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Interface-potential approach to surface states in type-l superconductors
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We study inhomogeneous surface states in strongly type-I superconductors from the viewpoint of wetting
phenomena. The interface-potential approach, known for fluids or magnets, is extended to superconductors.
Within the Ginzburg-Landau theory we calculate an interface potevtigl, which describes the interaction
between the surface and a parallel superconductor/ngB@AN) interface, at separatidn Unlike for fluids or
magnets, a quantum effect shows up in the formV@f) for smalll. Introducing an interface displacement
model, we predict an S-shaped distortion of an inclined\Sidterface near the surface.

The possibility that the superconducting phase “wets” the 2

surface has up to now been largely ignored. Long ago, Pip- Ne.Al= fo dx
pard argued that the difference of the surface free energies
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normal (N) phases near a surface or wallV] is much + + b|q}(0)| ) 1)
smaller than the interfacial tensionyscy Of a 2i0 2m

superconductor/normal interfat8.1f that were generally The type-I superconductor fills the half-space 0, so that

true, wetting would not take place, since the wetting condithe surface is atx=0. A is the vector potential, and

tion is yw,n=yw,sct ¥scn-> However, recent calculations H=He, is the applied magnetic field, whichpsrallel to the

in the Ginzburg-LandauGL) theory have revealed that surface. Furthermoreg<T—T,, with T. the bulk critical

genuine wetting or “interface delocalization” phase transi- temperature. The gauge is chosen so &at(0,A(x),0). Be-

tions occur, whenever the superconducting order parangeter cause we are at this stage, i.e., for the derivation of the in-

is enhanced at the surfat@he transitions are of first order terface potential itself, concerned witmiform states(i.e.,

for 0< k<0.374 and critical for 0.374 k< 1/\/5, wherex translationally invariant along and z), it suffices to work

=\/¢ is the ratio of the magnetic penetration depth to thewith real functionse(x). The profilesA(x) and ¢(x) are

coherence length. determined by the GL equations, being the Euler-Lagrange
Building further on this previous workwe extend the €duations of the functiondll). _

interface potentiabpproach, well known for fluids and Ising ~ The surface contribution ifil) plays a crucial role. The

magnet$ to type-l superconductors. We derive a wall- parametetb is the extrapql::_\tlc_)n I(_ength of th_e order param-

interface potentiaV(l) for wetting and prewetting transi- eterp(x) at the surfac@.Mlnlmlzatl_o_n of (1) with respect to

tions and for partial wetting states. For superconductors?(0) leads to the boundary condition

V(1) can be defined as the excess free energy per unit area of

a uniform superconducting surface sheath of thicktessd @ 1

represents the effective interaction potential between the SC/ &(O): b™"¢(0). @

N interface and the wallv. The equilibrium sheath thickness

is determined by the minimum of(l). The wall-interface

potential is not only interesting from a fundamental view-

point, but also permits applications itlthomogeneoustruc-

turesésgcrr]] as three-phase contac:] regh(tﬁm‘. 5 fﬂrst pa- uppressed at the surface. Ber0, howeverp is enhanced
pen. By inhomogeneous we mean that the wave function an nd wetting transitions occrThe significance of the case

magnetic induction profiles now depend on two coordinate§, g has been discussed before for cold-worked surfaces
x (perpendicular to the surfacandy (parallel to the sur- a4 for twinning plane&® Also, a thin film of a supercon-
face. A quantitative study of these inhomogeneities is diffi- y,ctor with a higherT,, deposited on the surface of the
cult to carry out Using the standard GL equations. As a firstype_| Superconductor by, e.g., molecular beam epitaxy'
example, we employ/(l) to predict the distortion of an in-  should lead td<0.1° Following previous works, we takie
clined SCN interface near the surface in the partial wettingas a temperature-independent material constant. We further-

The sign of b is especially important in the context of
wetting® For b>0, which pertains to surfaces against nor-
mal metals or against insulators or vacuulm—<«), ¢ is

regime. more remark that the effect of geometrical disorder at the
Our derivation ofV(l) starts from the GL surface free surface, including strain energies and lattice mismatch due to
energy functional deposited thin films, is properly taken into account in the
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FIG. 1. The method for calculating the superconducting wave F|G. 2. H-T surface phase diagram of wetting and prewetting
function profile ¢(x) makes use of the “phase portrait.” Shown transitions in the limitx—O0.

here is the phase portrait for bulk two-phase coexistence in the limit

1—0. O, following the arrows. This is the interface delocalization

or wetting transitiorf.An equal-areas rulesee Fig. 1 applies

present functiona(l), providedthe disorder does not pen- to locate the transition.
etrate into the bulk superconductor over length scales larger The wetting transition has a “prewetting” extension out
than the coherence lengghwhich is large(several 18 A)in  of bulk two-phase coexistence into phaseExtending the
these materialt: phase portrait method to off-coexistence states, one obtains

For clarity of presentation we first recall the wetting the H-T phase diagram fok=0, shown in Fig. 2. The tem-
phenomenhand then give the results for the wall-interface perature variable i$=(T—T.)/(T.—Tp), WhereTp is the
potential and the interface displacement profile. To obtainnterface delocalization temperature. The magnetic field is
explicit analytical results, we make the approximationiikewise reduced with the interface delocalization fielg .
A <¢, which is quantitatively correct for strongly type-I su- The thin line CX denotes the bulk two-phase coexistence.
perconductors such as, e.g., Al. But as we shall argue at thehe thick lineFN, from the interface delocalization transi-
end, it is qualitatively correct for materials with up to  tion D to the surface critical pointSCP is a line of first-
0.374, which includes In, Sn, and others. order nucleation transitiof'sOn this line the profile with

In the limit <—0 the magnetic inductiodA/dx is a step  y(x)=0 coexists with a superconducting surface sheath of
function, whereasp is smoothly varying on the scale &  finite thicknessl. We remark that this phase diagram is
near surfaces or interfaces. The GL equations imply ¢hat closely similar to the phase diagram of twinning-plane super-
=0 in regions with nonzerd A/dx, so that the equations for conductivity(for k<=0) obtained by Khlyustikov and Buzdin
A and ¢ decouple. This allows one to obtain a “phase por-and(in more detail by Mishonov’
trait” for determining the trajectories) versusy, with ¢ The wall-interface potential(l) is defined through appli-
=¢+B/|a| and the overdot stands f@gd/dx. Here¢ is the  cation of a constraint on the free energy functiofigl For
zero-field coherence length defined B$=7%2/2m|a|. Note  x—0 it is natural to definé as the location of the disconti-
that é 2| T—T. nuity in the magnetic induction, so that the latter is zero in

Figure 1 shows the phase portrait for the case of bulkhe interval G<x<I and equals the external field in the re-
two-phase coexistence betwedrand SC phases at magnetic maining regionsx<0 (outside the sampleandx>| (in the
field H(T) and for k—0. The thick lines contain the pos- bulk N phase. V(l) is then the minimum of1) under the
sible trajectories, which follow the arrows as a functiorxof constraint of fixed. Solutions fory(x) in [0,]] must satisfy
The fixed pointO corresponds to bulk pha$é and the fixed the boundary conditiorf2) at x=0 and the continuity re-
point Y denotes bulk phase SC. The vertical trajectoryyat quirementy(1)=0.
=0 describes the discontinuity it that arises as a conse-  The resulting functionV(l) is very different from its
quence of the jump in the magnetic induction in the limit counterpart for fluids and magnets. For smlathere is a
k—0. The straight lineOD comes from the boundary con- linear part, from the minimum at=0 up to a length scale
dition (2) and is given byy= £y/b. Intersections of this line |,. The existence of, is a purely quantum-mechanical ef-
with the trajectories give initial conditiong{0) and ¥{0)  fect, which can be understood through the following analogy.
corresponding to extrema of the free ener@yandD are  For small ¢ the GL equation reduces to the Sctiirger
(local) minima, andU is a saddle point. In order to discuss equation for a particle in a box. The wave numkeof the
wetting by the SC phase, phabkis imposed as the bulk particle is a function of the temperatufeof the supercon-
boundary conditior{at x==). At ¢£/b=—0.602 a first-order ductor, and the box size correspondsl t&At given T and,
phase transition takes place, in which profde with (x) therefore, fixedk, | must exceed a certain threshold value
=0, exchanges stability with a macroscopic superconducting, in order for a nonzero solution fap to exist. The conse-
layer, fromD to Y, followed by a SON interface, fromYto  quence of this for thenonlinear GL equation is that, fot
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<lo, the free energyl) is minimized by (x) =0. The physi- 3
cal implication of this quantum effect is the existence of a |
minimum thicknessy>0 for uniform superconducting sur- | FIRST-ORDER WETTING
face sheaths, since it is impossible to impose a nonzero su-
perconducting sheath with a thickness less thamhe de-

pendence of, on temperature can be calculated analytically.

The ratiol /¢ depends only on the ratid|/£. We find V(l)/C

| e tan 1(|b|/¢) for T<T,,
/6= tanh X(|b|/&) for T=T.. ©) 1

PREWETTING

This means that, for example, in the vicinity of the wetting

transition (where|b|/¢ is of order unity, the magnitudes of

I, and ¢ are of the same order, i.e., a few thousand A. 0
For I<l, the interface potential takes the simple linear 0 1 2 3 4

fi
orm L/ ol

V()= uH2/2  for 1<l,. (4)

FIG. 3. Interface potentiaV/(1)/C vs |/|b|. The constantC
equalsi®/(48m?|b|3). The two potentials shown are for the first-
order interface delocalization or wetting transiti@n (at &/b=
—0.602) and for a point on the first-order nucleation or prewetting

Yo line FN (e.g., foré&/b=—0.8). The open circle locates the weak
V( wo):(gazlﬁ)f dy(HEZ— ¢*12) singularity atl =1,, as explained in the text.
0

For I1>1,, the optimal profileg(x) is nonzero andv(l) is
obtained through the auxiliary functioW (i), with i

=y(0),

X[+ 2+ 12+ HE+ E(4o) ]2, (5) ture, so that9>0 for T<Tp (partial wetting and ¢=0 for

T>Tp (complete wetting In a partial wetting state, the
where the— (+) sign applies forT<T. (T>T.). The re-  minimum of V(1) is at =0, with V(0)=0, andV(l) ap-
duced fieldHg is defined throughi = uoBH%/2a?, and the  proaches the valueyscn(l—cosd) for |—oe, with

function E(¢y) is given by yscn=4£a%1(3y2). The contact line, where interface and
22— AN 12 1 hie 142 surface meet, is parallel to tlzeaxis, since the magnetic field

E(0) = (£7/075 1) o= 4ho/2= HR. ©) orients the normal domahWwe now define the interface pro-

Likewise, | can also be expressed as a functionjgf file as the locatiorl(y) of the jump in the magnetic induc-

tion, which marks the boundary between thieand SC
o 5 _ phases. Note that this boundary is sharp, since its width
'WO):fﬁ) dyf= g2+ g2+ HR+E(yo)] 72 (D) negligible fork—0. (We recall thaty is a coordinate parallel
to the surface and thdtis measured along the direction
V(1) is then found by eliminatingy, between(5) and (7). perpendicular to the surfage.

Figure 3 shows/(l) (i) for the first-order wetting transi- For calculatingl(y) we introduce an interface displace-
tion at ¢/b=—0.602 and(ii) for a point on the prewetting ment model for type-I superconductors, following what was
line, e.g., até/b=—0.8. Note the weak singularity &t=1,.  done previously for fluids by several authdr€. The model
We verified analytically tha¥ anddV/dl are continuous at s defined through the excess free energy functiefid), in
lo, butd?Vv/dI? is discontinuous. The mathematical continu- which a gradient-squared deformation energy is added to the
ation of the linear first part o¥(1) is the dashed line. At the interface potential for uniform sheaths,
first-order wetting transitiony(l) decays exponentially,

oc — —500 *® dl 2
V() ocexp(—21/¢)  for |—co. (8) T[I]:J_mdy[yszw<@) +V(I(y))+c(y)]. ©

This is reminiscent of wetting in systems with so-called
short—rangedforces.3 The term “short-ranged” is, however,
somewhat misleading in the context of superconductivity ofThe functionc(y) is piecewise constant and is given, e.g., in
type |, because the characteristic length séakequite large  Eq. (4.10 in Ref. 12. Its role is twofold. It ensures that the
(=~10* A) compared with other lengthélattice spacing, integrand vanishes in the limiting surface states|§or— .
Thomas-Fermi screening length, ¢tc. Also, it guarantees that the excess free energy is independent

At a prewetting transition)/(l) attains a minimum at a of the mathematical dividing lincf. Gibbs dividing surface
finite | value, sayl,, corresponding to a uniform supercon- between the limiting surface states.

ducting surface sheath. Note that alwdys-1,. For large For nonuniform statesz[|] gives theline tensionof the
I, V() increases linearly asupH?— o/ B)1/2. contact line where the SN/interface meets the surface. The

Now we can use/(l) to calculate the profile of an in- gradient-squared approximation is reasonable as long as
clined SCN interface near the surfad®' at bulk two-phase dl/dy is not too large. We therefore assume a small contact
coexistence. In thermodynamic equilibrium the contact anglengleg, that is,T close toT . Minimization of 7] leads to
0 between the interface al is determined by the tempera- the Euler-Lagrange equation
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form determined by the second part\éfl). As in the con-
text of fluids, the extrapolation of the far interface to the
surface(dashed ling defines a so-called “dividing surface.”
We thus distinguish a contact region where the interface is
tangent to the surface, an intermediate convex regior for
~ly (with lo/b=—0.587), and an asymptotic concave re-
gion I>14 with exponentially rapid approach toward the di-
viding surface. If all lengths are scaled with|, the ratio
&/b controls both the macroscopic contact angle and the de-
formation ofl (y) nearW. We stress that only the jump in the
magnetic induction is shown in the figure. The wave function
¥(X,y) smoothlyincreases from zero to its bulk value 1 over
a distanceg, to the right of the lind (y).

Finally, we discuss to what extent these results remain
valid for k>0, in which case the magnetic penetration depth
\ is no longer negligible compared g0 The sharp step in the
phase portrai{Fig. 1) at /=0 becomes rounded fot>0,

FIG. 4. Application of the interface potential method to an in- and, moreover, the fieldg and A become couplei.The

homogeneous surface state consisting of an inclinet\ $@érface

consequences fov(l) (Fig. 3 are that(i) the definition of

meeting the surface. Shown is the projection of the interface ontd is no longer uniquesince the jump indA/dx becomes

thexy plane. The surface is in thez plane at = 0. The structure is
translationally invariant along, the direction of the applied field.

The interface profild (y) marks the discontinuity in magnetic in-

duction, whereN and SC phases meet. For larhehe interface
becomes tangent to the dividing surfddashed ling which makes
a contact angle (determined bydl/dy—tand) with the surface.

d?  dv(l)
YSCNGZ = Tdl (10)
which, together with the boundary conditions
| y tand+const  for y—oo,
)= 0 for y——oo, (11

determines the equilibrium profil€y).
The resulting locationi(y) of the jump in the magnetic
induction is shown in Fig. 4, fo€/b=—0.55, which is not

rounded, (ii) the calculation ofV(l) will involve also the
profile A(x), (iii) the linear character of(l) at smalll will
soften todV/dl=0 atl=0, so that one may then expand
V(l) aroundl=0 to study small fluctuations, andv) the
guantum effect leading to the existence of a minimum sheath
thicknessly will, however, persist at smalk>0, since the
spectrum of the particle-in-a-box problem is only quantita-
tively changed when the steps in the confining potential be-
come rounded. Therefore we expect that the loapproxi-
mation remaingjualitatively correct up tox=0.374, where
the first-order wetting transition changes to critical wetfing.
The consequence a&f>0 for the interface profiléFig. 4) is
that its representation by a sharp bound#ky) becomes less
precise, since the jump in magnetic induction is smeared out
over the length\.

It should be possible in principle to verify the predicted
S-shaped distortion of the interface experimentally. Any

far below the wetting temperature. We find an S-shaped degchnique that can detect a rapid spatial variation of magnetic
formation of the profile near the surface. This S shape is dug,quction and that can scan from the surface into the sample

to the presence of laarrier in the interface potentigFig. 3),
which in turn is due to the vicinity of dirst-order wetting
transition(for analogous situations in fluids, see Ref).1&
smalll, 1(y) is determined by the linear part &f(1). This
leads to gparabolic “foot,” with [(y)=0 for y<0 and

I(y)=32y?(16¢) (17)

so that¢ is the length scale relevant to tlearvatureof the
profile near the surface. This parabola extendsl+d,
where it smoothly joingwith a discontinuity ind®l/dy?) the

for y>0,

to a depth of several times the coherence lerggtfould be
adequate.
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