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We study the thermodynamic properties of impure superconductors by explicitly taking into consideration
the finiteness of electronic bandwidths within the phonon-mediated Eliashberg formalism. For a finite elec-
tronic bandwidth, the superconducting transition temperatlige,is suppressed by nonmagnetic impurity
scatterings. This is a consequence of a reduction in the effective electron-phonon cauglinghe reduced
\eif IS reflected in the observation that the coherence peak iy T)( whereT, is the nuclear spin-lattice
relaxation time and is the temperature, is enhanced by impurity scatterings for a finite bandwidth. Calcula-
tions are presented fdr, and 1/(T,T) as bandwidths and impurity scattering rates are varied. Implications for
doped G, superconductors are discussed in connection Witand 1T, measurements.

I. INTRODUCTION nonphonon superconductivity, Marsiglio investigated the
dependence of . on nonmagnetic and magnetic impurities
The Eliashberg equation is usually solved in the limit of including the effects of a finite bandwidth. He found that the
an infinite electronic bandwidthw and Fermi energy nonmagnetic impurities redudg, for finite W. This is inter-
er .13 The e— o limit may be justified in the conventional esting in view of the recent debate over the Abrikosov and
superconductors where the Fermi energy is much larger thaBorkov (AG) theory of impure superconductdt® Kim and
the characteristic phonon frequenay. The superconduct- Overhauseéf pointed out that the AG theory, if evaluated
ing pairing occurs mainly within a region of widiby around literally within the nonretarded weak-coupling Bardeen-
the Fermi surface, and for=> w,, it makes no difference Cooper-SchrieffefBCS) framework® implies a substantial
whether we takeeg finite or infinite. There are, however, reduction of T, by nonmagnetic impurities in an apparent
superconducting materials whege is comparable withvy:  contradiction to the Anderson’s theorefrand to experimen-
For fullerene superconductors, wy=~0.05-0.2 eV, tal observations on conventional low-temperature
€e~0.05-0.2 eV, andwo/eF~1.4 It is, therefore, of great superconductor%lt is now understood that the AG theory is
interest to study how the superconducting properties aré accord with the Anderson’s theorem if treated within the
modified as the bandwidth and Fermi energy are reducedtliashberg theory taking fully into account thetarded
This is an important as well as difficult problem which nature of a pairing interaction, whereas the criticism by Kim
concomitantly calls for a reinvestigation of the Migdal and Overhauser should be valid for a nonretarded pairing
theorem and Coulomb pseudopotentidi.>>® The Migdal  interaction*?3 The problem of retardedness is directly re-
theorem ensures that the phonon vertex corrections atd@ted with a cutoff in the frequency or momentum summa-
smaller than those terms included in the theory of supercortion. By working with a more realistic finite bandwidth
ductivity by the factor ofw, /e , hence may be neglected for Eliashberg theory, with cutoffs both in the frequency and
conventional  low-temperature  superconductors  withmomentum summations, we will be able to understand the
€r>wo. The Coulomb repulsionu is reduced tou* recent controversy on the AG theory more clearly as will be
=ul[1+ u In(e/wp)]=0.1-0.2, owing to the retardation discussed later.
effect. If wg/ e~ 1, however, then the phonon vertex correc-  In the AG theory of impure superconductors of infinite
tion should be important, and the Coulomb repulsion will notbandwidths, the thermodynamic properties are independent

be reducedu* ~ u~ 1, which will almost always kill super- of the impurity scattering rates because there exists a scaling
conductivity. relation between pure and impure superconductfAtFhis

We will not, however, try to investigate these complica- Simple relation, however, breaks down if finite bandwidths
tions in this paper. We will instead assume that supercondudre taken into consideration as will be discussed below.
tivity results within the framework of Eliashberg theory, and Therefore, the thermodynamic properties of dirty supercon-
will investigate how the strong-coupling Eliashberg theory isductors are no longer independent of impurity scattering
modified due to a finite bandwidth and what the consefates when the finite bandwidths are explicitly taken into
quences are of the modification. This problem was treated bgccount. Two of the thermodynamic properties, transmon
Zheng and Bennemarthin the context of fullerene super- temperatureT, and nuclear-spin-lattice relaxation raTq
conductors, who calculated the pressure dependence of tlage studied in this paper within the phonon-mediated Eliash-
transition temperaturd; for doped fullerenes within the berg theory. When an electronic bandwidth is finilg, is
strong-coupling Eliashberg formalism. Their calculationssuppressed as impurity scattering raté" is increased. The
with the finite bandwidth explicitly included agree well with rate of T, suppression by impurities is determined by the
the experimental observations. In the different context of aelectronic bandwidth and strength of electron-phonon cou-

0163-1829/96/5@.3)/8591(8)/$10.00 53 8591 © 1996 The American Physical Society



8592 HAN-YONG CHOI 53

pling, and in the limit ofer—co, T, is independent of impu- widths, electron-phonon couplings, and impurity scattering
rity scattering rate in agreement with the Anderson’s theo+ates are varied. The results of these calculations will be
rem. The impurity suppression @, is not a consequence of presented in Sec. IV. Finally, we will summarize our results
a time-reversal symmetry breaking, but follows dynamicallyand give some concluding remarks in Sec. V.

from the modified Eliashberg equation of a finite electronic

bandwidth, as is reflected in the fact that nuclear-spin-lattice 1l. ELIASHBERG THEORY OF FINITE BANDWIDTH
relaxation rateT; * is rather enhanced by the impurity scat- SUPERCONDUCTORS

terings. As the electronic bandwidth is reduced, the available |, electron-phonon interaction is local in space and re-

electronic states tq and from which qu_asiparticles can b?arded in time. Consequently, it's momentum dependence is

scattered are restricted, and the effective electron-phonqfeak and neglected in the isotropic Eliashberg equation, but

coupling constant . consequently, is decreased. The re-ine frequency dependence is important and fully included.

duced\ ¢ implies decreased, and enhanced NMR coher- The isotropic Eliashberg equation in the imaginary frequency

ence peak inT;T) . including the finite electronic bandwidth and impurity scat-
There are several factors that affect the NMR coherenceerings on an equal footing is written?s

peak of (T,T) 1.1*¥ The suppression of NMR coherence

peak may be attributed t@a) gap anisotropy/nos-wave . 1 . 1 .

pairing of superconducting pha¥k(b) strong-coupling pho- 2(ipn)=- B % ANn=m)g(ipm) = 5—9(ipn), (D)

non damping®?’ (c) paramagnetic impurities in sample¥!

and/or(d) strong Coulomb interactidfisuch as paramagnon/ Where

antiparamagnon effectS The nonmagnetic impurity scatter- )

ings, on the other hand, have no influence aRT) ! for A(n—m)=N de 2Qa"F(Q)

conventional superconductors of infinite bandwiier! Flo Q%+ (Pa—Pm)

other than the smearing of gap anisotropy. This is bec@jse

there exists a simple scaling relation between the gap and ) .

renormalization functions of pure and impure superconductd(iPm)= _Z 73G(ipm, k') 73

ors of infinite bandwidth, andb) in the expression for K

(T,T) "%, the numerator and denominator are of the same o~ ~

powers in renormalization function, as will be detailed be- :fW’z . W+ (ek—pt Xn) T3~ dmT1 @

low. We found thatT, is reduced and the NMR coherence _wi K Wﬁq+(€k—M+Xn)2+ :i’rzn

peak is enhanced as ! is increased for a finite bandwidth,

because the effectivi.s is reduced. This interpretation is Here,Ng is the density of states at the Fermi levels the

consistent with the previous study of paramagnetic transitiofPauli matrices operating in the Nambu spa®®,=ip,Z,,

metals by MacDonal@ In considering the effects of a finite d=A,Z,, wherep, is the Matsubara frequency given by

bandwidth of thed electrons on the mass enhancement, Macp,=7(2n+1)/8, B=1kgT, andu is the chemical poten-

Donald found the reduced bandwidths cause a reduction itial, which should not be confused with the Coulomb repul-

the mass enhancement due to electron-paramagnon intef@on.inzi(ipn), Anzﬁ(ipn) and y,=x(ip,) are, respec-

tion. The reducedng means reduceley in agreement with  tively, the renormalization function, gap function, and energy
the present work. _ _shift, when analytically continued to real frequency. A tilde
This paper is organized as follows: In Sec. I, we will on a variable denotes that it is renormalized by impurity

present the Eliashberg equation on imaginary frequencies fjcatterings. From Eq(1), we obtain the following three
impure superconductors with finite bandwidths. Within thecoupled equations:

formalism, we will also discuss the Anderson’s theorem in-

cluding the scaling relation between the pure and impure 1
superconductivity. We can solve the Eliashberg equation ei- iW,=ip,+— 2 A(nN—m)
ther in the imaginary frequency to obtain the gap function B m

A(ipn) and renormalization functioZ(ip,) or in the real

(B = 02)i Wi,

Vi,

frequency to obtaim\(w) and Z(w). It is, however, much 1 (8- 62w,
easier to solve the Eliashberg equation in the imaginary fre- + ,
guency. We therefore carried out tfig calculations in the 2w \/\7\/§+ (},ﬁ

imaginary frequencies. Detailed numerical calculations of as
well as qualitative discussions oR, will be presented in

72\ L2\
Sec. Ill. A brief comment on the theory &, of impure % _i D )\(n—m)(am_ 0m)¢m+ 1 (6= 6h) én
superconductivity will be made in view of recent debates on ™" 5 <= ~ o~ 2mr \/ﬁ ’
the topic. For calculating T}, we needA(w) andZ(w) in Win+ i Wit én
real frequencies. It is more efficient to solve the Eliashberg ~ .
equation in the imaginary frequency and perform analytic 1 g ﬁq) 1 cog aﬁ)
continuations to real frequency than to solve it in real fre- Xn=3 % A(n—m)in cos#?) | 277 | cos 87)

m n

guency. Using the iterative method for analytic
continuation$' extended to finite bandwidths, we calculate
the nuclear-spin-lattice relaxation ratesll/as the band- where
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N WI2— i+ xn ) —WI2— p+ X, Note that the correct equation that describes the pure super-
ol=tan ! 92 =tan ! conductors is obtained from Ed6) by taking the limit
n — — ’ n — — . . L. ) ~
\ /WﬁJr d’% \ /Wﬁ+ d’ﬁ 7—o0, which is just Eq.(9) with 6, replaced byd,,.

4 When the bandwidth is infinite, we havg, = 6,
) /2, and Eq.(9) describes both pureN, and ¢,,) and im-

This coupled equation should be solved simultaneously Wlﬂbure (\N andqﬁ ) superconductivity. They are related by the
the following constraint of number conservation which de- followma scahrrg relation:

terminesyu.:
1

27VWi+ ¢

1.1 ; ” )
ni=5+ 5 2 TIG(ipy K)sle” (5 Wo=7Wa,  dn=7ndn, =1+
nk

wheren; is the band filling factomn;=N¢/N,, N the num-
ber of electronsN, the number of available states including

~ ~ [
the spin degeneracy factor, aads a positive infinitesimal. or, A(w)=A(w), Z(w)=Z(w)+ PPN YRR
We took the Coulomb pseudopotentjaf =0 in Eq. (3) for (10)
simplicity.
For the half-filled case af;=1/2, Eq.(3) is greatly sim-  This constitutes a proof of the Anderson’s theorem that the
plified becausey,, and i vanish identically. We have transition temperature and other transport properties remain
L unchanged under nonmagnetic impurity scatterings for infi-
. 20,iWp, 1 6,iw, nite W. When the bandwidth is finite, Eq9) is not the
W,=ip,+ 2 ANn—m)—+ — —, correct equation describing pure superconductivity. Conse-

VW2 + ¢m TT W2+ g2 quently, the Anderson’s theorem does not hold in this case,

and we expect that the thermodynamic properties, such as

me:ﬁm 1 t~9n<~ﬁn transition temperatur&., will change as the impurity scat-
bo=—> AN(n—-m)———+ ——— (6) terings are introduced. We will turn to this topic in the fol-
2 2 T2 52 lowing section.
VWotgh T AW 6 9
where Ill. TRANSITION TEMPERATURE
. W Before we solve the Eliashberg equation of E), let us
0,=tan | ———|. (7)  firsttry an approximate solution to understand what to expect
2\VW2+ ¢2 from detailed numerical calculations. From Ed7),

0~ 72— (2W) W2+ ¢2. We plug this into Eq(9), and
Th|S|stheEllashbergequatlonforthehalffllledcaselnclud ml2—(2W) ¢” e plug this into Eq(9), an

ing finite bandwidths and impurity scatterings. For discus- take T=T, s0 that¢n=0, to obtain

sions on the Anderson’s theorem, it is convenient to rear- - P 4 .
range Eq(6), moving the last terms of the right-hand side to Z,=1+— > A(n—m) —m(l— — W, )
the left, as follows: P [Pl W

- 1=73 an-m)—/ 1 4|\7v|) (11)
iwn§n=ipn+[;2 Mn—m) ———, RS Wi wm
We take\ (e—€') =N\ for |e|<wq and|€’|<w,, and 0 oth-
oY) ;{) erwise, which is a standard weak-coupling approximation.
m ®) Then, taking the advantage of the scaling relation of Eq.
VW2 + 42,

(10), we obtain
where £,=1— (8/77) (U\NW2+ ¢2). If we multiply both Z,=1+\
the numerator and denominator of the right-hand side of Eq.
(8) by ¢, and identifyW,{ ,=W,, and ¢ = ¢, Where
untilded variables simply imply that they are for pure super-The second equation of E¢{L1), after carrying out the sum-

bnln= EMn m)

B 2\ pal _1+N(1-1/mreE)

1= 7TTE|:) meg " 1+2N|ppl/mer
1

conductors, we obtain mation over Matsubara frequeniy,, using
20 iW,, dz
W,=ip,+ 2 A(n—m) — —E Fipm= f f(2)F(2),
VWA + ¢m
1 > 20mm F(lpn)——J de ~Im[F(e)], (13)
dp=— 2, M(n—m) ——. €)
Bom VWi, + ¢h, can be written as
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dZ 1 1 0.006
1—’7va ﬁf(Z);f def_Z
iA 2 I 0.004 &
XImls—=——| 1+ z——= ’
i wep(l 2r|ez|) W
(3]
where f(z) =1/(1+€”?) is the Fermi distribution function. &
Then, |
w0 f(e) 0‘008 00 065 0.10 0.15 0.20
1=— g _wodeT=)\eﬁln[1.13uolTC], : ‘ 7=1 (eV) ’ '
0.012 T
N(1—1/m7eg) A e e

Nt~ I N (1 Urer) (49 R it

From this, we find 0.008 ‘B\’c\‘

BN
)
N 1 g')o.ooa, —
Tc=1.13wpe™ eff=Tc,— TEF)\Tcpy (16)
(b)
where T¢p,=1.13wge” "N is the transition temperature 0.000 = 008 oo oS 020
for pure superconductor of a given bandwidth. We note that 71 (eV)
Tcp is equal to the transition temperature of infinite band- N _ _ _
width, T, in the approximate treatment that replaZés) FIG. 1. Transition temperatufg, as a function of impurity scat-

by Z(0). More detailed numerical calculations, however, tering rater* for haIf—fiIIe_d finite bandwidth superconductors, as
yield thatT.,<T, as shown in Fig. 1. Equatiofi6) clearly calculated fr_om Eq(6). (a) is for Nga? = 0.02 eV andb) for 0.05
shows that impurities are pair breaking when the bandwidtigV- The solid, dotted, dot-dashed, short-dashed, and long-dashed
is finite in agreement with MarsiglibT, is reduced not be- CUrves represent, respectively, bandwidth= 0.1, 0.5, 1, 5, and 10
cause the time-reversal symmetry is broken as is the ca:?eey Thﬁl\jgs I?bele_d a, B, ar;]dc n (bl):_are:{se_le((:jted for Czlcb”'
with magnetic impurities, but because the effective electronr. 9. relaxation rates shown In Fig. 3. s decreased by -
. - . . impurity scatterings for finite bandwidth supercondcutors, while it
phonon qo_uplmg constant is decreased by impurity S’Catteri's unchanged for those with infinite bandwidths. The rateTpf
ings for finite ba'ndwildth as can be seen from ELp). For. suppression by impurities is larger for narrower bandwidth super-
€g— ™, _Eq. (16 |m_pI|es that_'l'C is not changed as was dis- .onquctors.
cussed in the previous section.
It seems appropriate to comment here on the recent debate o )
on the AG theory of impure superconductivity. This, as al-this contradiction is clear. This procedure amounts to ne-
ready pointed out by Radtké,stems from using a nonre- glecting the retarded nature of electron-phonon interaction,
tarded interaction of the weak-coupling scheth&or this, becausex(n—m) now becomes frequency independent,
let us rewrite Eq(9) with 8,,= /2 for infinite bandwidth, ~Which implies an instantaneous interaction in time.
before the integral oves, : The impurity suppression of . we discuss in this paper
should be distinguished from the previous studi¥sKim
and Overhauser found that the nonmagnetic impurities sup-
T % <~f>m pressT. for a nonretarded pairing interaction. We point out
¢n:E % f_mdfk )\(n—m)m. (17 that T, is suppressed by nonmagnetic impurities for a re-
mt Pt €i tarded pairing interaction also if the bandwidth is finite. On
the other hand, Marsiglio found that nonmagnetic impurities
Then, we have, folf =T, suppressT. of finite bandwidth superconductors for non-
phonon pairing interactions. It is now understood that his
results are due to both the finitenessWfand nonphonon

1= T > fw de, )\(n—m)—z—nzm—z. (18)  nature of pairing interactions. For a pairing interaction not of
Bm J-= TmPm™ €k the form of Eq.(6), the proof of the Anderson’s theorem of

Sec. Il does not go through. Therefore, nonmagnetic impu-
If we proceed the same way leading to Efj6), we have rity scatterings can suppress the transition temperature.
Te=Tg for eg—=. Kim and Overhauséf, however, ex- The qualitative discussion above is well verified in the
changed the range of summation betwegmandip,, as did detailed numerical calculations. In Fig. 1, we show the tran-
AG, and evaluated the resulting equation exactly. This leadsition temperaturd ., calculated from Eq(6), as a function
to a contradiction to the Anderson’s theorem and experimenef impurity scattering rater™* for several bandwidths. We
tal observations, as was pointed out by them. The origin ofook, following Bickerset al,??
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1 1 1
- - for |Q—wo|<T,
F(Q)={ R[(Q—wp)*+I'? T;+I? 0= wol<T (19

0, otherwise,

with wg = 0.05 eV,I'.=3I" = 0.015 eV.R is a normaliza- example, are altered in the following section. If the reduction

tion constant to maké,dQF(Q)=1. Using 200 Matsubara in T, is due to time-reversal symmetry breaking, the NMR

frequencies, self-consistency is reached within a few tens afoherence peak beloW, will be reduced. If, on the other

iterations at a given temperature, except for temperaturggand, it is due to reduction of the effective electron-phonon

close toT,. The solid, dotted, dot-dashed, short-dashed, angoupling as is the case we consider here, we expect that the

long-dashed curves correspond, respectivelyWio= 0.1, NMR coherence peak will be enhanced. This is because the

0.5, 1, 5, and 10 eV. We considered half-filled cases for simstrong-coupling effects cause phonon dampings and reduce

plicity, so that the Fermi energy-=W/2. Figure 1a) and the coherence peak as was discussed.

1(b) are for Nca? = 0.02 and 0.05 eV, respectively. The

long-dashed curves representidg = 10 eV, are indistin- IV. NUCLEAR SPIN-LATTICE RELAXATION RATE

guishable from infinite bandwidth curves. As we expected . . . 1

from the qualitative analysis above, the impurity suppression 10 calculate nuclear-spin-lattice relaxation ratg”, we

of the transition temperature is more pronounced for narn€ed to perform analytic continuation to obtain the gap and

rower bandwidths. As the bandwidth becomes wider, howfenormalization functions on real frequencf(w) and

ever, the rate off . suppression by impurity scatterings is Z(w), from those on imaginary frequencW(ip,) and

smaller untilez~1, beyond which we are almost in the in- Z(ip,). It was carried out via the iterative method by Mar-

finite bandwidth limit whereT is independent of the impu- siglio, Schossmann, and CarbotiSC).?* The MSC equa-

rity scattering rate in accordance with the Anderson’s theotion which relates the gap and renormalization functions on

rem. imaginary frequency with those on real frequency, extended
We wish to consider how other transport properties ofto half-filled finite bandwidth impure superconductors, is

finite bandwidth superconductors, NMR relaxation rate forgiven by

3 i o 20(0—Q)(0—Q)
Z(w)=1+—| dQ &*F(Q) = [N(Q)+f(Q—w)]
)= V(o—0)2—A(w—0)?2
1 20,ip, i (w)w
+—— 2 ———[Mw—ipy) ~Me+ip,)]+

Bw n=0 ‘/pﬁ+5ﬁ TTW sz_ﬁ(w)z

i 20(w—Q)A(0—Q)

Aw)=——| dQ o®F(Q) - [N(Q)+f(Q—w)]
Z(w)?! > V(o-0)2—A(w—0)2
1 5 20,A, i A(w)Aw)
+— —[Meo—ipy) +Mo+ipy) ]+ — : (20
BZ(w) "=0 \/p2+ A2 TTZ(0) \ w?— A(w)?
[

where o?F(Q) as given by Eq(19) with Nga?=0.05 eV which
5 corresponds to Fig.(b). Figure Za) is for an infinite band-
2Q0aF(Q) width, and(b) is for bandwidthw = 1 eV. The solid and

)\(wtipn):NFf:dQ (21)

Q°—(w*ipy)? dashed lines, respectively, stand for real and imaginary parts
. . of the gap function. The obtained results - o, where
This equation is solved iteratively f&(w) andA(w), tak-  previous studies are available, are in good agreement with
ing Z, andA,, solution to the Eliashberg equation on Mat- the published dat&

subara frequencies of Eq6), as an input, until self- The nuclear spin-lattice relaxation rafg * is given by
consistency is reached. We show in Fig. 2 the gap function

A.(w) as a'function_olfw at T=0.001 eV. We took the impg- == ”mﬁ E |Aq|2|m[)(+7(w+i5,d)]. (22)

rity scattering rater— ~=0, and the phonon spectral function 1 w0t € q
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w (eV)
0.15
0.10

A (@) (eV)

-0.05|

-0.10 | B
(b)
~0.15 ‘ ‘ . .
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FIG. 2. The gap function (w) as a function oftw at T = 0.001
eV. We took7™ ! = 0 andNra? = 0.05 eV, which corresponds to

Fig. 1(b). The solid and dashed lines, respectively, represent the re

and imaginary parts of the gaa) is for an infinite bandwidth, and
(b) is forW = 1 eV.

whereA is a form factor related with the conduction elec-

tron wave functions, and(+_(w,ﬁ) is a spin-spin correla-
tion function at frequencw and momentum transfe}. The

HAN-YONG CHOI

~ W
f(e)=tan 1| —=
2€Z(€)
) w
i tanh™ 1 — for e=—,
2€Z(€) 2Z
- (25)
T i tanht 2ez(¢) for e<
5 +itan W 6\22.

Taking 2(e)~1 for simplicity, we have R[e~9(e)]= /2 for
e<W/2, and 0 fore>W/2. Then,

1 JW/zd ate) 1 1 W
75, 965 = Mz AW,
(T, T),  tanjW/2T]
o TM. tanHWi2T ]

(T{T),/(T,T)s, therefore, decreases as the temperature is
increased, which is contrasted with the constant value of 1
for the infinite bandwidth case. The decrease of
(T,T),/(T,T)s as the temperature is increased abdyevas
observed in thev NMR study of V5Si superconductors by
Kishimoto et al?® This observation was interpreted in terms
of narrow bandwidths in accord with the present work. The
range of integration from O t&V/2 is just what we may
expect intuitively. TheT<T, region, on the other hand, is
%ifﬁcu“ to analyze without detailed information ofi(e€),

ecause the height of NMR coherence peak is mainly deter-
mined by the magnitude of imaginary part Afe) in the
Eliashberg formalism. We may expect, however, that the co-
herence peak will be enhanced\&sis decreased and ™! is
increased, becausey is reduced.

In Fig. 3, we show the normalized NMR relaxation rate

by the normal-state Korringa valueT{T),/(T,T)s, calcu-

(26)

impurity scatterings are included in the self-energy of renor{ated from Eqgs.(6), (20), and(23) as a function ofT/Tg,
malized Green’s function. For a finite bandwidth, it is easy towhere T, is the critical temperature for infinite bandwidth

derive
1 (= af(e) €b(e)
ﬁocfo € 5e HR \/EZ—A(G)ZH

Aeyace) \?
+R \/62—_—@ , (23
= 9f [ €2+ A?
—>fA dEE —EZ_AZ ’ (24)

where f(e) is the Fermi distribution function and trf!e(e)
and 6(e) are obtained by solving Eq$6) and (20) itera-
tively. The standard strong-coupling expression 1’bf1
given, for example, by Fibick can be obtained by setting
0= /2 for infinite bandwidth. Equatiof24) follows for the
infinite bandwidth weak-coupling limit.

Before we present the detailed numerical calculations, let

us first analyze the expression far,) ~* of Eq. (23) quali-
tatively. ForT>T., A = 0in Eq.(23), and

case. We took the phonon spectral functigii (Q)) as given

by Eq.(19) with Nca?=0.05 eV, which corresponds to Fig.
1(b). We selected three sets \0f and 7~ * values, labeled as

A, B, andC in Fig. 1(b), for T; * calculationsW and 7! of

A, B, andC are, respectively, in unit of eV, 10 and 0, 0.1 and
0, and 0.1 and 0.05, as can be read from Fi{g).INote that

as one goes from to B to C, the normalized NMR relax-
ation rates have progressively enhanced peaksTansl re-
duced accordingly. These results are straightforward to inter-
pret, as already explained before. The computed values of
Nt fOr A, B, andC are 1.67, 0.63, and 0.60, respectively. As
N\ei IS decreasedl . should be reduced and NMR coherence
peak should be enhanced, because there is no time-reversal
symmetry breaking in the present problem. The solid curve
of A, having\.s = 1.67, has substantially reduced coher-
ence peak, in agreement with the previous wdfk<.Note

also that the normalized NMR relaxation rates for finite
bandwidths decrease &5 is increased beyond. as ex-
pected.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have investigated the effects of a finite
bandwidth on the thermodynamic properties of impure su-
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o

for a given material. The present theory shows that if the
disorder is increased for a finite bandwidth superconductor,
its transition temperature should be reduced and coherence
peak should be enhanced, respectively, compared with those
of a clean material. In view of our results, it will be very
interesting to systematically investigate how the transition
temperature and NMR coherence peak behave as the degree
of disorder is varied for doped 4g.

In A3Cgp, almost all other experiments than NMR relax-
0 ) , ‘ , ation rates seem to point to a phonon-mediatediave
0.00 0.25 0.50 0.75 1.00 1.25 pairing* Also, due to the orientational disord&rthe Fermi-
surface anisotropy is not strong enough to suppress the

FIG. 3. The normalized nuclear spin-lattice relaxation rate bycoherence peak. The present study shows that a quite
the normal-state Korringa valueT{T),/(T,T)s, as a function of  Strong electron-phonon coupling ofes~2 is needed to
the reduced temperaturé/T.,, whereT,, is the critical tempera- suppress the NMR coherence peak in agreement with Naka-
ture of infinite bandwidth case, witNzo® = 0.05 eV. The solid, mura et al,'® and Allen and Rainel’ The A\4~2 seems
dot-dashed, and dashed curves, labeled, respectively, Bs and  too large for doped fullerenes since the far-infrared re-
C, are computed fow and r~* equal to 10 and 0, 0.1 and 0, and flectivity measurements of DeGiorget al*>° show that
0.1 and 0.05 eV, as can be read off from their counterparts in Fig2 A /kgT.~3.44—3.45, a classic weak-coupling value. Be-
1(b). The normalized relaxation rates show progressively enhancegdgyse there are no magnetic impuritiesAgCg, the ab-
peaks as one goes from to B to C. This can be understood in  sence of the NMR coherence peak is still to be understood.
terms of the effective electron-phonon coupling constant alone, beStengeret al3t suggested that the applied magnetic field is
cause large\ ¢ suppresses NMR coherence peak due to strongiegnonsible for the suppressed NMR coherence peak. Their
coupling phonon dampings. A% is reduced and " is increased, o) pianation, however, seems to be more a puzzle than an
gﬁf(fj'z ;eodurzc?sd.el'z\tlaelcomputedeﬁ for A, B, andC are 1.67, 0.63,  phqer. According to the Eliashberg theory, the energy of

00, Tesp Y- applied magnetic field should be at le@sb~0.1A to sup-

- i : press the coherence peak. The magnetic field in thigr
perconductors within the framework of phonon med|atedNNIR experiment corresponds fav~10"5A. Such a small

Eliashberg theory. We found that the transition temperatur%nergy scale in the coherence peak suppression is really a

and NMR coherence peak are suppressed and enhanced, Nizzle. We are currently investigating the strong Coulomb

spectively, by impurity scatterings when the finiteness of: . . :
bandwidths is explicitly taken into consideration. These re_mteractmn effects with a paramagnon approximatiokive

sults can be understood in terms of reduced effectiv suspect that the strong Coulomb interaction may be respon-
. Lo ) %ible for suppressed NMR coherence peak in doped
electron-phonon coupling.;. The motivation for this work

was, in part, the observation that the phonon frequency anlajllerenes.

the Fermi energy are comparable and a substantial disorder is This work was supported by Korea Science and Engineer-
present in the fullerene superconductbihe NMR coher-  ing FoundatiofKOSER through Grant No. 951-0209-035-2
ence peak in T;T) ! was found absent for doped and through the Center for Theoretical Physics, Seoul Na-
fullerenes?®2”We wish to point out that the present theory is tional University, and by the Ministry of Education through
not concerned with why the NMR coherence peak is absenGrant No. BSRI-95-2428.
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