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The specific heat data of various high-temperature superconducting materials at finite magnetic field and
temperatures near the transition temperature are studied. It is found that lowest-Land#utleyeicaling is
a good description of the data for fields larger than a characteristicHield O(1 T) and that it breaks down
for fields less thamd*. The scaled data agrees very well with the calculated scaling functions, which provides
further evidence for the validity of LLL theory at field$=H*. The dimensionality of the fluctuations is also
studied and it is found that they are predominantly three dimensional near the transition with indications of
crossover to two-dimensional behavior farther away.

[. INTRODUCTION of specific heat data of various HTSC's for fieltls=1-3
tesla(T). The LLL-scaled data is compared with the analytic
Thermal fluctuations play a significant role in the physicsscaling function®**and excellent agreement is found, giving
of high-temperature superconductdTSC’s). The quantity ~ further credence to the validity of LLL theory at larger fields.
which determines the importance of fluctuations is the GinzAnother objective here is to investigate the value of the field
burg number,a_l The productaTc, WhereTC iS the Super- at Wh|Ch the LLL Scaling starts tO.becon".l(? valid and.WheI’e a
conducting transition temperature, determines the width offescription based on the zero-field critical behavior must
the temperature window in which fluctuations are importantPréak down. Hence we obtaid,,, , defined as the field
In conventional superconductors, this width is typically of P€low which LLL scaling begins to break down, from each
O(uK). In the HTSC'’s, however, there are three propertie f the data sets studied here. Finally, we explore the dimen-

which make this temperature window several orders of mag]?'crmtﬁl(';y diofffetztra\tﬂsu;rtrl\laltézns\/vaen:‘jin\(lja?hoautstrzgl?I\Lir:ltj;t:Joa:\nstlt;?Z
nitude larger than in conventional superconductors an PIeS.

. . hree-dimensional near the transition with a possible cross-
readily observable. These properties are the very small cor-

relation lengthsé~10 A, the high transition temperature over to two-dimensional2D) away from the transition.
T.~100 K, and the layered structure which effectively re-

duces the dimensionality. As a result, the generally accepted ll. LLL SCALING

estimate fordT. (confirmed by the specific heat results, as |4 this section we will analyze the data on various

we shall see belowis of O(K), although the dimensionless samples from different groups. Because results vary some-
faCt0r§ in the GianUrg criterion formula fo# do not con- what from Samp|e to Samp|e, it is important that one draw
clusively rule out a smaller value. conclusions based on all of these samples. We will place an
Fluctuations in the HTSC’s have been studied and obemphasis on the LLL scaling formalism.
served in magnetization, conductivity, current-voltage, and For sufficiently small applied magnetic fields, the fluctu-
specific heat measurements among others. The theory whictiing BCS pairs occupy many Landau lev@lg's) and there
describes the fluctuations in the first three measurements &e significant intra- and inter-LL interactions. At higher
fairly well understood. In specific heat measurements, howfields, the fluctuating pairs occupy a small number of the
ever, the nature of the fluctuations is still unestablished, allower LL's and there is less inter-level mixing. For suffi-
though there is strong evidence that the fluctuations are deiently large fields, only the lowest Landau level is occupied
scribed by either three-dimension@D) XY modef at small  and only the intralevel interactions are important. In this re-
fields or lowest Landau leve[LLL ) scaling at larger fields. gion, one can use the lowest Landau level approximation.
Evidence for 3DXY scaling’® and LLL scaling °has been Tesanovic and co-workerd?3 however, have shown that,
presented for many types of HTSC's. Nonetheless, the releven at smaller fields, where only a few Landau levels are
evance of LLL scaling to specific heat measurements hasccupied and the inter-Landau level interactions are negli-
been questioned*! gible, one can use the LLL approximation by renormalizing
In this paper, we present strong evidence for LLL scalingthe parameters. This is clear, since in that case the partition
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function reduces to a product over a few independent LL
manifolds. These considerations extend the region in which
LLL scaling is expected to be valid ttHH=H*, with
H* =(60/16)(T/Tco)Hc2(0), > whereT, is theH =0, mean-
field transition temperature. For typical HTSCKH* =1 T.
At smaller fields, inter-LL interactions must be considetéd.
Theoretically, 3DXY scaling is expected to apply for infini-
tesimal fields but in practice it should apply for a range of
fields near theH=0 critical point.

According to LLL theory! the specific heat should scale
as

C(H,T)/C,(T)

C(H,T) (T—TC(H))

- -5 0 5 10
Cor(™) %\ AT,(T.H) @

(T-T(H)J/AT,

whereC(H,T) is the measured specific heat minus the back- FIG. 1. The data of Ref. 5 scaled with 2D LLL theory.

ground speci_fic heatp(_T), d is the dimensionalityjl’c(H) [AT 0= (HTZI[C ye(T) 8] X 2.21x 10-19(mJ cm/gkT)¥?  where
is the mean-fieldiransition temperature as a function of ap- o aeq density has been taken to be 6.44famYBCO.] Also
plied field (which should be distinguished from the actual plotted in the analytical scaling function E@) as derived in Refs.

transition temperatuje gq is a dimensionality-dependent 15 13 The agreement between the scaled data and the scaling func-
scaling function, an®y(T) is the mean-field contribution. {ion is very good.

Frequently, the left-hand side of Ed1) is written as _

C(H,T)/[a'?TIB] (where  the  correspondence In Fig. 1, we show the data of the Leeds groum
Cur(T)=[a’2T/B] is a standard mean-field resultFor ~ YB&CwO;_, (YBCO) scaled with 2D LLL theory. The dif-
d=2, AT,p=(HT/[Cue(T)/2ksT]o5) 2 wherekg is the  ferentsymbols represent the data at different fields. The solid

Boltzmann constantg, is the superconducting flux quan- line is the theoretical scaling function which will be dis-
tum, ands is a length in thec direction (i.e., the direction ~CcuSsed below. L%gscallng had not previously been showr? to
perpendicular to the copper-oxide planeBor 3D systems, work for this data)” but one can see from our analysis that

_ 213 . ' the scaling is good down td=2-4T. For smaller fields, the
AT3D_(HT/[4CMF(T.)/kBT] ¢o§c) ' whgregc is the zero scaling is, as expected, poorer. The parameter values used in
temperature correlation length in tledirection. For tem-

. : the scaling are shown in Table I. We have also scaled the
peratures neafl;, the predominant field and temperature |jinois data for a YBCO single crystdl (see Fig. 2 with

dependence oA T,4(T,H) are in the numerators. similar and equally good results. This is also the case for the
In order to scale the data according to Ef), we must  Geneva data on a YBCO porous single cry<taind on a
extractCp(T), Cyr(T), andT.(H) from the raw data. The yYBCO ceramic datd® [Since Cy becomes negative ap-
first two quantities are determined in a standard Way®  proximately 10 K belowT, for all of the samples, the left-
where one fits the zero-field data to a quadratic backgrounchand side of Eq(1) diverges in that vicinity. Because this
a BCS mean-field terr@y(T) = yT[1+b(T/T,—1)], and  result is not physical, we have cut off the data where it starts
a Gaussian fluctuation term which should be a good approxito manifest this artifact.This cumulative evidence for LLL
mation far away from the transition temperature where thescaling of these four different samples, along with previous
fluctuations are weak. This simple approach is sufficient emevidence of LLL scaling for the LuB&u0;_, (LBCO)
pirically for determining these quantities. single crystal of the Minnesota grodpand for the
T.(H), the mean-field transition temperature, cannot bG(Bi,Pb)ZSrZCaQCLgOy (BPSCCQ c-axis aligned sample of
measured directly and is usually taken to be the inflectionhe Sendai, Japan grodppresents a strong case for describ-
point of C(H,T). Here we use a different and, we believe, ing the medium and high field data for HTSC's by LLL
more physical approach which we call the “crossing pointtheory away fromT,. The Geneva group has shoWithat
technique.” At T=T.(H), the quantity  their data agrees very well with LLL scaling if one analyzes
C[H,T=T(H)J/Cuel Tc(H)]1=04(0) [Eq. (1)] is a con- itin terms of the derivative with respect to the fi¢td This
stant independent of field and is calculated in Refs. 12,13agrees with our conclusions but we caution the reader that
Therefore, if one plots C(H,T)/Cye(T) versus the derivative analysis neglects a contribution proportional to
x=T—T(H) (i.e., only the numerator of the argument of dT (H)/dH.
the functiongy), one would find that the curves of each data We now turn to the question of dimensionality crossover.
set cross ak=0 where they have the same value. Our tech4n Fig. 3, we show the data of Ref. 5 scaled with 3D LLL
nique is to choos& .(H) for each data set to ensure this theory. The scaling is observed to work down to fields
crossing ak=0 with the value of4(0) being then the value H=2-3 T, providing more support for the validity of LLL
calculated in Refs. 12,13. Of course, if this were not possibleheory. We have found equally good 3D LLL scaling for the
it would mean that the data cannot satisfy LLL scaling, butMinnesota LBCO sampléthe lllinois'®> YBCO sample, and
we find that the procedure works well. Typically the value ofthe Genevd YBCO porous single crystal. The 2D LLL and
the mean-field transitioif .(H) as determined by this tech- 3D LLL scaling of this data will be contrasted in the para-
nique is slightly larger than if that quantity were defined by graphs below.
the inflection point. The values afT./dH as calculated by The scaling of data with a certain theory is evidence for
the two methods are within 10% of each other. the validity of the application of that theory to a particular
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TABLE I. Summary of various quantity values as calculated for different samidigs.is the field above

which it is found that LLL scaling describes the dathypyy is the field up to which 3DXY scaling appears

to work. The upper limit of this quantity is set by experimental constraints and not by an observed breakdown

of the scalingdT./dH, b, and § are discussed in the text.

Theory YBCG YBCO® YBCO® LBCO' YBCO* (BP)SCCO

Hy (T) = 1 2-3 3 0.5 2 1 1

Hapxy (T) < 7 14 7 5 14

dT./dH (K/T) -0.17 -0.12 -0.58 -0.54 -0.51 -0.50

y (MIGKT?) 0.041 0.070 0.058 0.67 0.050

T, (K) 91.9 93.3 90.6 92.6 92.6 107.5

Teo (K) 92.4 93.5 91.0 93.0 93.3 114.7

b 9.3 11.2 4.0 6.1 10.7 5.0

5 (A) 400 290 55 89 77

£ (A 5 2.7 0.75 1.7 1.5

#Derived from the data of Ref. 5 on a single crystal.

®Derived from the data of Ref. 18 on a porous ceramic.

‘Derived from the data of Ref. 15 on a single crystal.

9Derived from the data of Ref. 7 on an untwinned single crystal.

®Derived from the digitized data of Ref. 17 on a porous single crystal.

"Taken from Ref. 10 on a-axis aligned bulk sample.
system. It is however not conclusive, particularly when em- ’€x+ \/5)
pirical scaling can be obtained from other theories with very u(x)=0.818-0.11 tan . 3
different physical content. Much stronger evidence can be 2\/E

obtained if one knows the scaling function. @asvic and
co-workerd?*® have calculated the LLL scaling functions In Figs. 1 and 2 we have plotted, together with the data
920, Usp, andgogp, the third function being for a quasi- points, a line representing E¢p).° One can see that for both

two-dimensional, or layered system. The function for thesamples the scaling function agrees reasonably well with the
two-dimensional case is given by

1 u(x)x
92p(X) = 5( 1- m u?(x) + (Vx2u?(x)+2
du
~XUX))| 5¢ 2

wherex=[T—T(H)/(HT/[Cyre(T)/2kgT] o) *? and

C(H,TY/C,(T)

12 F

04 r

gZD(X) -

H=0.5T -
H=AT -
H=2T = |
H=3T ~
H=5T -

-5

0
(T-T(H)Y/AT

5

10

scaled data, providing convincing evidence for this theory.
However, near the peak the agreement breaks down indicat-
ing that the fluctuations are effectively 3D. Similar results
were obtained for the other data.

The scaling functiomy;p[ (T—T.(H))/AT3p] (Ref. 13 is
complicated due to the appearance of a new length
A(T,H) which regulates the bending of vortex lines along
the field directior?* A simple and accurate approximation to
03p(X) is obtained by assuming that does not change rap-

1.2

0.8

0.4

C(H,T)C,.(T)

-5

(T-T(H)V/AT, |

FIG. 3. 3D LLL scaling of the specific heat data of a YBCO

single crystal(Ref. 5. [We usedATzp=(HT[TY%C ye(T)&c]

FIG. 2. The specific heat data of a YBCO sampief. 15
scaled with Eq(1), the 2D LLL scaling form. The solid line is the

2D LLL scaling function(Refs. 12,13 Eq. (2).

X 2.61x 10~ *(mJ cm/gKT)?3.] Also plotted(solid line) is the 3D

LLL scaling function(Ref. 13 which coincides with the scaled data

very well nearT, .
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idly through the critical region around T,(H): function and the scaled data is striking. The predicted asym-
A(T,H)~ & TeoHe(0)/6TH]Y3. With this simplification  metric shape of the scaling function peak is very well repro-
the dominant contribution tg;p(x) takes the same form as duced by the experiment. Overall, both the scaling and the fit
Eg. (2) but with x now being the 3D scaling variable to the scaling function are, as a whole, clearly better for the
x=(T—T¢(H))/AT3p. In 3D, it is conveniently assumed 3D case than for 2D. Nevertheless, there is some evidence
that T,(H) in x already contains renormalizations from the for 2D behavior away from the transition. Thus the scaling
vortex line bending along the field and is directly determinedbehavior on the high temperature side is a little better for 2D,
by our crossing point technique, whifg incorporates a fac- and the 2D scaling function is a somewhat better fit to the
tor of order unity which accounts for the difference betweendata in the low temperature region to the left of the peak.
the superconductingé) and vortex positional correlations Very similar considerations apply if one compares the YBCO
(A). Also, u(x) is different in 3D and is given by single crystal data of Fig. 2 with the 3D scaling of the same
u(x)=0.818-0.11tank(G(x) + K)/M] where G(x) is de- data shown in Fig. 1 of Ref. 9. Therefore, the overall con-
fined in Ref. 13 andK and M are fitting parameter§See clusion is that YBCO is in the regime where the effective
Egs.(21) and(25) and accompanying discussion in Ref. ]13. interlayer coupling is sufficiently strong to validate descrip-
We have plotted this form of the functiagyp(x) in Fig. 3 tion in terms of the 3D anisotropic homogeneous supercon-
usingM=2.3, K=1.9, and¢,=5.0 A. (Because of the fit- ductor. Still, the vestiges of its microscopic layered structure
ting parametersM and K, &, can only be determined to are presentand visible in the data away from the peak where
within ~20%.) The agreement between the scaled data and(T.H) changes very slowly and ~ 5.

the scaling function is very good. We have alsayfji(x) to

the data of Refs. 7,15,17,18 consistently finding good agree- IIl. SUMMARY AND DISCUSSION
ment between the scaled data and the scaling function, espe- _ _
cially near the peak. Note that the obtained value #ois We have investigated the validity of LLL theory as a de-

within factors of order unity of the superconducting coher-scription of the specific heat in the critical region of the

ence length along the axis (~2—-3 A) (see Table)ljustas HTSC's in the high-field regime, and the value of the field
expected from the theory. H* which marks the onset of this “high-field” regime. We

The quantitys in AT, describes a length scale in tae  have found that LLL scaling works for a number of different
direction. It is frequently taken to be the thickness of thematerials and samples at fielts=~2 T. At field values
superconducting layer within a unit cell, but in layered sys-lower thanH*, LLL scaling is expected to break down and
tems, it is more accurately associated wih the distance We have observed this. In the first row of Table Hg , the
over which a vortex line which threads perpendicular to thefield above which we find that LLL scaling works for that set
layers does not bend. for the various samples, as shown in of experimental data. The values as one moves from sample
Table |, is typically largeO(100 A). In a quasi-two- to sample are quite consisteht, ;| =2 T. One must clearly
dimensional regime, where the effective interlayer couplingdentify the theoretical quantitid* with H,, , and we in-
is weak, one expectd to be of the order of a few times the deed find quantitative agreemeft* =H,,, . We have also
interlayer spacing. The fact that osrappears to be longer is found that the scaled data agrees very well with the scaling
a strong indication that YBCO behaves as an homogeneodgnctions for this systent:** providing particularly strong
anisotropic superconductor in this range of fields and temevidence for the validity of LLL theory. Mere scaling, in the
peratures and that the 3D LLL scaling is more appropriateabsence of a calculated scaling function with which to com-
This is further supported by the high quality of the 3D LLL pare the data, is weaker evidence for a theory.
scaling and good agreement with the 3D scaling function in  The next row in Table | i$d5p xy, the field up to which
Fig. 3. It should also be noted, however, that our values othe data is found to scale with 3RY theory. To date, a clear
8 are consistent with those found in scaling magnetizatiorbreakdown of 3DXY scaling has not been observed and so
studies in thallium compound$,which indicates that our Hgspxy is larger tharH ;; and is only limited by the largest
values of 8 do not exclude the possibility of crossover to applied magnetic fields available to the different groups. In
two-dimensional behavior away from the peak. other words, the fields for which LLL scaling and 30Y

In Ref. 7, it was shown that, away from the peak, thescaling appear to be valid overlap. One implication of this is
specific heat data for the sample studied there scaled better ihat the crossover from one regime to another is gradual and
terms of the 2D LLL variable, while near the peak the datathat present measurements have not gone to large enough
scaled better with the 3D LLL variable. This phenomenonfields to observe the breakdown of 30D scaling. Another
was presented not only as evidence for the validity of LLLpossibility is that the scaling of the data with 3DY theory
scaling, but also for dimensional crossover—from 2D behavis a coincidence or an artifact. Scaling in the 3I¥ model
ior away from the peak to 3D near it. That picture was fur-arises simply from a hypothesis on the scaling variable, and
ther supported by comparison of the scaled data with théhere is no theoretically derived scaling function. As a result,
scaling functions. It was found that the 3D scaling functionthe validity of that theory is less convincing, as explained
better described the peak area in the 3D LLL-scaled data argbove.
that the 2D scaling function better described the 2D LLL- We expect on general grounds that the regimes of the LLL
scaled data away from the peak. Here we present furtheand the physicaXY scaling do not overlap. This is so be-
indications for a temperature-dependent crossover at high@ause the former arises from a high field theory whereas the
fields (i.e., fields sufficiently large that the system is de-latter is inherently tied to the zero- and low-field behavfor.
scribed by LLL theory. Comparing Figs. 1 and 3 we see that 3D XY scaling with zero-field critical exponents, in prin-
in the peak region the agreement between the 3D scalingiple, is expected to be valid only at an infinitesimally small
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field; at low but finite fields a different, finite-field critical functions. The scaling is clearly three-dimensional near the
behavior might set in* At higher fields, the formation of peak, and there are indications that it may cross over to two-
LLL manifolds begins. The nature of the dominant fluctua-dimensional elsewhere. Finally, we see that in all cases with-
tion modes in theXY and LLL cases is very different: As the out exception one finds a transition region with a width of
formation of LLL manifolds takes place, many degrees ofO(K), confirming that the commonly accepted interpretation
freedom of a complex field(r) obtain a masscyclotron of the Ginzburg criterion is correct and that the transition
gap. These degrees of freedom then become irrelevant, draggion is very accessible in HTSC's.
tically changing the fluctuation behavior. After this paper was submitted for publication, we re-
We have also investigated the values of other quantitieseived a preprint by Jeandupeekal? in which the low-
for the various samples which are listed in Table I, includingfield 3D XY scaling is tested on specific heat and magneti-
dT./dH, &, andb. These quantities vary significantly from zation data of a YBCO sample. These authors find that the
sample to sample, as one would expect from the differenpredicted form of theXY scaling, including the zero-field
compositions and preparation methods. Despite these variaerrelation length exponent, breaks down at fields above 1 T.
tions, there does seem to be some overall trends among tAdeir results are in general agreement with ours: The field at
various quantities. For example, for the samples wheravhich one crosses over from the low- to the high-field limit
dT./dH is the smallestb, 8, and¢; are larger. Indeed the of fluctuation behavior is approximately 1 T for YBCO.
correspondence of the values férand & is particularly
convincing evidence for LLL theory and the results of Ref.
12,13 because these quantities have the most physical sig-
nificance and are in agreement with the expected values. We thank A. Andreev and C. C. Huang for very useful
Their values are also indicative of the 3D nature of theconversations. We express our gratitude to S. Inderhees
YBCO materials. It should also be noted that for all of theet al, A. Junodet al, and N. Overencet al. for providing
samplesH, | is remarkably consistent. their data. This work was supported in part by the Office of
In conclusion, we have studied LLL scaling for the field Naval ResearcliS.W.P. and T.M.K), the National Research
dependent specific heat in the context of data obtained i€ouncil (S.W.P), and the NSF Grant No. DMR-9415549
different HTSC materials by several groups. We find excel{Z.T.). We thank Dr. Jeandupeux and Professor Ott for shar-
lent quantitative agreement with the calculated LLL scalinging their results with us prior to publication.
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