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A theoretical analysis is presented for the critical state of an infinitely long type-II superconducting strip
characterized by an arbitrary critical current densityJc(B). An analytical framework is developed, and nu-
merical solutions are presented for the quasistatic current-density and flux-density profiles, as well as the
hysteretic magnetization curves. The field dependence of the critical current density significantly affects the
shape of the magnetization curves.

I. INTRODUCTION

There is currently considerable interest in thin-film and
platelike superconductors. There have been numerous studies
of single crystals of the high-temperature superconductors
~HTSC!, which are often in the form of platelets resembling
thin-film rectangles or disks. Superconducting tapes of
HTSC are under development for use in ac power transmis-
sion cables,1,2 and epitaxial thin-film strips have been under
investigation for passive microwave applications, such as fil-
ters for wireless communication.3–5 There have been signifi-
cant recent developments on the theory of the statics and
dynamics of vortices in thin films.6–13 This theoretical work
has been motivated by advances in experimental techniques
~magneto-optics,9 scanning Hall probes,14 Hall arrays,10

scanning superconducting quantum interference device
microscopes,15 magnetic-force microscopy,16 etc.! for deter-
mining magnetic-flux and current-density distributions in
thin films.

In this paper we consider a thin-film strip and treat static
or quasistatic magnetic-flux penetration and hysteresis char-
acterized by a field-dependent critical current density
Jc(B). For this purpose, we employ a critical-state
model.6,7,17,18In this model the magnetic flux penetrates into
the superconductor in the form of vortices. This penetration
occurs when the magnetic field at the sample surface exceeds
the lower critical fieldHc1 . The density of vorticesn is
assumed to be large enough (nl2@1, wherel is the London
penetration depth! that the vortices essentially form a con-
tinuum with average magnetic-flux density parallel to the
vortices given by B5nf0 , where f05hc/2e
52.0731027 G cm2 is the superconducting flux quantum.7

The force per unit volume that tends to drive the vortices
in from the surface is the Lorentz-force densityF5J3B,
whereJ5¹3H. In the absence of a surface barrier,B and
H satisfy the Maxwell boundary conditions at the sample
surface~continuity of the normal component ofB and the
tangential component ofH). In critical-state models, it is
typically assumed that, to good approximation,B5m0H in
vortex-occupied regions. This is an excellent approximation
whenB@m0Hc1 , which is often satisfied in HTSC. A qua-
sistatic equilibrium obtains when the Lorentz-force density
on the vortex array is balanced by the pinning-force density.
The maximum pinning-force density is characterized by a
critical current densityJc . When the magnitude ofJ exceeds

Jc , the distribution of vortices, and henceB, changes until
the quasistatic equilibrium is restored.7

There is an important distinction in critical-state models
between parallel and perpendicular geometries. As an ex-
ample of the two geometries consider a circular cylinder of
radiusR and lengthL with an applied field parallel toL. If
L@R, the parallel geometry is realized, while ifL!R, the
perpendicular geometry obtains. In the parallel geometry, the
penetrating vortices are mostly parallel to the sample surface,
while in the perpendicular geometry they are curved in the
neighborhood of the sample surface because of the large de-
magnetizing effects.6,7 This difference can be observed by
examining the equation¹3B5m0J, where we have as-
sumed B5m0H. This equation can be written as
(¹B)3B̂1B(¹3B̂)5m0J, where B̂5B/B.6,20,21 The first
term on the left-hand side depends on the spatial gradient of
the flux density, while the second term depends on the cur-
vature of the flux lines. In the parallel geometry the vortex
lines curve very little and the gradient term dominates. This
means that in the parallel geometry the Lorentz force stems
mainly from gradients in magnetic pressure. In the perpen-
dicular geometry, however, the magnetic-field lines bend
around the sample and the tangential component has oppo-
site signs on opposite sides of the sample. This leads to a
large vortex curvature so that the second term on the left-
hand side of the equation becomes dominant. Since the
dominant terms are different in the two geometries, the struc-
ture of the critical state is also different.6,7

Recently many theoretical results have been reported for
the critical state in thin films characterized by a field-
independentJc ~Bean model!.6,7,19,22,23However, since it is
observed experimentally thatJc5Jc(B) in real materials, it
is desirable to develop theoretical models that take this field
dependence into account. This has been done for parallel
geometry,24–26but relatively little has appeared in the litera-
ture for perpendicular geometry. Kuznetsovet al. estimated
the effect of a field-dependentJc on the saturated magneti-
zation of a disk in a large magnetic field.28 Fedorovet al.
treated the critical state in thin-film disks in a perpendicular
applied field.29 They were able to numerically calculate
current-density and flux-density profiles, as well as hysteretic
magnetization curves. Schusteret al.,8 Brandt,11,12 and Ben-
kraouda and Clem13 have shown that quasistatic results, for
strips and disks, can be obtained numerically from dynamic
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computations forJc5Jc(B) if the system is allowed to relax
for an appropriate amount of time.

The purpose of this paper is to present a theoretical frame-
work for the direct quasistatic treatment of the critical state
in thin-film strips that are characterized by an arbitrary
Jc(B). The formalism presented is an extension of a method
introduced by Mikheenko and Kuzovlev.22 In their paper
they treated a disk characterized by a constantJc , but the
method can be applied to the strip geometry and modified to
include a field-dependentJc .

II. FLUX PENETRATION IN THE VIRGIN STATE

We begin by considering a thin, infinitely long supercon-
ducting strip of width 2W and thicknessd. The strip is situ-
ated in thex-y plane with its edges atuxu5W and its long
dimension parallel to they axis ~cf. Fig. 1!. A uniform field
Ba is applied perpendicular to the strip~parallel to thez
axis!. We assume initially thatBa is small enough that the
strip is in the Meissner state. We can use the approximation
of perfect screening if the width and thickness of the strip
satisfy eitherl,d!W or d,l,L!W, where l is the
London penetration depth andL52l2/d is the two-
dimensional screening length.7,19,30 In this perfect-screening
limit, the expressions for the current density~averaged over
the thickness of the strip! and the perpendicular component
of the flux density, in the plane of the strip, are well
known.6,7 Due to the symmetry of the problem, the current
density has only ay component. The expression for the cur-
rent density, in SI units, is

Jy~x!52
2Ba

m0d

x

AW22x2
, uxu,W, ~1!

wherem0 is the permeability of free space. If this current
density is integrated with the Biot-Savart kernel, and the re-
sult is added to the applied field, the resulting flux density is

Bz~x!5H 0 , uxu,W,

Ba

uxu

Ax22W2
, uxu.W.

~2!

These expressions are exact in the limitd→0, but in the case
of finite d, Jy , andBz are understood to be averaged over
the film thickness. In this case these expressions fail when
the edges of the strip are approached too closely. The cutoff
length for Eqs.~1! and ~2! is d if d.l, or L if d,l.7,19

When Ba becomes large enough@e.g., Ba*Ad/WHc1 ,
when d,l# vortices will begin to penetrate from the
edge.7,27 These penetrating vortices will be either Abrikosov
or Pearl vortices depending on whetherd.l or d,l. Dy-
namic equilibrium will occur when

Jy~x!52
x

uxu
Jc„Bz~x!…, a,uxu,W. ~3!

The regionuxu,a remains perfectly screened@Fig. 1~a!#.

FIG. 1. Schematic of the strip and coordinate system. An exter-
nal fieldBa is applied perpendicular to the strip. During initial flux
penetration~a! the outer regions (a,uxu,W) carry a current den-
sity Jy(x)52(x/uxu)Jc„Bz(x)… and contain a magnetic-flux density
obeying Eq.~11!. The central region (uxu,a) is perfectly screened
@Bz(x)50# and carries a current density given by Eq.~10!. During
field reversal~b! the outer regions (a,uxu,W) carry a current
densityJy(x)5(x/uxu)Jc„Bz(x)… and contain a magnetic-flux den-
sity obeying Eq.~21!. The inner regions (a0,uxu,a) carry a cur-
rent density given by Eq.~20! and contain the frozen-in magnetic-
flux density from the previous flux front. The central region
(uxu,a0) is perfectly screened with a current density given by Eq.
~20!. FIG. 2. Results fora @see Fig. 1~a!# vs applied fieldBa calcu-

lated from Eqs.~11! and ~12! during initial penetration. The solid
curve corresponds to the Bean model,Jc5Jc0 , while the dashed
curve corresponds to the Kim model,Jc5Jc0@Bo /(Bo1uBzu)# with
Bo /Bf55 (Bf5m0Jc0d/p).
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As demonstrated by Mikheenko and Kuzovlev,22 the ex-
pressions for the Meissner response can also be useful in the
treatment of vortex penetration into a thin film. The key idea
of their method is to expressJy(x) and Bz(x) for a flux-
penetrated strip in terms of functions of the form of Eqs.~1!
and ~2!,

Jy~x!

55 E
a

W

dx8S 22Ba

m0d

x

Ax822x2
DG~x8;Ba!, uxu,a,

E
uxu

W

dx8S 22Ba

m0d

x

Ax822x2
DG~x8;Ba!, a,uxu,W,

~4!

Bz~x!55 E
a

uxu
dx8S Ba

uxu

Ax22x82
DG~x8;Ba!, a,uxu,W,

E
a

W

dx8S Ba

uxu

Ax22x82
DG~x8;Ba!, W,uxu,

~5!

whereG(x8;Ba) is called the weight function. Once this
function is determined, bothJy(x) andBz(x) can be calcu-
lated. There is also a normalization equation forG(x8;Ba)
that comes from requiring the flux density to vanish in the
region uxu,a,

E
a

W

dx8G~x8;Ba!51 . ~6!

Equation~6! yields the constitutive relation betweenBa and
a.

To solve forG(x8;Ba), we invoke the force-balance re-
quirement of Eq.~3!,

E
x

W

dx8S 22Ba

m0d

x

Ax822x2
DG~x8;Ba!52Jc„Bz~x!…,

a,x,W. ~7!

This Volterra equation forG(x8;Ba) can be inverted31 to
obtain

G~x;Ba!52
Bf

Ba

d

dxEx
W dx8

Ax822x2
S Jc„Bz~x8!…

Jc0
D , ~8!

where the scaling fieldBf is defined by7

Bf5
m0Jc0d

p
, ~9!

andJc0 is the zero-field critical current. Equation~8! can be
inserted into Eqs.~4!, ~5!, and~6!. After integrating by parts,
exercising care with the principal-value integrals, we obtain

Jy~x!

55 2
2

p
xAa22x2E

a

W

dx8
Jc„Bz~x8!…

~x822x2!Ax822a2
, uxu,a,

2
x

uxu
Jc„Bz~x!…, a,uxu,W,

~10!

Bz~x!5Bf uxuAx22a2E
a

W dx8

~x22x82!Ax822a2

3S Jc„Bz~x8!…

Jc0
D , a,uxuÞW, ~11!

Ba5BfE
a

W dx8

Ax822a2
S Jc„Bz~x8!…

Jc0
D . ~12!

If we setJc„Bz(x)…5Jc0 in Eqs.~10!, ~11!, and~12!, we can
recover the results obtained by Brandt and Indenbom6 and
Zeldovet al.7

If Jc„Bz(x)… is a function ofBz(x), then Eq.~11! must be
solved forBz(x) in the regiona,x,W. In general this is a
nonlinear Fredholm equation, which must be solved numeri-
cally. Once this has been done,Jy(x), Bz(uxu.W), andBa
can be calculated from Eqs.~10!, ~11!, and~12!, respectively.
B(x,z) can also be calculated from

FIG. 3. Current-density profiles calculated from Eqs.~10!, ~11!,
and ~12! for the Bean model~top! and Kim model~bottom! with
Bo /Bf55 for Ba /Bf50.8 ~solid!, Ba /Bf51.3 ~dashed!, and
Ba /Bf52.4 ~dot-dashed!. Bold arrows indicate the progression of
the profiles as the applied fieldBa increases.
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B~x,z!5
m0d

2p E
2W

W

dx8Jy~x8!
~x82x!ẑ1zx̂

~x82x!21z2
. ~13!

Until now, we have not assumed anything about the form of
Jc„Bz(x)…. As a specific example we can choose

Jc„Bz~x!…

Jc0
5

Bo

Bo1uBz~x!u

~Kim model!,32 whereBo is a constant field that character-
izes the degree of field dependence@Jy(x)5Jc0/2 when
Bz(x)5Bo#. The numerical results forBo /Bf55 are shown
in Figs. 2–4. The field dependence ofJc leads to a larger
amount of penetration in a given applied field~smallera for
a givenBa), as demonstrated in Fig. 2. Figure 3 shows that
the field dependence ofJc causes cusplike peaks inuJy(x)u at
the values ofx whereBz(x)50, and a strong suppression of
uJy(x)u at the edges whereBz(x) is large. It should be noted
that the cusplike features in Fig. 3, and the apparent diver-
gence ofBz(uxu5W) in Fig. 4, are rounded on the length
scale ofd, if l,d, or L, if d,l. Figure 4 demonstrates
that the shapes of theBz(x) versusx curves are qualitatively
very similar for both the field-independent and field-
dependentJc cases, the main difference being the greater
degree of penetration in the field-dependent case.

III. FLUX CHANGES UPON FIELD REVERSAL

We now consider the case of decreasing the applied field
from an initial value Ba0 to some lower value
Ba5Ba02DBa , whereDBa<2Ba0 . We assume that when
Ba5Ba0 the strip is penetrated with positive flux in the re-
gionsa0,uxu,W, and is completely screened in the region
uxu,a0 . After the field is decreased, the flux density changes
in the outer regions (a,uxu,W) but is unchanged in the
inner regions (a0,uxu,a). The central region (uxu,a0) re-
mains free of flux@Fig. 1~b!#. The current density in the outer
regions is given by Eq.~3! without the negative sign. Since
we are considering a thin film, the current is altered through-
out the sample.7

As in the previous section, we expressJy(x) andBz(x) in
terms of a new weight functionG(x8;Ba) as follows:

Jy~x!

55 E
a0

W

dx8S 22Ba

m0d

x

Ax822x2
DG~x8;Ba!, uxu,a0 ,

E
uxu

W

dx8S 22Ba

m0d

x

Ax822x2
DG~x8;Ba!, a0,uxu,W,

~14!

FIG. 4. Flux-density profiles calculated from Eqs.~11! and~12!
for the Bean model ~top! and Kim model ~bottom! with
Bo /Bf55 for Ba /Bf50.8 ~solid!, Ba /Bf51.3 ~dashed!, and
Ba /Bf52.4 ~dot-dashed!. Bold arrows indicate the progression of
the profiles as the applied fieldBa increases.

FIG. 5. Results fora @see Fig. 1~b!# vs applied fieldBa during
field reversal fromBa5Ba052.4Bf to Ba52Ba0 , calculated from
Eqs.~21! and~22!. The solid curve corresponds to the Bean model,
while the dashed curve corresponds to the Kim model with
Bo /Bf55.
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Bz~x!55 E
a0

uxu
dx8S Ba

uxu

Ax22x82
DG~x8;Ba!, a0,uxu,W,

E
a0

W

dx8S Ba

uxu

Ax22x82
DG~x8;Ba!, W,uxu.

~15!

The vanishing of the flux density foruxu,a0 leads to a nor-
malization equation forG(x;Ba)

E
a0

W

dx8G~x8;Ba!51 . ~16!

As in the previous section, this equation yields the constitu-
tive relation betweenBa anda.

To solve forG(x;Ba), however, we require two equa-
tions. The first comes from the critical-state model@cf. Eq.
~3!#,

E
x

W

dx8S 22Ba

m0d

x

Ax822x2
DG~x8;Ba!5Jc„Bz~x!…,

a,x,W, ~17!

and the second comes from our knowledge of the flux den-
sity in the inner regiona0,x,a,

E
a0

x

dx8S Ba

x

Ax22x82
DG~x8;Ba!5Bz~x!, a0,x,a.

~18!

Both of these Volterra equations can be inverted,31

G~x;Ba!55
2

p

d

dxEa0
x dx8

Ax22x82
SBz~x8!

Bf
D , a0,x,a,

Bf

Ba

d

dxEx
W dx8

Ax822x2
S Jc„Bz~x8!…

Jc0
D , a,x,W.

~19!

If we insert Eq.~19! into Eqs.~15!, ~16!, and~17! and integrate by parts, we obtain

Jy~x!55
2

p
xAa22x2F E

a

W

dx8
Jc„Bz~x8!…

~x822x2!Ax822a2
2

2

p
Jc0E

a0

a dx8

~x822x2!Aa22x82
SBz~x8!

Bf
D G , uxu,a,

x

uxu
Jc„Bz~x!…, a,uxu,W,

~20!

Bz~x!5uxuAx22a2F2BfE
a

W dx8

~x22x82!Ax822a2
S Jc„Bz~x8!…

Jc0
D 1

2

pEa0
a

dx8
Bz~x8!

~x22x82!Aa22x82
G , a,uxuÞW, ~21!

Ba52BfE
a

W dx8

Ax822a2
S Jc„Bz~x8!…

Jc0
D1

2

pEa0
a

dx8
Bz~x8!

Aa22x82
. ~22!

When Jc„Bz(x)…5Jc0 , Eqs. ~20!, ~21!, and ~22! yield the
results of Brandt and Indenbom6 and Zeldov et al.7 If
Jc„Bz(x)… is a function ofBz(x), then Eq. ~21! must be
solved numerically forBz(x) in the regionsa,uxu,W.
ThenJy(x), Bz(uxu.W), Ba , andB(x,z) can be calculated
from Eqs.~20!, ~21!, ~22!, and ~13!, respectively. As a spe-
cific example, we choose the same functional form for
Jc„Bz(x)… as in the previous section. The numerical results
for Ba decreasing from its initial value,Ba052.4Bf , to its
final value,2Ba0 , are shown forBo /Bf55 in Figs. 5–7.
Figure 6 demonstrates that theJy(x) versusx curves, for the
field-dependentJc case, have cusplike peaks atuxu5a0 ,
sharp elbowlike features atuxu5a, extrema at the values of
x for which Bz(x)50, and a suppression ofuJy(x)u at the
edge. The sharp features in Fig. 6, and the apparent diver-
gence ofBz(uxu5W) in Fig. 7, are rounded on the length

scaled, if l,d, or L, if d,l. TheBz(x) versusx curves
in Fig. 7 are qualitatively similar for both the field-
independent and field-dependentJc cases, but differ in the
amount of penetration because it is easier for vortices to
penetrate in the field-dependent case because of the suppres-
sion of the critical current.

IV. MAGNETIZATION AND HYSTERESIS

In the previous sections we have established the machin-
ery for calculating critical-state current-density and flux-
density profiles for a thin strip. We are now in a position to
calculate hysteretic magnetization curves for a strip placed in
an alternating applied field. The magnetization per unit vol-
ume is given by6,7
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Mz5
1

2WE
2W

W

dx xJy~x!. ~23!

The maximum possible value ofMz occurs when the strip is
saturated with the zero-field critical current density,

M05
Jc0W

2
. ~24!

This can only occur for a field-independentJc .
We assume that initiallyBa50 and that the strip is in the

virgin state.Ba is then increased by a small amount so that
there is a positive flux in the regionsa,uxu,W and no flux
in the regionuxu,a @Fig. 1~a!#. Using the formalism of Sec.
II we can calculateJy(x) and Bz(x), and henceMz and
Ba . We continue this process until the regionsa0,uxu,W
are occupied with positive flux. At this stageBa5Ba0 . Ba is
then decreased by a small amount so that the flux density
changes in the regionsa,uxu,W. There is a frozen-in flux
in the regionsa0,uxu,a, and the regionuxu,a0 remains
perfectly screened@Fig. 1~b!#. The results of Sec. III can be
employed to calculateJy(x) andBz(x). Mz andBa are then
computed. This process is continued until the regions
a0,uxu,W are filled with negative flux (Ba52Ba0). Ba is
then increased toBa0 in small increments andMz andBa are

again determined at each step. The resulting graph ofMz
versusBa is the hysteretic magnetization curve or hysteresis
loop.

Examples of these curves are shown in Fig. 8. For the
case of a weakly field-dependentJc @Fig. 8~a!# the curves
become flattened on the top and bottom andMz tends to
M0 as saturation is approached~largeBa0). This is charac-
teristic of the field-independentJc limit.

6,19 As Jc becomes
more field-dependent@Figs. 8~b! and 8~c!# the curves start to
develop extrema nearBa50 and close up near the ends. This
is more characteristic of experimental hysteresis loops.

V. SUMMARY

We have presented a method for the treatment of the criti-
cal state in a type-II superconducting thin-film strip, charac-
terized by an arbitraryJc(B), in a uniform, time-varying
applied field. We have shown how this method can be used
to calculate quasistatic current-density and flux-density pro-
files, as well as magnetization curves for a strip in an alter-
nating field.

These results should have important applications in the
interpretation of experimental data. It is now possible to map
out flux-density and current-density profiles in thin films.9,14

From these measurements the field dependence ofJc can be
determined. Once this is known, the flux-density and current-
density profiles can be calculated and compared with the

FIG. 6. Decreasing-field current-density profiles calculated from
Eqs. ~20!, ~21!, and ~22! for the Bean model~top! and the Kim
model ~bottom! with Bo /Bf55 for Ba /Bf5Ba0 /Bf52.4 ~solid!,
Ba /Bf51.1 ~long dashed!, Ba /Bf520.05 ~dot-dashed!, and
Ba /Bf522.4 ~short dashed!. Bold arrows indicate the progression
of the profiles as the applied fieldBa increases.

FIG. 7. Decreasing-field flux-density profiles calculated from
Eqs. ~21! and ~22! for the Bean model~top! and the Kim model
~bottom! with Bo /Bf55 for Ba /Bf5Ba0 /Bf52.4 ~solid!,
Ba /Bf51.1 ~long dashed!, Ba /Bf520.05 ~dot-dashed!, and
Ba /Bf522.4 ~short dashed!. Bold arrows indicate the progression
of the profiles as the applied fieldBa increases.
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measured profiles. The method should also find applications
in the interpretation of ac-susceptibility measurements. In
analogy with samples in the parallel geometry, one would
expect a field-dependentJc to lead to the generation of even
harmonics in the ac-susceptibility response of a sample sub-
jected to a perpendicular dc field. These even harmonics van-
ish in the field-independent case.33 The method should also
find use in the interpretation of measurements of magnetiza-
tion hysteresis loops and irreversible magnetization. It was
demonstrated in Sec. IV that the field dependence ofJc has a
profound impact on the shape of the magnetization curves.

Extension of the method to treat the case of a strip carry-

ing a transport current is straightforward. The effect of a
field-dependentJc on the ac losses can then be studied and
compared with the well-known result for the field-
independent case (Ploss;I 4).18 This will be the subject of a
future paper.

ACKNOWLEDGMENTS

We thank M. Benkrouda, E. H. Brandt, M. McElfresh, T.
Pe, A. Sanchez, and E. Zeldov for stimulating discussions.
Ames Laboratory is operated for the U.S. Department of En-
ergy by Iowa State University under Contract No. W-7105-
Eng-82.

1A. M. Campbell, IEEE Trans. Appl. Supercond.5, 687 ~1995!.
2S. Fleshler, L. T. Cronis, G. E. Conway, A. P. Malozemoff, T. Pe,
J. McDonald, J. R. Clem, G. Vellego, and P. Metra, Appl. Phys.
Lett. 67, 3189~1995!.

3D. E. Oates, P. P. Nguyen, G. Dresselhaus, M. S. Dresselhaus, G.
Koren, and E. Polturak, J. Supercond.8, 725 ~1995!.

4G. B. Lubkin, Phys. Today40 ~3!, 20 ~1995!.

5Z.-Y. Shen,High-Temperature Superconducting Microwave Cir-
cuits ~Artech, Boston, 1994!.

6E. H. Brandt and M. Indenbom, Phys. Rev. B48, 12 893~1993!.
7E. Zeldov, J. R. Clem, M. McElfresh, and M. Darwin, Phys. Rev.
B 49, 9802~1994!.

8T. Schuster, H. Kuhn, E. H. Brandt, M. Indenbom, M. R. Kob-
lishka, and M. Konczykowski, Phys. Rev. B50, 16 684~1994!.

FIG. 8. Hysteretic magnetization curves,Mz /M0 vs Ba /Bf , calculated as described in the text for the Kim model with~a!
Bo /Bf5100.0, ~b! Bo /Bf510.0, and~c! Bo /Bf51.0.

53 8649THEORY OF FLUX PENETRATION INTO THIN FILMS WITH . . .



9T. Schuster, M. V. Indenbom, H. Kuhn, E. H. Brandt, and M.
Konczykowski, Phys. Rev. Lett.73, 1424~1994!.

10E. Zeldov, A. I. Larkin, V. B. Geshkenbein, M. Konczykowski, D.
Majer, B. Khaykovich, V. M. Vinokur, and H. Shtrikman, Phys.
Rev. Lett.73, 1428~1994!.

11E. H. Brandt, Physica C235-240, 2939~1994!.
12E. H. Brandt, Rep. Prog. Phys.58, 1465~1995!.
13M. Benkraouda and J. R. Clem, Phys. Rev. B53, 5716~1996!.
14W. Xing, B. Heinrich, H. Zhou, A. A. Fife, and A. R. Cragg, J.

Appl. Phys.76, 4244~1994!.
15C. C. Tsuei, J. R. Kirtley, C. C. Chi, L. S. Yu-Jahnes, A. Gupta, T.

Shaw, J. Z. Sun, and M. B. Ketchen, Phys. Rev. Lett.73, 593
~1994!.

16A. Moser, H. J. Hug, I. Parashikov, B. Stiefel, O. Fritz, H. Tho-
mas, A. Baratoff, H.-J. Gunthero¨dt, and P. Chaudhari, Phys. Rev.
Lett. 74, 1847~1995!.

17C. P. Bean, Phys. Rev. Lett.8, 250 ~1962!.
18W. T. Norris, J. Phys. D3, 489 ~1970!.
19J. R. Clem and A. Sanchez, Phys. Rev. B50, 9355~1994!.
20J. R. Clem, inProceedings of the ICTPS’90 International Con-

ference on Transport Properties of Superconductors, edited by
R. Nicolsky ~World Scientifice, Singapore, 1990!, p. 64.

21J. R. Clem, inProceedings of the 7th International Workshop on

Critical Currents in Superconductors, edited by H. W. Weber
~World Scientific, Singapore, 1994!, p. 117.

22P. N. Mikheenko and Y. E. Kuzovlev, Physica C204, 229~1993!.
23J. Zhu, J. Mester, J. Lockhart, and J. Turneaure, Physica C212,

216 ~1993!.
24J. R. Clem, J. Appl. Phys.50, 3518~1979!.
25D.-X. Chen and R. B. Goldfarb, J. Appl. Phys.66, 2489~1989!.
26H. Ikuta, K. Kishio, and K. Kitazawa, J. Appl. Phys.76, 4776

~1994!.
27V. N. Trofimov, A. V. Kuznetsov, P. V. Lepeschkin, K. A.

Bolschinskov, A. A. Ivanov, and A. A. Mikhailov, Physica C
183, 135 ~1991!.

28A. V. Kuznetsov, A. A. Ivanov, D. V. Eremenko, and V. N. Trofi-
mov, Phys. Rev. B52, 9637~1995!.

29Y. A. Fedorov, V. G. Fleisher, and M. G. Semenchenko, Physica C
217, 63 ~1993!.

30J. Pearl, Appl. Phys. Lett.5, 65 ~1964!.
31P. Linz, Analytical and Numerical Methods for Volterra Equa-

tions ~S.I.A.M, Philadelphia, 1985!, p. 74.
32Y. B. Kim, C. F. Hempstead, and A. R. Strand, Phys. Rev. Lett.9,

306 ~1962!.
33Q. Y. Chen, inMagnetic Susceptibility of Superconductors and

Other Spin Systems, edited by R. A. Heinet al. ~Plenum, New
York, 1991!, p. 81.

8650 53J. McDONALD AND JOHN R. CLEM


