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The specific heat data of various high-temperature superconducting materials at finite magnetic field and
temperatures near the transition temperature are studied. It is found that lowest-Landau-level~LLL ! scaling is
a good description of the data for fields larger than a characteristic fieldH*;O~1 T! and that it breaks down
for fields less thanH* . The scaled data agrees very well with the calculated scaling functions, which provides
further evidence for the validity of LLL theory at fieldsH>H* . The dimensionality of the fluctuations is also
studied and it is found that they are predominantly three dimensional near the transition with indications of
crossover to two-dimensional behavior farther away.

I. INTRODUCTION

Thermal fluctuations play a significant role in the physics
of high-temperature superconductors~HTSC’s!. The quantity
which determines the importance of fluctuations is the Ginz-
burg number,u.1 The productuTc , whereTc is the super-
conducting transition temperature, determines the width of
the temperature window in which fluctuations are important.
In conventional superconductors, this width is typically of
O(mK!. In the HTSC’s, however, there are three properties
which make this temperature window several orders of mag-
nitude larger than in conventional superconductors and
readily observable. These properties are the very small cor-
relation lengthsj;10 Å, the high transition temperature
Tc;100 K, and the layered structure which effectively re-
duces the dimensionality. As a result, the generally accepted
estimate foruTc ~confirmed by the specific heat results, as
we shall see below! is of O~K!, although the dimensionless
factors2 in the Ginzburg criterion formula foru do not con-
clusively rule out a smaller value.

Fluctuations in the HTSC’s have been studied and ob-
served in magnetization, conductivity, current-voltage, and
specific heat measurements among others. The theory which
describes the fluctuations in the first three measurements is
fairly well understood. In specific heat measurements, how-
ever, the nature of the fluctuations is still unestablished, al-
though there is strong evidence that the fluctuations are de-
scribed by either three-dimensional~3D! XYmodel3 at small
fields or lowest Landau level4 ~LLL ! scaling at larger fields.
Evidence for 3DXY scaling5,6 and LLL scaling7–10has been
presented for many types of HTSC’s. Nonetheless, the rel-
evance of LLL scaling to specific heat measurements has
been questioned.5,11

In this paper, we present strong evidence for LLL scaling

of specific heat data of various HTSC’s for fieldsH>1–3
tesla~T!. The LLL-scaled data is compared with the analytic
scaling function12,13and excellent agreement is found, giving
further credence to the validity of LLL theory at larger fields.
Another objective here is to investigate the value of the field
at which the LLL scaling starts to become valid and where a
description based on the zero-field critical behavior must
break down. Hence we obtainHLLL , defined as the field
below which LLL scaling begins to break down, from each
of the data sets studied here. Finally, we explore the dimen-
sionality of the fluctuations and various relevant quantities
for the different samples. We find that the fluctuations are
three-dimensional near the transition with a possible cross-
over to two-dimensional~2D! away from the transition.

II. LLL SCALING

In this section we will analyze the data on various
samples from different groups. Because results vary some-
what from sample to sample, it is important that one draw
conclusions based on all of these samples. We will place an
emphasis on the LLL scaling formalism.

For sufficiently small applied magnetic fields, the fluctu-
ating BCS pairs occupy many Landau levels~LL’s ! and there
are significant intra- and inter-LL interactions. At higher
fields, the fluctuating pairs occupy a small number of the
lower LL’s and there is less inter-level mixing. For suffi-
ciently large fields, only the lowest Landau level is occupied
and only the intralevel interactions are important. In this re-
gion, one can use the lowest Landau level approximation.
Tes̆anović and co-workers,12,13 however, have shown that,
even at smaller fields, where only a few Landau levels are
occupied and the inter-Landau level interactions are negli-
gible, one can use the LLL approximation by renormalizing
the parameters. This is clear, since in that case the partition
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function reduces to a product over a few independent LL
manifolds. These considerations extend the region in which
LLL scaling is expected to be valid toH>H* , with
H*>(u/16)(T/Tc0)Hc2(0),

13 whereTc0 is theH50, mean-
field transition temperature. For typical HTSC’s,H*.1 T.
At smaller fields, inter-LL interactions must be considered.14

Theoretically, 3DXY scaling is expected to apply for infini-
tesimal fields but in practice it should apply for a range of
fields near theH50 critical point.

According to LLL theory,4 the specific heat should scale
as

C~H,T!

CMF~T!
5gdS T2Tc~H !

DTd~T,H ! D , ~1!

whereC(H,T) is the measured specific heat minus the back-
ground specific heatCb(T), d is the dimensionality,Tc(H)
is themean-fieldtransition temperature as a function of ap-
plied field ~which should be distinguished from the actual
transition temperature!, gd is a dimensionality-dependent
scaling function, andCMF(T) is the mean-field contribution.
Frequently, the left-hand side of Eq.~1! is written as
C(H,T)/@a82T/b# „where the correspondence
CMF(T)5@a82T/b# is a standard mean-field result…. For
d52, DT2D5(HT/@CMF(T)/2kBT#f0d)

1/2 wherekB is the
Boltzmann constant,f0 is the superconducting flux quan-
tum, andd is a length in thec direction ~i.e., the direction
perpendicular to the copper-oxide planes!. For 3D systems,
DT3D5(HT/@4CMF(T)/kBT#f0jc)

2/3, wherejc is the zero-
temperature correlation length in thec direction. For tem-
peratures nearTc , the predominant field and temperature
dependence ofDTd(T,H) are in the numerators.

In order to scale the data according to Eq.~1!, we must
extractCb(T), CMF(T), andTc(H) from the raw data. The
first two quantities are determined in a standard way7,15,16

where one fits the zero-field data to a quadratic background,
a BCS mean-field termCMF(T)5gT@11b(T/Tc021)#, and
a Gaussian fluctuation term which should be a good approxi-
mation far away from the transition temperature where the
fluctuations are weak. This simple approach is sufficient em-
pirically for determining these quantities.

Tc(H), the mean-field transition temperature, cannot be
measured directly and is usually taken to be the inflection
point of C(H,T). Here we use a different and, we believe,
more physical approach which we call the ‘‘crossing point
technique.’’ At T5Tc(H), the quantity
C@H,T5Tc(H)#/CMF@Tc(H)#5gd(0) @Eq. ~1!# is a con-
stant independent of field and is calculated in Refs. 12,13.
Therefore, if one plots C(H,T)/CMF(T) versus
x[T2Tc(H) ~i.e., only the numerator of the argument of
the functiongd), one would find that the curves of each data
set cross atx50 where they have the same value. Our tech-
nique is to chooseTc(H) for each data set to ensure this
crossing atx50 with the value ofgd(0) being then the value
calculated in Refs. 12,13. Of course, if this were not possible
it would mean that the data cannot satisfy LLL scaling, but
we find that the procedure works well. Typically the value of
the mean-field transitionTc(H) as determined by this tech-
nique is slightly larger than if that quantity were defined by
the inflection point. The values ofdTc /dH as calculated by
the two methods are within 10% of each other.

In Fig. 1, we show the data of the Leeds group5 on
YBa2Cu3O72y ~YBCO! scaled with 2D LLL theory. The dif-
ferent symbols represent the data at different fields. The solid
line is the theoretical scaling function which will be dis-
cussed below. LLL scaling had not previously been shown to
work for this data,5,9 but one can see from our analysis that
the scaling is good down toH52–4T. For smaller fields, the
scaling is, as expected, poorer. The parameter values used in
the scaling are shown in Table I. We have also scaled the
Illinois data for a YBCO single crystal15 ~see Fig. 2! with
similar and equally good results. This is also the case for the
Geneva data on a YBCO porous single crystal17 and on a
YBCO ceramic data.18 @Since CMF becomes negative ap-
proximately 10 K belowTc for all of the samples, the left-
hand side of Eq.~1! diverges in that vicinity. Because this
result is not physical, we have cut off the data where it starts
to manifest this artifact.# This cumulative evidence for LLL
scaling of these four different samples, along with previous
evidence of LLL scaling for the LuBa2Cu3O72y ~LBCO!
single crystal of the Minnesota group,7 and for the
~Bi,Pb!2Sr2Ca2Cu3Oy ~BPSCCO! c-axis aligned sample of
the Sendai, Japan group,10 presents a strong case for describ-
ing the medium and high field data for HTSC’s by LLL
theory away fromTc . The Geneva group has shown19 that
their data agrees very well with LLL scaling if one analyzes
it in terms of the derivative with respect to the fieldH. This
agrees with our conclusions but we caution the reader that
the derivative analysis neglects a contribution proportional to
dTc(H)/dH.

We now turn to the question of dimensionality crossover.
In Fig. 3, we show the data of Ref. 5 scaled with 3D LLL
theory. The scaling is observed to work down to fields
H52–3 T, providing more support for the validity of LLL
theory. We have found equally good 3D LLL scaling for the
Minnesota LBCO sample,7 the Illinois15YBCO sample,9 and
the Geneva17 YBCO porous single crystal. The 2D LLL and
3D LLL scaling of this data will be contrasted in the para-
graphs below.

The scaling of data with a certain theory is evidence for
the validity of the application of that theory to a particular

FIG. 1. The data of Ref. 5 scaled with 2D LLL theory.
†DT2D5„HT2/@C MF(T)d#32.21310210(mJ cm/gKT)…1/2 where
the mass density has been taken to be 6.4g/cm3 for YBCO.‡ Also
plotted in the analytical scaling function Eq.~2! as derived in Refs.
12,13. The agreement between the scaled data and the scaling func-
tion is very good.
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system. It is however not conclusive, particularly when em-
pirical scaling can be obtained from other theories with very
different physical content. Much stronger evidence can be
obtained if one knows the scaling function. Tes˘anović and
co-workers12,13 have calculated the LLL scaling functions
g2D , g3D , andgQ2D, the third function being for a quasi-
two-dimensional, or layered system. The function for the
two-dimensional case is given by

g2D~x!5
1

2 S 12
u~x!x

Ax2u2~x!12
D Fu2~x!1„Ax2u2~x!12

2xu~x!…UdudxUG , ~2!

wherex5@T2Tc(H)#/(HT/@CMF(T)/2kBT#f0d)
1/2 and

u~x!50.81820.11 tanhS x1A2
2A2 D . ~3!

In Figs. 1 and 2 we have plotted, together with the data
points, a line representing Eq.~2!.20 One can see that for both
samples the scaling function agrees reasonably well with the
scaled data, providing convincing evidence for this theory.
However, near the peak the agreement breaks down indicat-
ing that the fluctuations are effectively 3D. Similar results
were obtained for the other data.

The scaling functiong3D@„T2Tc(H)…/DT3 D# ~Ref. 13! is
complicated due to the appearance of a new length
L(T,H) which regulates the bending of vortex lines along
the field direction.21 A simple and accurate approximation to
g3D(x) is obtained by assuming thatL does not change rap-

FIG. 2. The specific heat data of a YBCO sample~Ref. 15!
scaled with Eq.~1!, the 2D LLL scaling form. The solid line is the
2D LLL scaling function~Refs. 12,13!, Eq. ~2!.

FIG. 3. 3D LLL scaling of the specific heat data of a YBCO
single crystal ~Ref. 5!. †We usedDT3D5„HT2/@Tc

1/2C MF(T)jc#
32.61310211(mJ cm/gKT)…2/3.‡ Also plotted~solid line! is the 3D
LLL scaling function~Ref. 13! which coincides with the scaled data
very well nearTc .

TABLE I. Summary of various quantity values as calculated for different samples.HLLL is the field above
which it is found that LLL scaling describes the data.H3DXY is the field up to which 3DXY scaling appears
to work. The upper limit of this quantity is set by experimental constraints and not by an observed breakdown
of the scaling.dTc /dH, b, andd are discussed in the text.

Theory YBCOa YBCOb YBCOc LBCOd YBCOa ~BP!SCCOf

HLLL ~T! > 1 2-3 3 0.5 2 1 1
H3D XY ~T! < 7 14 7 5 14
dTc /dH ~K/T! -0.17 -0.12 -0.58 -0.54 -0.51 -0.50
g ~mJ/gKT2) 0.041 0.070 0.058 0.67 0.050
Tc ~K! 91.9 93.3 90.6 92.6 92.6 107.5
Tc0 ~K! 92.4 93.5 91.0 93.0 93.3 114.7
b 9.3 11.2 4.0 6.1 10.7 5.0
d ~Å! 400 290 55 89 77
jc ~Å! 5 2.7 0.75 1.7 1.5

aDerived from the data of Ref. 5 on a single crystal.
bDerived from the data of Ref. 18 on a porous ceramic.
cDerived from the data of Ref. 15 on a single crystal.
dDerived from the data of Ref. 7 on an untwinned single crystal.
eDerived from the digitized data of Ref. 17 on a porous single crystal.
fTaken from Ref. 10 on ac-axis aligned bulk sample.
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idly through the critical region around Tc(H):
L(T,H);jc@Tc0Hc2(0)/uTH#1/3. With this simplification
the dominant contribution tog3D(x) takes the same form as
Eq. ~2! but with x now being the 3D scaling variable
x5„T2Tc(H)…/DT3D . In 3D, it is conveniently assumed
that Tc(H) in x already contains renormalizations from the
vortex line bending along the field and is directly determined
by our crossing point technique, whilejc incorporates a fac-
tor of order unity which accounts for the difference between
the superconducting (jc) and vortex positional correlations
(L). Also, u(x) is different in 3D and is given by
u(x).0.81820.11tanh@„G(x)1K…/M # whereG(x) is de-
fined in Ref. 13 andK andM are fitting parameters.@See
Eqs.~21! and~25! and accompanying discussion in Ref. 13.#
We have plotted this form of the functiong3D(x) in Fig. 3
usingM52.3, K51.9, andjc55.0 Å. ~Because of the fit-
ting parametersM and K, jc can only be determined to
within ;20%.) The agreement between the scaled data and
the scaling function is very good. We have also fitg3D(x) to
the data of Refs. 7,15,17,18 consistently finding good agree-
ment between the scaled data and the scaling function, espe-
cially near the peak. Note that the obtained value forjc is
within factors of order unity of the superconducting coher-
ence length along thec axis (;2–3 Å! ~see Table I! just as
expected from the theory.

The quantityd in DT2D describes a length scale in thec
direction. It is frequently taken to be the thickness of the
superconducting layer within a unit cell, but in layered sys-
tems, it is more accurately associated withL, the distance
over which a vortex line which threads perpendicular to the
layers does not bend.d for the various samples, as shown in
Table I, is typically largeO(100 Å!. In a quasi-two-
dimensional regime, where the effective interlayer coupling
is weak, one expectsd to be of the order of a few times the
interlayer spacing. The fact that ourd appears to be longer is
a strong indication that YBCO behaves as an homogeneous
anisotropic superconductor in this range of fields and tem-
peratures and that the 3D LLL scaling is more appropriate.
This is further supported by the high quality of the 3D LLL
scaling and good agreement with the 3D scaling function in
Fig. 3. It should also be noted, however, that our values of
d are consistent with those found in scaling magnetization
studies in thallium compounds,22 which indicates that our
values ofd do not exclude the possibility of crossover to
two-dimensional behavior away from the peak.

In Ref. 7, it was shown that, away from the peak, the
specific heat data for the sample studied there scaled better in
terms of the 2D LLL variable, while near the peak the data
scaled better with the 3D LLL variable. This phenomenon
was presented not only as evidence for the validity of LLL
scaling, but also for dimensional crossover—from 2D behav-
ior away from the peak to 3D near it. That picture was fur-
ther supported by comparison of the scaled data with the
scaling functions. It was found that the 3D scaling function
better described the peak area in the 3D LLL-scaled data and
that the 2D scaling function better described the 2D LLL-
scaled data away from the peak. Here we present further
indications for a temperature-dependent crossover at higher
fields ~i.e., fields sufficiently large that the system is de-
scribed by LLL theory!. Comparing Figs. 1 and 3 we see that
in the peak region the agreement between the 3D scaling

function and the scaled data is striking. The predicted asym-
metric shape of the scaling function peak is very well repro-
duced by the experiment. Overall, both the scaling and the fit
to the scaling function are, as a whole, clearly better for the
3D case than for 2D. Nevertheless, there is some evidence
for 2D behavior away from the transition. Thus the scaling
behavior on the high temperature side is a little better for 2D,
and the 2D scaling function is a somewhat better fit to the
data in the low temperature region to the left of the peak.
Very similar considerations apply if one compares the YBCO
single crystal data of Fig. 2 with the 3D scaling of the same
data shown in Fig. 1 of Ref. 9. Therefore, the overall con-
clusion is that YBCO is in the regime where the effective
interlayer coupling is sufficiently strong to validate descrip-
tion in terms of the 3D anisotropic homogeneous supercon-
ductor. Still, the vestiges of its microscopic layered structure
are present and visible in the data away from the peak where
L(T,H) changes very slowly andL;d.

III. SUMMARY AND DISCUSSION

We have investigated the validity of LLL theory as a de-
scription of the specific heat in the critical region of the
HTSC’s in the high-field regime, and the value of the field
H* which marks the onset of this ‘‘high-field’’ regime. We
have found that LLL scaling works for a number of different
materials and samples at fieldsH>;2 T. At field values
lower thanH* , LLL scaling is expected to break down and
we have observed this. In the first row of Table I isHLLL , the
field above which we find that LLL scaling works for that set
of experimental data. The values as one moves from sample
to sample are quite consistent,HLLL.2 T. One must clearly
identify the theoretical quantityH* with HLLL , and we in-
deed find quantitative agreement:H*.HLLL . We have also
found that the scaled data agrees very well with the scaling
functions for this system,12,13 providing particularly strong
evidence for the validity of LLL theory. Mere scaling, in the
absence of a calculated scaling function with which to com-
pare the data, is weaker evidence for a theory.

The next row in Table I isH3D XY , the field up to which
the data is found to scale with 3DXY theory. To date, a clear
breakdown of 3DXY scaling has not been observed and so
H3D XY is larger thanHLLL and is only limited by the largest
applied magnetic fields available to the different groups. In
other words, the fields for which LLL scaling and 3DXY
scaling appear to be valid overlap. One implication of this is
that the crossover from one regime to another is gradual and
that present measurements have not gone to large enough
fields to observe the breakdown of 3DXY scaling. Another
possibility is that the scaling of the data with 3DXY theory
is a coincidence or an artifact. Scaling in the 3DXY model
arises simply from a hypothesis on the scaling variable, and
there is no theoretically derived scaling function. As a result,
the validity of that theory is less convincing, as explained
above.

We expect on general grounds that the regimes of the LLL
and the physicalXY scaling do not overlap. This is so be-
cause the former arises from a high field theory whereas the
latter is inherently tied to the zero- and low-field behavior.14

3D XY scaling with zero-field critical exponents, in prin-
ciple, is expected to be valid only at an infinitesimally small
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field; at low but finite fields a different, finite-field critical
behavior might set in.14 At higher fields, the formation of
LLL manifolds begins. The nature of the dominant fluctua-
tion modes in theXY and LLL cases is very different: As the
formation of LLL manifolds takes place, many degrees of
freedom of a complex fieldC(r ) obtain a mass~cyclotron!
gap. These degrees of freedom then become irrelevant, dras-
tically changing the fluctuation behavior.

We have also investigated the values of other quantities
for the various samples which are listed in Table I, including
dTc /dH, d, andb. These quantities vary significantly from
sample to sample, as one would expect from the different
compositions and preparation methods. Despite these varia-
tions, there does seem to be some overall trends among the
various quantities. For example, for the samples where
dTc /dH is the smallest,b, d, andjc are larger. Indeed the
correspondence of the values ford and jc is particularly
convincing evidence for LLL theory and the results of Ref.
12,13 because these quantities have the most physical sig-
nificance and are in agreement with the expected values.
Their values are also indicative of the 3D nature of the
YBCO materials. It should also be noted that for all of the
samples,HLLL is remarkably consistent.

In conclusion, we have studied LLL scaling for the field
dependent specific heat in the context of data obtained in
different HTSC materials by several groups. We find excel-
lent quantitative agreement with the calculated LLL scaling

functions. The scaling is clearly three-dimensional near the
peak, and there are indications that it may cross over to two-
dimensional elsewhere. Finally, we see that in all cases with-
out exception one finds a transition region with a width of
O~K!, confirming that the commonly accepted interpretation
of the Ginzburg criterion is correct and that the transition
region is very accessible in HTSC’s.

After this paper was submitted for publication, we re-
ceived a preprint by Jeandupeuxet al.23 in which the low-
field 3D XY scaling is tested on specific heat and magneti-
zation data of a YBCO sample. These authors find that the
predicted form of theXY scaling, including the zero-field
correlation length exponent, breaks down at fields above 1 T.
Their results are in general agreement with ours: The field at
which one crosses over from the low- to the high-field limit
of fluctuation behavior is approximately 1 T for YBCO.
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14Z. Tes̆anović, Phys. Rev. B51, 16 204~1995!.
15S. E. Inderhees, M. B. Salamon, J. P. Rice, and D. M. Ginsberg,

Phys. Rev. Lett.66, 232 ~1991!.
16S. D. Farrant and C. E. Gough, Phys. Rev. Lett.34, 943 ~1975!.
17E. Janod, A. Junod, K.-Q. Wang, G. Triscone, R. Calemczuk, and

J.-Y. Henry, Physica C234, 269 ~1994!.
18A. Mirmelstein, A. Junod, K.-Q. Wang, E. Janod, and J. Muller,

Physica C241, 301 ~1995!.
19M. Roulin, A. Junod, and J. Muller, Phys. Rev. Lett.75, 1869

~1995!.
20In Refs. 7,12, the derivativedu/dx was taken to be negligible in

the functiong2D .
21Equation ~27! of Ref. 13 gives only the leading terms in the

expression for the specific heat. The full expression can be ob-
tained in a straightforward manner by taking the double tem-
perature derivative of the LLL free energy@see Eq.~25! of that
paper#. In general, we have found that the subleading terms con-
taining the derivativedu/dx are needed to accurately reproduce
the peak in the 3D LLL scaling functiong3 D .

22A. Wahl, A. Maignan, C. Martin, V. Hardy, J. Provost, and Ch.
Simon, Phys. Rev. B51, 9123~1995!.

23O. Jeandupeux, A. Schilling, H. R. Ott, and A. van Otterlo~un-
published!.

8642 53PIERSON, KATONA, TEŠANOVIĆ, AND VALLS


