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Lifetime of vortices in two-dimensional easy-plane ferromagnets
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We use a combination of classical Monte Carlo and spin dynamics simulations for the two-dime(&nal
classical easy-plane ferromagnet to estimate the lifetime of free vortices near the Kosterlitz-Thouless transition
temperature. The number fluctuations of free vortices are used to calculate the lifetime. The inverse lifetime
gives an estimate for a cutoff frequency below which an ideal-gas description of vortex dynamics is inappro-
priate. We compare the lifetime results with simulations and ideal-gas phenomenology for the dynamic struc-
ture function,S*“(q, ). Motion of the vortices is observed only on a short-range scale and the magnitude of
the lifetime is mainly determined by processes of creation and annihilation of vortex-antivortex pairs rather
than by vortex motion.

It is well known® that in two-dimensiona(2D) systems motion is of considerable interest not only ¥iY magnets
with continuous symmetry there is no long-range orderbut also in all the other systems mentioned above.

(S)=0 for all temperatures, whei®=(S,;,S,, ...,S,) and The ModelWe consider a system of classical spins on the
n=2. But for continuous Abelian symmetry, a finite- sphereS? [S=(S',S,S), |S|=1], interacting on a 2D
temperature topological phase transition exXistad occurs square lattice. The Hamiltonian is

through unbinding of topological point defecthese sys-
tems include superfluids2D crystalline solids, and XY
magnets.

While the static thermodynamic properties are well de-
scribed by the Kosterlitz-Thouless thedrghe dynamical where the sum is over nearest-neighbor lattice silesQ
properties are not so well understood. There are variety ofletermines ferromagnetic coupling ane&kR<<1 introduces
quasi-2D magnetic materials, such as Bg@s0,),, easy-plane anisotropy.

Rb,CrCl,, and other§, where the dynamical properties  There are two types of static vortices which arise in this
were tested at low frequencies and long wavelengths usinglodel—out-of-planeand in-plane ones, depending on the
inelastic neutron-scattering measurements. More recerff€sence or absence, respectively, of nonzero out-of-plane
experiment show some deviations from existing theories SPiN componentsg’), with identical in-plane spin structure.

and Monte CarldMC) simulations. The question of vortex A study of their static propertlé shows that their stability

dynamics is also of much interest in understanding the physidePends on the anisotropy paramexerBelow a specific
alue. (=~0.70 for square lattigeonly thein-planevortex

cal properties of the mixed state of type-Il superconductor
andphag been studied recently f53° YP P él'; stable, while foln >\ . only theout-of-planeone is stable.

In this paper we study the vortex dynamics in 2D easy_Because the out-of-plane structure may influence the vortex

: . g interactions and therefore their lifetime, we consider both
plane ferromagnets, in which case an ideal-gas tHéary
L : . A<MNcandA>h..
counts qualitatively well for. Fhe behavior of the dynamlcgl Assuming an ideal gas of free vortices with infinite life-
form factor above the transmon_ tempergture for both the 'n'time, Mertens et al! obtained the asymptotic behavior
plane and out-of-plane correlations. This theory assumes M the in-plane  correlation  function S*(r,t)
ideal gas of unbound vortices above the Kosterlitz-ThouIess:<Sx(r £)SX(0,0)): ’

transition temperatur@; and it has as adjustable param-

H= —J(iEj> (S'S'+S9+\S'S)), @

eters the root-mean-square vortex velogitynd the mean 5 2 ([T |22
vortex-vortex separation £ where ¢ is the correlation SX(r t)zs—ex _[([) +( W“t) )
length. The validity of this theory may depend on the life- ’ 2 3 2¢ '

time of free vortices. Though the ideal-gas theory supposes
infinite lifetime, it will remain approximately correct for a The characteristic time implied by this equation is
dilute gas too, if the lifetimer;q. is greater than the charac- tepa=2¢/ Jmu, which is approximately the time for a vortex
teristic time which describes their motigiiu. to move one correlation length. Thus, the theory is reason-
The purpose of this paper is to investigate the time andhible provided the free-vortex lifetime is at least that long.
space fluctuations of vortices in 2D easy-plane ferromagnetsor an order of magnitude result the characteristic time is
to determine the free-vortex lifetime, for which there is noapproximatelytq,,~5.9 from the estimatés é&~4.4 and
theory, and to consider its implications for the ideal vortexu~0.84 at temperatur&=0.9 (length is in lattice constant
gas theory. The finite lifetime we measure also suggests thamits, T in J/kg, and time in%/J). We use this value to
creation and annihilation processes may make substantiabmpare with the lifetime we obtain from our simulation at
contributions to dynamic correlations. Understanding vortexhis particular temperature.
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The space-time Fourier transformation of EB). leads to We use the first 7DMonte Carlo step$MCS) for equili-
a squared Lorentzian central peak fotmS™(q,w) bration, writing data after each 500 or 1000 MCS. Individual
=S2y3&%2m{w?+ Y[ 1+ (£9)?]}?, wherey=1/to,, With  spins are updated by adding increments in arbitrary direc-
a wave-vector-dependent characteristic frequency widttions, and then renormalizing to unit lengths. We generate
Tenal@) = U/26{ m(N2—1)[ 1+ (£9)?]}Y2 However, a fi- between 25 and 100 IC at each temperature, so that the rela-
nite vortex lifetime will lead to fluctuations in the number of tive error in 7y is 1 to 3%.
free vortices on a length scale ofql/of the order of The free-vortex lifetime is determined during the time
(1/9é), with frequency higher than the inverse lifetime, evolution simulation. The number of free vortices is counted
1Uee. Thus, ke Will represent a cutoff frequency below at each time step and the times of its decrements are re-
which the ideal-vortex gas theory f&*(q,w) cannot be a corded. IfAt; is the time between the { 1)th andith dec-
valid description. rementsN; is the number of free vorticdglus antivortices

For A<\, there is no contribution t&?%q,w) from in the system before théth decrement, and\N; is the
static in-plane vortices and the vortex contribution can onlychange ofN;, then from this event the estimate of the life-
be frommovingvortices. But for\>X\, the main contribu- time from the time intervalit; is
tion can be from statiqout-of-plang vortex structures. In
either case, the ideal-gas theory predicts a central peak in T:NiAti 4)
Fourier space, but with a Gaussian shapesSd(q, ) rather "OJAN;|
than the squared Lorentzian for the in-plane correlation funcs

. . . The factor N; is needed because any of tig vortices
7 |
itlrlor:‘i'rgtlngggfcz\(icr:a)\t;r}’&e ;2§8zi:]0g'st;(;f[t)ﬂ:2 a%l?,f Obffjrl)llgnepresent could have annihilated in this event. The denomina-

structure of a moving vortex can be approximated by th tor introduces a weighting factor that correctly accounts for

. 1. he number of vortices annihilated. This formula is appli-
static structuré? it is important to compare the free-vortex P - : . T
lifetime in this case with the case= 0, where the spin-wave cable i m_n_w(Ati)/dt, wheredt is the integration time step.
' This condition assures that the observed fluctuations change

peak is strongly softened _and the central peak can be att”tﬁi by one or two. AN,=+2 for vortex pair creation/
uted to the motion of vortices.

ihilati L=+
SimulationsWe study classical spins on a square L annihilation,AN;= =1 when a vortex changes from bound

lattice, for L between 16 and 100, with periodic boundary ;Oairﬁ TCO;\S”;?] \g\alresrzAgrg\(/e;rlorlgegrl:;e&rgiiLsafsgﬂﬁtedi;or
conditions. The simulation is a combination of Monte Carloan average over theglifetime? from all initial confi E?Z\tions
and spin-dynamics methddspplied to Hamiltoniaril). We 9 9 '

use the Metropolis Monte Carlo methddo produce initial The c;h0|ce of the t|'me stet depends off andL. Increas-'
) ! ! : ing either of these increases the average number of vortices,
spin configurationgIC) at a given temperaturé>Tyr, but

) L . and diminishes the time scale over which their numbers fluc-
close toTyr. Then, each IC is evolved in time solving nu-

merically the Landau-Lifshitz spin equations of motiSn. tuate, and requires a decreasalaf The smallestit we use

; - -5
The time evolution simulation implements a fourth-order[?:(itPT?Xlo for a 64x64 system at temperature

Runge-Kutta scheme. We accumulate statistics of the fluctu- We also consider the free-vortex number-number time-

ating number of free vortices during the time evolution to ! ; s .
correlation function, as another way to obtain a time scale of

determine the free-vortex lifetime. A vortex in a given unit he vortex number fluctuations, and as a check of the lifetime
cell is considered free if there are no vortices or antivorticeé S
measurement. The definition is

in any of the eight surrounding unit cells. This is one of the

simplest definitions to determine the free vortices, particu- v g
larly for A<\, in a given distribution of the spins of the C(t)= (N N][NZ(O) ND, (5)
system at a given instance of time. More complicated classi- ((6N)%)

fication schemes will slightly change the total number of freeWhere 6N(t)=N(t)—N is the instantaneous deviation in
vortices but will also change the time scale over which this o il
N(t) from its time-independent average=(N).

number fluctuates. Therefore, we expect that the vortex life- . : .
Under the phenomenological assumption of linear re-

time, as defined below, will remain approximately UM Sponse, if the number of free vortices deviates slightly from
changed if a more elaborate definition of the free vortices i%f)e e u’iIibrium number at a diven temperature th(gen t)r:e rate
adopted. For the out-of-plane vortices\.), the vortex q 9 perature, the
o ; at which the system relaxes back to equilibrium is propor-
radius is determined B% : > o S S
tional to the deviation from equilibrium. If it is valid, it leads
to a relaxation timer,y,,
1 Y 1/2
rvzi(m) ' 3 C(t)=exp —t/my,). (6)

We use 40 IC and a time stefi=0.01 for all temperatures
which for A=0.9, a case studied heng,= 1.5, comparable during the simulation of£(t). Each IC is integrated in time
to the length scale beyond which we classify vortices as fre@p to t,,;=350 with C(t) calculated fort in the interval
on the square latticeno nearest neighbors closer thdﬁ). dt<t=<50. EachC(t) point is from approximately 300 mea-
WhenA—1, r, diverges and foh =1 there is no character- surements since the successive measurements for a given IC
istic length scale in the model; this is the isotropic Heisen-are taken with a shift of 1.0 time unit in order to minimize
berg model in two dimensions with well-known exact correlation in the data. Finally, an average over the initial
solution?3 configurations is performed.
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FIG. 1. MC data for the fourth-order cumulant of Eg), vs FIG. 3. In-plane dynamic correlation functidsf(q,w) for a
temperature for various sizés The inset shows the data over a 100X 100 system withh=0, at small wave vectoq=0.1(m, ),
larger temperature range. averaged over 40 IC.

Results As a preliminary step we made a Monte Carlo proachingT =1.3. The data points for=0.0 are higher than
finite-size scaling’ study to determine accurately the KT those forn=0.9 for all T studied. ForT=0.9 andx = 0.0,
temperature fon =0.0. UsingL= 10, 20, 40, and 80, and \ye haver;,..~0.87, whereas,,~5.9. This implies a cutoff
averaging over 160 000 states at each temperature, we calGaquency 1t Several times greater than the characteristic
lated the reduced fourth-order cumulant, frequency 1ty in the theory of Mertengt al** For com-

. parison, some typical results f&*(q,w) from anL =100
_ (M%) system are shown in Fig. 3, for=0.1(w, 7). The observed
N2 (7) . .

3(M%) central peak is strong for higher temperatures, and for fre-

guencies well below our measured values of;dd. This

whereM is the totalin-plane magnetic moment. This defi- ghq s that the ideal vortex gas description for frequencies
nition is appropriate for systems witkY symmetry, with o |ow 1fe0 iS inappropriate.

U approaching 0.5 in the low-temperature phase and 0.0 in g, A=0, the first two data points of the 3232 system

the high-temperature phase. The result is shown in F_ig.-l; theize are higher than the corresponding points of the larger
curves for differentL cross atTy;~0.72+0.005. This is sizes(see the inset of Fig.)2When the system size is de-

consistent with the prediction of Menezest al'?s creased a3 approached r from above, there will be zero

[Tkr(A=0)~0.73<Tyr (planar rotatoy], combined with o yery few free vortices present, which is the case for
the MC calculations of Guptat al.”™ [Tyr (planar rotator | — 32 andT=0.75. In such a case, the statistics of data from
~0.90], although the theory of Menezes al. does not give  gq (4) is not reliable, unless much larger systems are simu-

the correctTyy for either model. On this basis, to have |5ted. ForA=0.9 andL =32 there are many more free vor-

enough vortices for lifetime measurements, we consider thg.q becausé’ﬁo'9<Tﬁo'o.18

temperature range 0797 < 1'3.W'Fh a stepAT=0.05. In Fig. 4 we show the free-vortex number-number corre-
We obtain the free-vortex lifetime for two values of the | .00 finction for temperatures 0.75, 0.8, and 0.9, for

anisotropy parametev=0.0 and =0.9, as shownin Fig. 2, _ g g and system size 6464. As expected, it decays faster

for system size& =32, 64, 80, 100. The lifetime decreases

starting fromT=0.75 and it is close to saturation when ap-
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FIG. 4. Free-vortex number-number correlation function for
FIG. 2. Free-vortex lifetime as obtained from number fluctua-temperature§=0.75, 0.8, and 0.9. The system size is<@¥% and
tions forA=0 and 0.9, system sizes 832 and 64« 64. The inset A =0.0; the error bars are of the size of the data points. The inset
shows the first three data points #or=0 including also the results shows the initial decay of the correlation function on a semilog
for system sizes 8080 and 10 100. scale.
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and decorrelates at earlier times for larger temperature. The Simulations show that pair-creation and -annihilation pro-
correlation function cannot be described by the linearcesses occur more frequently than vortex motion over a dis-
response theory, implying thaZ(t) is not governed by a tance of one lattice constant. A free vortex almost never trav-
single time scale. This is also confirmed by the tails of thes&ls more than one lattice constant before it becomes a bound
curves. For example, foF=0.75, a linear fit to I€(t) from one in _the_ cases studied, anc_j this re_sults in the short free-
the first 4—5 points gives,,~1.8. HoweverC(t) decorre- Vortex lifetime we observe. This effect is very similar to that
lates at large timeg>40, which contradicts the simple reported by Song in experiments on vortex dynamics in
C(t)=exp(~t/7,.) behavior. The relaxation time, ,, deter- YBa,Cu3;0,_s, where long-range diffusive vortex motion

mined from the smalt-decay ofC(t), has the same behavior 'S &SC absent, while short-range motion is observed.
with T as = remaining greater thanz for In conclusion, we carried out the first study to estimate
frees free

. the lifetime of free vortices in the three-component classical
Tkr<T=1.0 and approaching.. WwhenT approaches 1.0. XY : .
KT model with easy-plane anisotropy, at two values of the
Similar results forh =0.9 show a faster decay @f(t) than W yp ! Py vau

; . anisotropy parametex. The lifetime 74, increases when
for A=0.0, completely in agreement with our measuremem%lpproachingTKT from above and reaches..~1.03 for

of Tiee f_or both values of\ but at large time&(t) decorre- A=0.0, system size 6464, andT =0.75. The study of the

Iateg shght_ly slower than fc_)r the cake=0.0. free-vortex number-number correlation function gives a re-
Discussion and ConpluslonﬁNQ classgs of processes de- laxation time from its initial decay 7.,> Thee fOr

termine thefree-vortex lifetime-pair creation or annihilation T.;<T<1.0. The maximum deviation of,, from 7ye.

2{1]2” ngottrl10ennSrnl;/grrt;zz.v;:ies?rllr-t(;wrsastlosrt]engrgce;?e rgraydoes not exceed 60%. But the slow decay of the correlation
9 Y y function at large times shows that its behavior cannot be

more. Far instance, a pair may be created in the ne'ghbor'ngescribed by the linear-response theory. The values of both
cells of a free vortex, thus making all these vortices bound. A

different possibility occurs in a group of four bound vortices Ton aNd 7iree fOr A =0.9 are smaller than those far=0.0.
(two positive and two negative is the most common ):aseSmce the existing theoty assumes effectively infinite life-

where two of them annihilate and the rest of them becoméIme and its characterlst_|c time scale is Ia_rger thag, we
free. conclude that the short lifetime should be incorporated in the

Vortex motion influences the lifetime in a different wa theory, particularly the processes of vortex creation and an-
o . Y- nihilation which are the main reason for the short free-vortex
One possibility is the motion of one or both of two free

vortices making up a bound pair. The opposite process odicime:

curs when bound vortices move apart which leads to creation This work was supported by NSF Grant No. DMR-
of one or more free vortices. 9412300.
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