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Theory of flux penetration into thin films with field-dependent critical current

J. McDonald and John R. Clem
Ames Laboratory and Department of Physics and Astronomy, lowa State University, Ames, lowa 50011
(Received 10 October 1995

A theoretical analysis is presented for the critical state of an infinitely long type-ll superconducting strip
characterized by an arbitrary critical current densitgB). An analytical framework is developed, and nu-
merical solutions are presented for the quasistatic current-density and flux-density profiles, as well as the
hysteretic magnetization curves. The field dependence of the critical current density significantly affects the
shape of the magnetization curves.

. INTRODUCTION J., the distribution of vortices, and hen@ changes until
. ) ) ] o the quasistatic equilibrium is restoréd.
There is currently considerable interest in thin-film and  there is an important distinction in critical-state models
platgllke superconductors. '_rhere have been numerous studiggnyeen parallel and perpendicular geometries. As an ex-
of single crystals of the high-temperature superconductorample of the two geometries consider a circular cylinder of

(HTSO), which are often in the form of platelets resembling adiusR and lengthL with an applied field parallel ta. If

thin-film rectangles or disks. Superconducting tapes of _ . . i
HTSC are under development for use in ac power transmis->R’ th.e parallel geometry s realized, whilelit<R, the
sion cable<:? and epitaxial thin-film strips have been under perpendicular geometry obtains. In the parallel geometry, the

investigation for passive microwave applications, such as fipenetrating vortices are mostly parallel to the sample sgrface,
ters for wireless communicaticn® There have been signifi- While in the perpendicular geometry they are curved in the
cant recent developments on the theory of the statics anfgeighborhood of the7san.1ple.surface because of the large de-
dynamics of vortices in thin film& 23 This theoretical work ~Magnetizing effectS.” This difference can be observed by
has been motivated by advances in experimental techniqu&xamining the equatio'VxXB= uqJ, where we have as-
(magneto-optic$, scanning Hall probe¥ Hall arraysi® sumed B=uoH. This equation can be written as
scanning superconducting quantum interference devic€VB) X B+ B(V XB) = uyJ, where B=B/B.%?%2! The first
microscopes? magnetic-force microscopy,etc) for deter-  term on the left-hand side depends on the spatial gradient of
mining magnetic-flux and current-density distributions inthe flux density, while the second term depends on the cur-
thin films. vature of the flux lines. In the parallel geometry the vortex
In this paper we consider a thin-film strip and treat staticlines curve very little and the gradient term dominates. This
or quasistatic magnetic-flux penetration and hysteresis chameans that in the parallel geometry the Lorentz force stems
acterized by a field-dependent critical current densitymainly from gradients in magnetic pressure. In the perpen-
Jc(B). For this purpose, we employ a critical-state dicular geometry, however, the magnetic-field lines bend
model®"*"8In this model the magnetic flux penetrates into around the sample and the tangential component has oppo-
the superconductor in the form of vortices. This penetratiorsite signs on opposite sides of the sample. This leads to a
occurs when the magnetic field at the sample surface exceetigge vortex curvature so that the second term on the left-
the lower critical fieldH.;. The density of vortices is hand side of the equation becomes dominant. Since the
assumed to be large enougi@> 1, where\ is the London  dominant terms are different in the two geometries, the struc-
penetration depihthat the vortices essentially form a con- ture of the critical state is also differeht.
tinuum with average magnetic-flux density parallel to the Recently many theoretical results have been reported for
vortices given by B=n¢,, where ¢o=hc/2e the critical state in thin films characterized by a field-
=2.07x10 7 G cn is the superconducting flux quantim. independentl, (Bean model®”**??23However, since it is
The force per unit volume that tends to drive the vorticesobserved experimentally that=J.(B) in real materials, it
in from the surface is the Lorentz-force densky=-JXB, is desirable to develop theoretical models that take this field
whereJ=V XH. In the absence of a surface barriBrand  dependence into account. This has been done for parallel
H satisfy the Maxwell boundary conditions at the samplegeometry?*~?®but relatively little has appeared in the litera-
surface(continuity of the normal component & and the ture for perpendicular geometry. Kuznetsetal. estimated
tangential component off). In critical-state models, it is the effect of a field-dependedt on the saturated magneti-
typically assumed that, to good approximati®@w weH in zation of a disk in a large magnetic fielti Fedorovet al.
vortex-occupied regions. This is an excellent approximatiorireated the critical state in thin-film disks in a perpendicular
whenB> uoH,;, Which is often satisfied in HTSC. A qua- applied field®® They were able to numerically calculate
sistatic equilibrium obtains when the Lorentz-force densitycurrent-density and flux-density profiles, as well as hysteretic
on the vortex array is balanced by the pinning-force densitymagnetization curves. Schusttral,® Brandt!*'? and Ben-
The maximum pinning-force density is characterized by akraouda and Clehi have shown that quasistatic results, for
critical current densityl.. When the magnitude dfexceeds strips and disks, can be obtained numerically from dynamic
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FIG. 1. Schematic of the strip and coordinate system. An exter- \\
nal field B, is applied perpendicular to the strip. During initial flux \
penetration(a) the outer regionsg< |x|<W) carry a current den- 03 | AN 1
sity Jy(x) = — (x/|x])J¢(B,(x)) and contain a magnetic-flux density AN
obeying Eq.(11). The central region|k|<a) is perfectly screened AN
[B,(x)=0] and carries a current density given by Et0). During 02 \\ ]
field reversal(b) the outer regions g<|x|<W) carry a current S
density J,(x) = (x/|x|)J.(B,(x)) and contain a magnetic-flux den- 0.1 . . ) . S
sity obeying Eq(21). The inner regionsd,<|x|<a) carry a cur- 0.0 0.5 1.0 1.5 2.0

rent density given by Eq20) and contain the frozen-in magnetic-
flux density from the previous flux front. The central region
(|x|<ay) is perfectly screened with a current density given by Eq.
(20). FIG. 2. Results for [see Fig. 18] vs applied fieldB, calcu-
lated from Eqs(11) and(12) during initial penetration. The solid

. . . curve corresponds to the Bean modgl=J.,, while the dashed
computations f_or]c=Jc(B) if thg system is allowed to relax e corresponds to the Kim modal=J.o[ B, /(By+|B,])] with
for an appropriate amount of time. B,/B=5 (B;= odeod/ ).

The purpose of this paper is to present a theoretical frame-
work for the direct quasistatic treatment of the critical state
in thin-film strips that are characterized by an arbitrary _ % X
J.(B). The formalism presented is an extension of a method Hod WZ—x2’
introduced by Mikheenko and Kuzovlé%.In their paper
they treated a disk characterized by a consthntbut the ~ Where uq is the permeability of free space. If this current
method can be app“ed to the Strip geometry and modified t@iensity is integrated with the Biot-Savart kernel, and the re-

Ba/ Bf

(x)= x| <W, @

Jy

include a field-dependeidt, . sult is added to the applied field, the resulting flux density is
0, [xl<w,
Il. FLUX PENETRATION IN THE VIRGIN STATE B,(x)= |X| |x|>W 2
We begin by considering a thin, infinitely long supercon- YV, '

ducting strip of width 2V and thicknessl. The strip is situ-

ated in thex-y plane with its edges dk|=W and its long  These expressions are exact in the lichit: 0, but in the case
dimension parallel to thg axis (cf. Fig. 1). A uniform field ~ of finite d, J,, andB, are understood to be averaged over
B, is applied perpendicular to the striparallel to thez ~ the film thickness. In this case these expressions fail when
axis). We assume initially thaB, is small enough that the the edges of the strip are approached too closely. The cutoff
strip is in the Meissner state. We can use the approximatiolength for Eqs(1) and(2) is d if d>X\, or A if d<\."*

of perfect screening if the width and thickness of the strip When B, becomes large enougte.g., B;=d/WH,,,
satisfy eithern<d<W or d<A<A<W, where\ is the when d<A] vortices will begin to penetrate from the
London penetration depth and=2)\2%/d is the two- edge’?’ These penetrating vortices will be either Abrikosov
dimensional screening lengtft®3°In this perfect-screening or Pearl vortices depending on whettter X or d<\. Dy-
limit, the expressions for the current densigweraged over namic equilibrium will occur when

the thickness of the strjpand the perpendicular component

of the flux density, in the plane of the strip, are well X

known®’ Due to the symmetry of the problem, the current Jy(x)= - MJC(Bz(X))' a<[x|<W. ©)
density has only § component. The expression for the cur-

rent density, in Sl units, is The region|x|<a remains perfectly screen¢fig. 1(a)].
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As demonstrated by Mikheenko and Kuzovféthe ex-
pressions for the Meissner response can also be useful in the , 4
treatment of vortex penetration into a thin film. The key idea
of their method is to expres3,(x) and B,(x) for a flux-

penetrated strip in terms of functions of the form of Eds. 05 i
and(2),
0.0
3,(x)
05 |
<
J'Wd [ —2B, X G(x"By), |x|< 2-1.0
X ——|G(X";Ba), [X|<a, ‘
a /“LOd /X/Z_XZ a - ) )
_ fwd’_ZBa X |e(x'iBy), a<|x<w =
X|——7F ——— X3 y o aA<<|X )
I pod x'Z=x2 2
4)
I [X|
f dx’ Baﬁ G(X/;Ba), a<|x|<W,
a X=X’
BZ(X):
w ]
f dx'| Ba——=—=|G(x';By), W<]x,
a X=X’
5 1.0 05 0.0 05 10
x/W

where G(x’;B,) is called the weight function. Once this

function is dgtermined, bOtﬂy(_X) ff\nd B.(x) can be calcu- FIG. 3. Current-density profiles calculated from E(i0), (11),
lated. There is also a normalization equation @&(x';B;)  and (12 for the Bean modeltop) and Kim model(bottom) with
that comes from requiring the flux density to vanish in theB,/B;=5 for B,/B;=0.8 (solid), B,/B;=1.3 (dashed, and

region|x|<a, B,/B;=2.4 (dot-dashe Bold arrows indicate the progression of
the profiles as the applied fiell, increases.
w
f dx'G(x";By)=1. (6) J.(%)
a y

Equation(6) yields the constitutive relation betwe&y and 2 W J(BA(X'
aq ®)y & __me dx’ c(Bx(x")) L Ixl<a,
. _ ™ a  (X'?2-x?)Yx'’-a
To solve forG(x’;B,), we invoke the force-balance re- =
guirement of Eq(3),

X
- MJC(BZ(X)), a<|x|<w,

J, o e X J6(x'iBa =~ JBX) o
X ———|G(x';By)=— X)),
X MOd xX'c—x a e W dx’
Bz(x)=Bf|x|\/x2—a2f o
a<x<W. (7) a (X*=x"9)Vx""-a
. . , . Jo(B,(x))
This Volterra equation foiG(x’;B,) can be invertet! to X —5 | a<|x|#W, (11
obtain c0
: : Wodx (JBAx))
, Br d (W dx  [Jc(By(X")) B,=B; S . (12
G(XyBa)__B_a& « m( JcO ) (8) a \/X’Z—a2 ‘]CO
] ] ] ] ; If we setJ.(B,(x))=J in Egs.(10), (11), and(12), we can
where the scaling fiel@; is defined by recover the results obtained by Brandt and Inderfband
Zeldovet al’
B ~ Modcod 9 If J.(B,(x)) is a function ofB,(x), then Eq.(11) must be
= ©) solved forB,(x) in the regiona<x<W. In general this is a

nonlinear Fredholm equation, which must be solved numeri-
andJ, is the zero-field critical current. Equati@B) can be  cally. Once this has been dong,(x), B,(|x|>W), andB,
inserted into Eqs(4), (5), and(6). After integrating by parts, can be calculated from Eggl0), (11), and(12), respectively.
exercising care with the principal-value integrals, we obtainB(x,z) can also be calculated from
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FIG. 4. Flux-density profiles calculated from Eq$l) and(12)
for the Bean model(top) and Kim model (bottom with FIG. 5. Results fom [see Fig. 1b)] vs applied fieldB, during

Bo/Bj=5 for B,/B;=0.8 (solid), B,/B;=13 (dashed and field reversal fromB,=B,o=2.4B; to B,= — By, calculated from
Ba/B¢=2.4 (dot-dasheyl Bold arrows indicate the progression of Eqs.(21) and(22). The solid curve corresponds to the Bean model,

the profiles as the applied fiel,, increases. while the dashed curve corresponds to the Kim model with
B, /B=5.
B ,uodJ I (x! (X" —x)z+2zX 13
X,2)=—— X' J(X)——a—7. _
(x2)=75 ] | A (13 lIl. FLUX CHANGES UPON FIELD REVERSAL

We now consider the case of decreasing the applied field
om an initial value B,, to some lower value
a=Bao—AB,, whereAB,<2B,,. We assume that when
B,=B, the strip is penetrated with positive flux in the re-
gionsay<|x|<W, and is completely screened in the region
J.(B,(X)) B, x| <ap. After the field is decreased, the flux density changes

3 =3 1B, in the outer regions &< |x|<W) but is unchanged in the

co o 17z inner regions &,<|x|<a). The central region|k| <ag) re-

mains free of flu{Fig. 1(b)]. The current density in the outer
(Kim mode),*? whereB, is a constant field that character- regions is given by Eq(3) without the negative sign. Since
izes the degree of field dependenicd,(x)=Je/2 when We are considering a thin film, the current is altered through-
B,(X)=B,]. The numerical results fd,/B;=5 are shown out the samplé.
in Figs. 2—4. The field dependence &f leads to a larger ~ AS in the previous section, we exprekgx) andB;(x) in
amount of penetration in a given applied fi¢kinallera for ~ terms of a new weight functio®(x’;B,) as follows:
a givenB,), as demonstrated in Fig. 2. Figure 3 shows that
the field dependence df causes cusplike peaks|ifi (x)| at 3,(%)
the values ok whereB,(x) =0, and a strong suppression of ~Y
|3y(x)| at the edges wherB,(x) is large. It should be noted

Until now, we have not assumed anything about the form og
J:.(B,(X)). As a specific example we can choose

that the cusplike features in Fig. 3, and the apparent diver- W _oB «

gence ofB,(|x|=W) in Fig. 4, are rounded on the length J' dx’ 2~ |e(x;By), [|x|<a
scale ofd, if A<d, or A, if d<\. Figure 4 demonstrates ao pod  \x'Z—x2 e '
that the shapes of th&,(x) versusx curves are qualitatively W o8 «

very similar for both the field-independent and field- f dx' | —2 ———=|G(X';By), ap<|x|<W,
dependent], cases, the main difference being the greater I tod \x'Z—x2

degree of penetration in the field-dependent case. (14
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flxld L B P B.), ap<|x|<W fwd “2Ba X g B.)=J.(B,(X))
' "Ba), a <W, ' "1Ba)= ,
2 | Ba iz C03Ba) B0l P\ Tod e G B T B
B,(X)= w X
dx’ G(x";B,), W<]|x|.
fao ( & x2=x"2 ) 2 X a<x<W, (17
(15

The vanishing of the flux density fgx|<a, leads to a nor-

7 . and the second comes from our knowledge of the flux den-
malization equation foG(x;B,)

sity in the inner regiorag<x<a,
w

j dx'G(x";By)=1. (16)
2

X X
As in the previous section, this equation yields the constitu- Lodx'< Ba\/ﬁ) G(x';Ba)=B,(x), ap<x<a.
tive relation betweeB, anda. (18)
To solve for G(x;B,), however, we require two equa-
tions. The first comes from the critical-state mofefl Eq.
(3)], Both of these Volterra equations can be inverted,

f ( B.(Xx")
- m B,

G(x;By)= 19
OBV g g v dax (3B 19

B, dx)x x'2—x2 Jeo

If we insert Eq.(19) into Egs.(15), (16), and(17) and integrate by parts, we obtain

. ag<x<a,

a<<x<W.

2 > . Je(B(X")) 2 a dx’ Ax")
AT f dx x'2— 2)\/x’2—a2_;Jcojao(x’z—xz)\/az—x’z( B+ ) - IX=a
Jy(x)= y (20
MJC(BZ(X)). a<|x|<w,
w dx’ (Byx))) 2 B.(x")
B,(x)=|x| yx*—a? —Bffa (xz—x’z)m( I ) ;j 2 G| a<[|x|#W, (21
B W dx’ J.(B,(x"))) 2 B
Bam ), o 3w =N <7 (22

When J.(B,(X))=J, Egs.(20), (21), and (22) yield the scaled, if A<<d, or A, if d<\. TheB,(x) versusx curves
results of Brandt and Indenb8mand Zeldov et al’ If in Fig. 7 are qualitatively similar for both the field-
J:(B,(x)) is a function ofB,(x), then Eqg.(21) must be independent and field-dependeht cases, but differ in the
solved numerically forB,(x) in the regionsa<|x|<W. amount of penetration because it is easier for vortices to
ThenJy(x), B,(|x|>W), B,, andB(x,z) can be calculated penetrate in the field-dependent case because of the suppres-
from Egs.(20), (21), (22), and(13), respectively. As a spe- sion of the critical current.

cific example, we choose the same functional form for

J:.(B,(x)) as in the previous section. The numerical results

for B, decreasing from its initial valueB,o=2.4B;, to its IV. MAGNETIZATION AND HYSTERESIS
final value, —B,q, are shown forB,/B;=5 in Figs. 5-7.
Figure 6 demonstrates that tig(x) versusx curves, for the In the previous sections we have established the machin-

field-dependent), case, have cusplike peaks |ad=a,, ery for calculating critical-state current-density and flux-

sharp elbowlike features &t|=a, extrema at the values of density profiles for a thin strip. We are now in a position to

x for which B,(x) =0, and a suppression ¢le(x)| at the calculate hysteretic magnetization curves for a strip placed in
edge. The sharp features in Fig. 6, and the apparent divean alternating applied field. The magnetization per unit vol-
gence ofB,(|x|=W) in Fig. 7, are rounded on the length ume is given b§’
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FIG. 6. Decreasing-field current-density profiles calculated from  F|G, 7. Decreasing-field flux-density profiles calculated from

Egs. (20), (21), and (22) for the Bean modeltop) and the Kim
model (bottom with B,/B;=5 for B,/B;=B,o/B;=2.4 (solid),
B,/B;=1.1 (long dasheg B,/B;=-—0.05 (dot-dashey and
B,/B;=—2.4 (short dashed Bold arrows indicate the progression
of the profiles as the applied fieBl, increases.

1 (W
Mfmf_wdx XJ(X). (23

The maximum possible value &, occurs when the strip is
saturated with the zero-field critical current density,

JeoW
5

Mo= (29)

This can only occur for a field-independeht.
We assume that initiall8,=0 and that the strip is in the

Egs. (21) and (22) for the Bean modeltop) and the Kim model
(bottom with B,/Bf=5 for B,/B;=B,y/Bi=2.4 (solid),
B,/B;=1.1 (long dasheg B,/B;=-—0.05 (dot-dashey and
B,/B;= —2.4 (short dashed Bold arrows indicate the progression
of the profiles as the applied fieBl, increases.

again determined at each step. The resulting grapM of
versusB, is the hysteretic magnetization curve or hysteresis
loop.

Examples of these curves are shown in Fig. 8. For the
case of a weakly field-depended¢ [Fig. 8@)] the curves
become flattened on the top and bottom dWd tends to
M, as saturation is approaché@drge B,y). This is charac-
teristic of the field-independerd, limit.®'° As J. becomes
more field-dependenfigs. §b) and &c)] the curves start to
develop extrema ne&,=0 and close up near the ends. This
is more characteristic of experimental hysteresis loops.

V. SUMMARY

virgin state.B, is then increased by a small amount so that

there is a positive flux in the regioms<|x|<W and no flux
in the region|x|<a [Fig. 1(a)]. Using the formalism of Sec.
Il we can calculate],(x) and B,(x), and henceM, and
B,. We continue this process until the regioms<|x|<W
are occupied with positive flux. At this stagg=B,o. B, is

We have presented a method for the treatment of the criti-
cal state in a type-Il superconducting thin-film strip, charac-
terized by an arbitrand.(B), in a uniform, time-varying
applied field. We have shown how this method can be used
to calculate quasistatic current-density and flux-density pro-

then decreased by a small amount so that the flux densitfles, as well as magnetization curves for a strip in an alter-
changes in the regiors<|x|<W. There is a frozen-in flux nating field.

in the regionsay,<|x|<a, and the regiorx|<a, remains These results should have important applications in the
perfectly screenefiFig. 1(b)]. The results of Sec. Ill can be interpretation of experimental data. It is now possible to map
employed to calculatd,(x) andB,(x). M, andB, are then  out flux-density and current-density profiles in thin filAns.
computed. This process is continued until the regiondrom these measurements the field dependendg cén be
ap<|x|<W are filled with negative fluxB,=—B,). Byis  determined. Once this is known, the flux-density and current-
then increased tB,, in small increments antifl, andB, are  density profiles can be calculated and compared with the
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FIG. 8. Hysteretic magnetization curved,/M, vs B,/Bs, calculated as described in the text for the Kim model wiéh
B,/B;=100.0, (b) B,/B;=10.0, and(c) B,/B;=1.0.

measured profiles. The method should also find applicationsmg a transport current is straightforward. The effect of a
in the interpretation of ac-susceptibility measurements. Irfield-dependengd. on the ac losses can then be studied and
analogy with samples in the parallel geometry, one wouldcompared with the well-known result for the field-
expect a field-dependedt to lead to the generation of even independent caseP(,s~14)."® This will be the subject of a
harmonics in the ac-susceptibility response of a sample suffuture paper.
jected to a perpendicular dc field. These even harmonics van-
ish in the field-independent ca¥tThe method should also
find use in the interpretation of measurements of magnetiza- \we thank M. Benkrouda, E. H. Brandt, M. McElfresh, T.
tion hysteresis loops and irreversible magnetization. It wagpe, A. Sanchez, and E. Zeldov for stimulating discussions.
demonstrated in Sec. IV that the field dependenck dfas a  Ames Laboratory is operated for the U.S. Department of En-
profound impact on the shape of the magnetization curves.ergy by lowa State University under Contract No. W-7105-
Extension of the method to treat the case of a strip carryEng-82.
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