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The critical field of a thin superconducting film with a blind circular hole is found theoretically. It is shown
that the value of the critical field is sensitive to the bottom thickness, but the orbital momentum, i.e., the
number of vortices which nucleate inside the hole, is not sensitive. A simple boundary condition for a steplike
thin film is derived and used for comparative numerical analysis of the superconductivity nucleation in a
microdisk and near the hole. By increasing the thickness of the bottom of a blind hole one can transform the
hole into a disk of the same radius which rests on top of the film. We show that such transformation leads to
a jump in the number of vortices which nucleate at the critical magnetic field inside the perimeter of the hole
~the disk!. We report also the results of the Bitter decoration experiments of a thin superconducting film with
a lattice of open or blind holes. It is found~in accordance with the calculation! that the bottom thickness has
only a weak influence on the number of vortices captured by a hole during the cooling of the sample at a
constant perpendicular magnetic field. All the experimental results are explained under the assumption that the
vortices nucleated inside a hole rest inside during the cooling process and no additional vortices enter the hole.

I. INTRODUCTION

The critical field (Hc3
* ) near an open circular hole in a thin

film or, what is very similar, near an empty cylindrical chan-
nel in a three-dimensional~3D! superconductor has been
considered theoretically1,2 and measured experimentally3

~here and below we assume that the applied magnetic field is
parallel to the axis of the hole!. It was shown that the ratio
Hc3
* /Hc2

5 1 when R→0 and Hc3
* /Hc2

5 1.695 when

R→`. HereR is the hole~or channel! radius andHc2
is the

upper critical field of a nonperforated infinite sample. The
case R→` corresponds to the usual effect of surface
superconductivity.4 Due to the multiply connected geometry
of the perforated sample,Hc3

* /Hc2
is an oscillating function

with cusps of the hole area~more exactly it is a function of
the magnetic flux in the hole:f 5 pR2H). The cusps appear
when the number of vortices which nucleate inside the hole
at Hc3

* increases by one, as in the Little-Parks effect.

Generally speaking, the effects of surface superconductiv-
ity are important at strong fields (H;Hc2

) because in such a
case the superconducting order parameter is much higher
near the hole edge than far from the hole in the uniform film.
Such modulation of the order parameter modifies qualita-
tively the vortex pinning by an array of empty channels5 or
columnar defects. Also it gives rise to a type of surface
barrier:6,7 to approach and enter a hole a probe vortex must
suppress superconductivity near the hole edge where the or-
der parameter has a strong maximum~when H;Hc2

).

Therefore the vortex should be repulsed from the hole. At
last an overlap of the edge superconducting states localized
near neighboring holes leads to formation of an array of Jo-
sephson junctions of superconducting–normal-metal–
superconducting type with a unique coherence length in the
whole system3 ~it is assumed here that the holes are orga-
nized in a periodic lattice!.

In the present work we consider a more general case of a
hole with a bottom~blind hole!. It is assumed that this bot-
tom is a part of the same film. Strictly speaking, in such a
case, there is no hole in the film but only a hollow, so the
sample is simply connected. Nevertheless it is shown that the
critical field is qualitatively identical to that one of the film
with a real hole. The amplitude of the ratioHc3

* /Hc2
is de-

creased by the presence of the bottom but the positions of
cusps are almost the same. The last statement means that the
number of vortices which nucleate inside a blind hole~even
inside a very shallow one! is approximately equal to this
number for an open hole. Note that the density~experimental
and theoretical! of fluxoids inside a hole is considerably
higher than in the uniform film and the ratio can be as big as
4.

The present work has also a practical importance which is
explained below. The vortex distribution in artificial perfo-
rated structures can be visualized by the Bitter decoration.
For example the influence of the frustration on the vortex
superlattice in a superconducting wire network has been
studied by using this technique.8 Usually the magnetic deco-
ration can be done only at very low temperatures, when the
screening effects are strong. At the same time it is assumed
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~and argued in many cases9! that a kind of a ‘‘freezing ef-
fect’’ takes place, so the vortex superlattice, once determined
at the critical temperature, is not changed during the subse-
quent cooling~note that in the present paper we discuss only
field-cooling experiments!. A direct Bitter decoration of arti-
ficial systems with holes is a difficult problem: vortices cap-
tured inside holes have a very small magnetic contrast. A
powerful method which can be used for visualization of such
vortices ~or equivalently the vortices in unit cells of super-
conducting wire networks! consists of keeping a thin super-
conducting layer~the bottom! under the sample~the ‘‘flux
compression’’ method!.7 This method is especially useful for
observations of multiquanta vortices. Consider, for example,
a hole with two vortices. By the usual ‘‘planarization’’
method8 they cannot be resolved. On the contrary, if the hole
has a superconducting bottom, then at low enough tempera-
ture these two vortices will be separated and visualized by
the magnetic decoration as two independent spots~Fig. 4!.
From the above discussion it follows that for interpretation
of the results obtained by the ‘‘flux compression,’’ it is nec-
essary to know how the presence of the bottom changes the
vortex distribution at the nucleation temperature. In the
present paper we consider in detail one particular case, the
blind circular hole, and show that the bottom changes very
weakly the number of vortices which nucleate in it.

II. CRITICAL FIELD OF A BLIND HOLE

Let us consider a circular blind hole of radiusR with a
bottom of thicknessdb in a film of thicknessdf exposed to a
perpendicular magnetic fieldH @the cross section is shown in
Fig. 1~a!#. Here we find the critical field of such system as a
function of temperature and the bottom thickness. The
problem is solved in the dirty limit in the full temperature
range. For an arbitrary electron mean free path the result is
valid in the temperature range close to theTc0 (Tc0 is the

critical temperature at zero field! and forR@j(0) @the co-
herence length j(0) is determined by the relation:
Hc2

(T)5f0 / 2pj2(T)#. In such a case the order parameter

(D̃) satisfies at the superconducting transition the simple lin-
ear equation:10

2S ]

]rW
22ieAW D 2D̃52lD̃. ~1!

We set\5c51. The proper valuel is proportional to the
second critical field in the nonperforated infinite film:
l5eHc2

(T) and it is considered here as a given function of

the temperature (T). We use the usual boundary condition
for all points of the sample surface:

nW S ]

]rW
22ieAW D D̃50, ~2!

wherenW is a vector normal to the surface. Let us consider the
problem to be a three-dimensional one. At the critical field
the superconducting state has an axial symmetry:D̃(r,u,z)
5 D(r,z)einu. Then in cylindrical coordinates (r,u,z) one
can write the equation forD(r,z)

F2
1

r

]

]r S r
]

]r D1
n2

r2
2

]2

]z2
1~eHr!222eHnGD52lD.

~3!

The functionD(r,z) can be developed outside the hole in
the following way:D f 5 (Nf N(r)cos(kNz) where the func-
tions f N(r) satisfies the equation

F2
1

r

]

]r S r
]

]r D1
n2

r2
1kN

21~eHr!222eHnG f N52l f N ,

~4!

andkN 5 pN/df , N 5 0,1,2 . . . . Consequently the solution
for D f , which is finite whenr→`, can be written as

D f~y,z!5
1

Ay(N CNWn/21l f N
/2eH,n/2~y!cosS pN

df
zD ,

y.eHR2, ~5!

where y[eHr2, CN are some constants,l f N
5l

2(1/2)(pN/df)
2, andWa,b(y) is the Witteker function.11 In

the same way one can get the solution in the bottom of the
hole:

Db~y,z!5
1

Ay(N ANMn/21lbN/2eH,n/2
~y!cosS pN

db
zD ,

y,eHR2, ~6!

wherelbN 5 l2(1/2)(pN/db)
2 and the functionW is re-

placed by the other linearly independent Witteker function
M which is finite at the origin which coincides with the
center of the hole.

The critical field of our system will be the fieldH0 at
which the solution given by~5! and~6! and its first derivative
are continuous on the surface given by conditionsr 5 R,
0,z,db @in other points the functions~5! and ~6! are al-
ways continuous#. Also the boundary condition~2! should be
fulfilled on the surface:r 5 R, db,z,df @in other points of
the sample surface it is always true if one use the solution in
the form ~5! and ~6!#. The orbital momentumn should be

FIG. 1. Two simple configurations of the sample when the sur-
face superconductivity effect can be observed.~a! Superconducting
film with a blind hole~or a hollow!; ~b! disk which rests on a thin
film. Magnetic fieldH is perpendicular to the film but parallel to the
vertical parts of the sample surface inside the hole or at the edge of
the disk.
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chosen to obtain the maximum value of the critical field. The
condition of the continuity of the order parameter on the
surfacer 5 R, 0,z,db is

(
N150

`

CN1
Wn/21l fN1

/2eH,n/2~eHR
2!cosS pN1

df
zD

~N150,1,2 . . . !

5 (
N50

`

ANMn/21lbN/2eH,n/2
~eHR2!cosS pN

db
zD ,

which should be fulfilled at anyz from the interval
0,z,db . It gives us the first pair of main equations:

A0Mn/21l/2eH;n/2~eHR
2!5 (

N150

`

CN1

df
pN1db

sinS pN1db
df

D
3Wn/21l fN1

/2eH;n/2~eHR
2!, ~7!

ANÞ0Mn/21lbN/2eH;n/2
~eHR2!

52 (
N150

`

CN1

2N1db
pdf

~21!N

N22~N1db /df !
2sinS pN1db

df
D

3Wn/21l fN1
/2eH;n/2~eHR

2!. ~8!

To obtain the Eq.~7! the above shown condition of the con-
tinuity of the order parameter has been integrated overz in
the interval 0,z,db . To obtain Eq.~8! the continuity con-
dition has been multiplied by a factor cos@(pN/db)z# and then
integrated in the same way.

The boundary condition~2! and the continuity of the de-
rivative can be written in the form

]@D f~y,z!#

]y
U
y5eHR2

5H 0, db,z,df

]@Db~y,z!#

]y
U
y5eHR2

, 0,z,db .

It gives @if one takes into account the development~5! and
~6!# the second couple of main equations:

C0S 1

Ay
Wn/21l/2eH;n/2~y!D

y

8U
y5eHR2

5
db
df
A0S 1

Ay
Mn/21l/2eH;n/2~y!D

y

8U
y5eHR2

. ~9!

~Note that we use the following notation for the derivative:
Fy8[dF/dy),

CNÞ0S 1

Ay
Wn/21l fN/2eH;n/2

~y!D
y

8U
y5eHR2

52 (
N150

`

AN1

2N

p

~21!N1~db /df !
2sin~pNdb /df !

N1
22~Ndb /df !

2

3S 1

Ay
Mn/21lbN1

/2eH;n/2~y!D
y

8U
y5eHR2

. ~10!

For the derivation of Eqs.~9! and ~10! we have used the
procedure analogous to Eqs.~7! and~8!. The only difference
was the interval 0,z,df of the integration and the factor
cos@(pN/df)z#

In principle the system of Eqs.~7!, ~8!, ~9!, and ~10! is
complete and gives as a solution the ratio of the critical field
near a holeHc3

* and the bulk second critical fieldHc2
:

Hc3
* /Hc2

5 eH0 /l @hereH0 is the solution of the system

~7!, ~8!, ~9!, ~10!#. It is a linear system of equations for un-
known parametersAN andCN and it has nontrivial solutions
only if

det@Ê2K̂~y!#uy5eHR250. ~11!

In fact to derive Eq.~11! one has to excludeAN and CN
constants in the set of Eqs.~7!–~10!. In ~11! Eik5d ik is the
unit matrix and the coefficients of theK̂ matrix are the fol-
lowing:

K̂005M̂n/21l/2eH;n/2~y!H dbdf Ŵn/21l/2eH;n/2~y!1
2df

p2db
(
N51

`
1

N2 sin
2S pNdb

df
D Ŵn/21l fN/2eH;n/2

~y!J ,
K̂0N52~21!N

2db
p2df

(
N151

`

sin2S pN1db
df

D Ŵn/21l fN1
/2eH;n/2~y!M̂n/21lbN/2eH;n/2

~y!

N22~N1db /df !
2 ,

K̂NM5~21!N1M
4

p2 S dbdf D
3

(
N151

` H sin2S pN1db
df

D @N22~N1db /df !
2#21@M22~N1db /df !

2#21

3Ŵn/21l fN1
/2eH;n/2~y!M̂n/21lbM/2eH;n/2

~y!J ,
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where the definitions used are

M̂a,b~y!5
@~1/AyMa,b~y!#y8

1

Ay
Ma,b~y!

and

Ŵa,b~y!5
~1/Ay!Wa,b~y!

@~1/Ay!Wa,b~y!#y8
.

Finally the critical field of the system under consideration is
given by the single equation~11!.

III. THIN-FILM LIMIT

The general equation~11! can be simplified if we assume
that df!j, db!j ~the ratiodb /df can be arbitrary; the co-
herence length isj[A1/2l). In this case all elementsK0N
(NÞ0) are small and in the main approximation one can
write

15K00, ~12!

if also db!df then one can find the equation for the critical
field in the first approximation

15K001 (
N51

`

K̂N0K̂0N . ~13!

In fact the perturbation theory is possible in all orders. In the
casedb!j one can use the following asymptotic relation:

M̂n/21lbN/2eH;n/2
~y!5F2AeHyS dbpND G21

, N.0.

Similarly if df!j, then

Ŵn/21l fN/2eH;n/2
~y!522AeHyS df

pND , N.0.

Now if df!j, db!j, anddb!df Eq. ~13! can be rewritten

~1/Ay!Mn/21l/2eH;n/2~y!

@~1/Ay!Mn/21l/2eH;n/2~y!#y8
U
y5eHR2

5
db
df

~1/Ay!Wn/21l/2eH;n/2~y!

@~1/Ay!Wn/21l/2eH;n/2~y!#y8
U
y5eHR2

2
4AeHydb

p F321 lnS df
2pdb

D 2 (
N51

`

Nf2~N!G , ~14!

where the coefficient before the square brackets is small
~proportional todb /j). The functionf (N) is given by

f ~N!5
1

p2E
0

`dx

x

12e22px

x21N2 .

For large values ofN one can getf (N) 5 (1/p2N2)
3@C1 ln(2pN)# whereC 5 0.5772 . . . is the Euler con-
stant. Numerical calculation gives for the value of the sum in
the Eq.~14!

(
N51

`

Nf2~N!50.0854 . . . .

We have used also by derivation of Eq.~14! the equation

(
N51

`
1

N3 sin
2~aN!5

3a2

2
1a2lnS 1

2a D ,
which is valid fora!1.

Let us assume now that the film has a constant thickness
(d) everywhere except some curve~boundary curve! where
it has a stepwise change. For the blind hole such a curve is
the perimeter of the hole where the thickness jumps from
db to df . We will show firstly that in the general case the
averaged value of the order parameterc̃(r,u) 5

(1/d)*0
dD̃(r,u,z)dz, which is a two-dimensional function,

satisfies the two-dimensional linear equation~1! everywhere
except the hole perimeter. After we will derive simple
boundary conditions for the order parameterc̃(r,u) at the
hole perimeter. These conditions are general and will be used
to find the critical field of a disk and of a linear step on the
film surface. The critical field in all such systems is higher
thanHc2

. Note that the present discussion is valid only if the
field is perpendicular to the film plane.

Let us consider an averaged over the film thickness order
parameter:c̃(r,u) 5 (1/d)*0

dD̃(r,u,z)dz whered is equal
either todb ~inside the hole! or df ~outside the hole!. It is
clear that such a function satisfies the 2D linear equation~1!.
Really if we make averaging overz of the left and right parts
of the 3D equation~1! we get

2
1

dE0
d]2D̃

]z2
dz2S ]

]rW
22ieAW D 2 1dE0dD̃~rW ,z!dz

52l
1

dE0
d

D̃~rW ,z!dz,

whererW is the radius vector in the plane of the film. Note
also thatAW is perpendicular to thez axis. The first term is
equal to zero due to the boundary condition~2! so we get

2S ]

]rW
22ieAW D 2c̃~rW !52lc̃~rW !. ~15!

The boundary condition for the functionc̃(r,w) in zero ap-
proximation in parametersdb /j(T), df /j(T) (db /df can be
arbitrary! follows from Eq.~12!:

db
]c̃b

]r
~c̃b!

215df
]c̃ f

]r
~c̃ f !

21. ~16!

One can get it also from Eq.~14! by neglecting the linear
correction~the term with the square brackets!. Physically this
condition means that the derivative of the 2D~averaged over
the film thickness! order parametercW (r,w) has a jump at the
boundary curve~where the film thickness has a jump!, while
the order parameter itself is continuous. The continuity of
cW (r,w) follows from the developments~5! and~6! and from
the condition of the continuity of the 3D order parameter
D̃(r,u,z) on the surfacer 5 R, 0,z,db . The ratio of the
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derivatives is inversely proportional to the ratio of the thick-
nesses:@db(]c̃b /]r)2df(]c̃ f /]r)#r5R50. This condition
should be fulfilled in all points of the stepwise increase of the
film thickness, on the perimeter of the blind hole, for ex-
ample. All numerical results of this paper are obtained using
Eq. ~15! and the condition~16!. Note that Eq.~15! and the
boundary condition~16! are true also in the casedb.df ~the
case of the disk!. Only the following restriction is essential:
db ,df!j.

In Fig. 2~a! we present the normalized critical field@found
numerically from~15! and ~16!# of a blind hole versus the
magnetic flux of the external field through its geometrical
area. The same value for a disk is shown in Fig. 2~b! @the
geometry of the sample and definitions are explained in Fig.
1~b!#. The increase of the bottom thicknessdb ~or decrease of
the disk thicknessdb) leads to a suppression of the surface
superconductivity effect, but the number of vortices nucle-
ated in the hole or in the disk is almost constant~this number
is determined by cusp positions in the critical field curve!.
Numerical calculations show that the cusps corresponding to
the same orbital number but to different values of the ratio
db /df lie on a straight line~more exactly there are two dif-
ferent lines: for holes and for disks!. Whendb /df 5 1 the
critical field is equal of course toHc2

and the number of

vortices inside a circle of radiusR is undetermined~the last
statement is true only exactly at the critical temperature!, but
single valued limits exist for the number of vortices inside
the circle for db /df→120 and db /df→110. These two

limits are different. An increase ofdb /df over unity leads to
the transformation of the blind hole into a disk. This transi-
tion is accompanied by a jump in the orbital number which
corresponds to an abrupt shift of cusps in the curves shown
in Figs. 2~a! and 2~b!. For example iff/f0 5 0.6 then
n52 for holes with any value of the ratiodb /df (db,df). In
the case of disks (db.df) we find n50 for the same value
of the magnetic flux. A sufficient decrease of the temperature
leads to formation of the Abrikosov lattice which is deter-
mined by the nonlinear term in the equation for the order
parameter which is neglected in our consideration. Then the
number of vortices is equal to the number of lattice knots
inside the circle~in the limit db→df). This number depends
on the relative position of the vortex lattice and the circle
~the perimeter of the hole or of the disk! and should be taken
to give the minimum of the free energy. As a result we obtain
different values for the number of vortices for the hole
~maximum possible value! and for the disk~minimum pos-
sible value! in the limit db→df . Note that in the uniform
film (db5df) the number of vortices in a circle of a radius
R averaged over the position of the circle center is equal
naturally to the reduced magnetic fluxf/f0 5 pR2H/f0 of
the external field through the hole~the disk! area as it is
shown in Fig. 5c by the straight line (f0 5 p\c/e is the flux
quantum!.

Let us assume now that the hole radius is infinite
(R→`). In such a case, ifdbÞdf , our system becomes a
thin film with a linear step on the surface. The height of this
step isudb2df u. In this geometrydb denotes the film thick-
ness on one side of the linear step anddf on the other side.
To find the critical field near this linear step one can use the
two-dimensional equation~15!. Also if db!j anddf!j then
the boundary condition~16! is valid. Numerically we have
found the reduced critical field shown in Fig. 3. In fact it is
determined by the ratio of the thickness of two filmsdb /df
rather than by the step heightudb2df u. Of course this is true
only in the limit of zero film thickness. Note also that when
the step height is small (udb2df u→0), the reduced critical
field ~more exactly the valueHc3

/Hc2
21) is proportional to

the absolute value of the logarithm of the ratiodb /df ~Fig.
3!. In the limit when one of the films is much thinner than
the other (db /df 5 0 or db /df 5 `) we come to the well-
known result for the surface critical field:Hc3

/Hc2
5 1.695.

FIG. 2. The normalized critical field as a function of the reduced
magnetic fluxf/f0 5 pR2H/f0 of the external field through the
hole ~the disk! area. Calculation is done under the assumption that
db , df!j(Tc3

* ). ~a! Critical field of blind holes with different val-
ues of the ratio between the bottom thicknessdb and the film thick-
nessdf @see the sample geometry in Fig. 1~a!#. Arrows show posi-
tions of cusps in the curve corresponding todb /df 50.882. ~b!
Critical field of disks which rest on an infinite film@see the sample
geometry in Fig. 1~b!#.

FIG. 3. Normalized critical field of a linear step on the film
surface. The result is valid when the film thickness at both sides of
the step is much smaller than the coherence length at the nucleation
temperature.

53 8557NUCLEATION OF VORTICES INSIDE OPEN AND BLIND . . .



In fact any nonuniformity in the film thickness~but not
only the discussed above sharp step on the film surface!
leads to a local increase of the upper critical field. This phe-
nomenon is especially important for ultrathin films, when the
number of atomic layers is small. In this case even a mono-
atomic step on the surface leads to a considerable change of
the ratiodb /df and consequently of the critical field~which
can be only increased in accordance with Fig. 3!. An impor-
tant consequence of such an increase is a maximum of the
superconducting order parameter near the step which con-
tributes to the vortex pinning. This contribution should be
dominant at high fields (H'Hc2

) when the averaged order
parameter and therefore the energy of the intervortex inter-
action is small far from the step. The strongest force acting
on vortices in such a case is the repulsion from the maxima
of the order parameter created by nonuniformities in the film
thickness.

IV. BITTER DECORATION OF OPEN
AND BLIND MICROHOLES

In the previous paragraph we have seen that the critical
field ~or the critical temperature in field-cooling experiments!
of a film with a ~blind! hole is an oscillatory dependence of
the magnetic flux. Positions of the cusps in this dependence
are unexpectedly stable to variations of the bottom thickness.
A direct way to find experimentally the positions of the cusps
could be, for example, a resistive measurement of the critical
field or the critical temperature. It was done for an Al film
but only with open holes.3 Such measurements should be
much more difficult in the case of blind holes, especially if
the bottom thickness is almost equal to the film thickness,
because in such a case the amplitude of the oscillation of the
critical field should be very small@see Fig. 2~a!#.

The positions of the cusps correspond to the moments
when the number of vortices inside a hole~this number will
be referred to as the ‘‘filling factor’’ FF! changes by one. An
independent way to determine the filling factor versus the
flux through the hole is the Bitter decoration which gives a
possibility to visualize individual vortices in the sample. It is
an indirect method because the decoration can be done only
at low temperature when the applied field is much lower than
the temperature-dependent critical field, while our theoretical
results are concerned with the critical region (H→Hc3

* ). At
the same time it can be expected that the vortex distribution,
once determined at the nucleation temperature, is not
changed considerably during the cooling~we discuss here
only field-cooling experiments!. Therefore the number of
vortices which we find at the low temperature inside a hole
should be very close to the number of vortices which are
nucleated into the hole at the critical temperature~this num-
ber is determined by the positions of the cusps on the critical
field found in the previous paragraph, except probably small
regions near the cusps themselves!. It is a kind of ‘‘freezing
effect,’’ argued and verified experimentally in Ref. 7. With-
out going into a detailed discussion, we can mention here
that this effect is due to the small field@H} 10 Oe
!Hc1

(0)# which means a weak repulsion between the vorti-
ces, quite strong intrinsic pinning in the Nb film, and the
surface barrier due to the considerable enhancement of the

order parameter near the hole edge. The last circumstance is
important only at high temperatures, when the applied field
is of the order ofHc2

. It should be mentioned also that if one
or more vortices are captured inside a hole, then the external
vortices should be repulsed by it due to the superconducting
currents circulating near the hole edge.12

All the magnetic decorations are curried out after the
sample, a thin perforated Nb film, has been cooled in a weak
perpendicular fieldH 5 6.37 Oe down toTdec5 4.2 K ~note
thatTdec!Tc0 5 9.2 K!. The Bitter decoration consists of the
evaporation of a small amount of a ferromagnetic metal~60
mg of Ni in our case! not far from the sample surface. Pre-
cautions are taken to prevent any considerable heating of the
sample. The Ni atoms form small monodomain particles
(' 200 Å! which are attracted to the centers of vortices due
to the magnetic-field gradient. After the decoration the
sample is warmed up to the room temperature. The positions
of vortices are marked by attracted Ni particles and visible in
the electron microscope as white spots~for more details see
Refs. 7,8!.

The holes are made by the reactive ion etching~RIE! of a
Nb epitaxial film covered by PMMA electron-sensible resist
which is patterned by the electron-beam lithography. An in-
complete ion etching leads to formations of blind holes. The
bottom thickness can be varied by changing the time of RIE.
Experimentally we have used samples with open holes (db 5
0!, holes with a thin bottom (db 5 650 Å!, and holes with a
very thick bottom (db 5 1500 Å! which is almost equal to
the film thickness (db 5 1700 Å!. The holes are organized in
arrays. In each array there are about 50 identical holes which
are forming a regular triangular lattice of perioda 5 6.1
mm. To sweep the magnetic flux (pR2H) we have available
~on the same substrate! many arrays which differ from each
other by the hole radius 0.15mm,R,2.2 mm ~the mag-
netic field is uniform and the same in all experiments!.

The presence of a superconducting bottom inside holes
gives a possibility to observe and count the captured vortices
~Fig. 4!. So far one can determine the filling factor~FF!: the
number of vortices trapped in a single hole. Its averaged
value (̂ FF&) can also be found because we have about 50~or
more! identical holes in each array.

Some experiments are done with open holes when the
trapped vortices are not visible. In this case one can also
determinê FF& as the difference between the density of vor-
tices in a uniform nonperforated film and the density of non-
captured vortices in the film with holes. To find^FF& one
should divide this difference by the density of holes. This
method can give a considerable error if the period of the hole
lattice is much larger than the averaged intervortex distance
and, in addition, not all vortices are well recognized. The
direct method which is possible with blind holes is much
easier and more reliable. It enables us to distinguish defi-
nitely between trapped and nontrapped vortices in all cases,
even when the bottom is very thick, because each hole is
surrounded by a region which is practically free of vortices
~Fig. 4!.

The experimentally found filling factor̂FF& is shown in
Fig. 5 versus the magnetic flux of the external field through
the hole area. Three types of symbols correspond to open
holes ~open circles!, holes with a bottom of thicknessdb
5650 Å ~crosses!, and holes with a thick bottomdb
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51500 Å ~solid squares!. The solid straight line denotes the
vortex density in a nonperforated part of the film multiplied
by the hole area. One can see that the density of fluxoids is
considerably higher inside the holes, even if the bottom
thickness is very close to the film thickness~solid squares!.
In accordance with the calculations of the previous paragraph
it is found that the difference between experimental values of
^FF& corresponding to holes with different bottom thick-
nesses (0,db /df,0.9) is considerably smaller than the dif-
ference between those values and the vortex density~multi-
plied by the hole area! in the uniform film ~straight line in
Fig. 5!. Theoretical values of the filling factor are shown by
the stepwise lines in Fig. 5 for different values of the ratio
db /df . They show the number of fluxoids which appear in
the hole at the field-dependent critical temperature. This
number is, in fact, the orbital numbern ~see the previous

paragraph! which maximizes the critical field. The jumps of
the calculated filling factor correspond to the positions of the
cusps of the critical fieldHc3

* @Fig. 2~a!#. Finally we find that

our simple model that the FF is constant with the tempera-
ture explains quite well the experimental data.

For more accurate description it is necessary to consider
the region below the critical temperature. Numerical calcu-
lations show13 that a decrease of the temperature in a con-
stant field can cause a first-order phase transition with an
increase by one in the orbital number of the superconducting
state localized near the hole. Such transitions should be con-
sidered as an entrance of an additional vortex into the hole.
They are possible only at high temperatures and lead to some
increase of̂ FF& with respect to its value at the nucleation
temperature~Fig. 5!.

The stepwise dependence of the averaged filling factor
^FF& is just a reflection of the fact that all holes contain
exactly the same number of vortices. This fact naturally fol-
lows from the condition that the filling factor is constant
during the field cooling because there is no doubt that the
same number of vortices should be nucleated in two geo-
metrically equivalent holes~if they are far apart from each
other and therefore independent!. The mentioned above first-
order transitions should take place normally at the same tem-
perature for all holes. On the contrary, if we neglect in our
discussion the surface superconductivity effects and the
strong enhancement of the order parameter near the hole
edge, the explanation of the stepwise dependence of the av-
eraged filling factor~Fig. 5! is not evident, especially if one
takes into account that the experimental filling factor is much
smaller than its expected equilibrium value7 atTdec5 4.2 K.

V. CONCLUSIONS

We have calculated the critical field near a blind hole in a
thin superconducting film. It is higher than the upper critical

FIG. 4. Visualization of vortices~white spots! using the Bitter
decoration and SEM. The decoration is fulfilled atT 5 4.2 K after
the sample has been cooled at a constant fieldH 5 6.37 Oe. The
period of the triangular lattice of circular holes isa 5 6.1mm, the
bottom thickness isdb 5 650 Å. Each hole at the top picture (R 5
1 mm! captures three vortices~except two or three holes!. The
vortex lattice outside holes is disordered. An increase of the hole
radius leads to the trapping of the most of vortices~bottom picture,
R 5 2.2mm!. Inside holes the vortices are concentrated along the
perimeter, except one which is in the center. Note that the bottom
picture is a photo of an inclined sample.

FIG. 5. Experimentally found filling factor, averaged over about
50 holes versus the magnetic flux in the hole. The open discs cor-
respond to open holes (db /df 5 0!, crosses correspond to blind
holes withdb /df' 0.38, and solid squares correspond to very shal-
low blind holes withdb /df' 0.88. Calculated value of the filling
factor at the nucleation temperature is shown for open holes
db /df 5 0 ~dotted line!, and for blind holes withdb /df 5 0.38
~dashed line! and with db /df 5 0.88 ~stepwise solid line!. The
straight solid line is the averaged number of vortices in a uniform
nonperforated film inside an imaginary circle of radiusR.
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field in a uniform nonperforated film but lower than in the
film with an open hole. The orbital number~or the number of
trapped vortices! which maximizes the critical field is prac-
tically the same for open and very shallow blind microholes.
The same conclusion follows from the magnetic decoration
experiments of a thin Nb film with open and blind holes. It is
demonstrated that the presence of a superconducting layer
~the bottom! inside holes gives a possibility to observe and
count the captured vortices directly. It is found that in the
field-cooling experiments even very shallow blind holes
~hollows! have practically the same efficiency in vortex trap-

ping as real open holes. The result is explained by taking into
account the edge superconducting states characterized by the
strong enhancement of the order parameter.
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