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We study the thermodynamic properties of impure superconductors by explicitly taking into consideration
the finiteness of electronic bandwidths within the phonon-mediated Eliashberg formalism. For a finite elec-
tronic bandwidth, the superconducting transition temperature,Tc , is suppressed by nonmagnetic impurity
scatterings. This is a consequence of a reduction in the effective electron-phonon coupling,leff . The reduced
leff is reflected in the observation that the coherence peak in 1/(T1T), whereT1 is the nuclear spin-lattice
relaxation time andT is the temperature, is enhanced by impurity scatterings for a finite bandwidth. Calcula-
tions are presented forTc and 1/(T1T) as bandwidths and impurity scattering rates are varied. Implications for
doped C60 superconductors are discussed in connection withTc and 1/T1 measurements.

I. INTRODUCTION

The Eliashberg equation is usually solved in the limit of
an infinite electronic bandwidthW and Fermi energy
eF .

1–3 TheeF→` limit may be justified in the conventional
superconductors where the Fermi energy is much larger than
the characteristic phonon frequencyv0 . The superconduct-
ing pairing occurs mainly within a region of widthv0 around
the Fermi surface, and foreF@v0 , it makes no difference
whether we takeeF finite or infinite. There are, however,
superconducting materials whereeF is comparable withv0:
For fullerene superconductors,v0'0.0520.2 eV,
eF'0.0520.2 eV, andv0 /eF;1.4 It is, therefore, of great
interest to study how the superconducting properties are
modified as the bandwidth and Fermi energy are reduced.
This is an important as well as difficult problem which
concomitantly calls for a reinvestigation of the Migdal
theorem and Coulomb pseudopotentialm* .1,2,5 The Migdal
theorem ensures that the phonon vertex corrections are
smaller than those terms included in the theory of supercon-
ductivity by the factor ofv0 /eF , hence may be neglected for
conventional low-temperature superconductors with
eF@v0 . The Coulomb repulsionm is reduced tom*
5m/@11m ln(eF /v0)#'0.120.2, owing to the retardation
effect. Ifv0 /eF;1, however, then the phonon vertex correc-
tion should be important, and the Coulomb repulsion will not
be reduced,m*'m;1, which will almost always kill super-
conductivity.

We will not, however, try to investigate these complica-
tions in this paper. We will instead assume that superconduc-
tivity results within the framework of Eliashberg theory, and
will investigate how the strong-coupling Eliashberg theory is
modified due to a finite bandwidth and what the conse-
quences are of the modification. This problem was treated by
Zheng and Bennemann6 in the context of fullerene super-
conductors, who calculated the pressure dependence of the
transition temperatureTc for doped fullerenes within the
strong-coupling Eliashberg formalism. Their calculations
with the finite bandwidth explicitly included agree well with
the experimental observations. In the different context of a

nonphononsuperconductivity, Marsiglio7 investigated the
dependence ofTc on nonmagnetic and magnetic impurities
including the effects of a finite bandwidth. He found that the
nonmagnetic impurities reduceTc for finiteW. This is inter-
esting in view of the recent debate over the Abrikosov and
Gorkov ~AG! theory of impure superconductors.8,9 Kim and
Overhauser10 pointed out that the AG theory, if evaluated
literally within the nonretardedweak-coupling Bardeen-
Cooper-Schrieffer~BCS! framework,5 implies a substantial
reduction ofTc by nonmagnetic impurities in an apparent
contradiction to the Anderson’s theorem11 and to experimen-
tal observations on conventional low-temperature
superconductors.2 It is now understood that the AG theory is
in accord with the Anderson’s theorem if treated within the
Eliashberg theory taking fully into account theretarded
nature of a pairing interaction, whereas the criticism by Kim
and Overhauser should be valid for a nonretarded pairing
interaction.12,13 The problem of retardedness is directly re-
lated with a cutoff in the frequency or momentum summa-
tion. By working with a more realistic finite bandwidth
Eliashberg theory, with cutoffs both in the frequency and
momentum summations, we will be able to understand the
recent controversy on the AG theory more clearly as will be
discussed later.

In the AG theory of impure superconductors of infinite
bandwidths, the thermodynamic properties are independent
of the impurity scattering rates because there exists a scaling
relation between pure and impure superconductivity.8,9 This
simple relation, however, breaks down if finite bandwidths
are taken into consideration as will be discussed below.
Therefore, the thermodynamic properties of dirty supercon-
ductors are no longer independent of impurity scattering
rates when the finite bandwidths are explicitly taken into
account. Two of the thermodynamic properties, transition
temperatureTc and nuclear-spin-lattice relaxation rateT1

21

are studied in this paper within the phonon-mediated Eliash-
berg theory. When an electronic bandwidth is finite,Tc is
suppressed as impurity scattering ratet21 is increased. The
rate of Tc suppression by impurities is determined by the
electronic bandwidth and strength of electron-phonon cou-
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pling, and in the limit ofeF→`, Tc is independent of impu-
rity scattering rate in agreement with the Anderson’s theo-
rem. The impurity suppression ofTc is not a consequence of
a time-reversal symmetry breaking, but follows dynamically
from the modified Eliashberg equation of a finite electronic
bandwidth, as is reflected in the fact that nuclear-spin-lattice
relaxation rateT1

21 is rather enhanced by the impurity scat-
terings. As the electronic bandwidth is reduced, the available
electronic states to and from which quasiparticles can be
scattered are restricted, and the effective electron-phonon
coupling constantl eff consequently, is decreased. The re-
ducedleff implies decreasedTc and enhanced NMR coher-
ence peak in (T1T)

21.
There are several factors that affect the NMR coherence

peak of (T1T)
21.14,15 The suppression of NMR coherence

peak may be attributed to~a! gap anisotropy/non-s-wave
pairing of superconducting phase,14 ~b! strong-coupling pho-
non damping,16,17 ~c! paramagnetic impurities in samples,9,14

and/or~d! strong Coulomb interaction18 such as paramagnon/
antiparamagnon effects.19 The nonmagnetic impurity scatter-
ings, on the other hand, have no influence on (T1T)

21 for
conventional superconductors of infinite bandwidth,8,9,11

other than the smearing of gap anisotropy. This is because~a!
there exists a simple scaling relation between the gap and
renormalization functions of pure and impure superconduct-
ors of infinite bandwidth, and~b! in the expression for
(T1T)

21, the numerator and denominator are of the same
powers in renormalization function, as will be detailed be-
low. We found thatTc is reduced and the NMR coherence
peak is enhanced ast21 is increased for a finite bandwidth,
because the effectiveleff is reduced. This interpretation is
consistent with the previous study of paramagnetic transition
metals by MacDonald.20 In considering the effects of a finite
bandwidth of thed electrons on the mass enhancement, Mac-
Donald found the reduced bandwidths cause a reduction in
the mass enhancement due to electron-paramagnon interac-
tion. The reducedmeff means reducedleff in agreement with
the present work.

This paper is organized as follows: In Sec. II, we will
present the Eliashberg equation on imaginary frequencies for
impure superconductors with finite bandwidths. Within the
formalism, we will also discuss the Anderson’s theorem in-
cluding the scaling relation between the pure and impure
superconductivity. We can solve the Eliashberg equation ei-
ther in the imaginary frequency to obtain the gap function
D̃( ipn) and renormalization functionZ̃( ipn) or in the real
frequency to obtainD̃(v) and Z̃(v). It is, however, much
easier to solve the Eliashberg equation in the imaginary fre-
quency. We therefore carried out theTc calculations in the
imaginary frequencies. Detailed numerical calculations of as
well as qualitative discussions onTc will be presented in
Sec. III. A brief comment on the theory ofTc of impure
superconductivity will be made in view of recent debates on
the topic. For calculating 1/T1 , we needD̃(v) and Z̃(v) in
real frequencies. It is more efficient to solve the Eliashberg
equation in the imaginary frequency and perform analytic
continuations to real frequency than to solve it in real fre-
quency. Using the iterative method for analytic
continuations21 extended to finite bandwidths, we calculate
the nuclear-spin-lattice relaxation rates 1/T1 as the band-

widths, electron-phonon couplings, and impurity scattering
rates are varied. The results of these calculations will be
presented in Sec. IV. Finally, we will summarize our results
and give some concluding remarks in Sec. V.

II. ELIASHBERG THEORY OF FINITE BANDWIDTH
SUPERCONDUCTORS

The electron-phonon interaction is local in space and re-
tarded in time. Consequently, it’s momentum dependence is
weak and neglected in the isotropic Eliashberg equation, but
the frequency dependence is important and fully included.
The isotropic Eliashberg equation in the imaginary frequency
including the finite electronic bandwidth and impurity scat-
terings on an equal footing is written as2,3

S~ ipn!52
1

b (
m

l~n2m!g~ ipm!2
1

2pt
g~ ipn!, ~1!

where

l~n2m!5NFE
0

`

dV
2Va2F~V!

V21~pn2pm!2
,

g~ ipm!52(
kW8

t3G~ ipm ,k8W !t3

5E
2W/2

W/2

dek
iW̃m1~ek2m1xn!t32f̃mt1

W̃m
2 1~ek2m1xn!

21f̃m
2

. ~2!

Here,NF is the density of states at the Fermi level,t i ’s the
Pauli matrices operating in the Nambu space,iW̃n[ ipnZ̃n ,
f̃n[D̃nZ̃n , wherepn is the Matsubara frequency given by
pn5p(2n11)/b, b51/kBT, andm is the chemical poten-
tial, which should not be confused with the Coulomb repul-
sion. Z̃n[Z̃( ipn), D̃n[D̃( ipn) andxn[x( ipn) are, respec-
tively, the renormalization function, gap function, and energy
shift, when analytically continued to real frequency. A tilde
on a variable denotes that it is renormalized by impurity
scatterings. From Eq.~1!, we obtain the following three
coupled equations:

iW̃n5 ipn1
1

b
(
m

l~n2m!
~ ũm

1 2 ũm
2 !iW̃m

AW̃m
2 1f̃m

2

1
1

2pt

~ũn
12 ũn

2!iW̃n

AW̃n
21f̃n

2
,

f̃n5
1

b
(
m

l~n2m!
~ ũm

1 2 ũm
2 !f̃m

AW̃m
2 1f̃m

2
1

1

2pt

~ũn
12 ũn

2!f̃n

AW̃n
21f̃n

2
,

xn5
1

b (
m

l~n2m!lnF cos~ ũm
1 !

cos~ ũm
2 !

G1
1

2pt
lnF cos~ ũn

1!

cos~ ũn
2!

G ,
~3!

where
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ũn
15tan21FW/22m1xn

AW̃n
21f̃n

2
G , ũn

25tan21F2W/22m1xn

AW̃n
21f̃n

2
G .
~4!

This coupled equation should be solved simultaneously with
the following constraint of number conservation which de-
terminesm:

nf5
1

2
1
1

b (
n,kW

Tr@G~ ipn ,kW !t3#e
id, ~5!

wherenf is the band filling factor,nf5Ne /Na , Ne the num-
ber of electrons,Na the number of available states including
the spin degeneracy factor, andd is a positive infinitesimal.
We took the Coulomb pseudopotentialm*50 in Eq. ~3! for
simplicity.

For the half-filled case ofnf51/2, Eq.~3! is greatly sim-
plified becausexn andm vanish identically. We have

iW̃n5 ipn1
1

b
(
m

l~n2m!
2ũmiW̃m

AW̃m
2 1f̃m

2
1

1

pt

ũniW̃n

AW̃n
21f̃n

2
,

f̃n5
1

b
(
m

l~n2m!
2ũmf̃m

AW̃m
2 1f̃m

2
1

1

pt

ũnf̃n

AW̃n
21f̃n

2
, ~6!

where

ũn5tan21F W

2AW̃n
21f̃n

2
G . ~7!

This is the Eliashberg equation for the half-filled case includ-
ing finite bandwidths and impurity scatterings. For discus-
sions on the Anderson’s theorem, it is convenient to rear-
range Eq.~6!, moving the last terms of the right-hand side to
the left, as follows:

iW̃nzn5 ipn1
1

b
(
m

l~n2m!
2ũmiW̃m

AW̃m
2 1f̃m

2
,

f̃nzn5
1

b
(
m

l~n2m!
2ũmf̃m

AW̃m
2 1f̃m

2
, ~8!

where zn512( ũn/pt)(1/AW̃n
21f̃n

2). If we multiply both
the numerator and denominator of the right-hand side of Eq.
~8! by zm and identifyW̃mzm5Wm and f̃mzm5fm , where
untilded variables simply imply that they are for pure super-
conductors, we obtain

iWn5 ipn1
1

b
(
m

l~n2m!
2ũmiWm

AWm
2 1fm

2
,

fn5
1

b
(
m

l~n2m!
2ũmfm

AWm
2 1fm

2
. ~9!

Note that the correct equation that describes the pure super-
conductors is obtained from Eq.~6! by taking the limit
t→`, which is just Eq.~9! with ũm replaced byum .

When the bandwidth is infinite, we haveũm 5 um 5
p/2, and Eq.~9! describes both pure (Wn andfn) and im-
pure (W̃n andf̃n) superconductivity. They are related by the
following scaling relation:

W̃n5hnWn , f̃n5hnfn , hn511
1

2tAWn
21fn

2
,

or, D̃~v!5D~v!, Z̃~v!5Z~v!1
i

2tAv22D~v!2
.

~10!

This constitutes a proof of the Anderson’s theorem that the
transition temperature and other transport properties remain
unchanged under nonmagnetic impurity scatterings for infi-
nite W. When the bandwidth is finite, Eq.~9! is not the
correct equation describing pure superconductivity. Conse-
quently, the Anderson’s theorem does not hold in this case,
and we expect that the thermodynamic properties, such as
transition temperatureTc , will change as the impurity scat-
terings are introduced. We will turn to this topic in the fol-
lowing section.

III. TRANSITION TEMPERATURE

Before we solve the Eliashberg equation of Eq.~6!, let us
first try an approximate solution to understand what to expect
from detailed numerical calculations. From Eq.~7!,
ũn'p/22(2/W)AW̃n

21f̃n
2. We plug this into Eq.~9!, and

takeT5Tc so thatfm50, to obtain

Zn511
p

pnb
(
m

l~n2m!
pm

upmu S 12
4

pW
uW̃mu D ,

15
p

b (
m

l~n2m!
1

uWmu S 12
4

pW
uW̃mu D . ~11!

We takel(e2e8)5l for ueu<v0 and ue8u<v0 , and 0 oth-
erwise, which is a standard weak-coupling approximation.
Then, taking the advantage of the scaling relation of Eq.
~10!, we obtain

Zn511lS 12
1

pteF
D2

2lupnu
peF

Zn5
11l~121/pteF!

112lupnu/peF
.

~12!

The second equation of Eq.~11!, after carrying out the sum-
mation over Matsubara frequencyipm using

1

b (
m

F~ ipm!5E dz

2p i
f ~z!F~z!,

F~ ipn!5
1

pE de
1

e2 ipn
Im@F~e!#, ~13!

can be written as
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15pE dz

2p i
f ~z!

1

pE de
1

e2z

3ImF il

ueZu
2

2

peF
S 11

i

2tueZu D G , ~14!

where f (z)51/(11ebz) is the Fermi distribution function.
Then,

152leffE
2v0

v0
de

f ~e!

e
5leffln@1.13v0 /Tc#,

leff5
l~121/pteF!

11l~121/pteF!
. ~15!

From this, we find

Tc51.13v0e
21/leff'Tcp2

1

pteFl
Tcp , ~16!

where Tcp51.13v0e
2(11l)/l is the transition temperature

for pure superconductor of a given bandwidth. We note that
Tcp is equal to the transition temperature of infinite band-
width, Tc0 , in the approximate treatment that replacesZ(e)
by Z(0). More detailed numerical calculations, however,
yield thatTcp<Tc0 as shown in Fig. 1. Equation~16! clearly
shows that impurities are pair breaking when the bandwidth
is finite in agreement with Marsiglio.7 Tc is reduced not be-
cause the time-reversal symmetry is broken as is the case
with magnetic impurities, but because the effective electron-
phonon coupling constant is decreased by impurity scatter-
ings for finite bandwidth as can be seen from Eq.~15!. For
eF→`, Eq. ~16! implies thatTc is not changed as was dis-
cussed in the previous section.

It seems appropriate to comment here on the recent debate
on the AG theory of impure superconductivity. This, as al-
ready pointed out by Radtke,12 stems from using a nonre-
tarded interaction of the weak-coupling scheme.10 For this,
let us rewrite Eq.~9! with ũm5p/2 for infinite bandwidth,
before the integral overek :

fn5
p

b (
m

E
2`

`

dek l~n2m!
f̃m

W̃m
2 1f̃m

2 1ek
2
. ~17!

Then, we have, forT5Tc

15
p

b (
m

E
2`

`

dek l~n2m!
hm

hm
2 pm

2 1ek
2 . ~18!

If we proceed the same way leading to Eq.~16!, we have
Tc5Tc0 for eF→`. Kim and Overhauser,10 however, ex-
changed the range of summation betweenek and ipn , as did
AG, and evaluated the resulting equation exactly. This leads
to a contradiction to the Anderson’s theorem and experimen-
tal observations, as was pointed out by them. The origin of

this contradiction is clear. This procedure amounts to ne-
glecting the retarded nature of electron-phonon interaction,
becausel(n2m) now becomes frequency independent,
which implies an instantaneous interaction in time.

The impurity suppression ofTc we discuss in this paper
should be distinguished from the previous studies.7,10 Kim
and Overhauser found that the nonmagnetic impurities sup-
pressTc for a nonretarded pairing interaction. We point out
that Tc is suppressed by nonmagnetic impurities for a re-
tarded pairing interaction also if the bandwidth is finite. On
the other hand, Marsiglio found that nonmagnetic impurities
suppressTc of finite bandwidth superconductors for non-
phonon pairing interactions. It is now understood that his
results are due to both the finiteness ofW and nonphonon
nature of pairing interactions. For a pairing interaction not of
the form of Eq.~6!, the proof of the Anderson’s theorem of
Sec. II does not go through. Therefore, nonmagnetic impu-
rity scatterings can suppress the transition temperature.

The qualitative discussion above is well verified in the
detailed numerical calculations. In Fig. 1, we show the tran-
sition temperatureTc , calculated from Eq.~6!, as a function
of impurity scattering ratet21 for several bandwidths. We
took, following Bickerset al.,22

FIG. 1. Transition temperatureTc as a function of impurity scat-
tering ratet21 for half-filled finite bandwidth superconductors, as
calculated from Eq.~6!. ~a! is for NFa2 5 0.02 eV and~b! for 0.05
eV. The solid, dotted, dot-dashed, short-dashed, and long-dashed
curves represent, respectively, bandwidthW 5 0.1, 0.5, 1, 5, and 10
eV. The dots labeled asA, B, andC in ~b! are selected for calcu-
lating NMR relaxation rates shown in Fig. 3.Tc is decreased by
impurity scatterings for finite bandwidth supercondcutors, while it
is unchanged for those with infinite bandwidths. The rate ofTc
suppression by impurities is larger for narrower bandwidth super-
conductors.
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F~V!5H 1

R F 1

~V2v0!
21G2 2

1

Gc
21G2G for uV2v0u<Gc ,

0, otherwise,

~19!

with v0 5 0.05 eV,Gc53G 5 0.015 eV.R is a normaliza-
tion constant to make*0

`dVF(V)51. Using 200 Matsubara
frequencies, self-consistency is reached within a few tens of
iterations at a given temperature, except for temperatures
close toTc . The solid, dotted, dot-dashed, short-dashed, and
long-dashed curves correspond, respectively, toW 5 0.1,
0.5, 1, 5, and 10 eV. We considered half-filled cases for sim-
plicity, so that the Fermi energyeF5W/2. Figure 1~a! and
1~b! are for NFa2 5 0.02 and 0.05 eV, respectively. The
long-dashed curves representingW 5 10 eV, are indistin-
guishable from infinite bandwidth curves. As we expected
from the qualitative analysis above, the impurity suppression
of the transition temperature is more pronounced for nar-
rower bandwidths. As the bandwidth becomes wider, how-
ever, the rate ofTc suppression by impurity scatterings is
smaller untileF'1, beyond which we are almost in the in-
finite bandwidth limit whereTc is independent of the impu-
rity scattering rate in accordance with the Anderson’s theo-
rem.

We wish to consider how other transport properties of
finite bandwidth superconductors, NMR relaxation rate for

example, are altered in the following section. If the reduction
in Tc is due to time-reversal symmetry breaking, the NMR
coherence peak belowTc will be reduced. If, on the other
hand, it is due to reduction of the effective electron-phonon
coupling as is the case we consider here, we expect that the
NMR coherence peak will be enhanced. This is because the
strong-coupling effects cause phonon dampings and reduce
the coherence peak as was discussed.

IV. NUCLEAR SPIN-LATTICE RELAXATION RATE

To calculate nuclear-spin-lattice relaxation rateT1
21 , we

need to perform analytic continuation to obtain the gap and
renormalization functions on real frequency,D̃(v) and
Z̃(v), from those on imaginary frequency,D̃( ipn) and
Z̃( ipn). It was carried out via the iterative method by Mar-
siglio, Schossmann, and Carbotte~MSC!.21 The MSC equa-
tion which relates the gap and renormalization functions on
imaginary frequency with those on real frequency, extended
to half-filled finite bandwidth impure superconductors, is
given by

Z̃~v!511
i

v
E

2`

`

dV a2F~V!
2ũ~v2V!~v2V!

A~v2V!22D̃~v2V!2
@N~V!1 f ~V2v!#

1
1

bv
(
n>0

2ũnipn

Apn
21D̃n

2
@l~v2 ipn!2l~v1 ipn!#1

i

ptv

ũ~v!v

Av22D̃~v!2
,

D̃~v!5
i

Z̃~v!
E

2`

`

dV a2F~V!
2ũ~v2V!D̃~v2V!

A~v2V!22D̃~v2V!2
@N~V!1 f ~V2v!#

1
1

bZ̃~v!
(
n>0

2ũnD̃n

Apn
21D̃n

2
@l~v2 ipn!1l~v1 ipn!#1

i

ptZ̃~v!

ũ~v!D̃~v!

Av22D̃~v!2
, ~20!

where

l~v6 ipn!5NFE
0

`

dV
2Va2F~V!

V22~v6 ipn!
2 . ~21!

This equation is solved iteratively forZ̃(v) and D̃(v), tak-
ing Z̃n and D̃n , solution to the Eliashberg equation on Mat-
subara frequencies of Eq.~6!, as an input, until self-
consistency is reached. We show in Fig. 2 the gap function
D̃(v) as a function ofv at T50.001 eV. We took the impu-
rity scattering ratet2150, and the phonon spectral function

a2F(V) as given by Eq.~19! with NFa250.05 eV which
corresponds to Fig. 1~b!. Figure 2~a! is for an infinite band-
width, and ~b! is for bandwidthW 5 1 eV. The solid and
dashed lines, respectively, stand for real and imaginary parts
of the gap function. The obtained results forW→`, where
previous studies are available, are in good agreement with
the published data.22

The nuclear spin-lattice relaxation rateT1
21 is given by23

1

T1
5 lim

v→0

1

12e2bv (
qW

uAqu2Im@x12~v1 id,qW !#, ~22!
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whereAq is a form factor related with the conduction elec-
tron wave functions, andx12(v,qW ) is a spin-spin correla-
tion function at frequencyv and momentum transferqW . The
impurity scatterings are included in the self-energy of renor-
malized Green’s function. For a finite bandwidth, it is easy to
derive

1

T1T
}E

0

`

de
] f ~e!

]e H FReS eũ~e!

Ae22D̃~e!2
D G 2

1FReS D̃~e!ũ~e!

Ae22D̃~e!2
D G 2J , ~23!

→E
D

`

de
] f

]e H e21D2

e22D2 J , ~24!

where f ~e! is the Fermi distribution function and theD̃(e)
and ũ(e) are obtained by solving Eqs.~6! and ~20! itera-
tively. The standard strong-coupling expression forT1

21

given, for example, by Fibich24 can be obtained by setting
ũ5p/2 for infinite bandwidth. Equation~24! follows for the
infinite bandwidth weak-coupling limit.

Before we present the detailed numerical calculations, let
us first analyze the expression for (T1T)

21 of Eq. ~23! quali-
tatively. ForT.Tc , D̃ 5 0 in Eq. ~23!, and

ũ~e!5tan21F iW

2eZ̃~e!
G

55 i tanh21F W

2eZ̃~e!
G for e>

W

2Z̃
,

p

2
1 i tanh21F2eZ̃~e!

W G for e<
W

2Z̃
.

~25!

Taking Z̃(e)'1 for simplicity, we have Re@ ũ(e)#5p/2 for
e<W/2, and 0 fore.W/2. Then,

1

T1T
}E

0

W/2

de
] f ~e!

]e
52

1

2
tanhF12bWG ,

or,
~T1T!n
~T1T!s

5
tanh@W/2T#

tanh@W/2Tc#
. ~26!

(T1T)n /(T1T)s , therefore, decreases as the temperature is
increased, which is contrasted with the constant value of 1
for the infinite bandwidth case. The decrease of
(T1T)n /(T1T)s as the temperature is increased aboveTc was
observed in the51V NMR study of V3Si superconductors by
Kishimotoet al.25 This observation was interpreted in terms
of narrow bandwidths in accord with the present work. The
range of integration from 0 toW/2 is just what we may
expect intuitively. TheT,Tc region, on the other hand, is
difficult to analyze without detailed information onD̃(e),
because the height of NMR coherence peak is mainly deter-
mined by the magnitude of imaginary part ofD̃(e) in the
Eliashberg formalism. We may expect, however, that the co-
herence peak will be enhanced asW is decreased andt21 is
increased, becauseleff is reduced.

In Fig. 3, we show the normalized NMR relaxation rate
by the normal-state Korringa value, (T1T)n /(T1T)s , calcu-
lated from Eqs.~6!, ~20!, and ~23! as a function ofT/Tc0 ,
whereTc0 is the critical temperature for infinite bandwidth
case. We took the phonon spectral functiona2F(V) as given
by Eq. ~19! with NFa250.05 eV, which corresponds to Fig.
1~b!. We selected three sets ofW andt21 values, labeled as
A, B, andC in Fig. 1~b!, for T1

21 calculations.W andt21 of
A, B, andC are, respectively, in unit of eV, 10 and 0, 0.1 and
0, and 0.1 and 0.05, as can be read from Fig. 1~b!. Note that
as one goes fromA to B to C, the normalized NMR relax-
ation rates have progressively enhanced peaks, andTc is re-
duced accordingly. These results are straightforward to inter-
pret, as already explained before. The computed values of
leff for A, B, andC are 1.67, 0.63, and 0.60, respectively. As
leff is decreased,Tc should be reduced and NMR coherence
peak should be enhanced, because there is no time-reversal
symmetry breaking in the present problem. The solid curve
of A, havingleff 5 1.67, has substantially reduced coher-
ence peak, in agreement with the previous works.16,17 Note
also that the normalized NMR relaxation rates for finite
bandwidths decrease asT is increased beyondTc as ex-
pected.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have investigated the effects of a finite
bandwidth on the thermodynamic properties of impure su-

FIG. 2. The gap functionD(v) as a function ofv atT 5 0.001
eV. We tookt21 5 0 andNFa2 5 0.05 eV, which corresponds to
Fig. 1~b!. The solid and dashed lines, respectively, represent the real
and imaginary parts of the gap.~a! is for an infinite bandwidth, and
~b! is forW 5 1 eV.
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perconductors within the framework of phonon-mediated
Eliashberg theory. We found that the transition temperature
and NMR coherence peak are suppressed and enhanced, re-
spectively, by impurity scatterings when the finiteness of
bandwidths is explicitly taken into consideration. These re-
sults can be understood in terms of reduced effective
electron-phonon couplingleff . The motivation for this work
was, in part, the observation that the phonon frequency and
the Fermi energy are comparable and a substantial disorder is
present in the fullerene superconductors.4 The NMR coher-
ence peak in (T1T)

21 was found absent for doped
fullerenes.26,27We wish to point out that the present theory is
not concerned with why the NMR coherence peak is absent

for a given material. The present theory shows that if the
disorder is increased for a finite bandwidth superconductor,
its transition temperature should be reduced and coherence
peak should be enhanced, respectively, compared with those
of a clean material. In view of our results, it will be very
interesting to systematically investigate how the transition
temperature and NMR coherence peak behave as the degree
of disorder is varied for doped C60.

In A3C60, almost all other experiments than NMR relax-
ation rates seem to point to a phonon-mediateds-wave
pairing.4 Also, due to the orientational disorder,28 the Fermi-
surface anisotropy is not strong enough to suppress the
coherence peak.29 The present study shows that a quite
strong electron-phonon coupling ofleff'2 is needed to
suppress the NMR coherence peak in agreement with Naka-
mura et al.,16 and Allen and Rainer.17 The leff'2 seems
too large for doped fullerenes since the far-infrared re-
flectivity measurements of DeGiorgeet al.30 show that
2D/kBTc'3.4423.45, a classic weak-coupling value. Be-
cause there are no magnetic impurities inA3C60, the ab-
sence of the NMR coherence peak is still to be understood.
Stengeret al.31 suggested that the applied magnetic field is
responsible for the suppressed NMR coherence peak. Their
explanation, however, seems to be more a puzzle than an
answer. According to the Eliashberg theory, the energy of
applied magnetic field should be at least\v'0.1D to sup-
press the coherence peak. The magnetic field in their13C
NMR experiment corresponds to\v'1025D. Such a small
energy scale in the coherence peak suppression is really a
puzzle. We are currently investigating the strong Coulomb
interaction effects with a paramagnon approximation.19 We
suspect that the strong Coulomb interaction may be respon-
sible for suppressed NMR coherence peak in doped
fullerenes.
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