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We use a combination of classical Monte Carlo and spin dynamics simulations for the two-dimensional~2D!
classical easy-plane ferromagnet to estimate the lifetime of free vortices near the Kosterlitz-Thouless transition
temperature. The number fluctuations of free vortices are used to calculate the lifetime. The inverse lifetime
gives an estimate for a cutoff frequency below which an ideal-gas description of vortex dynamics is inappro-
priate. We compare the lifetime results with simulations and ideal-gas phenomenology for the dynamic struc-
ture function,Saa(q,v). Motion of the vortices is observed only on a short-range scale and the magnitude of
the lifetime is mainly determined by processes of creation and annihilation of vortex-antivortex pairs rather
than by vortex motion.

It is well known1 that in two-dimensional~2D! systems
with continuous symmetry there is no long-range order:
^S&50 for all temperatures, whereS5(S1 ,S2 , . . . ,Sn) and
n>2. But for continuous Abelian symmetry, a finite-
temperature topological phase transition exists2 and occurs
through unbinding of topological point defects.3 These sys-
tems include superfluids,4 2D crystalline solids,5 and XY
magnets.2

While the static thermodynamic properties are well de-
scribed by the Kosterlitz-Thouless theory,3 the dynamical
properties are not so well understood. There are variety of
quasi-2D magnetic materials, such as BaCo2(AsO4)2 ,
Rb2CrCl4 , and others,6 where the dynamical properties
were tested at low frequencies and long wavelengths using
inelastic neutron-scattering measurements. More recent
experiments7 show some deviations from existing theories
and Monte Carlo~MC! simulations. The question of vortex
dynamics is also of much interest in understanding the physi-
cal properties of the mixed state of type-II superconductors
and has been studied recently too.8–10

In this paper we study the vortex dynamics in 2D easy-
plane ferromagnets, in which case an ideal-gas theory11 ac-
counts qualitatively well for the behavior of the dynamical
form factor above the transition temperature for both the in-
plane and out-of-plane correlations. This theory assumes an
ideal gas of unbound vortices above the Kosterlitz-Thouless
transition temperatureTKT and it has as adjustable param-
eters the root-mean-square vortex velocityū and the mean
vortex-vortex separation 2j, where j is the correlation
length. The validity of this theory may depend on the life-
time of free vortices. Though the ideal-gas theory supposes
infinite lifetime, it will remain approximately correct for a
dilute gas too, if the lifetimet free is greater than the charac-
teristic time which describes their motionj/ū.

The purpose of this paper is to investigate the time and
space fluctuations of vortices in 2D easy-plane ferromagnets
to determine the free-vortex lifetime, for which there is no
theory, and to consider its implications for the ideal vortex
gas theory. The finite lifetime we measure also suggests that
creation and annihilation processes may make substantial
contributions to dynamic correlations. Understanding vortex

motion is of considerable interest not only inXY magnets
but also in all the other systems mentioned above.

The Model.We consider a system of classical spins on the
sphereS2 @Si5(Si

x ,Si
y ,Si

z), uSi u51], interacting on a 2D
square lattice. The Hamiltonian is

H52J(
^ i , j &

~Si
xSj

x1Si
ySj

y1lSi
zSj

z!, ~1!

where the sum is over nearest-neighbor lattice sites,J.0
determines ferromagnetic coupling and 0<l,1 introduces
easy-plane anisotropy.

There are two types of static vortices which arise in this
model—out-of-planeand in-plane ones, depending on the
presence or absence, respectively, of nonzero out-of-plane
spin components (Sz), with identical in-plane spin structure.
A study of their static properties12,14shows that their stability
depends on the anisotropy parameterl. Below a specific
valuelc ('0.70 for square lattice! only the in-planevortex
is stable, while forl.lc only theout-of-planeone is stable.
Because the out-of-plane structure may influence the vortex
interactions and therefore their lifetime, we consider both
l,lc andl.lc .

Assuming an ideal gas of free vortices with infinite life-
time, Mertens et al.11 obtained the asymptotic behavior
for the in-plane correlation function Sxx(r ,t)
5^Sx(r ,t)Sx(0,0)&:

Sxx~r ,t !.
S2

2
expH 2F S rj D

2

1SApū

2j
t D 2G1/2J . ~2!

The characteristic time implied by this equation is
tchar52j/Apū, which is approximately the time for a vortex
to move one correlation length. Thus, the theory is reason-
able provided the free-vortex lifetime is at least that long.
For an order of magnitude result the characteristic time is
approximately tchar'5.9 from the estimates11 j'4.4 and
ū'0.84 at temperatureT50.9 ~length is in lattice constant
units, T in J/kB , and time in\/J). We use this value to
compare with the lifetime we obtain from our simulation at
this particular temperature.
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The space-time Fourier transformation of Eq.~2! leads to
a squared Lorentzian central peak form11 Sxx(q,v)
5S2g3j2/2p$v21g2@11(jq)2#%2 , whereg51/tchar, with
a wave-vector-dependent characteristic frequency width
Gchar(q)5 ū/2j { p(A221)@11(jq)2#%1/2. However, a fi-
nite vortex lifetime will lead to fluctuations in the number of
free vortices on a length scale of 1/q of the order of
(1/qj), with frequency higher than the inverse lifetime,
1/t free. Thus, 1/t free will represent a cutoff frequency below
which the ideal-vortex gas theory forSxx(q,v) cannot be a
valid description.

For l,lc , there is no contribution toSzz(q,v) from
static in-plane vortices and the vortex contribution can only
be frommovingvortices. But forl.lc , the main contribu-
tion can be from static~out-of-plane! vortex structures. In
either case, the ideal-gas theory predicts a central peak in
Fourier space, but with a Gaussian shape forSzz(q,v) rather
than the squared Lorentzian for the in-plane correlation func-
tion. Since forlc,l,1, the theory forSzz(r ,t) may be built
in first approximation by assuming that the out-of-plane
structure of a moving vortex can be approximated by the
static structure,11 it is important to compare the free-vortex
lifetime in this case with the casel50, where the spin-wave
peak is strongly softened and the central peak can be attrib-
uted to the motion of vortices.

Simulations.We study classical spins on a squareL3L
lattice, for L between 16 and 100, with periodic boundary
conditions. The simulation is a combination of Monte Carlo
and spin-dynamics methods12 applied to Hamiltonian~1!. We
use the Metropolis Monte Carlo method15 to produce initial
spin configurations~IC! at a given temperatureT.TKT , but
close toTKT . Then, each IC is evolved in time solving nu-
merically the Landau-Lifshitz spin equations of motion.16

The time evolution simulation implements a fourth-order
Runge-Kutta scheme. We accumulate statistics of the fluctu-
ating number of free vortices during the time evolution to
determine the free-vortex lifetime. A vortex in a given unit
cell is considered free if there are no vortices or antivortices
in any of the eight surrounding unit cells. This is one of the
simplest definitions to determine the free vortices, particu-
larly for l,lc , in a given distribution of the spins of the
system at a given instance of time. More complicated classi-
fication schemes will slightly change the total number of free
vortices but will also change the time scale over which this
number fluctuates. Therefore, we expect that the vortex life-
time, as defined below, will remain approximately un-
changed if a more elaborate definition of the free vortices is
adopted. For the out-of-plane vortices (l.lc), the vortex
radius is determined by12

r v5
1

2 S l

12l D 1/2, ~3!

which for l50.9, a case studied here,r v51.5, comparable
to the length scale beyond which we classify vortices as free
on the square lattice~no nearest neighbors closer thanA2).
Whenl→1, r v diverges and forl51 there is no character-
istic length scale in the model; this is the isotropic Heisen-
berg model in two dimensions with well-known exact
solution.13

We use the first 104 Monte Carlo steps~MCS! for equili-
bration, writing data after each 500 or 1000 MCS. Individual
spins are updated by adding increments in arbitrary direc-
tions, and then renormalizing to unit lengths. We generate
between 25 and 100 IC at each temperature, so that the rela-
tive error int free is 1 to 3%.

The free-vortex lifetime is determined during the time
evolution simulation. The number of free vortices is counted
at each time step and the times of its decrements are re-
corded. IfDt i is the time between the (i21)th andi th dec-
rements,Ni is the number of free vortices~plus antivortices!
in the system before thei th decrement, andDNi is the
change ofNi , then from this event the estimate of the life-
time from the time intervalDt i is

t i5
NiDt i
uDNi u

. ~4!

The factorNi is needed because any of theNi vortices
present could have annihilated in this event. The denomina-
tor introduces a weighting factor that correctly accounts for
the number of vortices annihilated. This formula is appli-
cable if min(Dti)>dt, wheredt is the integration time step.
This condition assures that the observed fluctuations change
Ni by one or two. (DNi562 for vortex pair creation/
annihilation,DNi561 when a vortex changes from bound
to free or vice versa.! A free-vortex lifetime is calculated for
each IC as an average over allt i ’s and the final valuet free is
an average over the lifetimes from all initial configurations.
The choice of the time stepdt depends onT andL. Increas-
ing either of these increases the average number of vortices,
and diminishes the time scale over which their numbers fluc-
tuate, and requires a decrease ofdt. The smallestdt we use
is dt5731025 for a 64364 system at temperature
T51.3.

We also consider the free-vortex number-number time-
correlation function, as another way to obtain a time scale of
the vortex number fluctuations, and as a check of the lifetime
measurement. The definition is

C~ t !5
^@N~ t !2N̄#@N~0!2N̄#&

^~dN!2&
, ~5!

where dN(t)5N(t)2N̄ is the instantaneous deviation in
N(t) from its time-independent average,N̄5^N&.

Under the phenomenological assumption of linear re-
sponse, if the number of free vortices deviates slightly from
the equilibrium number at a given temperature, then the rate
at which the system relaxes back to equilibrium is propor-
tional to the deviation from equilibrium. If it is valid, it leads
to a relaxation timet rxn ,

C~ t !5exp~2t/t rxn!. ~6!

We use 40 IC and a time stepdt50.01 for all temperatures
during the simulation ofC(t). Each IC is integrated in time
up to t tot5350 with C(t) calculated fort in the interval
dt<t<50. EachC(t) point is from approximately 300 mea-
surements since the successive measurements for a given IC
are taken with a shift of 1.0 time unit in order to minimize
correlation in the data. Finally, an average over the initial
configurations is performed.
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Results.As a preliminary step we made a Monte Carlo
finite-size scaling17 study to determine accurately the KT
temperature forl50.0. UsingL5 10, 20, 40, and 80, and
averaging over 160 000 states at each temperature, we calcu-
lated the reduced fourth-order cumulant,

UL512
^M4&
3^M2&2

, ~7!

whereM is the totalin-planemagnetic moment. This defi-
nition is appropriate for systems withXY symmetry, with
UL approaching 0.5 in the low-temperature phase and 0.0 in
the high-temperature phase. The result is shown in Fig. 1; the
curves for differentL cross atTKT'0.7260.005. This is
consistent with the prediction of Menezeset al.18

@TKT(l50)'0.733TKT ~planar rotator!#, combined with
the MC calculations of Guptaet al.19 @TKT ~planar rotator!
'0.90#, although the theory of Menezeset al. does not give
the correctTKT for either model. On this basis, to have
enough vortices for lifetime measurements, we consider the
temperature range 0.75<T<1.3 with a stepDT50.05.

We obtain the free-vortex lifetime for two values of the
anisotropy parameterl50.0 andl50.9, as shown in Fig. 2
for system sizesL532, 64, 80, 100. The lifetime decreases
starting fromT50.75 and it is close to saturation when ap-

proachingT51.3. The data points forl50.0 are higher than
those forl50.9 for all T studied. ForT50.9 andl50.0,
we havet free'0.87, whereastchar'5.9. This implies a cutoff
frequency 1/t free several times greater than the characteristic
frequency 1/tchar in the theory of Mertenset al.11 For com-
parison, some typical results forSxx(q,v) from anL5100
system are shown in Fig. 3, forq50.1(p,p). The observed
central peak is strong for higher temperatures, and for fre-
quencies well below our measured values of 1/t free. This
shows that the ideal vortex gas description for frequencies
below 1/t free is inappropriate.

For l50, the first two data points of the 32332 system
size are higher than the corresponding points of the larger
sizes~see the inset of Fig. 2!. When the system size is de-
creased asT approachesTKT from above, there will be zero
or very few free vortices present, which is the case for
L532 andT50.75. In such a case, the statistics of data from
Eq. ~4! is not reliable, unless much larger systems are simu-
lated. Forl50.9 andL532 there are many more free vor-
tices becauseTKT

l50.9,TKT
l50.0.18

In Fig. 4 we show the free-vortex number-number corre-
lation function for temperatures 0.75, 0.8, and 0.9, for
l50.0 and system size 64364. As expected, it decays faster

FIG. 1. MC data for the fourth-order cumulant of Eq.~7!, vs
temperature for various sizesL. The inset shows the data over a
larger temperature range.

FIG. 2. Free-vortex lifetime as obtained from number fluctua-
tions forl50 and 0.9, system sizes 32332 and 64364. The inset
shows the first three data points forl50 including also the results
for system sizes 80380 and 1003100.

FIG. 3. In-plane dynamic correlation functionSzz(q,v) for a
1003100 system withl50, at small wave vectorq50.1(p,p),
averaged over 40 IC.

FIG. 4. Free-vortex number-number correlation function for
temperaturesT50.75, 0.8, and 0.9. The system size is 64364 and
l50.0; the error bars are of the size of the data points. The inset
shows the initial decay of the correlation function on a semilog
scale.
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and decorrelates at earlier times for larger temperature. The
correlation function cannot be described by the linear-
response theory, implying thatC(t) is not governed by a
single time scale. This is also confirmed by the tails of these
curves. For example, forT50.75, a linear fit to lnC(t) from
the first 4–5 points givest rxn'1.8. HoweverC(t) decorre-
lates at large timest.40, which contradicts the simple
C(t)5exp(2t/trxn) behavior. The relaxation timet rxn , deter-
mined from the small-t decay ofC(t), has the same behavior
with T as t free, remaining greater thant free for
TKT,T<1.0 and approachingt free whenT approaches 1.0.
Similar results forl50.9 show a faster decay ofC(t) than
for l50.0, completely in agreement with our measurements
of t free for both values ofl but at large timesC(t) decorre-
lates slightly slower than for the casel50.0.

Discussion and Conclusions.Two classes of processes de-
termine thefree-vortex lifetime-pair creation or annihilation
and motion of vortices. The pair-creation process may
change the number offree vortices in the system by one or
more. For instance, a pair may be created in the neighboring
cells of a free vortex, thus making all these vortices bound. A
different possibility occurs in a group of four bound vortices
~two positive and two negative is the most common case!
where two of them annihilate and the rest of them become
free.

Vortex motion influences the lifetime in a different way.
One possibility is the motion of one or both of two free
vortices making up a bound pair. The opposite process oc-
curs when bound vortices move apart which leads to creation
of one or more free vortices.

Simulations show that pair-creation and -annihilation pro-
cesses occur more frequently than vortex motion over a dis-
tance of one lattice constant. A free vortex almost never trav-
els more than one lattice constant before it becomes a bound
one in the cases studied, and this results in the short free-
vortex lifetime we observe. This effect is very similar to that
reported by Song10 in experiments on vortex dynamics in
YBa2Cu3O72d , where long-range diffusive vortex motion
is also absent, while short-range motion is observed.

In conclusion, we carried out the first study to estimate
the lifetime of free vortices in the three-component classical
XY model with easy-plane anisotropy, at two values of the
anisotropy parameterl. The lifetime t free increases when
approachingTKT from above and reachest free'1.03 for
l50.0, system size 64364, andT50.75. The study of the
free-vortex number-number correlation function gives a re-
laxation time from its initial decay t rxn.t free for
TKT,T<1.0. The maximum deviation oft rxn from t free
does not exceed 60%. But the slow decay of the correlation
function at large times shows that its behavior cannot be
described by the linear-response theory. The values of both
t rxn and t free for l50.9 are smaller than those forl50.0.
Since the existing theory11 assumes effectively infinite life-
time and its characteristic time scale is larger thant free, we
conclude that the short lifetime should be incorporated in the
theory, particularly the processes of vortex creation and an-
nihilation which are the main reason for the short free-vortex
lifetime.
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