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We study a model of two weakly coupled isotropic spin-1/2 Heisenberg chains with an antiferromagnetic
coupling along the chains~spin ladder!. It is shown that the system always has a spectral gap and the lower
lying excitations are triplets. For the case of identical chains the model in the continuous limit is shown to be
equivalent to four decoupled noncritical Ising models with theZ23SU~2! symmetry. For this case we obtain
theexactexpressions for asymptotics of spin-spin correlation functions. It is shown that when the chains have
different exchange integralsJ1@J2 the spectrum at low energies is described by the O(3)-nonlinears model.
We discuss the topological order parameter related to the gap formation and give a detailed description of the
dynamical magnetic susceptibility.

I. INTRODUCTION

It has been widely recognized that one-dimensional anti-
ferromagnets with half-integer and integer spins have dra-
matically different excitation spectra. The original theoretical
prediction by Haldane1 that Heisenberg chains with half-
integer spin are gapless, whereas those with integer spin are
gapped, has been confirmed experimentally.2 To gain insight
into the physics underlying this result, one may study sys-
tems intermediate between spinS51/2 andS51. The sim-
plest of these is the ‘‘Heisenberg spin ladder,’’ which has
isotropic couplingsJuu along the chains andJ' between
them. Although such systems with both antiferromagnetic3–8

and ferromagnetic9–12 interchain couplings have been the
subject of considerable recent theoretical interest, certain
problems remain unresolved leaving room for our contribu-
tion. A very remarkable fact about the spinS51/2 Heisen-
berg chain is that its excitation spectrum consists of spin-1/2
particles~spinons!. Physically such excitations can be cre-
ated only in pairs because upon flipping one spin the total
spin projection is changed by one:DSz51. Thus, in the
S51/2 Heisenberg chain, the conventional magnons carrying
spin 1 are deconfined into spin-1/2 spinons. Putting two
S51/2 chains together one can observe how spinons are con-
fined back into magnons by measuring the dynamical sus-
ceptibility x9(v,q). The interchain exchangeJ' serves here
as a control parameter: atuJ'u!Juu there is a wide energy
range wherex9 is dominated by incoherent multiparticle pro-
cesses, and a narrow region at low energies wherex9 exibits
a single-magnon peak aroundq5p.

One can obtain a qualitative understanding of the spinon
confinement by considering the strong-coupling limit of the
spin-ladder problem. As frequently happens in one-
dimensional models, the strong-coupling limit gives a correct
qualitative picture of the low-lying excitations. One should,
however, be careful to define this limit properly. The proper

definition assumes that it is possible to perform a perturba-
tive expansion about the strong-coupling fixed point in nega-
tive powers of the coupling constant. In the spin-ladder prob-
lem there are two candidates for the strong-coupling fixed
point: the limits of strong antiferromagnetic (J'@Juu) and
ferromagnetic (2J'@Juu) interchain coupling, respectively.
It is clear that only the former case constitutes the correctly
defined strong-coupling limit. AtJ' /Juu→1` the spin lad-
der is decomposed into an array of decoupled rungs, each
rung representing a ‘‘molecule’’ whose singlet ground state is
separated from the triplet excited state by a large gap of the
order ofJ' . When one makesJuu finite, the triplet excitations
form a band with bandwidth;Juu . The properties of such a
system can be analyzed perturbatively, withJuu /J' being the
small parameter.

On the other hand, strong ferromagnetic interchain cou-
pling leads to the formation of local spinsS51 associated
with each rung of the ladder, thus producing a conventional
spin S51 Heisenberg antiferromagnet with a nonzero
Haldane gap in the excitation spectrum. In contrast to the
previous case, the bandwidth of the triplet excitations and the
spectral gap are of the same order of magnitude,;Juu . This
problem lacks a small parameter and cannot be analyzed by
perturbation theory. A variety of approximate methods have
been suggested to study theS51 antiferromagnetic spin
chain~see Ref. 13 and references therein!; however, it is not
our purpose to review them here.

In this paper we present our analysis of a weakly coupled
spin ladderJuu@uJ'u. We have found this limit more inter-
esting from the theoretical point of view, for it allows us to
start out with a well-defined picture of gapless spinon exci-
tations on each spin-1/2 Heisenberg chain. By switching on a
weak interchain exchange interaction, we then study the
crossover between the gapless regime of two decoupled
S51/2 Heisenberg chains and the strong-coupling limit, tak-
ing place on lowering the energy scale. Despite the fact that
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our results have only qualitative validity for the presently
available experimental realizations of double chain ladders
@Srn21Cun11O2n ~Ref. 14! and ~VO! 2P2O7 ~Ref. 15!#
where both exchange integrals are of the same order, we
hope that weakly interacting spin ladders will be synthesized
in the future.

An interesting fact about the weak-coupling limit is that
the emerging physical picture is independent of the sign of
J' . As follows from the above discussion, this universality
is not so obvious atuJ'u@Juu . Therefore comparing our re-
sults with the strong-coupling analysis one can see that the
main universal features of the spectrum are its symmetry and
the persistence of the gap. As we have mentioned above, the
low-lying excitations turn out to be triplets in all limits and
for all signs ofJ' .

The paper is organized as follows. In Sec. II we derive the
continuous version of the spin-ladder Hamiltonian for the
case of identical chains. To achieve this we employ the
bosonization approach, but the resulting effective theory is
most simply represented in terms of fermions. In this repre-
sentation the effective Hamiltonian of the spin ladder con-
tains four species of weakly interacting real fermions.@The
difference between ordinary~Dirac! and real~Majorana! fer-
mions is that the latter ones have only positive energies
e(p)5Ap21m2. Therefore one can always describe one
Dirac fermion as a superposition of two Majorana fermions.#
Three of these modes comprise a degenerate triplet and the
remaining one lies above having a mass approximately three
times as big. The magnitude of the mass gaps is of the order
of the interchain exchange. As we have mentioned above, for
any sign of the interchain coupling, the leading asymptotics
of the correlation functions are determined by the triplet of
Majorana fermions as for theS51 chain.13 This means that
at J',0 our description remains qualitatively valid even
whenJ' is not small. The fact that the low-energy sector of
the model is essentially a free theory makes it possible to
obtain nonperturbative expressions for asymptotics of all
correlation functions. This is done in Sec. III. In Sec. IV we
discuss a situation where the ladder consists of inequivalent
chains. It is shown that, in the limit when exchange integrals
on the chains strongly differ, the low-lying excitations are
described by the O(3)-nonlinears model. The adequacy of
this treatment is guaranteed by the fact that thiss model has
a small bare coupling constant.

The fact that the excitation spectrum of the
O(3)-nonlinears model consists of massive triplets pro-
vides further support for our conclusion that the spectral gap
and the symmetry of the low-lying excitation branch are the
most universal features of the model.

The appearance of a spectral gap in theS51 Heisenberg
chain is known to be associated with the breakdown of a
hidden discrete symmetry characterized by a nonlocal
~string! order parameter.16,17A similar topological string or-
der has been recently shown to exist in the relatedS51/2
spin chain with alternating exchange couplingsJ and J8.18

On changing the ratioJ8/J from 2` to 1 with J kept posi-
tive, this model continuously interpolates between theS51
chain and gapless HeisenbergS51/2 chain, thus displaying
properties of the gapful Haldane phase in whole range
J8/J,1. In Sec. V we derive the string order parameter for
the spin-ladder model, following essentially the same proce-

dure as that suggested for the bond-alternating chain,18,19and
identify the corresponding hidden symmetry. The paper has a
Conclusion and two Appendices where we provide technical
details about bosonization and string order parameters.

II. COUPLING OF IDENTICAL CHAINS: ABELIAN
BOSONIZATION

In this section we apply the Abelian bosonization method
to the spin-ladder model

H5Ji (
j51,2

(
n

Sj~n!•Sj~n11!1J'(
n

S1~n!•S2~n!

~1!

describing two antiferromagnetic (Ji.0) spin-1/2 Heisen-
berg chains with a weak interchain coupling (uJ'u!Ji) of
arbitrary sign. Abelian bosonization is a well-known proce-
dure, but for the sake of completeness we briefly overview it
in the Appendix A. In the continuum limit, the critical prop-
erties of isolatedS51/2 Heisenberg chains are described in
terms of massless Bose fieldsf j (x)( j51,2):

H05
vs
2 (
j51,2

E dx@P j
2~x!1„]xf j~x!…2#, ~2!

where the velocityvs;Jia0 andP j are the momenta conju-
gate tof j . The interchain coupling

H'5J'a0E dx@J1~x!•J2~x!1n1~x!•n2~x!# ~3!

is expressed in terms of the operatorsJj (x) andnj (x) which
represent, respectively, the slowly varying and staggered
parts of the local-spin-density operator and are defined in the
Appendix A. According to~A19!, the current-current term in
~3! is marginal, while interaction of the staggered parts of the
spin densities is strongly relevant. So we start our analysis by
dropping the former term~its role will be discussed later!.
Using then bosonization formulas~A18! for nj (x), we get

H'5
J'l2

p2a0
E dxF2

1

2
cosA2p~f11f2!

1
1

2
cosA2p~f12f2!1cosA2p~u12u2!G ,

whereu j (x) is the field dual tof j (x). Denote

m5
J'l2

2p
~4!

and introduce linear combinations of the fieldsf1 andf2:

f65
f16f2

A2
. ~5!

The total (f1) and relative (f2) degrees of freedom de-
couple, and the Hamiltonian of two identical Heisenberg
chains transforms to a sum of two independent contributions:

H5H11H2 , ~6!
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H1~x!5
vs
2
„P1

2 1~]xf1!2…2
m

pa0
cosA4pf1 , ~7!

H2~x!5
vs
2
„P2

2 1~]xf2!2…1
m

pa0
cosA4pf2

1
2m

pa0
cosA4pu2 . ~8!

In the above derivation, theJ1•J2 term has been omitted
as being only marginal, as opposed to the retained, relevant
n1•n2 term. It is worth mentioning that there are modifica-
tions of the original two-chain lattice model for which the
J1•J2 term does not appear at all in the continuum limit, and
mapping onto the model~6! becomes exact. In two such
modifications, the interchain coupling is changed to

H'
~A!5

J'

2 (
n

S1~n!•@S2~n!2S2~n11!# ~9!

or

H'
~B!5

J'

4 (
n

@S1~n!2S1~n11!#•@S2~n!2S2~n11!#.

~10!

The structure of these models explains why the low-energy
physics of twoweaklycoupled Heisenberg chains must not
be sensitive to the sign of the interchain couplingJ' . This
conclusion is in agreement with recent results of Ref. 8.

Let us turn back to Eqs.~7! and ~8!. One immediately
realizes that the critical dimension of all the cosine terms in
Eqs.~7!, ~8! is 1; therefore the model~6! is a theory of free
massive fermions. The HamiltonianH1 describes the sine-
Gordon model atb254p; so it is equivalent to a free mas-
sive Thirring model. Let us introduce a spinless Dirac ferm-
ion related to the scalar fieldf1 via identification

cR,L~x!.~2pa0!
21/2exp„6 iA4pf1;R,L~x!… ~11!

Using

1

pa0
cosA4pf1~x!5 i @cR

†~x!cL~x!2H.c.#

we get

H1~x!52 ivs~cR
†]xcR2cL

†]xcL!2 im~cR
†cL2cL

†cR!.
~12!

For future purposes, we introduce two real~Majorana! ferm-
ion fields

jn
15

cn1cn
†

A2
, jn

25
cn2cn

†

A2i
, ~n5R,L ! ~13!

to representH1 as a model of two degenerate massive Ma-
jorana fermions

H15Hm@j1#1Hm@j2#, ~14!

where

Hm@j#52
ivs
2

~jR]xjR2jL]xjL!2 imjRjL . ~15!

Now we shall demonstrate that the HamiltonianH2 in ~8!
reduces to the Hamiltonian of twodifferentMajorana fields.
As before, we first introduce a spinless Dirac fermion

xR,L~x!.~2pa0!
21/2exp„6 iA4pf2;R,L~x!…, ~16!

1

pa0
cosA4pf2~x!5 i @xR

†~x!xL~x!2H.c.#,

1

pa0
cosA4pu2~x!52 i @xR

†~x!xL
†~x!2H.c.#.

Apart from the usual mass bilinear term~charge-density-
wave pairing!, the HamiltonianH2 also contains a ‘‘Cooper
pairing’’ term originating from the cosine of the dual field:

H2~x!52vs~xR
†]xxR2xL

†]xxL!1 im~xR
†xL2xL

†xR!

12im~xR
†xL

†2xLxR!. ~17!

We introduce two Majorana fields

jn
35

xn1xn
†

A2
, rn5

xn2xn
†

A2i
, ~n5R,L !. ~18!

The HamiltonianH2 then describes two massive Majorana
fermions,jR,L

3 andrR,L , with massesm and23m, respec-
tively:

H25Hm@j3#1H23m@r#. ~19!

Now we observe thatja,a51,2,3, form a triplet of Ma-
jorana fields with the same massm. There is one more field
r with a larger modulus of mass, 3umu. So, the total Hamil-
tonian

H5Hm@jW #1H23m@r# ~20!

with

Hm@jW #5 (
a51,2,3

H 2
ivs
2

~jR
a]xjR

a2jL
a]xjL

a!2 imjR
ajL

aJ .
~21!

The O(3)-invariant modelHm@jW # was suggested as a de-
scription of theS51 Heisenberg chain by Tsvelik.13 This
equivalence follows from the fact that, in the continuum
limit, the integrableS51 chain with the Hamiltonian

H5(
n

@~SW nSW n11!2~SW nSW n11!
2# ~22!

is described by the critical Wess-Zumino model on the SU~2!
group at the levelk52, and the latter is in turn equivalent to
the model of three massless Majorana fermions, as follows
from the comparison of conformal charges of the corre-
sponding theories:

CSU~2!,k52
WZW 5

3

2
53CMajor fermion.
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The k52 level, SU~2! currents expressed in terms of the
fields ja are given by

I R,L
a 52

i

2
eabcjR,L

b jR,L
c . ~23!

When small deviations from criticality are considered, no
single-ion anisotropy@;D(Sz)2,S51# is allowed to appear
due to the original SU~2! symmetry of the problem. So, the
mass term in~21! turns out to be the only allowed relevant
perturbation to the critical SU~2!, k52 Wess-Zumino-Witten
~WZW! model.

Thus, the fieldsja describe triplet excitations related to
the effective spin-1 chain. Remarkably, completely decou-
pled from them are singlet excitations described in terms of
the field r. Another feature is that this picture is valid for
anysign ofJ' , in agreement with the effective lattice mod-
els ~9! and ~10! which we actually are dealing with.

Since the spectrum of the system is massive, the role of
the so far neglected~marginal! part of the interchain cou-
pling ~3! is exhausted by renormalization of the masses and
velocity. Neglecting the latter effect, this interaction can be
shown to have the following invariant form:

Hmarg5
1

2
J'a0E dx@~ I R

aI L
a!2~jR

ajL
a!~rRrL!#

5
1

2
J'a0E dx@~jR

1jL
1!~jR

2jL
2!1~jR

2jL
2!~jR

3jL
3!

1~jR
3jL

3!~jR
1jL

1!2~jR
1jL

11jR
2jL

21jR
3jL

3!~rRrL!#.

~24!

In a theory ofN massive Majorana fermions, with masses
ma(a51,2, . . . ,N) and a weak four-fermion interaction

H int5
1

2(aÞb
gabE dx~jR

ajL
a!~jR

bjL
b!, ~gab5gba!

renormalized massesm̃a estimated in the first order ing are
given by

m̃a5ma1 (
b~Þa!

gab
2pv

mbln
L

umbu
. ~25!

Using ~24! and ~25!, we find renormalized values of the
masses of the triplet and singlet excitations:

mt5mS 11
5J'a0
4pv

ln
L

umu D , ~26!

ms53mS 11
J'a0
4pv

ln
L

umu D . ~27!

III. CORRELATION FUNCTIONS FOR THE IDENTICAL
CHAINS

Since the singlet excitation with massms.3m does not
carry spin, its operators do not contribute to the slow com-
ponents of the total magnetization. The latter is expressed in
terms of thek52 SU~2! currents~23!:

Ma;I R
a1I L

a . ~28!

Therefore the two-point correlation function of spin densities
at small wave vectors (uqu!p/a0) is given by the simple
fermionic loop. A simple calculation gives the following ex-
pression for its imaginary part:

Imx~R!~v,q!5
2q2m2v2

s3As224m2
~29!

for s25v22v2q2.4m2 ~the imaginary part is zero for
s2,4m2). Thus the dynamical magnetic susceptibility at
small wave vectors has a threshold at 2m.

It turns out that it is possible to calculate exactly the two-
point correlation functions of the staggered magnetization.
This is due to the fact that the corresponding operators of the
Heisenberg chains are related~in the continuum limit! to the
order and disorder parameter fields of 2d Ising models;20,21

the correlation functions of the latter operators are known
exactly even out of criticality.22

Using formulas~A18! of Appendix A, the components of
the total (n(1)5n11n2) and relative (n(2)5n12n2) stag-
gered magnetization can be represented as

nx
~1 !;cosApu1cosApu2 , nx

~2 !;sinApu1sinApu2 ,

ny
~1 !;sinApu1cosApu2 , ny

~2 !;cosApu1sinApu2 ,

nz
~1 !;sinApf1cosApf2 , nz

~2 !;cosApf1sinApf2 .
~30!

The fieldsf1 ,u1 andf2 ,u2 are governed by the Hamil-
tonians~7! and ~8!, respectively. Let us first consider expo-
nentials exp(6iApf1), exp(6iApu1). Their correlation
functions have been extensively studied in the context of the
noncritical Ising model~see, for example, Ref. 22!. It has
been shown that these bosonic exponents with scaling di-
mension 1/4 are expressed in terms of the order (s) and
disorder (m) parameters of two Ising models as follows:

cos~Apf1!5m1m2 , sin~Apf1!5s1s2 ,

cos~Apu1!5s1m2 , sin~Apu1!5m1s2 . ~31!

Let us briefly comment on this correspondence.
As already discussed, theb254p sine-Gordon model

H1 , Eq. ~7!, is equivalent to a model of two degenerate
massive Majorana fermions, Eqs.~14!, ~15!. As is well
known ~see, e.g., Ref. 24!, a theory of massive Majorana
fermion describes long-distance properties of 2d Ising
model, the fermionic mass being proportional to
m;t5(T2Tc)/Tc . So,H1 is equivalent to two decoupled
2d Ising models. Lets j andm j ( j51,2) be the correspond-
ing order and disorder parameters. At criticality~zero fermi-
onic mass!, four productss1s2 , m1m2 , s1m2 , andm1s2
have the same critical dimension 1/4 as that of the bosonic
exponentials exp(6iApf1), exp(6iApu1). Therefore
there must be some correspondence between the two groups
of four operators which should also hold at small deviations
from criticality. To find this correspondence, notice that, as
follows from ~7!, at m.0^cosApf1&Þ0, while
^sinApf1&50. Since the casem.0 corresponds to the dis-
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ordered phase of the Ising systems (t.0), ^s1&5^s2&50,
while ^m1&5^m2&Þ0. At m,0 ~ordered Ising systems,
t,0) the situation is inverted:̂cosAp1f&50, ^sinApf1&
Þ0, ^s1&5^s2&Þ0, ^m1&5^m2&50. This explains the first
two formulas of Eq.~31!.

Clearly, the exponentials of the dual fieldu1 must be
expressed in terms ofs1m2 andm1s2 . To find the correct
correspondence, one has to take into account the fact that a
local product of the order and disorder operators of a single
Ising model results in the Majorana fermion operator, i.e.,

j1;cosAp~f11u1!;s1m1 ,

j2;sinAp~f11u1!;s2m2 .

This leads to the last two formulas of Eq.~31!.
To derive similar expressions for the exponents off2 and

u2 , the following facts should be taken into account:~i! the
Hamiltonian~17! describing ‘‘2 ’’ modes is diagonalized by
the same transformation~18! as the Hamiltonian~12! respon-
sible for the ‘‘1’’ modes; ~ii ! the Majorana fermions now
have different masses, and~iii ! one fermionic branch has a
negative mass. In order to take a proper account of these
facts one should recall the following:

~a! A negative mass means that we are below the transi-
tion.

~b! It follows from ~ii ! that ‘‘2 ’’ bosonic exponents are
also expressed in terms of order and disorder parameters of
two Ising models, the latter, however, being characterized by
different t ’s. We denote these operators ass3 ,m3 ~massm)
ands,m ~mass23m).

~c! Operators corresponding to a negative mass can be
rewritten in terms of the ones with the positive mass using
the Kramers-Wannier duality transformation

t→2t, s→m, m→s. ~32!

Taking these facts into account we get the following expres-
sions for the ‘‘2’’ bosonic exponents:

cos~Apf2!5m3s, sin~Apf2!5s3m,

cos~Apu2!5s3s, sin~Apu2!5m3m. ~33!

Combining Eqs.~31! and ~33!, from ~30! we get the fol-
lowing, manifestly SU~2! invariant, expressions:

nx
1;s1m2s3s, ny

1;m1s2s3s, nz
1;s1s2m3s,

~34!

nx
2;m1s2m3m, ny

2;s1m2m3m, nz
2;m1m2s3m.

~35!

It is instructive to compare them with two possible represen-
tations for the staggered magnetization operators for the
S51 Heisenberg chain which can be derived from the
SU(2)2 WZW model:23,13

Sx;s1m2s3 , Sy;m1s2s3 , Sz;s1s2m3 ~36!

or

Sx;m1s2m3 , Sy;s1m2m3 , Sz;m1m2s3 . ~37!

Agreement is achieved if the singlet excitation band is for-
mally shifted to infinity. This implies substitutionss.^s&
Þ0, m.^m&.0 for ferromagnetic interchain coupling
(m;J',0), or s.^s&.0, m.^m&Þ0 for antiferromag-
netic interchain coupling (m;J'.0). Thus, we observe
that, as expected, for ferromagnetic~antiferromagnetic! inter-
chain interaction the staggeredS51 magnetization is deter-
mined by the total~relative! staggered magnetization of the
two-chain system.

A more precise meaning of this approximation becomes
apparent when one considers asymptotic behavior of the cor-
responding two-point correlation functions in the two limits
r→0 andr→`.25 In the limit r→` they are as follows:

^sa~r !sa~0!&5Gs~ r̃ !5
A1

p
K0~ r̃ !1O~e23r̃ !, ~38!

^ma~r !ma~0!&5Gm~ r̃ !

5A1H 11
1

p2 F r̃ 2@K1
2~ r̃ !2K0

2~ r̃ !#

2 r̃ K0~ r̃ !K1~ r̃ !1
1

2
K0
2~ r̃ !G J 1O~e24r̃ !,

~39!

where r̃5rM (M5m or 3m), A1 is a nonuniversal param-
eter, and it has been assumed thatM is positive. If M is
negative the correlation functions are obtained by simply in-
terchangings and m, and puttingM→2M @the duality
transformation~32!#. Therefore, as might be expected, at
large distances, a difference between the ladder and the
S51 chains appears only in exp(23mr) terms due to the
contribution of the excitation branch withM53m absent in
theS51 chain.

In the limit r̃→0 the correlation functions are of power-
law form:

Gs~ r̃ !5Gm~ r̃ !5
A2

r̃ 1/4
~40!

plus nonsingular terms. The ratio of the constantsA1 and
A2 is a universal quantity involving Glaisher’s constant
(A):

A2

A1
5221/6A23exp

1

4
, ~41!

A51.282 427 129 . . . . ~42!

We conclude this section by writing down the exact ex-
pression for the staggered magnetization two-point correla-
tion functions. The correlation function for spins on the same
chain is given by

^n1
a~t,x!n1

a~0,0!&5Gs
2~mr!Gm~mr!Gs~3mr!

1Gm
2 ~mr!Gs~mr!Gm~3mr!. ~43!

The interesting asymptotics are

^n1
a~t,x!n1

a~0,0!&5
1

2pr
Z̃ at mr!1, ~44!
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m

p2ZK0~mr!S 11
2

p2 H ~mr!2@K1
2~mr!2K0

2~mr!#

2mrK0~mr!K1~mr!1
1

2
K0
2~mr!J D1O~e25mr!;

mr@1, ~45!

wherer 25t21v2x2 and

Z̃

Z
5
24/3e

31/4
A212'0.264. ~46!

The complete expressions for the functionsGs,m( r̃ ) are
given in Ref. 25. For the interchain correlation function we
get

^n1
a~t,x!n2

a~0,0!&5Gs
2~mr!Gm~mr!Gs~3mr!

2Gm
2 ~mr!Gs~mr!Gm~3mr!. ~47!

At mr!1 it decays as (mr)22; the leading asymptotics at
mr@1 is the same as~45! ~up to the21 factor!. The differ-
ence appears only in terms of order of exp(25mr). The im-
portant point is that atmr@1 the contribution from the sin-
glet excitation appears only in the fifth order in exp(2mr).
Therefore it is unobservable by neutron scattering at energies
below 5m.

Using the above expressions we can calculate the imagi-
nary part of the dynamical spin susceptibility in two different
regimes. Forup2qu!1 we have

Imx~R!~v,p2q;q'!5Z5 2 cosq'F muvu
d~v2Av2q21m2!1F~v,q!G , v,5m

~11cosq'!
0.264

Av22v2q2
, v@5m,

~48!

where the transverse ‘‘momentum’’q' takes values 0 and
p. The factorZ is assumed to bem independent so that at
m→0 we reproduce the susceptibility of noninteracting
chains. We have calculated the functionF(v,q) only near
the 3m threshold where it is equal to

F~v,q!'
144

pm2Av22v2q229m2. ~49!

For uqu!1 we have

Imx~R!~v,q;q'!5@11cos2~q'/2!# f ~s,m!, ~50!

where f (s,m) is given by Eq.~29!.

IV. INEQUIVALENT CHAINS: NON-ABELIAN
BOSONIZATION

In this section we consider two interacting spinS51/2
chains with different intrachain exchange integralsJuu

1ÞJuu
2 .

It turns out that the most adequate approach in this case is
non-Abelian bosonization. The reason for this is that non-
Abelian bosonization explicitly preserves the SU~2! symme-
try present in the Hamiltonian. The Abelian bosonization ap-
proach which does not respect this symmetry encounters
difficulties.

As shown by Affleck,26 by a mapping from a fermionic

theory, theS5 1
2 Heisenberg antiferromagnet can be de-

scribed by ak51, SU~2! Wess-Zumino-Witten~WZW!
model with the following action:

Sk5kW~g!, W~g!5
1

16pE Tr~]mg
1]mg!d2x1G~g!,

G~g!5
i

24pE d3XeabgTr~g1]agg
1]bgg

1]gg!, ~51!

where matrixgP SU~2!. There can in general be marginally
irrelevant perturbations to this theory, which generate loga-
rithmic corrections to the correlation function exponents, but
do not change their qualitative behavior~i.e., power law!. In
general this model describes not just the spinS51/2 Heisen-
berg chain, but any~111!-dimensional system of fermions
with the charge degree of freedom frozen out and no gap in
the spin sector.

The WZW model may look unfamiliar, but it is not so
difficult to deal with since its operators and their exact cor-
relation functions are already known from the application of
conformal field theory27 ~see also Ref. 28!. As we have men-
tioned above, the great advantage of the WZW model is that
it explicitly possesses the SU(2)3SU(2) symmetry of the
massless fermion spin sector, and is also critical~massless!.
In ~111! dimensions the distinction between relativistic fer-
mions and bosons is illusory; one can choose to think about
a system in either representation~this has been known for
some time; hence the ‘‘Luttinger liquid’’!. The WZW model
is therefore just a way of thinking about the spin sector in
terms of bosons; just as in Abelian bosonization, one can
represent operators from the fermionic theory in terms of
those of the bosonic theory and vice-versa. From a practical
point of view, these relations between the two sets of opera-
tors can be thought of as ready made tools. It is not necessary
to worry about their slightly exotic appearance or their jus-
tification in order to apply them.~But those seeking a deeper
appreciation are referred to the papers cited above.!
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The bosonized expression for the spin operator of the
Heisenberg chain is given by26

SW n5JWR1JWL1const~21!n Tr~g1sW 2gsW !, ~52!

where the currents are given by

JR
a52

i

2p
Tr~]2g!g1Ta, JL

a5
i

2p
Trg1]1gT

a. ~53!

@Ta are the Pauli matrices—generators of the SU~2! group.#
These currents satisfy the SU~2! Kac-Moody algebra de-
scribed in the Appendix A.

Consider two Heisenberg chains coupled by an antiferro-
magnetic nearest-neighbor interaction. It can be represented
like this:

S5W1~h!1W2~g!1l1@HW R1HW L#@GW R1GW L#

1l2Tr@~g2g1!sW #Tr@~h2h1!sW #, ~54!

where the dynamics of one chain is represented by the matrix
g and the currentsGW R,L and the other byh andHW R,L . The
indices 1,2 distinguish between different spin-wave veloci-
ties. Without a loss of generality we can putv1.v2 .

The currents have conformal dimensions (1,0) and
(0,1); using the formula for the conformal dimensions of the
matrices for the SU(n) group derived in Ref. 27:

D5
n221

2n~n1k!
~55!

we get that forn52, k51, g and h both have conformal
dimensions (14,

1
4). The l2 term is therefore the relevant in-

teraction, whereas the current couplings are only marginal.
For this reason, the current interaction will be neglected at
this stage. Then the interaction can be written as

Tr@~g2g1!sW #•Tr@~h2h1!sW #

5
1

2
$ Tr@~g2g1!~h2h1!#

2 Tr@~g2g1!# Tr@~h2h1!#%. ~56!

Making the substitutiona5gh1, which leaves the measure
invariant, and using the remarkable identity27

W~ah1!5W~a!1W~h!1
1

2pE Tra1]2ah1]1hd
2x,

~57!

we arrive at the following expression for the action:

S5@W1~h!1W2~h!#1
1

2pE Tra1]2ah1]1hd
2x1W1~a!

1l2@ Tr~a1a1!2 Tr~a1h121H.c.!1 Tr~h12h! Tr~h1a12ah!# ~58!

@here]65 1
2(]t7 i ]x)#.

The identity~57! is nothing very mysterious. It is simply
a generalization of an identity familiar from Abelian
bosonization. To see this, consider substituting explicitly for
the special case of Abelian bosonization, theU(1) fields
eibf1 andeibf2 for the matricesa andh, respectively. Then
the WZW action,W(a) reduces to the action for free scalar
bosons as we would expect:

W~a5eibf1!5
b2

4pE ]1f1]2f1d
2x

5
b2

16pE @~]xf1!
21~]tf1!

2#d2x ~59!

and the interaction term in~57! becomes

1

2pE Tra1]2ah1]1hd
2x5

2b2

4p E ~]1f1]2f2

1]1f2]2f1!d
2x. ~60!

The fieldah1 is eib(f12f2)5eibf2, and so the identity~57!
becomes

b2

4pE ]1f2]2f2d
2x

5
b2

4p
F E ]1f1]2f1d

2x1E ]1f2]2f2d
2x

2E ~]1f1]2f21]1f2]2f1!d
2xG . ~61!

Therefore the identity~57! is just an analog of the following
simple statement:

@¹~f12f2!#
25~¹f1!

21~¹f2!
222¹f1•¹f2 , ~62!

where the last term is the ‘‘interaction term.’’
We shall consider the most relevant interaction,

Tr(a1a1) first. The effective action fora is in this ap-
proximation:

S5W1~a!1l Tr~a1a1!. ~63!

From the first-order renormalization-group equation we get

dl

d lnL
.S 22

1

2Dl. ~64!
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Integrating up to a scale where the coupling becomes of or-
der 1 and taking this to give some estimate of the dynami-
cally generated mass, one getsM;l2/3. Much more infor-
mation can be found by realizing that the model~63! is
equivalent to theb252p sine-Gordon model~see, for ex-
ample, Ref. 26!.

Thus on the scaleuxu@M21 the fluctuations of thea field
are frozen and we can approximate

Tr~ah1!Tr~h!'^Tra&:@Tr~h!#2:. ~65!

At this large scale the cross term containing derivatives of
h anda gives the irrelevant contribution

Sint;M22]1]2h
1]1]2h. ~66!

Therefore the asymptotic behavior at large distances is
governed by the following action:

S5W1~h!1W2~h!1c2 :@Tr~h!#2: ~67!

where c2;l4/3 and which can be further modified by the
coordinate rescaling:

x05Av1v2t, x15x ~68!

such that we finally have

S5S01S1 , ~69!

S05
1

2c1
E d2x Tr~]mh

1]mh!d2x12G~h!, ~70!

S15E d2xc̃2$:@Trh
2#:1:@Tr„h1

…

2#:2:@Tr~h2h1!#2:%,

~71!

where

1/c5Av1 /v21Av2 /v1.

The model with action~69! is not critical; coupling constants
c1 ,c2 undergo further renormalization. Let us show that the
couplingc2 renormalizes faster to strong coupling. To show
this we shall suppose that this is the case and check that the
obtained result is self-consistent. It is easy to check that the
effective potential~71! vanishes ifh is a traceless matrix and
has a fixed determinant:

h' i ~sW nW !, nW 251. ~72!

Excitations, which correspond to configurations where
TrhÞ0, acquire a gap. The estimate for this gap is

M0
2;cAv1v2c2;min~v1 ,v2!l

4/3;
v2
v1
M2. ~73!

On energies smaller than the gap one can treat theh matrix
as traceless. Substituting expression~72! into Eq.~69! we get
the O(3)-nonlinears model as an effective action for small
energies:

S5
1

2c̃E d2x~]mnW !2, nW 251, ~74!

1

c̃
5~Av1 /v21Av2 /v1!~12^n0

2&!. ~75!

The reason why the Wess-Zumino term effectively disap-
pears from the action is the following. After substituting Eq.
~72! into the expression forG(h) the Wess-Zumino term re-
duces to the topological term:

2G~ isW nW !5
i

4E d2xemn~nW @]mnW 3]nnW # !52p ik, ~76!

where k is an integer number. The factor in front of the
topological term is such that its contribution to the action is
always a factor of 2p i and therefore does not affect the
partition function. The mass gap of the model~74! is given
by

M5M0c̃
21exp~22p/ c̃!

'M F12
c

2p
ln~M /M0!Gexp~22p/c!. ~77!

As long as this gap is much smaller thanM0 , the adopted
approach is self-consistent. The latter is achieved for any
appreciable difference between the velocities.

Excitations of the O(3)-nonlinear s model areS51
triplets.29 Thus, the spectrum is qualitatively the same as for
identical chains. That is what one might expect because the
model of Majorana fermions is a strong-coupling limit of the
O(3)-nonlinears model ~see Ref. 13!.

The correlation functions of the O(3)-nonlinears model
are known only in the form of the Lehmann expansion:30

^nW ~t,x!nW ~0,0!&;K0~mr!1O@exp~23mr!#. ~78!

Note that the first term in the expansion coincides with
the one for identical chains. Therefore a difference in dynam-
ical magnetic susceptibilities for both cases will become
manifest only at energiesv.3m. The lowest feature in
Imx (R)(v,q) is in both cases the sharp peak

Imx~R!~v,q!;
m

Aq21m2
d~v2Aq21m2! ~79!

corresponding to the triplet excitation. Such a peak has been
observed in~VO! 2P2O7.

15

V. STRING ORDER PARAMETER IN THE
SPIN-LADDER MODEL

Den Nijs and Rommelse16 ~see, also, Ref. 17! have argued
that the gapful Haldane phase of theS51 spin chain is char-
acterized by a topological order measured by the string order
parameter

^Oa&5 lim
un2mu→`

K SnaexpS ip (
j5n11

m21

Sj
aDSma L ,

~S51,a5x,y,z!. ~80!

The nonzero value of̂Oa& has been related to the break-
down of a hiddenZ23Z2 symmetry.

19 In this section we use
the Abelian bosonization method~Sec. II! to construct the
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string operator in the continuum limit of theS51/2 spin-
ladder model and identify the corresponding discrete symme-
try with that of the related Ising models.

Since spin-rotational invariance remains unbroken, the
string order parameter must respect this symmetry. However,
Abelian bosonization is not an explicitly SU~2! invariant
procedure. For this reason, it turns out that it is thez com-
ponent of the string operator that acquires a simple form in
the continuum limit. On the other hand, due to the unbroken
SU~2! symmetry, the very choice of the quantization (z-!
axis is arbitrary; therefore the expectation values for all com-
ponents of the string operator will coincide.

To construct a string order parameterOz(n,m) for the
spin-ladder model, we shall follow the same route as that
previously used for the bond-alternatingS51/2 chain19

~technical details are given in Appendix B!. We start from the
lattice version of the model, construct a product of two spin-
1/2 operators belonging to thej th rung,S1

z( j )S2
z( j ), and then

take a product over all rungs betweenj5n and j5m:

Oz~n,m!5)
j5n

m

@24S1
z~ j !S2

z~ j !#

5expS ip(
j5n

m

@S1
z~ j !1S2

z~ j !# D . ~81!

Assuming thatum2nu@1, we pass to the continuum limit in
the exponential and retain only the smooth parts of the spin
operators expressing them in terms of the spin currents
Ja;R,L
z (x),(a51,2):

Oz~x,y!5expS 6 ip (
a51,2

E
x

y

dx8Sa
z~x8! D

5expS 6 ip (
a51,2

E
x

y

dx8@Ja;R
z ~x8!1Ja;R,L

z ~x8!# D .
~82!

Using Eqs.~5! and ~A10!, we find that the exponential is
expressed in terms of the fieldf1 only. Thus we find a very
transparent representation for the string operator:

Oz~x,y!5exp$ iAp@f1~x!2f1~y!#%. ~83!

Using Eq.~31!,

exp„iApf1~x!…;m1m21 is1s2 , ~84!

we find that the string operator is expressed in terms of the
Ising order and disorder operators. For either sign ofJ' , we
find that, in the limit ux2x8u→`, the vacuum expectation
value ofOz(x,y) is indeed nonzero:

lim
ux2x8u→`

^Oz~x,y!&;^s1&
2^s2&

25^s&4Þ0, J',0, ~85!

lim
ux2x8u→`

^Oz~x,y!&;^m1&
2^m2&

25^m&4Þ0, J'.0. ~86!

As in the case of the bond-alternating spin chain, the non-
vanishing expectation value of the string order parameter in
the limit of infinite string manifests breakdown of a discrete

Z23Z2 symmetry. This is the symmetry of two decoupled
Ising models described by the HamiltonianH1 in the Majo-
rana fermion representation~14!: H15Hm@j1#1Hm@j2# re-
mains invariant with respect to sign inversion of both chiral
components of each Majorana spinor,jR,L

a →2jR,L
a ,

(a51,2). Under these transformations, the Ising order and
disorder parameters change their signs. On the other hand,
since the two Majorana fermions are massive, this symmetry
is broken in theground stateof H1 : the mass terms break
the duality symmetryjL

a→2jL
a , jR

a→jR
a . This amounts to

finite expectation values of the Ising variabless1 ands2 ~or
m1 andm2), which in turn results in a nonzero string order
parameter, as shown in Eqs.~85! and ~86!.

VI. CONCLUSIONS

As the reader can see the spin ladder presents an exciting
opportunity to study the formation of massive spinS51 and
S50 particles which appear as bound states of the spin
S51/2 excitations of individual Heisenberg chains. At small
interchain couplinguJ'u!Juu the masses of these particles are
of the order ofuJ'u. TheS51 branch is always lower inde-
pendently of the sign ofJ' . At J' /Juu→0 the singlet spec-
tral gap is three times as large as the triplet one. The imagi-
nary part of the dynamical spin susceptibilityx9(v,q;q')
calculated in Sec. III contains essential information about
particle dynamics. The smallness of the interchain coupling
in comparison with the spinon bandwidth allows us to see
many multiparticle resonances developing inx9. At small
energies the susceptibility exhibits a sharp peak around
q5p corresponding to the stableS51 massive particle; at
energiesv.3m x9(v,q) has an incoherent tail originating
from multiparticle processes. Below the 5m threshold the
singlet branch does not contribute tox9(v,q) and the latter
coincides with the susceptibility of aS51 chain. The con-
tribution from the singlet mode becomes essential at energies
much greater than the spectral gap and the susceptibility as-
ymptotically approaches its value for a spin-1/2 chain. We
emphasize that the described picture holds only in the ideal
limit J' /Juu→0. We suppose that in real systems it will be
difficult to make this ratio less than 0.1.
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APPENDIX A: BASIC FACTS ABOUT BOSONIZATION

Antiferromagnetic spin-chain Hamiltonians, such as the
Heisenberg Hamiltonian

H5J(
n51

N

Sn•Sn11 ~S51/2, J.0! ~A1!

can be mapped onto fermionic theories. Using bosonization,
these can be recast as generalized Sine-Gordon or WZW
models. This is useful because a great deal is known about
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these theories, such as correlation functions, scaling dimen-
sions of operators, etc. A brief summary of this approach is
given below.

Following Refs. 26, we start from asymmetry preserving
fermionization of the spin operators

Sn5cna
† sW ab

2
cnb . ~A2!

To eliminate the redundant zero- and double-occupancy
states, the constraint(acna

† cna51 for all lattice sitesn
should be imposed. Such a constraint will effectively work,
if one considers a 1/2-filled,U.0 Hubbard model for the
field cna . In this model, a Mott-Hubbard charge gapmc is
known to exist forany positiveU. Therefore, at low ener-
gies, uEu!mc , only spin excitations remain; those describe
universal dynamical properties of the spin-chain model~A1!
in the continuum limit.

Assuming thatU!t, we linearize the free-particle spec-
trum near two Fermi points,6kF(kF5p/2a0), and decom-
pose the Fermi field into right-moving and left-moving chiral
components:

cna→Aa0ca~x!, ca~x!5~2 i !ncRa~x!1 i ncLa~x!.
~A3!

We then introduce the scalar@U(1)# and vector@SU~2!# cur-
rents~the local charge and spin densities!

JR,L5:cR,L;a
† cR,L;a :, JR,L5:cR,L;a

† sW ab

2
cR,L;b :

~A4!

satisfying anomalous@U~1! and SU~2!# Kac-Moody alge-
bras:

@JR~x!,JR~x8!#5
1

ip
d8~x2x8!, ~A5!

@JR
a~x!,JR

b~x8!#5 i eabcJR
c ~x!d~x2x8!2

i

4p
dabd8~x2x8!

~A6!

~with similar relations for the left components!. These alge-
bras lead to fermion-boson duality which allows us to repre-
sent the Hamiltonian of free fermions as a sum of two inde-
pendent~commuting! contributions of gapless charge and
spin collective modes~Sugawara form!:

H05HU~1!
0 1HSU~2!

0

5E dxFpvF2 ~ :JRJR :1:JLJL : !

1
2pvF
3

~ :JR•JR :1:JL•JL : !G . ~A7!

The charge part is equivalently described in terms of a mass-
less scalar field fc . Under identifications
JR1JL5(1/Ap)]xfc , JR2JL52(1/Ap)Pc , wherePc is
the momentum conjugate to the fieldfc , one obtains

HU~1!
0 5

vs
2 E dx@Pc

2~x!1„]xfc~x!…2#. ~A8!

The spin partHSU(2)
0 represents the levelk51 SU~2!-

symmetric critical Wess-Zumino-Witten~WZW! model.
A weak Hubbard interaction preserves the important prop-

erty of charge-spin separation,HHubbard5Hc1Hs . Umklapp
processes relevant at 1/2-filling transformHU(1)

0 to a quan-
tum sine-Gordon model

Hc5E dxS vc2 @Pc
21~]xfc!

2#1constg cosbcfcD , ~A9!

which at g;U/t.0 occurs in its strong-coupling, massive
phase (b2,8p), with the single-soliton massmc being just
the the Mott-Hubbard commensurability gap.

In the spin sector, interaction22gJR•JL is added to
HSU(2)
0 . This interaction is marginallyirrelevant ~since

g.0). Therefore, the universal scaling properties of the
HeisenbergS51/2 spin chain~A1! are described by the level
k51 WZW modelHSU(2)

0 .26

The possibility of an Abelian bosonization of the Heisen-
berg chain~A1! stems from the fact that conformal charges
of the k51 SU~2! WZW models and free massless Bose
field coincide: CSU(2),k51

WZW 5Cboson51. Using relations
(1/3)JR(L)•JR(L)5JR(L)

z JR(L)
z , HSU(2)

0 can be expressed in
terms ofJz currents only; introducing then a pair of canoni-
cal variables,fs andPs , via

JR
z1JL

z5
1

A2p
]xfs , JR

z2JL
z52

1

A2p
Ps , ~A10!

one finds

HSU~2!
0 →HB5

vs
2 E dx@Ps

2~x!1„]xfs~x!…2#. ~A11!

The price we pay for this simplification is the loss of spin
rotational invariance in the bosonized structure of the spin
currents: theJx and Jy cannot be represented as simply as
Jz, and require bosonization of the Fermi fields:

cR,L;a~x!.~2pa0!
21/2exp„6 iA4pwR,L;a~x!…. ~A12!

Linear combinations

Fa5wRa1wLa , Qa52wRa1wLa

constitute scalar fieldsFa and their dual counterpartsQa
introduced for each spin component. The fields describing
the charge and spin degrees of freedom are defined as fol-
lows:

fc5
F↑1F↓

A2
, uc5

Q↑1Q↓

A2
,

fs5
F↑2F↓

A2
, us5

Q↑2Q↓

A2
, ~A13!

where]xuc,s5Pc,s .
To bosonizeJR,L

6 , use~A12! to obtain:
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JR
15cR↑

† cR↓5
1

2pa0
exp„2 iA2p~fs2us!…,

JL
15cL↑

† cL↓5
1

2pa0
exp„iA2p~fs1us!…. ~A14!

Note that, as expected, the charge fieldfc does not contrib-
ute to the spin SU~2! currents. Moreover, despite the fact that
the definitions~A14! contain cutoffa0 explicitly, the current-
current correlation functions are cutoff independent and re-
veal the underlying SU~2! symmetry:

^Ja~x!Jb~x8!&52
dab

4p2

1

~x2x8!2
. ~A15!

The SU~2! currentsJR(x), JL(x) determine the smooth
parts of the spin operators in the continuum limit. Namely, at
a0→0

Sn→a0S~x!, S~x!5JR~x!1JL~x!1~21!nn~x!, ~A16!

where

n~x!5cRa
† ~x!

sW ab

2
cLb~x!1H.c. ~A17!

is the staggered part of the local-spin density.
When bosonizing~A17!, the ~redundant! charge excita-

tions emerge, since off-diagonal bilinears likecR
†cL and

cL
†cR describe particle-holechargeexcitations with momen-

tum transfer62kF . We find

nz52
1

pa0
cosA2pfcsinA2pfs ,

n65
1

pa0
cos~A2pfc!exp~6 iA2pus!.

Being interested in the energy rangeuEu!mc , one can re-
place the charge operator cos(A2pfc) by its nonzero
vacuum expectation value; we denote this~nonuniversal!
value byl5^cos(A2pfc)& and arrive at bosonization for-
mulas forn(x):

nz~x!52
l

pa0
sinA2pfs~x!,

n6~x!5
l

pa0
exp@6 iA2pus~x!#. ~A18!

This completes the bosonization of the spin operators for
the isotropic Heisenberg chain. Notice that the critical di-
mensions of the smooth and staggered parts of the spin den-
sities are different:

dimJa51, dimna51/2. ~A19!

APPENDIX B: HIDDEN Z23Z2 SYMMETRYAND STRING
ORDER PARAMETER IN THE

BOND-ALTERNATING S51/2 HEISENBERG CHAIN

In addition to theS51/2 spin-ladder model, there is an-
other system which is related to theS51 spin chain—the
spin-1/2 chain with alternating ferromagnetic and antiferro-
magnetic bonds:

H54J(
j51

N/2

@~S2 j21•S2 j !2b~S2 j•S2 j11#. ~B1!

This model is instructive in the sense that the string order
parameter, whose nonzero expectation value signals break-
down of a hidden discrete symmetry, can be easily
constructed.19 The analogous construction is then directly
generalized for the spin-ladder model.

A gap in the excitation spectrum of the model~B1! per-
sists in the whole range 0,b,`. At b50 the ground state
of model represents an array of disconnected singlets. At
b@1, strong ferromagnetic coupling between the spins on
the ^2 j ,2j11& bonds leads to the formation of local triplets,
and the model~B1! reduces to aS51 Heisenberg chain.
Using a nonlocal unitary transformation, Kohmoto and
Tasaki19 have demonstrated equivalence of the model~B1! to
a system of two coupled quantum Ising chains, i.e., two
coupled 2d Ising models. This transformation provides an
exact representation of the spin operatorsSn

a as products of
two Ising-like order (s,t) and disorder (s̃,t̃) operators, es-
sentially a lattice version of relations~31! and~33! ~see, e.g.,
Ref. 31!. Nearest-neighbor bilinears of the original spin op-
erators take the form

4S2 j
x S2 j11

x 52s j
zs j11

z , 4S2 j21
x S2 j

x 52t j
x,

4S2 j
y S2 j11

y 52t j
zt j11

z , 4S2 j21
y S2 j

y 52s j
x ,

4S2 j
z S2 j11

z 52s j
zs j11

z t j
zt j11

z , 4S2 j21
z S2 j

z 52s j
xt j

x ,
~B2!

where

s j
x5s̃ j21/2

z s̃ j11/2
z , t j

x5 t̃ j21/2
z t̃ j11/2

z , ~B3!

s̃ j11/2
z 5 )

l5 j11

N/2

s l
x , t̃ j11/2

z 5)
l51

j21

t l
x . ~B4!

Relations~B2! make the Hamiltonian~B1! equivalent to
two coupled quantum Ising chains:

H52J(
j51

N/2

@~bs j
zs j11

z 1s j
x!1~bt j

zt j11
z 1t j

x!

1~bs j
zs j11

z t j
zt j11

z 1s j
xt j

x!#. ~B5!

The model~B5! is invariant under independent rotations of
the s and t spins by anglep about the spinx axis which
comprise aZ23Z2 group. Since this group is discrete, it can
be spontaneously broken, in which case the spectrum of the
system would be massive. It is easily understood from~B5!
that, in the limit of large positiveb when the model reduces
to theS51 chain, theZ23Z2 symmetry is broken, with

^s j
z&5^t j

z&5^s j
zt j

z&Þ0. ~B6!

@It has been used in Eq.~B6! that, under transformation
m j
z5s j

zt j
z to a new pair of variables,m j

z and t j
z , the two-

chain Hamiltonian~B5! preserves its form.#
Representation~B2! hints to the way how an order param-

eter measuring breakdown of theZ23Z2 symmetry should
be constructed out of the spin operatorsSn

a . Following
Kohmoto and Tasaki, consider a product
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)
l52k

2n21

2Sl
x5 )

j5k

n21

4S2 j
x S2 j11

x 5 )
j5k

n21

~2s j
zs j11

z !

5~21!n2k~sk
zsk11

z !~sk11
z sk12

z !•••~sn21
z sn

z!

5~21!n2ksk
zsn

z . ~B7!

Using the relationis j
a5exp(ipsj

a/2), we find that

Ox~k,n![expS ip (
l52k

2n21

Sl
xD 5sk

zsn
z . ~B8!

This is thex component of the string order operator. Accord-
ing to ~B6!, in the limit uk2nu→`, its vacuum expectation
value is nonzero:

^Ox~k,n!&→^s&2Þ0. ~B9!

It is important that the string always contains an even
number of sites, starting at an even site and ending at an odd
site. For a string starting at an odd site and ending at an even
site, the corresponding string operator is expressed in terms
of disorder operators and therefore has zero expectation
value:

)
l52k11

2n

2Sl
x5 )

j5k11

n

4S2 j21
x S2 j

x 5~21!n2k~ t̃k11/2
z t̃k13/2

z !

3~ t̃k13/2
z t̃k15/2

z !•••~ t̃n21/2
z t̃n11/2

z !

5~21!n2kt̃k11/2
z t̃n11/2

z .

The y and z components of the string operator are con-

structed in a similar manner:

Oy~k,n!5expS ip (
l52k

2n21

Sl
yD

5 )
l52k

2n21

2iSl
y5 )

j5k

n21

~24S2 j
y S2 j11

y !

5 )
j5k

n21

t j
zt j11

z 5tk
ztn

z , ~B10!

Oz~k,n!5expS ip (
l52k

2n21

Sl
zD 5sk

ztk
zsn

ztn
z . ~B11!

The SU~2! invariance of the expectation value of the string
order parameter

Oa~k,n!5expS ip (
l52k

2n21

Sl
aD , ~S51/2, a5x,y,z!

~B12!

follows from ~B6!.
Notice that in the limiting caseb@1, the string order

parameter~B12! for theS51/2 bond-alternating chain auto-
matically transforms to the exponential of the string order
parameter~80! for theS51 chain.
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