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Nucleation of vortices inside open and blind microholes

A. Bezryadirf
Centre de Recherches sur les JiBasses Tempatures, Laboratoire associa I'Universite Joseph Fourier, CNRS, BeiPostale 166,
38042 Grenoble-Gd#ex 9, France

Yu. N. Ovchinnikov
Landau Institute, Chernogolovka, 142432, Russia

B. Pannetier
Centre de Recherches sur les §iBasses Tempatures, Laboratoire associa I'Universite Joseph Fourier, CNRS, BelPostale 166,
38042 Grenoble-Giex 9, France
(Received 2 June 1995

The critical field of a thin superconducting film with a blind circular hole is found theoretically. It is shown
that the value of the critical field is sensitive to the bottom thickness, but the orbital momentum, i.e., the
number of vortices which nucleate inside the hole, is not sensitive. A simple boundary condition for a steplike
thin film is derived and used for comparative numerical analysis of the superconductivity nucleation in a
microdisk and near the hole. By increasing the thickness of the bottom of a blind hole one can transform the
hole into a disk of the same radius which rests on top of the film. We show that such transformation leads to
a jump in the number of vortices which nucleate at the critical magnetic field inside the perimeter of the hole
(the disk. We report also the results of the Bitter decoration experiments of a thin superconducting film with
a lattice of open or blind holes. It is four{th accordance with the calculatipthat the bottom thickness has
only a weak influence on the number of vortices captured by a hole during the cooling of the sample at a
constant perpendicular magnetic field. All the experimental results are explained under the assumption that the
vortices nucleated inside a hole rest inside during the cooling process and no additional vortices enter the hole.

I. INTRODUCTION Therefore the vortex should be repulsed from the hole. At
last an overlap of the edge superconducting states localized

The critical field (¥ ) near an open circular hole in a thin near neighboring holes leads to formation of an array of Jo-
S sephson junctions of superconducting—normal-metal—

superconducting type with a unique coherence length in the

23:};{;eie?r?ﬁéilgﬁgasﬁ%nﬁ? ;zgzﬁzzdtc;o;r?gzngfn whole syster (it is assumed here that the holes are orga-
P Y nizedin a periodic lattice

(here and below we assume that the applied magnetic field is In the present work we consider a more general case of a

pirallel to the axis of the holelt w;as shown that the ratio hole with a bottom(blind hole. It is assumed that this bot-
Hc/He, = 1 whenR—0 and H¢ /Hc, = 1.695 when {om js a part of the same film. Strictly speaking, in such a
R— . HereR is the hole(or channel radius and—lc2 isthe case, there is no hole in the film but only a hollow, so the
upper critical field of a nonperforated infinite sample. TheSample is simply connected. Nevertheless it is shown that the
case R—w corresponds to the usual effect of surfacecritical field is qualitatively identical to that one of the film
superconductivity. Due to the multiply connected geometry With a real hole. The amplitude of the ratit; /H., is de-

of the perforated sampléi$ /H., is an oscillating function ~creased by the presence of the bottom but the positions of
with cusps of the hole are@ore exactly it is a function of cusps aré almqst the same. The Iagt sFatemer)t means that the
the magnetic flux in the holes = wR2H). The cusps appear number of vortices which nucleate inside a blind h@een

when the number of vortices which nucleate inside the holgsgge?fgre% ihzlrl]or‘:\(') Igﬁﬁzt:ﬁ’ﬁgﬁfgzﬁy 'quilr;gnttglls
at H;‘S increases by one, as in the Little-Parks effect. u P : Gatyperi

. ~and theoretical of fluxoids inside a hole is considerably

. Generally speaking, the effects of surface superconductivhigher than in the uniform film and the ratio can be as big as
ity are important at strong f|eld$-l(~H02) because insucha 4

case the superconducting order parameter is much higher The present work has also a practical importance which is
near the hole edge than far from the hole in the uniform film.explained below. The vortex distribution in artificial perfo-
Such modulation of the order parameter modifies qualitarated structures can be visualized by the Bitter decoration.
tively the vortex pinning by an array of empty chanieds  For example the influence of the frustration on the vortex
columnar defects. Also it gives rise to a type of surfacesuperlattice in a superconducting wire network has been
barrier®” to approach and enter a hole a probe vortex musstudied by using this techniq@eJsually the magnetic deco-
suppress superconductivity near the hole edge where the amation can be done only at very low temperatures, when the
der parameter has a strong maximufvhen H~H02). screening effects are strong. At the same time it is assumed

film or, what is very similar, near an empty cylindrical chan-
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H We seti=c=1. The proper value. is proportional to the
[ X | second critical field in the nonperforated infinite film:
o q b A=eH(T) and it is considered here as a given function of
fi b the temperatureT). We use the usual boundary condition
for all points of the sample surface:
FIG. 1. Two simple configurations of the sample when the sur- N R

face superconductivity effect can be observ@l Superconducting n( —— 2ieA) A=0, 2
film with a blind hole(or a hollow); (b) disk which rests on a thin ar

film. Magnetic fieldH is perpendicular to the film but parallel to the > .
vertical parts of the sample surface inside the hole or at the edge d¥N€ren is a vector normal to the surface. Let us consider the

the disk. problem to be a three-dimensional one. At the critical field
the superconducting state has an axial symmeX(y;, 6,2)
= A(p,2)e"?. Then in cylindrical coordinatesp(,z) one

(and argued in many casgshat a kind of a “freezing ef- can write the equation fah (p,2)

fect” takes place, so the vortex superlattice, once determined n
at the critical temperature, is not changed during the subse-| — — —(p—) + ———+(eHp)?—2eHn|A=2\A.

. . . pdp\ dp] p 0z
guent coolingnote that in the present paper we discuss only 3)
field-cooling experimenjsA direct Bitter decoration of arti-
ficial systems with holes is a difficult problem: vortices cap- The functionA(p,z) can be developed outside the hole in
tured inside holes have a very small magnetic contrast. Ahe following way:A; = Z\fn(p)coskyz) where the func-
powerful method which can be used for visualization of sucttions fy(p) satisfies the equation
vortices (or equivalently the vortices in unit cells of super-
conducting wire networksconsists of keeping a thin super-

19( o\ n® &

2

19 d n ) )
—lp +I7+kN+(er) —2eHn

szz)\fN,

conducting layer(the bottom under the sampléthe “flux pap\Pap

compression” method’ This method is especially useful for (4)
observations of multiquanta vortices. Consider, for example, .

a hole with two vortices. By the usual “planarization” @ndky = 7N/d¢, N =0,1,2 ... . Consequently the solution

method they cannot be resolved. On the contrary, if the holefor A¢, which is finite wherp—, can be written as
has a superconducting bottom, then at low enough tempera-

ture these two vortices will be separated and visualized by A _ iz CoW 7T_N

the magnetic decoration as two independent sfeig. 4). iy, 2)= NV N “’ZHfN’ZeH'”’Z(y)CO ds )
From the above discussion it follows that for interpretation

of the results obtained by the “flux compression,” it is nec- y>eHR, (5)

essary to know how the presence of the bottom changes the
vortex distribution at the nucleation temperature. In thewhere y=eHp?, Cy are some constants,\ =\

present paper we consider in detail one particular case, thﬁ(l/Z)(wN/df)z, andW, p(y) is the Witteker functiont? In

blind circular hole, and show that the bottom changes veryhe same way one can get the solution in the bottom of the
weakly the number of vortices which nucleate in it. hole:

1 7N
Ap(Y,2) == A\Mpii 12eH,n2(Y)CO§ ——2/,
\/y N bN dy
II. CRITICAL FIELD OF A BLIND HOLE

Let us consider a circular blind hole of radigswith a y<eHR, (6)
bottom of thicknessl, in a film of thicknesdd; exposed to a wherepy = \— (1/2)(mN/dy)? and the functionW is re-

perpendicular magnetic field [the cross section is shown in . d . .
; ) " ' placed by the other linearly independent Witteker function
Fig. g)]. Here we find the critical field of such system as aM which is finite at the origin which coincides with the

function _of temperature a_md _th_e _bottom thickness. Thecenter of the hole.
problem is solved in the dirty limit in the full temperature

range. For an arbitrary electron mean free path the result is The critical field of our system will be the fielt, at
ge. y P . which the solution given by5) and(6) and its first derivative
valid in the temperature range close to fﬁ@o (TCO is the

- _ are continuous on the surface given by conditiphs R,
critical temperature at zero f|e)ldin.d for R>£(0) [the CO-  p<z<d, [in other points the functionés) and (6) are al-
herence length £(0) is determined by the relation: ays continuouk Also the boundary conditiof2) should be
He,(T)=¢o/ 2m¢(T)]. In such a case the order parameterfyfilled on the surfacep = R, d,<z<d; [in other points of
(A) satisfies at the superconducting transition the simple linthe sample surface it is always true if one use the solution in
ear equatiort® the form (5) and (6)]. The orbital momenturm should be
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chosen to obtain the maximum value of the critical field. The !
condition of the continuity of the order parameter on theCo| —=Wp2. y/2ek;n/2(Y)
surfacep = R, 0<z<dy is vy yly=eHr2
= N, d !
NZO Clen/2+}\fN1IZeH,n/2(eHRZ)CO{ d Z) dbAo M2+ nizer;niz(Y) ©)
1= f oy _
yly=eHR?
(N;=0,12...)
w (Note that we use the following notation for the derivative:
N
a r_—
= NZO AnM n/2+>\bN/2eH,n/2(eHR2)COE<d_bz) : Fy=dF/dy),
which should be fulfiled at anyz from the interval c ~w ,
0<z<d,. It gives us the first pair of main equations: N#0 N /24 \py/2eHini2(Y)
y yly=eHRZ
- di [ wNydy - 2N (—1)Ni(d, /d;)2sin(7Nd, /d;)
AM izt EHRE) = Cny g SN g =S AL o bt
Ni=o  t7Nidy f NZo Mo NZ—(Nd,/d;)?

X Wn/2+ }\fNI/ZeH;n/2(e H RZ) ’ (7)

X (10

1 !
\/—y M2+ )\bN1/2eH;n/2(y) ) ,

Anz0M 2+ v yzerini2( €HRE) y=eHR

” 2N,d —)N N.d
- 1dp (1) 2sin(wlb)

N > For the derivation of Eqs(9) and (10) we have used the
Ni=o + md¢ N°=(Nydy/dy) of

procedure analogous to Ed3) and(8). The only difference
was the interval 8.z<d; of the integration and the factor
cog(7N/d;)zZ]

In principle the system of Eq47), (8), (9), and(10) is
To obtain the Eq(7) the above shown condition of the con- complete and gives as a solution the ratio of the critical field
tinuity of the order parameter has been integrated avier near a hoIeHé‘3 and the bulk second critical fielt,
the interval 0<z<d, . To obtain Eq.8) the continuity con-  H¥ /H, = eHg/\ [hereHj is the solution of the system
dition has been multiplied by a factor ¢6sN/d,,)z] and then (7). 8), (9), (10)]. It is a linear system of equations for un-

integrated in the same way. ; - .
The boundary conditio2) and the continity of the de- known parameteréy andCy and it has nontrivial solutions

X Wn/2+ )\fN1/2e H; n/2( eH Rz) . (8)

rivative can be written in the form only if
0, dy<z<d; de{E—K(y)]ly-enre=0. (1)
d[A(y,2)] JA
T e | 2 0<2<d,.
y=eH ay y—eHR2 In fact to derive Eq.(11) one has to excludé and Cy

constants in the set of Eq&)—(10). In (11) Ej = Jj is the
It gives [if one takes into account the developméBt and  unit matrix and the coefficients of tHé matrix are the fol-
(6)] the second couple of main equations: lowing:

[

~ ~ db 2df 7TNdb
Koo=Mniz+nrzer;ni2Y) an/2+)\/2eH na(Y) + - 72d; E sz Wn/2+)\fN/2eH;n/2(Y) ,

“ WNldb Wn/2+ )\fN1/2eH;n/2(y) '\7' n/2+ )\bN/ZeH;n/Z(y)
( dy ) —(Nydp/dy)? ’

Kon=—(— 1)N

X 4 (dy\® & N,d
KNM=<—1>N+M?(d—f) > [sinZ(”d—jb)[NZ—(Nldb/dnz]—l[Mz—(Nldb/dnz]—l
2

X Wiz rzerini2(Y) Mz, yzernialY) ) ;
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where the definitions used are

~ 1/ M, !
tonry= & WMap(y)]
—M,
\/y ,b(y)
and
. (INY)Wa p(y)
W, p(y) = : :
O A Wap(y)T)
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> Nf%(N)=0.08%... .
N=1

We have used also by derivation of Ed4) the equation

1 3a? 1
__qj - 210 —
Nzl NE sirf(aN) 5 +a In( Za)’
which is valid fore<<1.
Let us assume now that the film has a constant thickness
(d) everywhere except some cur(¢ieoundary curvewhere

Finally the critical field of the system under consideration isit has & stepwise change. For the blind hole such a curve is

given by the single equatiofil).

Ill. THIN-FILM LIMIT

the perimeter of the hole where the thickness jumps from
dp to d;. We will show firstly that in the general case the
averaged value of the order parametef(p,0) =
(1/d)ng(p,0,Z)dZ, which is a two-dimensional function,

The general equatiofil) can be simplified if we assume gatisfies the two-dimensional linear equatiah everywhere

thatd;<¢, d,<<¢ (the ratiod,/d; can be arbitrary; the co-

herence length ig=+/1/2\). In this case all elementsgy

except the hole perimeter. After we will derive simple
boundary conditions for the order parameiglp, 6) at the

(N#0) are small and in the main approximation one camole perimeter. These conditions are general and will be used

write

1=K, (12

to find the critical field of a disk and of a linear step on the
film surface. The critical field in all such systems is higher
thaanz. Note that the present discussion is valid only if the

if also dy<<d; then one can find the equation for the critical field is perpendicular to the film plane.

field in the first approximation

1=Kgot Nzl RNORON- (13

Let us consider an averaged over the film thickness order
parameteris(p,6) = (1/d)f8A(p,0,z)dz whered is equal
either tod, (inside the holg or d; (outside the holge It is
clear that such a function satisfies the 2D linear equdfign
Really if we make averaging overof the left and right parts

In fact the perturbation theory is possible in all orders. In theys the 3D equatior(1) we get

cased,<<¢ one can use the following asymptotic relation:

d
2\/eHy<7T—;i|

-1
, N>O0.

M /24 Apn/2eH; n2(Y) =

Similarly if di<<¢, then

R d¢
Wn/2+)\fN/2eH;n/2(y):_ZVeHy(m), N>0.
Now if di<¢, dp,<¢, andd,<<d; Eq. (13) can be rewritten

(LNY)M iz rszeriniz(Y)
[(1Ny)M niz+azern20Y) 1y |y - epire

_ % (1/\/§)Wn/2+)\/2eH;n/2(Y)
df [(LNY)Woasrrzerena(Y) 1y

_ 4veHyd,
m

y=eHR2

3 ds -
§+'”(2wdb) —NZl NfZ(N)}, (14)

! dazﬁd i 2'Z\21fdﬁ* d
_a 08_22_ Z— a_ﬁ_ e a o (p,Z) 4

1(d. .
=2)\—f A(p,z)dz,
dJo

whereﬁ is the radius vector in the plane of the film. Note

also thatA is perpendicular to the axis. The first term is
equal to zero due to the boundary conditi@ so we get

9 J\2. . -
—(—»—ZieA) p(p)=2Ni(p). (15
ap

The boundary condition for the functio}h(p,<p) in zero ap-
proximation in parameterdy, /£(T), d¢/&(T) (d,/d; can be
arbitrary) follows from Eq.(12):

Iy ~ ;-
db%(lﬂb)_l:dfa_l/:(wf)_l-

5 (16)

where the coefficient before the square brackets is smalhe can get it also from Eq14) by neglecting the linear

(proportional tod,/¢). The functionf(N) is given by

N 1 foodx 1—-e 2™
N=22], % ez

For large values ofN one can getf(N) = (1/m°N?)
X[C+In(27N)] whereC = 0.5772 ...

correction(the term with the square bracketBhysically this
condition means that the derivative of the 2iveraged over

the film thicknessorder parametezf/(p,@) has a jump at the
boundary curvéwhere the film thickness has a jummvhile
the order parameter itself is continuous. The continuity of

is the Euler con- z,Z(p,<p) follows from the development&) and(6) and from

stant. Numerical calculation gives for the value of the sum inthe condition of the continuity of the 3D order parameter

the Eq.(14)

B(p,a,z) on the surfacg = R, 0<z<d. The ratio of the
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. d/d=0 a) 1,7
d/d=0.1 1,6 — _
o LSE ]
d,/d=0.25 Efa ” ]
e = |
1,1 N o 12 / ]
| [, 447088 1.1 f .
disk b) 1 F . .
331 0,1 1 10
N
° 3t d /d;
A ta 2’5 r . o . . .
@ FIG. 3. Normalized critical field of a linear step on the film
2r = - ~ d fd== surface. The result is valid when the film thickness at both sides of
15 = 2 d Jdd the step is much smaller than the coherence length at the nucleation
’ bt temperature.
PN e ——. i
0 1 2 3 4 5 6 limits are different. An increase af,,/d; over unity leads to
/¢ =nR*H/¢ the transformation of the blind hole into a disk. This transi-
0 0

tion is accompanied by a jump in the orbital number which
corresponds to an abrupt shift of cusps in the curves shown
FIG. 2. The normalized critical field as a function of the reducedin Figs. 2a) and 2Zb). For example if¢/¢y = 0.6 then
magnetic fluxg/¢q = TR2H/ ¢, of the external field through the n=2 for holes with any value of the ratit, /d; (d,<<d;). In
hole (the disk area. Calculation is done under the assumption thathe case of disksd,>d;) we findn=0 for the same value
dp, df<§(T:3). (a) Critical field of blind holes with different val-  of the magnetic flux. A sufficient decrease of the temperature
ues of the ratio between the bottom thickndgsnd the film thick-  leads to formation of the Abrikosov lattice which is deter-
nessd; [see the sample geometry in Figall. Arrows show posi- Mined by the nonlinear term in the equation for the order
tions of cusps in the curve correspondingdg/d; =0.882.(h)  parameter which is neglected in our consideration. Then the
Critical field of disks which rest on an infinite filisee the sample number of vortices is equal to the number of lattice knots
geometry in Fig. b)]. inside the circle(in the limit d,—d;). This number depends
on the relative position of the vortex lattice and the circle
o . . . .. (the perimeter of the hole or of the dijsknd should be taken
derivatives |s~|nversely pro~port|onal to the ratio of the thick-, give the minimum of the free energy. As a result we obtain
nesses{dp(diy/dp) —di (s /dp)],-r=0. This condition  different values for the number of vortices for the hole
should be fulfilled in all points of the stepwise increase of the(maximum possible valyeand for the diskiminimum pos-
film thickness, on the perimeter of the blind hole, for ex-sible valug in the limit d,—d;. Note that in the uniform
ample. All numerical results of this paper are obtained usindilm (d,=d;) the number of vortices in a circle of a radius
Eq. (15 and the conditior(16). Note that Eq(15) and the R averaged over the position of the circle center is equal
boundary conditior{16) are true also in the cask>d; (the  naturally to the reduced magnetic flgd pq = TR?H/ ¢ of
case of the disk Only the following restriction is essential: the external field through the holghe disk area as it is
dp,di<<é. shown in Fig. 5¢ by the straight linepg = w#c/e is the flux
In Fig. 2(a) we present the normalized critical figltbund  quantum.
numerically from(15) and (16)] of a blind hole versus the Let us assume now that the hole radius is infinite
magnetic flux of the external field through its geometrical(R—<). In such a case, ifl,#d;, our system becomes a
area. The same value for a disk is shown in Fith)Zthe  thin film with a linear step on the surface. The height of this
geometry of the sample and definitions are explained in Figstep is|d,—d¢|. In this geometryd,, denotes the film thick-
1(b)]. The increase of the bottom thicknesks(or decrease of ness on one side of the linear step @ahdon the other side.
the disk thicknessl,) leads to a suppression of the surfaceTo find the critical field near this linear step one can use the
superconductivity effect, but the number of vortices nucle-two-dimensional equatiofl5). Also if d,<¢ andd;<¢ then
ated in the hole or in the disk is almost constéhis number the boundary conditioril6) is valid. Numerically we have
is determined by cusp positions in the critical field cyrve found the reduced critical field shown in Fig. 3. In fact it is
Numerical calculations show that the cusps corresponding tdetermined by the ratio of the thickness of two filehs/d;
the same orbital number but to different values of the ratiarather than by the step heigfat, — d;|. Of course this is true
dp/ds lie on a straight lingmore exactly there are two dif- only in the limit of zero film thickness. Note also that when
ferent lines: for holes and for diskswhend,/d; = 1 the the step height is smalld,—d{|—0), the reduced critical
critical field is equal of course tolc, and the number of field (more exactly the valublcschz—l) is proportional to

vortices inside a circle of radiuR is undeterminedthe last  the absolute value of the logarithm of the ratig/d; (Fig.
statement is true only exactly at the critical tempergtuvat ~ 3). In the limit when one of the films is much thinner than
single valued limits exist for the number of vortices insidethe other @,/d; = 0 ord,/d; = «) we come to the well-
the circle ford,/di—1—0 andd,/d;—1+0. These two known result for the surface critical fielth /H;, = 1.695.
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In fact any nonuniformity in the film thicknesdut not  order parameter near the hole edge. The last circumstance is
only the discussed above sharp step on the film surfacémportant only at high temperatures, when the applied field
leads to a local increase of the upper critical field. This pheis of the order oH oy It should be mentioned also that if one
nomenon is especially important for ultrathin films, when theor more vortices are captured inside a hole, then the external
number of atomic layers is small. In this case even a monovortices should be repulsed by it due to the superconducting
atomic step on the surface leads to a considerable change diirrents circulating near the hole edde.
the ratiod,/d; and consequently of the critical fielgvhich All the magnetic decorations are curried out after the
can be only increased in accordance with Fig.A impor-  sample, a thin perforated Nb film, has been cooled in a weak
tant consequence of such an increase is a maximum of thgerpendicular fieldd = 6.37 Oe down td 4o = 4.2 K (note
superconducting order parameter near the step which comhatTge<T., = 9.2 K). The Bitter decoration consists of the

tributes to the vortex pinning. This contribution should beevaporation of a small amount of a ferromagnetic m@ﬁ'

dominant at high fields~H.) when the averaged order ,q of Nj in our cas not far from the sample surface. Pre-

parameter and therefore the energy of the intervortex intereautions are taken to prevent any considerable heating of the

action is small far from the step. The strongest force actingsample. The Ni atoms form small monodomain particles

on vortices in such a case is the repulsion from the maximg~ 200 A) which are attracted to the centers of vortices due

of the order parameter created by nonuniformities in the filmto the magnetic-field gradient. After the decoration the

thickness. sample is warmed up to the room temperature. The positions
of vortices are marked by attracted Ni particles and visible in
the electron microscope as white spfftey more details see

IV. BITTER DECORATION OF OPEN Refs. 7,8.
AND BLIND MICROHOLES The holes are made by the reactive ion etcHiREE) of a

Nb epitaxial film covered by PMMA electron-sensible resist

) " g . . hhich is patterned by the electron-beam lithography. An in-

field (pr thg Cr't'cal. temperat.ure In flel_d—coolmg experiments complete ion etching leads to formations of blind holes. The

of a film with a(blind) hole is an oscillatory dependence of bottom thickness can be varied by changing the time of RIE.

the magnetic flux. Positions of the cusps in this dEpendenCExperimentally we have used samples with open halgs<(
are unexpectedly stable to variations of the bottom thicknes ), holes with a thin bottomd,, = 650 A), and holes with a

A direct way to find experimentally the positions of the cusps ery thick bottom @, = 1500 A which is almost equal to

o o o e o o o e flm ickines g, = 1700 4. The nolesare organzed
but only with open ho?e% SucH measurements should be arrays. In each array the_re are about_50 identic_al holes which
much more difficult in the.case of blind holes, especially if are forming a regular tnangular Iaztt|ce of perlcad=.6.1
the bottom thickness is almost equal to the %ilm thickness’“m' To sweep the magnetic fluxrR H).we have available
because in such a case the amplitude of the oscillation of th on the same substrz)t_many arrays which differ from each
critical field should be very smaJkee Fig. 2a)] ther by the hole radius 0.1om<R<2.2 um (the mag-
The positions of the cusps correspdnd tb the momentgetlc field is uniform and the same n all experménts
The presence of a superconducting bottom inside holes

when the number of vortices inside a hethis number will . e :
i, R gives a possibility to observe and count the captured vortices
be referred to as the *filling factor” FFchanges by one. An (Fig. 4). So far one can determine the filling faci®): the

independent way to determine the filling factor versus the

flux through the hole is the Bitter decoration which gives anumber of vortices trapped in a single hole. Its averaged
- R LY e . value (FF)) can also be found because we have aboyb50
possibility to visualize individual vortices in the sample. It is

A . more identical holes in each array.
an indirect method because the decoration can be done only Some experiments are done with open holes when the

at low temperature when the applied field is much lower tha . o )
rapped vortices are not visible. In this case one can also

trzzl}ﬁ?g?eraégaiﬁrizzn\?vi? ggliilt:éild}gv?;:zﬁjge%f tlcadetermine( FF) as the difference between the density of vor-
9 3’ tices in a uniform nonperforated film and the density of non-

the same time it can be expected that the vortex distributionsaptured vortices in the film with holes. To fildFF) one
once determined at the nucleation temperature, is nG§hould divide this difference by the density of holes. This
changed considerably during the coolifige discuss here method can give a considerable error if the period of the hole
only field-cooling experimenjs Therefore the number of |attice is much larger than the averaged intervortex distance
vortices which we find at the low temperature inside a holeang, in addition, not all vortices are well recognized. The
should be very close to the number of vortices which arejirect method which is possible with blind holes is much
nucleated into the hole at the critical temperatlihés num-  easier and more reliable. It enables us to distinguish defi-
ber is determined by the positions of the cusps on the criticghitely between trapped and nontrapped vortices in all cases,
field found in the previous paragraph, except probably smalkyen when the bottom is very thick, because each hole is
regions near the cusps themselvesis a kind of “freezing  syrrounded by a region which is practically free of vortices
effect,” argued and verified experimentally in Ref. 7. With- (Fig. 4).

out going into a detailed discussion, we can mention here The experimentally found filling factofFF) is shown in
that this effect is due to the small fielfH> 10 Oe Fig. 5 versus the magnetic flux of the external field through
<H, (0)] which means a weak repulsion between the vortithe hole area. Three types of symbols correspond to open
ces, quite strong intrinsic pinning in the Nb film, and the holes (open circley holes with a bottom of thicknessy,
surface barrier due to the considerable enhancement of the650 A (crosses and holes with a thick bottond,

In the previous paragraph we have seen that the critic
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] FIG. 5. Experimentally found filling factor, averaged over about
EQVSWWQQI . 50 holes versus the magnetic flux in the hole. The open disc_s cor-
e ' , respond to open holesd{/d; = 0), crosses correspond to blind

; ‘ holes withd, /d;~ 0.38, and solid squares correspond to very shal-
low blind holes withd, /d;~ 0.88. Calculated value of the filling
factor at the nucleation temperature is shown for open holes
d,/d; = 0 (dotted ling, and for blind holes withd,/d; = 0.38
(dashed ling and with d,/d; = 0.88 (stepwise solid ling The
straight solid line is the averaged number of vortices in a uniform
nonperforated film inside an imaginary circle of radRs

paragraphwhich maximizes the critical field. The jumps of
the calculated filling factor correspond to the positions of the
cusps of the critical fiel(hl-l’c*3 [Fig. 2@)]. Finally we find that

our simple model that the FF is constant with the tempera-
ture explains quite well the experimental data.

For more accurate description it is necessary to consider
the region below the critical temperature. Numerical calcu-
o ) _ ) _ lations show? that a decrease of the temperature in a con-

FIG. 4. Visualization of vorticegwhite spot$ using the Bitter  giant field can cause a first-order phase transition with an
decoration and SEM. The decoration is fqulIIngat: 4.2 K after  jncrease by one in the orbital number of the superconducting
the sample has been cooled at a constant file 6.37 Oe. The  gia16 |ocalized near the hole. Such transitions should be con-
period of the triangular lattice of circular holesas= 6.1 um, the  giqaraq as an entrance of an additional vortex into the hole.
bottom thickness isl, = 650 A. Each hole at the top pictur& (= They are possible only at high temperatures and lead to some
1 pm) captures three vorticegxcept two or three holgsThe increase of FF) with respect to its value at the nucleation
vortex lattice outside holes is disordered. An increase of the holet=em eraturdFig. 5)
radius leads to the trapping of the most of vorti¢esttom picture, Trf)]e ste Wigé d.e endence of the averaged filling factor
R = 2.2 um). Inside holes the vortices are concentrated along chFF} is jUS[: a reflec?[ion of the fact that allg holes c%ntain
picture is a photo of an inclined sample. exactly the same nu_n_1ber of vortice_s._ This fact r_1atura||y fol-
lows from the condition that the filling factor is constant

=1500 A(solid squares The solid straight line denotes the during the field coolln_g hecause there is no do‘.Jbt that the
same number of vortices should be nucleated in two geo-

vortex density in a nonperforated part of the film multiplied metrically equivalent holeif they are far apart from each
by the hole area. One can see that the density of fluxoids is y €d : Y ap ;
. : e ) other and therefore independerithe mentioned above first-
considerably higher inside the holes, even if the bottom d . hould take ol I h
thickness is very close to the film thicknes®lid squares order transitions should take place normally at the same tem-
: . . erature for all holes. On the contrary, if we neglect in our
In accordance with the calculations of the previous paragraph. . s
o . ) iscussion the surface superconductivity effects and the
it is found that the difference between experimental values o h f th d he hol
(FF) corresponding to holes with different bottom thick- stéong ﬁn an(I:eme_nt ofthe or er.paré:lmete(; near % ?\ o€
nesses (6.d,/d;<0.9) is considerably smaller than the dif- edge, the explanation of the stepwise dependence of the av-

o eraged filling factor(Fig. 5 is not evident, especially if one
];)elireegcbi/ Eﬁéwﬁglg tgri)?nvﬁr:geusnﬁg?rr:hfﬁrx(()gt?;i;rim?lih takes into account that the experimental filling factor is much
Fig. 5. Theoretical values of the filling factor are shown by smaller than its expected equilibrium vafu Teeo = 4.2 K.
the stepwise lines in Fig. 5 for different values of the ratio
dp/d;. They show the number of fluxoids which appear in
the hole at the field-dependent critical temperature. This We have calculated the critical field near a blind hole in a
number is, in fact, the orbital number (see the previous thin superconducting film. It is higher than the upper critical

V. CONCLUSIONS
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field in a uniform nonperforated film but lower than in the ping as real open holes. The result is explained by taking into
film with an open hole. The orbital numbéar the number of account the edge superconducting states characterized by the
trapped vorticeswhich maximizes the critical field is prac- strong enhancement of the order parameter.

tically the same for open and very shallow blind microholes.
The same conclusion follows from the magnetic decoration
experiments of a thin Nb film with open and blind holes. It is
demonstrated that the presence of a superconducting layer
(the botton) inside holes gives a possibility to observe and This work was supported by the CEE “SUPNET” Con-
count the captured vortices directly. It is found that in thetract No. ERBCGRCT920068. Yu. O. would like to express
field-cooling experiments even very shallow blind holeshis gratitude to P. Monceau for hospitality and to the CNRS
(hollows) have practically the same efficiency in vortex trap- for the financial support.
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