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We analyze the energy band structure of a two-dimensional electron gas in a periodic magnetic field of a
longitudinal antiferromagnet by considering a simple exactly solvable model. Two types of states appear: with
a finite and infinitesimal longitudinal mobility. Both types of states are present at a generic Fermi surface. The
system exhibits a transition to an insulating regime with respect to the longitudinal current, if the electron
density is sufficiently low.

The interest in the magnetoconductance properties of the
two-dimensional electron gas in spatially periodic lateral
magnetic fields has been further stimulated by the recent ex-
perimental availability of such systems.1,2 In the work of
Carmonaet al.1 spatial modulation of a magnetic field was
produced by means of equidistantly located superconducting
stripes where magnetic vortices were trapped by impurities
resulting in periodic inhomogeneity of the external magnetic
field, while in the work of Yeet al.2 it was produced by
deposition of ferromagnetic microstructures on top of the
high-mobility two-dimensional~2D! electron gas. Vast theo-
retical efforts on a 2D electron gas in an inhomogeneous
external magnetic field range from the theory of momentum-
dependent tunneling through a magnetic barrier3 to proper-
ties of electronic states and transport in a weakly spatially
modulated magnetic field.4–7 In this paper we will be con-
cerned with the one-electron energy band structure of the 2D
electron gas under a periodic lateral magnetic field of an
antiferromagnet, which is a limiting case of a strong periodic
modulation. We will show that two types of states appear:
with a finite and infinitesimal longitudinal mobility. Both
types of states are present at a generic Fermi surface. The
system exhibits a transition to an insulating regime with re-
spect to the longitudinal current if the electron density is
sufficiently low.

The effect of a uniform magnetic field on energy bands
produced by the periodic~electric! potential is well known.8

The impact of the slightly inhomogeneous magnetic field on
the Landau levels of a free electron was considered by
Müller.4 He showed that the energy bands exhibit a pro-
nounced asymmetry in the lateral direction. For a spatially
modulated magnetic field a common theoretical model5 em-
ploys a magnetic field perpendicular to the plane of the two-
dimensional electron gas which has a ‘‘carrier’’ fieldB0 with
a periodic modulation on top of it:

B5~B01B cosKy!ẑ. ~1!

In the work of Peeters and Vasilopoulos5 the effect of a pe-
riodic electric and weakly modulated magnetic field
(B!B0) was considered. They showed that the broadening
of the Landau levels is roughly proportional to the modula-
tion amplitudeB. The ‘‘Hofstadter-like’’ spectrum was ob-
tained by Wu and Ulloa,6 and collective excitations were
analyzed in Ref. 7 by the same authors.

In this work we will deal with an electron gas confined to
a plane in a perpendicular periodic magnetic field without a
‘‘carrier’’ field. In other words, in~1! we takeB050. This
corresponds to the extreme case of the other limit,
B0!Bm . Such a periodic field will create an energy band
structure of its own. We see this type of arrangement experi-
mentally realizable by bringing a two-dimensional electron
gas in close contact with a mesoscopic longitudinal antifer-
romagnetic~sandwich! structure, without an external mag-
netic field. When dealing with the one-electron spectrum it is
useful to have some exactly solvable models~potentials!, as
they elucidate the whole structure of the energy bands.9 Be-
low we show that the energy bands can be obtained exactly
in a simple way for a reasonably idealized periodic magnetic
field. We present a full band picture for both spin and spin-
less electrons, and discuss the topology of the Fermi surface.

The Hamiltonian for a free spinless electron in a magnetic
field is

Ĥ5
1

2m S p1
e

c
AD 2. ~2!

In our case the electron is confined to a plane, and a periodic
magnetic field of lateral antiferromagnet is superimposed.
The magnetic field can be modeled as~see Fig. 1!

B5Ba (
n50,61, . . .

@d~y1c1an!2d~y1an!# ẑ. ~3!

For such a magnetic field the vector potential takes a form

FIG. 1. The external periodic magnetic field as modeled by~3!.
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A5„2Bae~y!,0,0…, ~4!

where

e~y!5e~y1an!, ~5!

e~y!5H 21/2 0,y,c,

1/2 c,y,a.
~6!

We proceed with solution of Eqs.~2!–~6! in a standard way.
We look for the solution in a form

c~x,y!5eikxxx~y!. ~7!

Thus, in the gauge~4! the solution is a plane wave in thex
direction. For they-dependent part of the wave function
x(y) we arrive at

F2
1

2

d2

dy2
1kxge~y!Gx~y!5SE2

kx
2

2 Dx~y!. ~8!

Here atomic units are adopted;E is the energy up to an
unimportant constant;g5a/aB

2 , the dimensionless ‘‘mag-
netic length,’’ is given byaB5A\c/eB/a0 ; and a0 is the
Bohr radius. Equation~8! is precisely the Schro¨dinger equa-
tion for the Kronig-Penney model, and can be easily solved
exactly. The resulting dispersion relation is given by

coskya5
b22a2

2ab
sinhbb sinac1coshbb cosac, ~9!

where

a5Akxg12~E2kx
2/2!, ~10!

b5Akxg22~E2kx
2/2!; ~11!

ky is the quasimomentum in the longitudinal direction. The
band structure forB50.1 T, a51mm, c5a/3, b52a/3 is
presented in Figs. 2 and 3. It is compressed in the~longitu-
dinal! y direction. As was pointed out in Ref. 4, the pro-
nounced asymmetry along thex direction is the signature of
the energy spectrum in the inhomogeneuos magnetic field. In
the upper quarter of Fig. 2 is the region where ‘‘broad’’ bands
are formed. These bands have a finite width in they direc-
tion, and the particles occupying these states will have a
finite mobility in the longitudinal direction. The other set of
‘‘narrow’’ bands occupies the left and right quarters of Fig. 2.
From the point of view of the Kronig-Penney model~8! they
correspond to the valence bands of the periodic potential.
These bands are infinitesimally narrow in they direction, and
electrons populating them would have a vanishingly small
longitudinal mobility. Of course, in the transverse direction
states in both types of bands would have some finite mobil-
ity. Figure 3 represents the same band structure on a bigger
scale. The part of the spectrum shown in Fig. 2 corresponds
to the area inside the box of Fig. 3. Dark areas of Fig. 3
represent regions of ‘‘broad’’ bands, while the parabolas rep-
resent ‘‘narrow’’ bands. In order not to overcomplicate the
picture we show only every fourth of the latter. As we will
see below, the peculiarity of the energy spectrum in a peri-
odic magnetic field will appear in the fact that at the Fermi
surface both types of states will appear.

In this model the problem of electrons with spin is equally
easy to treat. This amounts to simply adding the spin-
dependent term to the left-hand side of Eq.~8!:

F2
1

2

d2

dy2
1kxge~y!1

g

2(n @d~y1c1an!

2d~y1an!#Gx~y!5SE2
kx
2

2 D x~y!, ~12!

which results in a slightly modified dispersion relation

coskya5
b21g22a2

2ab
sinhbb sinaa1

g

a
coshbb sinac

1
g

b
sinhbb cosac1coshbb cosac, ~13!

with the samea andb as in Eqs.~10!, ~11!. The detailed
band structure for the same magnetic field as before is shown
in Fig. 4. The main structure of the whole spectrum is still
represented by Fig. 3. As compared to the spinless problem,
the ‘‘broad’’ bands are characterized by wider gaps in the
density of states, while ‘‘narrow’’ bands only slightly change
their locations. As we fill the spin ‘‘up’’ and ‘‘down’’ states
up to the Fermi level, the ground state exhibiting transverse
oscillatory spin oscillations in the spirit of the ones discussed
by Chudnovsky10 may result.

At possible Fermi surface corresponding to cutting the
energy manifold atEF5431026 a.u. is presented in Fig. 5.
We show only a part of the first Brillouin zone. Shaded areas
are populated by electrons. The curved lines of the Fermi
surface~in the middle! correspond to states in the ‘‘broad’’
bands. As discussed above, these states have a finite mobility

FIG. 2. The band structure for a spinless problem compressed in
the ~longitudinal! y direction. B50.1 T, a53000 Å, c5a/3,
b52a/3. The states in the ‘‘broad’’ bands~upper quarter! have a
finite longitudinal mobility, while the longitudinal mobility of the
states in the ‘‘narrow’’ bands~left and right quarters! is infinitesi-
mal.
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in both directions and will always contribute to the conduc-
tivity of the sample. The vertical lines on the extreme right
and left correspond to the sections of ‘‘narrow’’ bands which
are flat in the longitudinal direction. Thus, these states will
not contribute to the longitudinal current, while always con-
tributing to the transverse one. If the electron gas is dilute
enough so that the Fermi level drops below theE50 level
~see Fig. 3!, the sample will not conduct in the longitudinal
direction at all as all the states at the Fermi surface will have
a vanishing mobility in they direction. It is easy to estimate
the electron density for transition to an insulating regime by
counting the states withE,0. In our range of parameters we
can totally neglect the width of the ‘‘narrow’’ bands. The
transition density is given by

n5
1

2pa S (
n

Ag22~p12pn!2/c2

1(
n

Ag22~p12pn!2/b2D ~14!

~all quantities are in atomic units!. The summations are over
all n50,1,...,nmax for which the radicals remain positive.
For our values ofb, c, andB, n'1011 cm22. If any of the
summations turns out to be restricted to the first ‘‘narrow’’
band, one has to account for the bandwidth in they direction
as well.

In a realistic experimental situation many-body effects
will be present. The simplest of them is screening. Screening
will ‘‘smear’’ the effective single-particle potential, which
may result in suppressing smaller gaps predicted in the cal-
culation. However, these effects do not change the overall
structure of the spectrum.

In conclusion, we have presented a simple exactly solv-
able model of the electronic band structure in a spatially
periodic magnetic field. All the conclusions derived from the
model are not restricted to this particular model, but illustrate
the general structure of the energy bands of the two-
dimensional electron gas in a periodic lateral magnetic field.
This type of system can be realized by imposing magnetic
field of a longitudinal antiferromagnet on a high-mobility
two-dimensional electron gas. The band structure exhibits a
pronounced asymmetry in the lateral direction and consists
of the two types of bands. The states in ‘‘broad’’ bands will
have a finite mobility in the longitudinal direction while the
longitudinal mobility of the electrons occupying states in
‘‘narrow’’ bands is infinitesimally small. A generic Fermi
surface will contain both types of states. If the electron den-
sity is sufficiently low, only the ‘‘narrow’’ bands will be oc-
cupied resulting in vanishing of the longitudinal conductiv-
ity. The electron density for transition to the insulating
regime has been estimated. An interesting extension of this
work is to account for screening in such a system.

Note added in proof. Recently we learned about related
work by Ibrahim and Peeters@Phys. Rev. B52, 17 321
~1995!; Am. J. Phys.63, 171 ~1995!#.
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FIG. 3. The band structure on a bigger scale. Only every fourth
of the ‘‘narrow’’ bands is shown. The box in the middle is magnified
for the spinless problem~Fig. 2!, and the problem with spin~Fig. 4!.

FIG. 4. Same as in Fig. 2 but for the problem with spin.

FIG. 5. Fermi surface forEF5431026 a.u. Only a part of the
first Brillouin zone is shown. Shaded areas are populated by elec-
trons. The curved lines of the Fermi surface~in the middle! corre-
spond to the states in the ‘‘broad’’ bands, while the vertical lines on
the extreme right and left represent the states in the ‘‘narrow’’
bands.
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