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Antiferromagnetic spin ladders: Crossover between spirS=1/2 and S=1 chains
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We study a model of two weakly coupled isotropic spin-1/2 Heisenberg chains with an antiferromagnetic
coupling along the chaingpin laddey. It is shown that the system always has a spectral gap and the lower
lying excitations are triplets. For the case of identical chains the model in the continuous limit is shown to be
equivalent to four decoupled noncritical Ising models with #3eX SU(2) symmetry. For this case we obtain
the exactexpressions for asymptotics of spin-spin correlation functions. It is shown that when the chains have
different exchange integrally>J, the spectrum at low energies is described by tig)ahonlineare model.

We discuss the topological order parameter related to the gap formation and give a detailed description of the
dynamical magnetic susceptibility.

I. INTRODUCTION definition assumes that it is possible to perform a perturba-
tive expansion about the strong-coupling fixed point in nega-
It has been widely recognized that one-dimensional antitive powers of the coupling constant. In the spin-ladder prob-
ferromagnets with half-integer and integer spins have dralem there are two candidates for the strong-coupling fixed
matically different excitation spectra. The original theoreticalpoint: the limits of strong antiferromagnetid (>J;) and
prediction by Haldanethat Heisenberg chains with half- ferromagnetic €J,>J)) interchain coupling, respectively.
integer spin are gapless, whereas those with integer spin ateis clear that only the former case constitutes the correctly
gapped, has been confirmed experimenfallg. gain insight  defined strong-coupling limit. Al 1J)— + the spin lad-
into the physics underlying this result, one may study sysder is decomposed into an array of decoupled rungs, each
tems intermediate between s+ 1/2 andS=1. The sim-  rung representing a “molecule” whose singlet ground state is
plest of these is the “Heisenberg spin ladder,” which hasseparated from the triplet excited state by a large gap of the
isotropic couplingsJ|| along the chains and, between order ofJ, . When one make3, finite, the triplet excitations
them. Although such systems with both antiferromagriefic form a band with bandwidth-J;. The properties of such a
and ferromagnetfc?? interchain couplings have been the system can be analyzed perturbatively, wWitf1J, being the
subject of considerable recent theoretical interest, certaismall parameter.
problems remain unresolved leaving room for our contribu- On the other hand, strong ferromagnetic interchain cou-
tion. A very remarkable fact about the sp¥ 1/2 Heisen- pling leads to the formation of local spir&=1 associated
berg chain is that its excitation spectrum consists of spin-1/2vith each rung of the ladder, thus producing a conventional
particles (spinong. Physically such excitations can be cre- spin S=1 Heisenberg antiferromagnet with a nonzero
ated only in pairs because upon flipping one spin the totaHaldane gap in the excitation spectrum. In contrast to the
spin projection is changed by ond&S,=1. Thus, in the previous case, the bandwidth of the triplet excitations and the
S=1/2 Heisenberg chain, the conventional magnons carryingpectral gap are of the same order of magnitueld, . This
spin 1 are deconfined into spin-1/2 spinons. Putting twagproblem lacks a small parameter and cannot be analyzed by
S=1/2 chains together one can observe how spinons are coperturbation theory. A variety of approximate methods have
fined back into magnons by measuring the dynamical susheen suggested to study tt&=1 antiferromagnetic spin
ceptibility x"(w,q). The interchain exchangk serves here chain(see Ref. 13 and references thejehowever, it is not
as a control parameter: ﬁJL|<JH there is a wide energy our purpose to review them here.

range wherg” is dominated by incoherent multiparticle pro-  In this paper we present our analysis of a weakly coupled
cesses, and a narrow region at low energies wiérexibits ~ spin ladderJ;>|J,|. We have found this limit more inter-
a single-magnon peak aroung- 7. esting from the theoretical point of view, for it allows us to

One can obtain a gualitative understanding of the spinorstart out with a well-defined picture of gapless spinon exci-
confinement by considering the strong-coupling limit of thetations on each spin-1/2 Heisenberg chain. By switching on a
spin-ladder problem. As frequently happens in one-weak interchain exchange interaction, we then study the
dimensional models, the strong-coupling limit gives a correccrossover between the gapless regime of two decoupled
qualitative picture of the low-lying excitations. One should, S=1/2 Heisenberg chains and the strong-coupling limit, tak-
however, be careful to define this limit properly. The propering place on lowering the energy scale. Despite the fact that
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our results have only qualitative validity for the presently dure as that suggested for the bond-alternating cliditand
available experimental realizations of double chain laddergentify the corresponding hidden symmetry. The paper has a
[Sr,_1Cu,.10,, (Ref. 14 and (VO),P,0, (Ref. 15]  Conclusion and two Appendices where we provide technical
where both exchange integrals are of the same order, weetails about bosonization and string order parameters.
hope that weakly interacting spin ladders will be synthesized
in the future. Il. COUPLING OF IDENTICAL CHAINS: ABELIAN

An interesting fact about the weak-coupling limit is that BOSONIZATION
the emerging physical picture is independent of the sign of ) ) ] o
J, . As follows from the above discussion, this universality ~In this section we apply the Abelian bosonization method
is not so obvious afJ, |>J;;. Therefore comparing our re- to the spin-ladder model
sults with the strong-coupling analysis one can see that the
main uni.versal features of the spectrum are it's symmetry and 4 :‘]H.E E Si(n)- S (n+ 1)+‘]LE S,(n)-Sy(n)
the persistence of the gap. As we have mentioned above, the j=12"n n
low-lying excitations turn out to be triplets in all limits and 1

for all signs ofJ, . i . . . .
; - . describing two antiferromagneticJ(>0) spin-1/2 Heisen-
The paper is organized as follows. In Sec. Il we derive theberg chains with a weak interchain Couplinb]l(|<3”) of

continuous version of the spin-ladder Hamiltonian for the * : . ! ST

case of identical chains. To achieve this we employ therbitrary sign. Abelian bosonization is a well-known proce-
bosonization approach, but the resulting effective theory isg]utrﬁé%t fg;g:fja:(f tﬂ?{?{;?}%'ﬁ;iﬁﬁﬂﬁiﬁgegh/tiggler\;'oe\'\_/ It
most simply represented in terms of fermions. In this repre- . PP - . ! prop-
sentation the effective Hamiltonian of the spin ladder con-ertles of isolateds=1/2 He_|senberg chains are described in
tains four species of weakly interacting real fermiofikhe terms of massless Bose fieldg(x)(j = 1,2):

difference between ordinaiirac) and real(Majorana fer-

mions is that the latter ones have only positive .energies HoZ%_Z de[HjZ(X)JF(aXQSj(X))z], @)
e(p)=Vp?+m?. Therefore one can always describe one =12

Dirac fermion as a superposition of two Majorana fermions.
Three of these modes comprise a degenerate triplet and t
remaining one lies above having a mass approximately thre
times as big. The magnitude of the mass gaps is of the order

of the interchain exchange. As we have mentioned above, for H, =Jla0J dX[J1(X) - Io(X) +Ny(X) - Ny(X)] (3

any sign of the interchain coupling, the leading asymptotics

of the correlation functions are determined by the triplet ofjg expressed in terms of the operatdyé) andn;(x) which
Majora.na. fermions as for th8=1 Cha.ir]:.L3 This means that represent’ respective|y, the SIOle Varying and Staggered
at J, <0 our description remains qualitatively valid even parts of the local-spin-density operator and are defined in the
whenJ, is not small. The fact that the low-energy sector of Appendix A. According to/A19), the current-current term in
the model is essentially a free theory makes it possible t3) is marginal, while interaction of the staggered parts of the
obtain nonperturbative expressions for asymptotics of alkpin densities is strongly relevant. So we start our analysis by
correlation functions. This is done in Sec. lll. In Sec. IV we dropping the former terntits role will be discussed later

discuss a situation where the ladder consists of inequivalenysing then bosonization formuld818) for n;(x), we get
chains. It is shown that, in the limit when exchange integrals

on the chains strongly differ, the low-lying excitations are J A2
described by the (B)-nonlinearc model. The adequacy of Hy = f dx
this treatment is guaranteed by the fact that thimodel has
a small bare coupling constant. 1

The fact that the excitation spectrum of the + 5005@(%_ b2) +COS\27( 61~ 0,) |,
O(3)-nonlinearoc model consists of massive triplets pro-
vides further support for our conclusion that the spectral gapvhere ¢;(x) is the field dual tog;(x). Denote
and the symmetry of the low-lying excitation branch are the
most universal features of the model. J\?

The appearance of a spectral gap in 8l Heisenberg m= 2 @
chain is known to be associated with the breakdown of a
hidden discrete symmetry characterized by a nonloca@nd introduce linear combinations of the fields and ¢,:
(string order parametéf!’ A similar topological string or-
der has been recently shown to exist in the reléBedl/2 Pty
spin chain with alternating exchange couplinggnd J’.8 b= 2 )
On changing the ratid'/J from —oo to 1 with J kept posi-
tive, this model continuously interpolates between &l  The total (¢.) and relative ¢_) degrees of freedom de-
chain and gapless Heisenbe®g- 1/2 chain, thus displaying couple, and the Hamiltonian of two identical Heisenberg
properties of the gapful Haldane phase in whole range&hains transforms to a sum of two independent contributions:
J'/1J<1. In Sec. V we derive the string order parameter for
the spin-ladder model, following essentially the same proce- H=H,+H_, (6)

where the velocity s~ Jja, andIl; are the momenta conju-
ate tog;. The interchain coupling

1
- ECOS\/ZW( h1t+ @)

_7728.0
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H, (x)= _(H2 (Oxp4)D)— _COS\/ mp, (7) Hul&]=— f(fRﬁng_ §L0kEL) —IméREL . (19

Vs m Now we shall demonstrate that the Hamiltonkdn in (8)
H_(x)= ?(H2‘+ (dyp_)?)+ —acos\/4w¢_ reduces to the Hamiltonian of twdifferentMajorana fields.

o As before, we first introduce a spinless Dirac fermion
2m .
+ —cos/4mo_. ® XrL(X)=(2m20) " Pexp(i VAT h_m (X)), (16
0

In the above derivation, th&, - J, term has been omitted

as being only marginal, as opposed to the retained, relevant

ni-n, term. It is worth mentioning that there are modifica-
tions of the original two-chain lattice model for which the

J;-J, term does not appear at all in the continuum limit, and

mapping onto the model6) becomes exact. In two such
modifications, the interchain coupling is changed to

I
HY=Z2 Si0) [S(-S(n+D] (9
or
(B)_‘]l _ _
HE =22 [Si() = SN+ D] [Sy(n) = S(n+ D).
(10

The structure of these models explains why the low-energy

physics of twoweaklycoupled Heisenberg chains must not

be sensitive to the sign of the interchain couplihg. This

conclusion is in agreement with recent results of Ref. 8.
Let us turn back to Eqgs.7) and (8). One immediately

realizes that the critical dimension of all the cosine terms in

Egs.(7), (8) is 1; therefore the mod€b) is a theory of free
massive fermions. The Hamiltoniar, describes the sine-
Gordon model a?=41; so it is equivalent to a free mas-
sive Thirring model. Let us introduce a spinless Dirac ferm-
ion related to the scalar fiel@, via identification

YrL(X)=(2mag) VexpxiVarg, g (x) (1)
Using
1
—cos/Am, (X)=I[YR(X) L (x) ~H.c]
0
we get
H (X)=—iv(dhdxibr— Pl dxip) —im( gy — t/fIsz.lz)

For future purposes, we introduce two rélelajorana ferm-
ion fields

wu_ (/II
V2i

2_
o=

a bt o)
v \/E ’

(v=R,L) (13

to represent , as a model of two degenerate massive Ma-

jorana fermions
=H[£]+H[€], (14

where

1
—cos/Am_ (x)=i[xk(x)x.(x) ~H.c],

mdg

1
Ecos\mwa,(x) —i[x&(¥)x{ (x)—H.c].
0
Apart from the usual mass bilinear terfoharge-density-
wave pairing, the HamiltoniarH _ also contains a “Cooper
pairing” term originating from the cosine of the dual field:

H_(X)=—vs( xkdxr— X1 dxx1) +FimOxEx — x{ xr)
+2im(xfx! — xLxw)- (17)
We introduce two Majorana fields
t T
Xvt X Xv—X
3 14 14
=220 p= . (v=R,L). 18

The HamiltonianH _ then describes two massive Majorana
fermions,gﬁ,L andpg , with massesn and —3m, respec-
tively:

H-=Hu[&]+H s.lp]. (19

Now we observe thag?,a=1,2,3, form a triplet of Ma-
jorana fields with the same mass There is one more field
p with a larger modulus of mass|8|. So, the total Hamil-
tonian

H=H[E]+H_s.[p] (20)

with
fﬁﬁxéﬁ)—imééfi‘]-
(21

Hil8l= 3 | =5 (6ot

The O(3)-invariant modeH [ £] was suggested as a de-
scription of theS=1 Heisenberg chain by TsveliR. This
equivalence follows from the fact that, in the continuum
limit, the integrableS=1 chain with the Hamiltonian

H=2 (880~ (58107 (22
is described by the critical Wess-Zumino model on thé 3U
group at the levek=2, and the latter is in turn equivalent to
the model of three massless Majorana fermions, as follows
from the comparison of conformal charges of the corre-
sponding theories:

wzw
C

SU2),k=2"5" 3CMajor fermion-

3
2
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The k=2 level, SU2) currents expressed in terms of the Ma~13+12, (28)

fields &2 are given by . . . . "
Therefore the two-point correlation function of spin densities

i at small wave vectors|q|</ay) is given by the simple
IRL="— Efabcfg,Lffa,L- (23)  fermionic loop. A simple calculation gives the following ex-
pression for its imaginary part:

When small deviations from criticality are considered, no

single-ion anisotropy~D(S?%)2,S=1] is allowed to appear ®) _2g°m??

due to the original S(2) symmetry of the problem. So, the Imy ™ (w,q)= $3\SZ—4m?2

mass term in21) turns out to be the only allowed relevant

perturbation to the critical S@), k=2 Wess-Zumino-Witten for s?=w?—v2g?>4m? (the imaginary part is zero for

(WZW) model. s?<4m?). Thus the dynamical magnetic susceptibility at
Thus, the fieldst? describe triplet excitations related to small wave vectors has a threshold ab.2

the effective spin-1 chain. Remarkably, completely decou- It turns out that it is possible to calculate exactly the two-

pled from them are singlet excitations described in terms opoint correlation functions of the staggered magnetization.

the field p. Another feature is that this picture is valid for This is due to the fact that the corresponding operators of the

anysign ofJ, , in agreement with the effective lattice mod- Heisenberg chains are relatéd the continuum limit to the

els (9) and (10) which we actually are dealing with. order and disorder parameter fields af Bing models®®-2!
Since the spectrum of the system is massive, the role dhe correlation functions of the latter operators are known

the so far neglectedmargina) part of the interchain cou- exactly even out of criticality?

pling (3) is exhausted by renormalization of the masses and Using formulas(A18) of Appendix A, the components of

velocity. Neglecting the latter effect, this interaction can bethe total @¢*)=n;+n,) and relative a(")=n;—n,) stag-

shown to have the following invariant form: gered magnetization can be represented as

n'"~cos/wd,cosymh_, n{ ' ~sinyr,sinymo_,
n§+)~sin\/;9+003\/;97, n§_)~cos\/;6+sin\/;07,
1

=5J1a f X[ (ERED) (ERED) + (ERED) (£RELD) n{" ~sinyme, . cosmd_, ni)~cos(m.simfmp_ .

(30
B33 plgly _plpl | 2242 43,3
+(ERED (EREL) — (ERELT EREL T EREL) (PRPL) ] The fields¢, ,0, andé_,6_ are governed by the Hamil-

(24)  tonians(7) and(8), respectively. Let us first consider expo-
nentials expti\/;cm), exp(ii\/géu). Their correlation
functions have been extensively studied in the context of the
noncritical Ising model(see, for example, Ref. 22It has
1 been shown that these bosonic exponents with scaling di-
Hint=§2 gabf dX(£22)(£RED),  (Qab=0ba) mension 1/4 are expressed in terms of the ordey gnd
azb disorder (1) parameters of two Ising models as follows:

cos\m,)=pipy, SiNNTh,)=010,,

cogVml, ) =01y, SINVTO,)=pi0;. (3D

Let us briefly comment on this correspondence.

) . ) As already discussed, thg>=47 sine-Gordon model
masses of the triplet and singlet excitations: massive Majorana fermions, Eqéld), (15). As is well
known (see, e.g., Ref. 24 a theory of massive Majorana

(29

1
Hinarg= .20 f AX[(1817) — (£4¢%) (prp0)]

In a theory of N massive Majorana fermions, with masses
my(a=1,2,... N) and a weak four-fermion interaction

renormalized masses, estimated in the first order ig are
given by

~ Jab A
m,=my+ —myln —. 25
a a b(;a) 2 b |mb| ( )

me=m| 1+ SJLaOmA , (26) fermion describes_lor_lg-distance pr_operties orﬂ_l’sing
4v |m| model, the fermionic mass being proportional to
m~t=(T—-T.)/T.. So,H, is equivalent to two decoupled
J ag 2d Ising models. Letr; andu; (j=1,2) be the correspond-
ms=3m| 1+ mln Tm[ )" (27) ing order and disorder parameters. At criticalizgro fermi-

onic mas$, four productso oy, wipo, o1, and w0,
have the same critical dimension 1/4 as that of the bosonic
11l. CORRELATION FUNCTIONS FOR THE IDENTICAL exponentials exp!(i\/;du), explEi \/;0+). Therefore
CHAINS there must be some correspondence between the two groups
Since the singlet excitation with mass,~3m does not Of four operators which should also hold at small deviations
carry spin, its operators do not contribute to the slow comfrom criticality. To find this correspondence, notice that, as
ponents of the total magnetization. The latter is expressed ifollows from (7), at m>0(cosymé,)#0, while
terms of thek=2 SU(2) currents(23): (sin\/;¢+)zo. Since the cass>0 corresponds to the dis-
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ordered phase of the Ising systents-Q), (o1)=(0,)=0,
while (u1)=(u,)#0. At m<0 (ordered Ising systems,
t<0) the situation is inverted:cos\/qr_+¢>>=0, <sin\/;gb+>
#0,(01)=(0,)#0, (1) ={u,)=0. This explains the first
two formulas of Eq(31).

Clearly, the exponentials of the dual fiell. must be
expressed in terms af,u, and u,05. To find the correct
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Agreement is achieved if the singlet excitation band is for-
mally shifted to infinity. This implies substitutions= (o)
#0, u=(u)=0 for ferromagnetic interchain coupling
(m~J,<0), or o=(o)=0, u=(u)+0 for antiferromag-
netic interchain coupling i~J, >0). Thus, we observe
that, as expected, for ferromagnet@mtiferromagneticinter-
chain interaction the stagger&k 1 magnetization is deter-

correspondence, one has to take into account the fact thatrained by the totalrelative) staggered magnetization of the
local product of the order and disorder operators of a singlévo-chain system.

Ising model results in the Majorana fermion operator, i.e.,

fl"‘COS\/;(¢++ 0,)~o1i1,

E~sinm (¢, +60.)~aus.

This leads to the last two formulas of EQ1).

To derive similar expressions for the exponentgbofand
6_ , the following facts should be taken into accou}:the
Hamiltonian(17) describing “—" modes is diagonalized by
the same transformatidii8) as the Hamiltoniari12) respon-
sible for the “+" modes; (ii) the Majorana fermions now

have different masses, ariii ) one fermionic branch has a
negative mass. In order to take a proper account of these

facts one should recall the following:

(&) A negative mass means that we are below the transi-

tion.
(b) It follows from (ii) that “—" bosonic exponents are

A more precise meaning of this approximation becomes
apparent when one considers asymptotic behavior of the cor-
responding two-point correlation functions in the two limits
r—0 andr—o.% In the limit r—o they are as follows:

. AL L L
<<Ta(f)0a(0)>:Gg(r):?Ko(f)ﬁLO(e ), (39

(ma(r) pa(0))=G,(T)

=A, 1+% FALKE(F) —KE(7)]

I B ;.
—TKo(N)Ka(r)+ 5 Ko(r) | 1 +0O(e ),

(39
wherer=rM (M=m or 3m), A; is a nonuniversal param-

also expressed in terms of order and disorder parameters 8fer, and it has been assumed thatis positive. IfM is
two Ising models, the latter, however, being characterized byiegative the correlation functions are obtained by simply in-

differentt’s. We denote these operators @, u3 (massm)
and o, (Mmass—3m).

terchangingo and w, and puttingM — —M [the duality
transformation(32)]. Therefore, as might be expected, at

(c) Operators corresponding to a negative mass can bi@rge dis'gances, a differenge between the ladder and the
rewritten in terms of the ones with the positive mass usingS=1 chains appears only in expBmr) terms due to the

the Kramers-Wannier duality transformation

t—-—t, o—u, u—o. (32

contribution of the excitation branch witii =3m absent in
the S=1 chain.

In the limit F — 0 the correlation functions are of power-
law form:

Taking these facts into account we get the following expres-

sions for the =" bosonic exponents:
cod T )=pzo, sinmh )=osu,
cod V0 )=030, SiN\m0 )=psu. (33

Combining Egs(31) and(33), from (30) we get the fol-
lowing, manifestly SW2) invariant, expressions:

Ny ~ 0102030, Ny ~W102030, N, ~010U30,
(39

N, ~R1M203M.
(35)

Ny ~M102030, Ny ~O1aU3M,

~ ~ 2
Gg(r)=GM(r)=F—1,z (40)
plus nonsingular terms. The ratio of the constaf{sand
A, is a universal quantity involving Glaisher’'s constant
(A):

A 1
2 2‘1/6A‘3expi,

A (1)

A=1.28242719.... (42)

We conclude this section by writing down the exact ex-
pression for the staggered magnetization two-point correla-
tion functions. The correlation function for spins on the same

Itis instructive to compare them with two possible represenchain is given by
tations for the staggered magnetization operators for the

S=1 Heisenberg chain which can be derived from the

SU(2), WZW modelZ*13

S~ o1u03, S~ w1003, S~oi0u3  (36)

or

S ~pioops, F~o1paps, S~ piugos. (37)

(n3(7,x)n3(0,0)=G5(mr)G ,(mr)G,(3mr)
+GL(MNG,(mrG,(3mr). (43)

The interesting asymptotics are

1 .
(nf(7,x)n$(0,0)=5—27 at mr<1,

27r (44)
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a a _n2
%ZKo(mr) 1+% (mr)z[Ki(mr)—KS(mr)] (n1(7,x)n3(0,0)) =G5 (mr)G,(mr)G,(3mr)

—GL(mnNG,(mr)G,(3mr). (47)

—mrKo(mr)K{(mr)+ %Kg(mr) ) +0(e"5m):

At mr<1 it decays asrtr) ?; the leading asymptotics at
mrs1, (45) mr>1 is the same §1645) (up to the—1 factop. The diﬁer-
ence appears only in terms of order of exp(nr). The im-

2_ .2 2y2 . . . . .
wherer®=7°+v°x* and portant point is that amnr>1 the contribution from the sin-

5 i3 glet excitation appears only in the fifth order in exmr).
—= —,—A*12~O.264. (46) Therefore it is unobservable by neutron scattering at energies
7 314
below 5m.
The complete expressions for the functiogs, ,(7) are Using the above expressions we can calculate the imagi-
given in Ref. 25. For the interchain correlation function we nary part of the dynamical spin susceptibility in two different
get regimes. Fotm—q|<1 we have

m
2 cogy, m&(w—\/vzq2+mz)+F(w,q) . ©<5m

(R) —q: =
(1+COS.]L)?, ®>5m,

w"—v°Qq

where the transverse “momentuny’, takes values 0 and 1 . 5

. The factorZ is assumed to ben independent so that at ~ Sx=kW(g), W(g)= 6 Tr(d,9"d,9)dx+T'(g),
m—0 we reproduce the susceptibility of noninteracting

chains. We have calculated the functiBifw,q) only near i

the 3m threshold where it is equal to ro=5- d*Xe*#"Tr(g*3,99" 999" 3,9), (51)

where matrixge SU(2). There can in general be marginally
— 02— 9m2. (49) irrelevant perturbations to this theory, which generate loga-
rithmic corrections to the correlation function exponents, but
do not change their qualitative behaviae., power law. In
general this model describes not just the spinl/2 Heisen-
berg chain, but anyl+1)-dimensional system of fermions
with the charge degree of freedom frozen out and no gap in
(R) cq ) — the spin sector.
Imy' ™ (w,q;a,) =[1+cos(a,/2)]f(sm), (50 The WZW model may look unfamiliar, but it is not so
difficult to deal with since its operators and their exact cor-
wheref(s,m) is given by Eq.(29). relation functions are already known from the application of
conformal field theorf] (see also Ref. 28As we have men-
tioned above, the great advantage of the WZW model is that
IV. INEQUIVALENT CHAINS: NON-ABELIAN it explicitly possesses the SU(X)SU(2) symmetry of the
BOSONIZATION massless fermion spin sector, and is also critio@ssless
. . . . . In (1+1) dimensions the distinction between relativistic fer-
In this section we consider two interacting S@1/2 mions and bosons is illusory; one can choose to think about
chains with different intrachain exchange '”tegfaﬂ]ﬁ#%- a system in either representati¢this has been known for
It turns out that the most adequate approach in this case igme time; hence the “Luttinger liquid” The WZW model

non-Abelian bosonization. The reason for this is that non{g therefore just a way of thinking about the spin sector in
Abelian bosonization explicitly preserves the @Usymme-  orms of bosons; just as in Abelian bosonization, one can

try present'in the Hamiltonian. The Abelian bosonization aPrepresent operators from the fermionic theory in terms of
proach which does not respect this symmetry encountergsse of the bosonic theory and vice-versa. From a practical
difficulties. 6 _ _ . point of view, these relations between the two sets of opera-

As shown by Affleck’® by a mapping from a fermionic t5rs can be thought of as ready made tools. It is not necessary
theory, theS= 3 Heisenberg antiferromagnet can be de-to worry about their slightly exotic appearance or their jus-
scribed by ak=1, SU2) Wess-Zumino-Witten(WZW) tification in order to apply then{But those seeking a deeper
model with the following action: appreciation are referred to the papers cited above.

a4
F(w,Q)Qﬂ_—mz o

For |g|<1 we have
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The bosonized expression for the spin operator of the
Heisenberg chain is given By

Ae n?—1
~ 2n(n+k) (59
S,=Jg+J_+const—1)" Tr(g* o —go), (52)

where the currents are given by

we get that forn=2, k=1, g and h both have conformal
dimensions £,3). The \, term is therefore the relevant in-
| | teraction, whereas the current couplings are only marginal.
B=— — Tro_g)g" T2, JI2=—Trg" 9. qT2 (53 For this reason, the current interaction will be neglected at
RT3, 117-00 L =5, 1197 0+0T" (53 this stage. Then the interaction can be written as

[T? are the Pauli matrices—generators of the(3\group]
These currents satisfy the &) Kac-Moody algebra de- Tr(g—g*)a]- T (h—h*)o]
scribed in the Appendix A.

Consider two Heisenberg chains coupled by an antiferro- 1
magnetic nearest-neighbor interaction. It can be represented _ = Nt
like this: 21 T(E=g)(h=h")]

S=W,(h)+W,(g)+ Ny [Hr+H J[Cr+ G, ] — Trl(g—g")] Tl (h—h™)]}. (56)

+N, T (g—g") o] T (h—h*)a], (54)

where the dynamics of one chain is represented by the matri

g and the current€g, and the other byh andHg, . The
indices 1,2 distinguish between different spin-wave veloci-
ties. Without a loss of generality we can put>v,,.

The currents have conformal dimensions (1,0) and (57
(0,1); using the formula for the conformal dimensions of the
matrices for the SW{) group derived in Ref. 27:

Making the substitutionv=gh™, which leaves the measure
ipvariant, and using the remarkable iderftity

1
W(ah+)=W(a)+W(h)+Ef Tra™d_ah®9,.hd?x,

we arrive at the following expression for the action:

1
S=[W,(h)+Wy(h)]+ EJ Tra®d_ah™ . hd?x+W,(a)

N[ Tr(a+a™)— Tr(a*h*2+H.c)+ Tr(h*—h) Tr(hta™ —ah)] (58

[hered. =3(d,Fidy)]. B2 )

The identity(57) is nothing very mysterious. It is simply Ef dvdh_d_¢_d°x
a generalization of an identity familiar from Abelian
bosonization. To see this, consider substituting explicitly for B? 5 5
the special case of Abelian bosonization, tH¢l1) fields :EU dy¢10_¢1d x+f d4 o0 _ podX
e'f?1 ande'#?2 for the matricesy andh, respectively. Then

the WZW action,W(«) reduces to the action for free scalar

bosons as we would expect:
W(a=eiﬁ4’1)=ﬁ—2f 94 10— p1d2x
477 +@10-@1

:82
= 6m f [(dx1)?+(9,¢0)%1d% (59
and the interaction term it67) becomes

1 + + 2 -B
pye Tra™ d_ah™ 9, hd“x= yp= (04 Pp10_ >

+ 04 20 py)d?x. (60)

The fieldah™ is e'A(¢1~¢2)=¢'£¢- and so the identity57)
becomes

. (61

- f (04 10—+ 34 pad_py)d?x

Therefore the identity57) is just an analog of the following
simple statement:

[V(p1— 2)12=(Vep1)?+ (V)2 =2V hy-V b, (62

where the last term is the “interaction term.”

We shall consider the most relevant interaction,
Tr(a+a™) first. The effective action fow is in this ap-
proximation:

S=W;(a)+\ Tr(a+a™). (63

From the first-order renormalization-group equation we get

dA ~( l)
qmL = 2—5 \. (64)
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Integrating up to a scale where the coupling becomes of or-
der 1 and taking this to give some estimate of the dynami-
cally generated mass, one géts~\%3, Much more infor-
mation can be found by realizing that the mod6B) is

o =

=(Volvo+ Voo lvy)(1—(n3)). (75)

' 5 ) The reason why the Wess-Zumino term effectively disap-
equivalent to thes“=27 sine-Gordon mode(see, for ex-  pears from the action is the following. After substituting Eq.

ample, Ref. 26 . _ _ (72) into the expression foF (h) the Wess-Zumino term re-
Thus on the scalp>M ~* the fluctuations of thex field  §yces to the topological term:

are frozen and we can approximate
s - - -
Tr(ah™)Tr(h)~(Tra):[Tr(h)]?:. (65 2F(ian)=2f dZXew(n[aﬂnxavn]szik, (76)

At this large scale the cross term containing derivatives O(Nherek is an integer number. The factor in front of the

h anda gives the irrelevant contribution topological term is such that its contribution to the action is
a2 + always a factor of zri and therefore does not affect the
S~ M"%0,.0-h"d9-h. (66) partition function. The mass gap of the mod@#) is given

Therefore the asymptotic behavior at large distances 8y

governed by the following action: M =M&~ Texp( — 2/3)

S=W;(h)+W,(h)+c,:[Tr(h)]% (67) ¢, / /
~M|1l— —In(M/My) |exp(—2m/cC). 7
where c,~\*3 and which can be further modified by the 27 o) |eXp( —2m/c) 77
coordinate rescaling: As long as this gap is much smaller th&ty, the adopted
N _ approach is self-consistent. The latter is achieved for any
Xo= NU1U2T, X=X (68) appreciable difference between the velocities.

such that we finally have Excitations of the @3)-nonlinear o model areS=1
triplets?® Thus, the spectrum is qualitatively the same as for
S=5+95,, (690  identical chains. That is what one might expect because the

model of Majorana fermions is a strong-coupling limit of the
O(3)-nonlinearc model (see Ref. 1B
The correlation functions of the (@)-nonlinears model

1
50:2—01f d?x Tr(d,h*d,h)d?x+ 2T (h), (70)
are known only in the form of the Lehmann expansion:

81=Jdzxéz{:[Trhz]:+:[Tr(h*)z]:—:[Tr(h—h*)]z:}, (n(7,x)n(0,0))~Ko(mr)+O[exp(—3mr)]. (79
(7)) Note that the first term in the expansion coincides with
where the one for identical chains. Therefore a difference in dynam-
ical magnetic susceptibilities for both cases will become
1/c= /v, +\volv,. manifest only at energiem>3m. The lowest feature in

_ _ _ N _ Imx®(w,q) is in both cases the sharp peak
The model with actiorf69) is not critical; coupling constants

c1,C, undergo further renormalization. Let us show that the m

couplingc, renormalizes faster to strong coupling. To show Imy'®(w,q)~ ——= 80— VoZ+m?) (79

this we shall suppose that this is the case and check that the q=+m

obtained result is self-consistent. It is easy to check that theorresponding to the triplet excitation. Such a peak has been
effective potentia(71) vanishes ifh is a traceless matrix and observed inNVO),P,0,.%®

has a fixed determinant:

V. STRING ORDER PARAMETER IN THE

h~i(on), n?=1. (72) SPIN-LADDER MODEL
Excitations, which correspond to configurations where Den Nijs and Rommelsé(see, also, Ref. Jhave argued
Trh+#0, acquire a gap. The estimate for this gap is that the gapful Haldane phase of tBe 1 spin chain is char-
acterized by a topological order measured by the string order
v arameter
M§~C\vlvzcz~min(vl,vz))\4/3~U—ZMZ. (73) P
1 m—1
On energies smaller than the gap one can treahtheatrix (0%)=lim <Sﬁex iWA:;H Sla) S%>,
as traceless. Substituting expressi@®) into Eq.(69) we get In=mi-—es .
the O(3)-nonlinearr model as an effective action for small (S=la=xy.2) (80)
energies: T LaTXY.2).
The nonzero value ofO*) has been related to the break-
5= if x(a.7? R2=1 (74 down of a hidderZ,x Z, symmetry'° In this section we use
2C p ' the Abelian bosonization methd@ec. 1) to construct the



53 ANTIFERROMAGNETIC SPIN LADDERS: CROSSOVER ... 8529

string operator in the continuum limit of th&=1/2 spin- Z,XZ, symmetry. This is the symmetry of two decoupled
ladder model and identify the corresponding discrete symmelsing models described by the Hamiltonigin in the Majo-
try with that of the related Ising models. rana fermion representati@f4): H, =H [ £']+H [ &?] re-
Since spin-rotational invariance remains unbroken, themains invariant with respect to sign inversion of both chiral
string order parameter must respect this symmetry. Howevetomponents of each Majorana spinogy — — &z,
Abelian bosonization is not an explicitly $2) invariant  (a=1,2). Under these transformations, the Ising order and
procedure. For this reason, it turns out that it is theom-  disorder parameters change their signs. On the other hand,
ponent of the string operator that acquires a simple form irsince the two Majorana fermions are massive, this symmetry
the continuum limit. On the other hand, due to the unbrokens broken in theground stateof H, : the mass terms break
SU(2) symmetry, the very choice of the quantizatior)( the duality symmetryé?— — &, ¢g— &&. This amounts to
axis is arbitrary; therefore the expectation values for all comfinjte expectation values of the Ising variablesand o, (or
ponents of the string operator will coincide. w1 and u,), which in turn results in a nonzero string order

To construct a string order paramet®r(n,m) for the  parameter, as shown in Eq85) and (86).
spin-ladder model, we shall follow the same route as that

previously used for the bond-alternatirg=1/2 chairt®
(technical details are given in Appendiy.BVe start from the
lattice version of the model, construct a product of two spin-  As the reader can see the spin ladder presents an exciting
1/2 operators belonging to théh rung,S;(j)S5(j), and then  opportunity to study the formation of massive s@is 1 and
take a product over all rungs betwegan andj=m: S=0 particles which appear as bound states of the spin
S=1/2 excitations of individual Heisenberg chains. At small
5 il ez interchain couplingJL|<JH the masses of these particles are
O%(n,m) = Hn [—4S1(1)S:())] of the order oflJ,|. TheS=1 branch is always lower inde-
: pendently of the sign of, . At J, /J;—0 the singlet spec-
m tral gap is three times as large as the triplet one. The imagi-
=exp<i772 [S§(1)+S§(J')])- (8)  nary part of the dynamical spin susceptibili§y (w,q;q, )
I=n calculated in Sec. Ill contains essential information about
Assuming thatm—n|>1, we pass to the continuum limit in particle dynamics. The smallness of the interchain coupling
the exponential and retain only the smooth parts of the spifh comparison with the spinon bandwidth allows us to see
operators expressing them in terms of the spin current§yany multiparticle resonances developing . At small
\];R’L(X),(a:l,Z): energies the susceptibility exhibits a sharp peak around
g=m corresponding to the stable=1 massive particle; at
, ) Y o, energiesw>3m x"(w,q) has an incoherent tail originating
O*(x,y) =ex i”'ra:zlz fx dx’ S(x") from multiparticle processes. Below them5Sthreshold the
' singlet branch does not contribute 6(w,q) and the latter
_ Y , coincides with the susceptibility of &=1 chain. The con-
=ex;( *l Wazzl ) fx dx'[Jar(X") +Jg R L(X ”) - tribution from the singlet mode becomes essential at energies
' much greater than the spectral gap and the susceptibility as-
(82 ymptotically approaches its value for a spin-1/2 chain. We
Using Egs.(5) and (A10), we find that the exponential is emphasize that the described picture holds only in the ideal

expressed in terms of the fiettl. only. Thus we find a very Imit J, /J—0. We suppose that in real systems it will be
transparent representation for the string operator: difficult to make this ratio less than 0.1.

VI. CONCLUSIONS

O*(x,y)=expiVal . (x)— b, (y)]}. (83 ACKNOWLEDGMENTS
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skii and A.M. Finkel'stein. A. A. N. is grateful to the Depart-
expli \/;¢+(X))~,u,1,u,2+ 0,05, (84) ment of Theoretical Physics of the University of Oxford for
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we find that the string operator is expressed in terms of thes ant No. GR/K4 1229.
Ising order and disorder operators. For either sigd,of we

find that, in the limit|x—x’|—c, the vacuum expectation .
value ofO%(x,y) is indeed nonzero: APPENDIX A: BASIC FACTS ABOUT BOSONIZATION

) , ) ) 4 Antiferromagnetic spin-chain Hamiltonians, such as the
lim  (O%(x,y))~(01)(02)°=(0)"#0, 1, <0, (85  Hgjsenberg Hamiltonian

|X—X,|%w

N
lim  (O%(x,y))~(p1)¥(p2)?=(n)*#0, 3,>0. (86) H=JY S-S,.; (S=1/2, J>0) (A1)
n=1

|X—X,|—>OO

As in the case of the bond-alternating spin chain, the nonean be mapped onto fermionic theories. Using bosonization,
vanishing expectation value of the string order parameter ithese can be recast as generalized Sine-Gordon or WZW
the limit of infinite string manifests breakdown of a discrete models. This is useful because a great deal is known about
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these theories, such as correlation functions, scaling dimerfhe spin partH‘S’U(z) represents the levek=1 SU2)-
sions of operators, etc. A brief summary of this approach isymmetric critical Wess-Zumino-WittefWZW) model.

given below.

A weak Hubbard interaction preserves the important prop-

Following Refs. 26, we start from symmetry preserving erty of charge-spin separatiod,,par= Hce+ Hs. Umklapp

fermionization of the spin operators

>

S a2 U (A2)

H
To eliminate the redundant zero- and double-occupancy

states, the constrairﬁawﬁazpna:l for all lattice sitesn

should be imposed. Such a constraint will effectively wor
if one considers a 1/2-filled) >0 Hubbard model for the

field ¢, . In this model, a Mott-Hubbard charge gap is

known to exist forany positive U. Therefore, at low ener-
gies,|E|<m., only spin excitations remain; those describe

universal dynamical properties of the spin-chain mdddl)
in the continuum limit.

processes relevant at 1/2-filling transfom{ﬂ(l) to a quan-
tum sine-Gordon model

c:j dx(%[n(z:"_((;x‘ﬁc)z]"'cong[g CoB.d¢ |, (A9)

K which atg~U/t>0 occurs in its strong-coupling, massive

phase 2<8r), with the single-soliton mass), being just
the the Mott-Hubbard commensurability gap.

In the spin sector, interaction-2gJg-J, is added to
ng(z). This interaction is marginallyirrelevant (since
g>0). Therefore, the universal scaling properties of the
Heisenberds=1/2 spin chainAl) are described by the level

_ 0 26
Assuming thatU <t, we linearize the free-particle spec- K=1 WZW modelHg, ).

trum near two Fermi pointst kg (kg= 7/2a,), and decom-

The possibility of an Abelian bosonization of the Heisen-

pose the Fermi field into right-moving and left-moving chiral Perg chain(Al) stems from the fact that conformal charges

components:

Yna— NAoWa(X),  Ya(X)=(—1)"Pra(X) +i"La(X).

(A3)

We then introduce the scalpd(1)] and vecto{SU(2)] cur-
rents(the local charge and spin densilies

. . . ap .
JR,L:-lﬂTR,L;a‘ﬁR,L;a-: JR,L:-‘ﬂ;,L;a 5 lﬂR,L;ﬁ-
(A4)

satisfying anomalougU(1) and SU2)] Kac-Moody alge-
bras:

1
[Ir(X),Ir(X")]=— 8" (X=X'), (A5)

i
[IR00.IR(X)]=1€P0R(X) B(x—x") = 7— 628" (x—x)
(A6)
(with similar relations for the left componentsThese alge-

of the k=1 SU2) WZW models and free massless Bose
field coincide: CZ‘Q’lJZ("Z")ik=1=CBOSOH=1. Using  relations
(1/3)rey Ir) = Jrydr)» Hsue) can be expressed in
terms ofJ? currents only; introducing then a pair of canoni-
cal variablesgg andIlg, via

A tJi= A== I, (A10)

1 1
—9 , R
\/ﬁ X¢s \/E

one finds

HYaHo= g | AITZ00+ (,s(0)?). (ALY

The price we pay for this simplification is the loss of spin
rotational invariance in the bosonized structure of the spin
currents: theJ* and J¥ cannot be represented as simply as
J?, and require bosonization of the Fermi fields:

UrL.o(X)=(27a0) " Yeexp(£iVameg . 4(X)). (A12)

bras lead to fermion-boson duality which allows us to repre-

sent the Hamiltonian of free fermions as a sum of two inde-
pendent(commuting contributions of gapless charge and

spin collective modegSugawara form

0_ o 0
H"=H{1) T Hsuypz

- [ ax

27TU|:
3

TUE
T(:JRJR:+:JLJL D)

+ (- Jdg:+:d-dL 0| (A7)

Linear combinations

q)achRa—’_(PLav ®a=_()oRa+<PLa

constitute scalar field®, and their dual counterpar® ,
introduced for each spin component. The fields describing
the charge and spin degrees of freedom are defined as fol-
lows:

The charge part is equivalently described in terms of a mass-

less scalar  field ¢.. Under identifications
Jr+d = (WNm) d,de, In—3 = — (Um)II,., wherell, is
the momentum conjugate to the fiefgl , one obtains

M=% f AXTI2(0 +(3be(x)?]. (AB)

PR T 1)
C \/E ’ C \/E ’
D, — P )
be= Tﬁ L, s=—Tﬁ L (A13)

wheredy 8, s=1I1 5.
To bosonizelz . , use(A12) to obtain:
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N/2

1
J£=¢E¢¢/R1=me><p(—i V27 (ps— 65)), H=432 [(Sy-1-S5)— B(Syj- Spj+1]- (B1)
0 =1

1 This model is instructive in the sense that the string order
= %//IWLFmeXP(i V2m(pst65). (Al4)  parameter, whose nonzero expectation value signals break-
0 down of a hidden discrete symmetry, can be easily
Note that, as expected, the charge figlddoes not contrib-  constructed® The analogous construction is then directly
ute to the spin S(2) currents. Moreover, despite the fact that generalized for the spin-ladder model.

the definitiongA14) contain cutoffay explicitly, the current- A gap in the excitation spectrum of the mod8ll) per-
current correlation functions are cutoff independent and resists in the whole range908<=. At =0 the ground state
veal the underlying S(2) symmetry: of model represents an array of disconnected singlets. At
5P 1 B>1, strong ferromagnetic coupling between the spins on
(A(x)I°(x"))y =~ T2 (=x)2° (A15)  the(2j,2j+1) bonds leads to the formation of local triplets,

and the modelB1) reduces to @&S=1 Heisenberg chain.

The SU2) currentsJg(x), J.(X) determine the smooth Using ga nonlocal unitary transformation, Kohmoto and
parts of the spin operators in the continuum limit. Namely, atTasaki® have demonstrated equivalence of the m¢Ba) to
a,—0 a system of two coupled quantum Ising chains, i.e., two

coupled 2l Ising models. This transformation provides an
Si—aS(x), S(X)=Jr(X)+I(X)+(—1)"n(x), (Al6) exact representation of the spin operatsfsas products of
two Ising-like order ¢,7) and disorder &,7) operators, es-

where
R sentially a lattice version of relatior{81) and(33) (see, e.g.,
_ ot Tap Ref. 31). Nearest-neighbor bilinears of the original spin op-
N0 = thra(X) 5~ YrLg00) T H.C. AL7) rators take the form
is the staggered part of the local-spin density. 4. SK = — glot 4S5, o=
When bosonizing/A17), the (redundant charge excita- %2241 A =2i-1%) !
thrns emerge, since off-diagonal b|.I|n§ars I|l§E§Q1//L and 4S¥15¥j+1:_7127j2+1- 45%1._15%]:_0}(,
| Yr describe particle-holehargeexcitations with momen-
tum transfer+ 2kg . We find 485,53 1=— 00 1T T 1, 855 1S5=— 0o},
1 (B2)
n*= — W—aOcos\/quscsm\/ZszS, where
1 g }(: o jz— 1/2‘~T jz+ 1/21 TjX: ;'jz— 1/2;'jz+ 1/2s (B3)
n*=——-—cog V2w, exp +iy2mb,). N2 -1
70 o= 11 of, #op-Il 7. @
Being interested in the energy ranggl<m;, one can re- iz I=j+1 I R e T

place the charge operator C@d&) by its nonzero
vacuum expectation value; we denote tlironuniversal

value by)\=<cos(\/ﬁ¢c)) and arrive at bosonization for-
mulas forn(x): N/2

H= —Jjgl [(ﬁO'jZG'jZ+1+ O'}()+(BTjZTjZ+1+ Ti()

Relations(B2) make the HamiltoniariB1) equivalent to
two coupled quantum Ising chains:

A
n%(x)=— W—%sin@%m,

+(Bojol 1Tt i) (B5)

A
n*(x)= o X V2m04(%)]. (A18)  The model(B5) is invariant under independent rotations of
0 the o and 7 spins by angler about the spirk axis which
This completes the bosonization of the spin operators foEomprise a,x Z, group. Since this group is discrete, it can
the isotropic Heisenberg chain. Notice that the critical di-be spontaneously broken, in which case the spectrum of the
mensions of the smooth and staggered parts of the spin defystem would be massive. It is easily understood f(@%)

sities are different: that, in the limit of large positivg8 when the model reduces
. ) to theS=1 chain, theZ,XZ, symmetry is broken, with
dimJ2=1, dim?=1/2. (A19)
(of)y=(r))=(0oj7)#0. (B6)

APPENDIX B: HIDDEN Z,xZ, SYMMETRY AND STRING
ORDER PARAMETER IN THE
BOND-ALTERNATING S=1/2 HEISENBERG CHAIN

[It has been used in EqB6) that, under transformation
ui=oj7] to a new pair of variablesy; and 7{, the two-
chain Hamiltonian(B5) preserves its fornj.

In addition to theS=1/2 spin-ladder model, there is an-  Representatio(B2) hints to the way how an order param-
other system which is related to tf&=1 spin chain—the eter measuring breakdown of ti#gxZ, symmetry should
spin-1/2 chain with alternating ferromagnetic and antiferro-be constructed out of the spin operatd§. Following
magnetic bonds: Kohmoto and Tasaki, consider a product
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2n-1 n-1 n-1 structed in a similar manner:
H 25'= H 4S)Z<j8§j+1: H (_(’jszjzﬂ)
=2k j=k =k 2n—1
_ y = i y
=(—1)""M0}0ks (041084 2) - - (07 _107) O7(kin) ex;{IWI—EZk SI)
=(—1)"*olo?. (B7) 2n-1 n-1

= 11 2ist=11 (485850

Using the relatiori o' =exp(maj/2), we find that
2n—1

-1
O*(k,n)=exp i < | =oto?. B8 0
(k,n) 7T|:22k 51) lotoss (B8) :jﬂk 2 =T, (B10)

This is thex component of the string order operator. Accord-
ing to (B6), in the limit |k—n|— o, its vacuum expectation
value is nonzero:

(O*(k,n))—(a)2#0. (B9)

2n-1
O%k,n)=ex iwl=22k SZ) =oiriobth.  (B1l)

It is important that the string always contains an even
number of sites, starting at an even site and ending at an odd
site. For a string starting at an odd site and ending at an eve{der parameter
site, the corresponding string operator is expressed in terms
of disorder operators and therefore has zero expectation 2n—1
value: O“(k,n)=ex;<iw|22k Sf’), (S=1/2, a=Xx,y,2)

il (B12)

e SU2) invariance of the expectation value of the string

n
23X=j:];[+1 4S5 1S5 = (= D" M Ty 1k 3

I=2k+1
"y oy —y oy follows from (B6).
X (Tir 3Tk 52) (Th- 12T+ 17) Notice that in the limiting case8>1, the string order
—(—pnkpz 52 parametefB12) for the S=1/2 bond-alternating chain auto-
k+1/20n+ 1/ matically transforms to the exponential of the string order
The y and z components of the string operator are con-parametel80) for the S=1 chain.
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