m2!1/2H 8gmn1
m

umu
tr@gmgn~p”1 l”!#JAL

m~p!AU
n ~ l !w3~q!@w3~2s!#* . ~B11!

The contribution coming from the first term on the RHS of Eq.~B10! is

2
1

N

1

16p

1

~m2!1/2H 24gmn1
m

umu
tr@gmgn~p”1q” !#JAL

m~p!AL
n~ l !w3~q!@w3~2s!#* . ~B12!

The second term on the RHS of Eq.~B10! gives

2
1

N

1

16p

1

~m2!1/2H 24gmn2
m

umu
tr@gmgn~p”1s” !#JAU

m~p!AU
n ~ l !w3~q!@w3~2s!#* . ~B13!

The origin of the relative sign between the antisymmetric parts of Eqs.~B12! and ~B13! is the relative sign of the fermion
masses on the planes.
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