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A classical model for the lattice distortions of La12xAxMnO3 is derived and, in a mean field approximation,
solved. The model is based on previous work by Kanamori and involves localized Mnd electrons~which
induce tetragonal distortions of the oxygen octahedra surrounding the Mn! and localized holes~which induce
breathing distortions!. Parameters are determined by fitting to the room temperature structure of LaMnO3. The
energy gained by formation of a local lattice distortion is found to be large, most likely'0.6 eV per site,
implying a strong electorn-phonon coupling and supporting polaronic models of transport in the doped mate-
rials. The structural transition is shown to be of the order-disorder type; the rapidx dependence of the transition
temperature is argued to occur because added holes produce a ‘‘random’’ field which misaligns the nearby sites.

I. INTRODUCTION

LaMnO3 is an insulator which undergoes a structural
phase transition at aTs(x50);750 K. The high-temperature
phase is believed to be cubic. The low-temperature phase is
approximately tetragonal, with one lattice constant about
0.15 Å shorter than the other two.1 Several other rather
small-amplitude~;0.01 Å! distortions also occur at tempera-
tures less than or equal toTs ,

2 and the structure at room
temperature is orthorhombic. These small distortions will be
ignored here. As the composition is varied to La

12xAxMnO3, there are two changes. First,Ts(x) decreases
rapidly and vanishes atx5xs'0.2.1,2 Second, the resistivity
decreases.3 However, forx,xcond'0.3 and temperatures of
order room temperature and higher, the material is still insu-
lating in the sense that the resistivity is much higher than the
Mott limit, and increases asT is decreased.4 In this regime a
description of the resistivity in terms of classical particles
hopping on a lattice has been shown to be self-consistent.5

This paper presents a model for thex,xcond regime and
an explanation for thex dependence ofTs . The physical
picture is as follows: The electrically active orbitals are be-
lieved to be the Mnd3z22r2 anddx22y2 orbitals. The mean
occupancy is 12x.1,6 Because the conductivity is so low, the
electrons are treated classically. It is assumed that a site is
occupied, with probability 12x or empty, with probability
x. Thed orbitals are degenerate if the local environment has
cubic symmetry; the degeneracy is lifted by a tetragonal dis-
tortion of the local environment. Kanamori7 deduced that at
x50 the primary lattice distortion occurring atTs is a stag-
gered (p,p,p) tetragonal distortion of the oxygen octahedra
surrounding the Mn sites, driven by a Jahn-Teller splitting of
the outer Mnd levels; anharmonic terms in the elastic energy
couple this to the uniform strain, producing the lattice pa-
rameter changes observed in early scattering experiments.
Kanamori’s deduction was subsequently confirmed by more
detailed studies of the structure.2 In this paper ionic displace-
ments will be explicitly included in Kanamori’s model, a fit
to data will be given, and the model will be extended to
x.0. It will be shown that the energies involved in the Jahn-
Teller physics are much larger than any relevant temperature,

so that as long as a classical picture for the electrons is ap-
propriate, a local tetragonal distortion will occur around each
Mn site where there is an outer shell electron. At each unoc-
cupied site a breathing mode distortion will occur; this will
act as an effective random field on the staggered tetragonal
distortions, and will prevent them from ordering. If the te-
tragonal distortions are not coherent throughout the lattice,
they cannot couple to the uniform strain, and the material
will remain approximately cubic.

The model considered here is a version of the ‘‘coopera-
tive Jahn-Teller effect,’’ which has generated an enormous
literature.8 Surprisingly, rather little attention has been paid
to LaMnO3 since the pioneering work of Kanamori. A
Hamiltonian describing the orbital ordering of LaMnO3 was
derived from a purely electronic multiband Hubbard model
by Kugel and Khomskii9 and a similar Hamiltonian has re-
cently been derived and studied via mean field theory by
Ishihara et al.,10 but atomic displacements and electron-
phonon coupling have not been considered. The aspects of
the present paper are the explicit inclusion of the lattice de-
grees of freedom, which allows values for the electron-
phonon coupling in LaMnO3 to be deduced from data, and
the discussion of the ‘‘random field’’ effect of holes.

The rest of this paper is organized as follows. In Sec. II
the model is derived. In Sec. III the parameters are deter-
mined by fitting structural data for LaMnO3 to the model. In
Sec. IV the effects of added holes are discussed. Section V is
a conclusion. Technical details of calculations are given in
several Appendices.

II. MODEL

In this section the energy functional is derived. The main
physical assumption is that all degrees of freedom may be
treated classically. The electrons are regarded as the funda-
mental degrees of freedom and are taken to be localized on
lattice sites. In a classical model the hopping of electrons
from site to site does not affect the energy, and so will be
neglected. Note also that the physical mechanism primarily
responsible for localization could be the electron-phonon
coupling discussed here or the ‘‘Hubbard-U ’’ effects consid-
ered by other authors.11 The cause of the localization is not
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relevant to the considerations of this paper, and so the elec-
tronic correlation effects need not be explicitly considered.

For each fixed configuration of electrons, the phonon part
of the free energy is minimized; the result of this minimiza-
tion is the energy of that configuration of electrons. The
phonons are treated in the harmonic approximation. The ef-
fect of the undoubtedly important anharmonic terms in the
lattice energy is parametrized. Only some of the lattice de-
grees of freedom are considered. These are~1! the vector
displacementsdW i of the manganese~Mn! ion on sitei and~2!
the scalar displacementui

(a) of the oxygen~O! ion along the
Mn-O-Mn bond direction. Thusui

x is the displacement, in the
x direction, of the O atom which sits between the Mn ion on
site i and the Mn ion on sitei1 x̂. With this restricted set of
displacements one may discuss the Jahn-Teller distortion and
the uniform strain, but not the buckling of the Mn-O-Mn
bond or the associated rotation of the octahedra. These latter
lattice distortions occur but, I believe, are not fundamental.

If an electron is present on sitei , it will be in a state
uc i(u)& given by a linear combination of the two outerd
orbitals. In the classical approximation used here the phase
of the electron is of no significance, and so one may write

uc i~u i !&5cosu i ud3z22r2&1sinu i udx22y2&, ~1!

with 0<u i,p.
The lattice energyElatt is taken to depend on the Mn-O

distance and the Mn-Mn distance. The unit celli is taken to
include the Mn ion at positionRW i1bdW i and the three O ions
at positionsRW i1( 12b1bui

(a))â, wherea5x, y, or z andb is
the lattice constant. Hered andu are dimensionless displace-
ments defined with reference to the ideal perovskite lattice
with lattice constantb. In the harmonic approximation

Elatt5
1

2
K1(

i
~d i

a2ui
a!21~d i

a2ui2â
a !2

1
1

2
K2(

i
~d i

a2d i2â
a !2. ~2!

HereK1 andK2 have the dimension of energy; one expects
K1>K2 .

If an electron is present on sitei , there is an electron-
lattice energy given by

EJT5l(
i

~12hi !Fcos2u i S v iz2 1

2
~v i

x1v i
y! D

1sin2u i
A3
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x2v i
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Here

v i
a5ui

a2ui2â
a ~4!

andhi50 if an electron is present on sitei andhi51 if not.
Finally, if there is no electron present on sitei , all of the
neighboring oxygen ions are equally attracted to it, leading
to

Ehole5bl(
i
hi@v i

x1v i
y1v i

z#. ~5!

One expectsb@1 because the force exerted on the surround-
ing oxygen ions by a Mn of the wrong charge must be much
greater than the force exerted by rearranging the proper
charge among differentd orbitals.

For fixed values ofu i andhi , Eqs.~2!, ~3!, and~5! may
be minimized. The details are given in Appendix A. The
result is most naturally expressed in terms of the parameters
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K112K2
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K1~K112K2!
, ~6!
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ia
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2hi1â!cos2~u i1ca!cos2~u i1a1ca!12bk(
ia
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2hi1a!cos2~u i1a1ca!1b2k(
ia

hihi1a . ~7!

Herea56x,y,z, c6z50, c6x52p/3, c6y5p/3, and we
have followed Kanamori7 by adding a phenomenological an-
harmonicity term with coefficientA. Cubic anharmonicities
exist in any realistic model of lattice dynamics. The anhar-
monicity is important for two reasons: it couples a staggered
distortion to a uniform one, and it breaks the perfect rota-
tional (u) symmetry found otherwise ifhi50. The term
added to Eq.~7! is the simplest one which accomplishes
these two effects and goes into itself underu→u1p as re-
quired. It is derived in Appendix A.

To each configuration of orbital occupancies$u i% corre-
sponds an average distortion from the ideal cubic peroviskite
structure. This may be written in terms of the oxygen (u)
and Mn (d) displacements as

ui
a5(

j
fu
a~Ri2Rj !@~12hj !cos2~u j1c j

a!1bhj #,

d i
a5(

j
fd
a~Ri2Rj !@~12hj !cos~2u j1c j

a!1bhj #. ~8!

The elastic kernels are

fu
a~R!5

l

K1
(
k

eik•R~12e2 ika!@K11K2~12coska!#

~K112K2!~12coska!
,

fd
9~k!5

l

K1
(
k

eik•RK1cos~ka/2!~12e2 ika!

K11K2~12coska!
. ~9!

III. FIT TO DATA

In this section the structural information of Ref. 2 is used
to estimate model parameters. The analysis is essentially that
of Kanamori.7 A two-sublattice ordering of Jahn-Teller dis-
tortions parametrized by anglesu1 and u2 is assumed. By
fitting the observed atomic displacements to Eqs.~A2! and
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~A7!, u1 ,u2 and elastic constants are determined. By requir-
ing that the deducedu1 ,u2 minimize Eq.~7! the anisotropy
energyA is found. The experimental data for the structure
are given in Appendix B and the mean field equations are
solved in Appendix C.

It is convenient to express the lattice distortions in terms
of a staggered oxygen displacementuW s and a uniform strain
eW . By rewriting Eqs.~A2!, ~A7! we obtain

us
a5

l

2K1
@cos2~u11ca!2cos2~u21ca!#,

ea5
2l

~K112K2!
$cos2~u11ca!1cos2~u21ca!%. ~10!

In Appendix B the valuesea520.028(21/2,21/2,1)
andus

a50.038(1,21,0) are derived from the data of Ref 2.
Thatus

z50 impliesu252u11p; substituting this into Eqs.
~10! leads to equations foru1 andl/K1 which may be solved
if K2 /K1 is given. Results are listed in Table I.

We now turn to the value ofA. The assumption of a
two-sublattice distortion and the conditionhi50 implies that
Eq. ~7! becomes

E5
1

2
A@cos~6u1!1cos~6u2!#13kcos~2u122u2!. ~11!

By minimizing Eq.~11! and usingu25u11p we find

A

k
52

22sin~4u1!

sin6u1
. ~12!

Values forA/k are also listed in Table I.
The most important information contained in Table I is

that the basic Jahn-Teller energyE0 is much greater than the
stiffnessk which orients the distortions from site to site.
Indeed, from Eq. ~6! the ratio may be seen to be13
K2 /(K11K2); as it is unlikely that the Mn-Mn force con-
stantK2 . the Mn-O force constantK1 , the ratio is less than
1/6. The structural transition occurring atTs'800 K in
LaMnO3 is therefore of the order-disorder type, and we may
expect local distortions to persist forT.Ts .

From Table I it is also clear that the anisotropy energy is
not small, although the precise value depends sensitively on
K2 /K1 .

Now consider magnitudes of energy scales. The basic
scale isK1; this is related to the frequency of an oxygen
bond stretching phononvox by

vox5A2K1 /b
2\2

Mox
. ~13!

The factor of 2 arises because there are two Mn-O bonds in
Eq. ~2!. Estimating 100 meV*\vox*30 meV and using
b54 Å gives

300 eV*K1*30 eV. ~14!

I am unaware of measurements of the phonon spectrum in
LaMnO3. If, however, it is assumed that the phonon spec-
trum has a rather weak doping dependence one may use op-
tical data from La1.85Sr0.15MnO3.

12 The highest-lying phonon
modes were observed atvph;70 meV. It is reasonable to
assume that these are the bond-stretching oxygen modes of
interest and that these modes are only weakly dispersive;
thus, one may identifyvph with voxy and estimateK1'200
eV.

An alternative estimate may be obtained from the mean-
field approximation to the structural transition temperature
Ts'750 K. This is shown in Appendix E to beTs

MF'3k,
and mean-field theory overestimatesTs ; so

k.20 meV. ~15!

This bound onk yields K2 /K1-dependent bounds for
K1 ranging fromK1.220 eV (K2 /K50.1) to K1.50 eV
(K2 /K151). Values ofK2 /K1*0.5 are most consistent with
estimates ofvoxy&50 meV, those ofK2 /K1,0.5 with
voxy*50 meV. Combining this with the estimateK1'200
eV suggestsA;k. This estimate is consistent with estimates
given in a standard review13 that typical anharmonicity ener-
gies are of order a few hundred kelvin.

The estimates ofK1 imply Jahn-Teller energiesE0 rang-
ing from'100 meV at the low end (K1;30 eV! to 1 eV at
the high end (K1;300 eV!. The estimatevoxy570 meV
implies E0'0.6 eV, slightly larger than the largest Jahn-
Teller energy listed in a standard review.13 In any event, be-
cause the energy splitting between the twod levels is 4E0 , it
is safe to assume that at any reasonable temperature the split-
ting is frozen in. Unfortunately the splitting is difficult to
measure directly because most methods for coupling to the
d level involve changing the valence of the Mn, which would
bring other physics in to play. The transition should be Ra-
man active, though.

To summarize, it has been shown in this section that the
Jahn-Teller energy of LaMnO3 may be written

Ex505k(
ia

cos~2u i12ca!cos~2u i1a12ca!

1A(
i
cos6u i . ~16!

If A*Ts , then it is reasonable to assume that at each site
u i is near one of the three angles favored by the anharmo-
nicity term, so that the system may be mapped on to a three-
state Potts model as previously noted.8 Details are given in
Appendix D. The result is conveniently written in a notation
in which the state of sitei is represented by a vectorQi with
a 1 in one place and 0 in the other two places;Qi5(1,0,0)

TABLE I. Values of the parameters deduced by fitting mean-
field theory to structural data.

K2 /K1 2u1
(0) l/K1 E0 /K13103 k/K13104 A/k

0 80.9 0.044 2.9 0 0.70
0.1 79.2 0.045 2.8 0.85 0.87
0.3 75.7 0.045 2.5 1.9 1.31
0.5 72.3 0.046 2.4 2.6 1.92
0.75 68.2 0.047 2.4 3.4 3.31
1 64.4 0.049 2.4 4.0 6.93
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implies there is a Jahn-Teller distortion with the long axis
alongx, Qi5(0,1,0) meansy and ~0,0,1! meansz. Then

EPotts5k(
ia

QW i I
aQW i1c1J8(

ia
QW i•QW i12a , ~17!

with Ia a bond-direction-dependent interaction given in Eq.
~D3! and J8,0 a ferromagnetic interaction between
‘‘straight-line’’ second neighbors, which is of orderk/A and
was apparently not neglected in previous work. The second-
neighbor interaction is an approximation to the true interac-
tion, as discussed in Appendix D. The three state Potts model
has a transition in thex-y universality class as, therefore,
does Eq.~16!. The second-neighbor ‘‘ferromagnetic’’ cou-
pling lifts the degeneracies which lead to subtleties in the
behavior of the usual Potts model. The estimates ofA sug-
gest that the extreme Potts limit will not provide a good
quantitative description of LaMnO3.

IV. HOLES

This section discusses the effects of added holes. It is
clear from Eq.~7! that a hole on sitei eliminates the Jahn-
Teller distortion on site i and leads to a potential,
bkcos(2u i1b12cb), which acts to orient the distortion on
site i1b so that its long axis is alongb̂. Thus added holes
lead both to site dilution and to a field which tends to orient
some of the neighbors of the hole in directions not compat-
ible with long-range order.

If A.0 ~as seems to occur in LaMnO3!, the angles fa-
vored by holes are compatible with the angles favored by
anharmonicity; if A,0 an interesting competition arises,
which will not be discussed here.

In theA@0 limit the effect of added holes is particularly
transparent. By following the derivation that led to Eq.~17!
one finds that a hole on sitei produces a term in the energy

Ehole
i 5bk(

b
RW b
•QW i1b , ~18!

with Rx5(21,1/2,1/2), etc. Thus in this limit a hole mani-
festly produces a field which tends to orient the spins on
neighboring sites.

A Monte Carlo investigation based on Eq.~7! or on Eqs.
~17!, ~18! would be desirable. Here simple arguments are
given to estimateTs(x). Assume the hole positions are un-
correlated with each other or with the configuration of Jahn-
Teller orderings. To estimate the critical concentrationxc , of
holes at which ordering vanishes, note that for site-diluted
systems (b50), Ts vanishes when the occupied sites do not
percolate.14 For the simple cubic lattice, the percolation
threshold is aboutpc50.3,14 and so xc(b50)50.7. Of
course for such large values ofx the model is not valid. For
b→`, each hole eliminates five sites~itself and four neigh-
bors, two remain approximately correctly oriented!, implying
125xc50.3 orxc(b→`)>0.14.

Alternatively, one may use mean-field theory to estimate
Ts(x). The fundamental object in mean-field theory is the
probability distributionP(u) of the angle on a distinguished
site in an effective field depending on the average values of
the angles on the adjacent sites and on whether or not holes
are present. The assumption of uncorrelated holes implies

P~u!5(
$ha%

e2E~u,$ha%!/T

Z~$ha%!
xnh~12x!62nh. ~19!

Here $ha% is a distribution of holes on sites adjacent to the
distinguished one,nh is the number of holes in that particular
configuration, and

Z~$ha%!5E
0

pdu

p
e2E~u,$ha%!/T. ~20!

The energy may be written in terms of the average values
of the cosine and sine on the other sublattice,c5^cos2u&
ands5^sin2u&, as

E~u,$ha%!52k(
a

~12ha!cos~2u12cc!

3@~ccos2ca2ssin2cc!12ha1bhc#. ~21!

The quantitiesc ands satisfy a self-consistency equation; the
linearized equation givingTs may be written

c52E
0

pdu

p
P~u!cos2u. ~22!

The derivation and evaluation of this equation are given
in Appendix E. An analytic treatment is not simple except in
the limitsA→0 or A→` ~arbitraryb) andb→0 or b→`
~arbitraryA!. ForA50,

15
3k

Ts
F12xS 11

4I 1
2

I 0
2 1

I 2
I 0

D G . ~23!

Here the I n are Bessel functions of imaginary argument
ib/Ts .

In theA→` limit, Tx(b,x) satisfies

15
3k

Ts
F12x

623e23b/2Ts16e23b/Ts

~112e23b/2Ts!2
1Ox2G . ~24!

For b50, the x2 and higher terms vanish and
Ts53k(12x) as expected for simple site dilution.14 The
mean-field theory overestimates thexc at whichTs vanishes
because it does not contain the physics of percolation. As
b/Ts is increased, the coefficient ofdTs /dx increases; for
b/Ts→`, Ts→3k(126x), suggestingxc'0.16. Compari-
son to the percolation argument given previously suggests
that this is an underestimate. The general result, however, of
a Ts(x) which drops rapidly asx is increased and depends
somewhat on model parameters~and so on materials! is in
reasonable accord with data. Note, however, that at lowT
quantum effects involving motion of holes will become im-
portant.

V. CONCLUSION

A classical model for La12xAxMnO3 has been analyzed.
It is known that doping on the La site changes the valence of
the Mn site in such a way that the mean number of outer
d-shell electrons on the Mn is 12x. The holes were assumed
to be classical, so that each Mn site is occupied, with prob-
ability 12x, or empty, with probabilityx. The hypothesis of
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classical holes has been shown to be consistent with the re-
sistivity at allx andT.400 K and forx,xcond;0.3 and all
T.5

Because the outer Mnd-orbital is twofold degenerate, a
Jahn-Teller distortion of the surrounding oxygen octahedron
which lowers the local cubic symmetry to tetragonal may
occur about each occupied Mn site, while a breathing mode
distortion may occur around each unoccupied site. Each oxy-
gen is shared by two Mn ions, and so distortions on adjacent
sites are coupled. The coupling was determined from a clas-
sical harmonic approximation to the lattice dynamics. The
parameters of the model were determined by fitting to the
structural data obtained for LaMnO3. The principal results
are the following.

~1! The basic energy gained in a local Jahn-Teller distor-
tion, E0*0.1 eV. The estimateE0'0.6 eV was obtained
using a phonon frequency estimated from an optical mea-
surement on La1.85Sr.15MnO3. A direct measurement of the
splitting 4E0 between the twod levels would be desirable.
The distortions are in any event well formed at any relevant
temperature and the structural transition is to be regarded as
an order-disorder transition, at which local Jahn-Teller dis-
tortions become spatially decorrelated, but do not disappear.

~2! The model describing the transition is given in Eq.~7!
and may be approximated either by an antiferromagneticx-
y model with a modest threefold anisotropy or by a three-
state Potts model with an antiferromagnetic first-neighbor
interaction and a weak second-neighbor interaction. Which
model is more nearly correct depends on whether the anhar-
monicity parameterA is larger or smaller than the stiffness
k which orients the distortions. By combining an optical
measurement of the highest phonon frequency in
La1.85Sr0.15MnO3 with a calculation of Ts the estimate
A;k was obtained.

~3!Added holes disrupt the long-range order by producing
an effectively random field, which misorients nearby Jahn-
Teller distortions. It would be very interesting if it were pos-
sible to observe directly this local misorientation. This ran-
dom field effect was shown by various mean-field
calculations to lead to a rapidly decreasingTs(x), in quali-
tative accord with data. A Monte Carlo investigation of the
problem would be useful.

The results in this paper substantiate to some degree the
proposal4,5 that electron-lattice interaction is so strong that
the high-T cubic ~or pseudocubic! 0.2&x&0.4 phase of
La12xAxMnO3 should be modeled as a disordered array of
polarons. The results presented here provide a basis for cal-
culating polaron binding energies and mobilities, both for
0.2&x&0.4 and highT and for lowx at all T.
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APPENDIX A: DERIVATION OF ENERGY

This appendix outlines the derivation of Eq.~7! from Eqs.
~2!, ~3!, and~5! and discusses anharmonic terms. Define

ui
a5(

k
e2 ik•Riuk

a ~A1!

and similarlydk
a . Now dk

a may be decoupled fromElatt , Eq.
~2!, by defining

d̄k
a5dk

a2
1

2

K1~11eika!

2K11K22K2coska
uk
a . ~A2!

d̄k
a50 gives the equilibrium positions about which the Mn
ions fluctuate. After decoupling, the relevant part of the lat-
tice energy may be written

Elatt5K1(
ka

F~ka!uk
au2k

a , ~A3!

with

F~ka!5
1

2

~K112K2!~12coska!

K11K22K2coska
. ~A4!

The interaction energies are most conveniently written in
terms of the variablesck

a defined via

ck
a5(

i
eik•Ri~12hi !cos2~u i1ca!, ~A5!

wherecz50, cx52p/3, andcy5p/3 were introduced in
Eq. ~7!. Combining Eqs.~3!, ~4!, ~A5!, gives

EJT5l(
ka

~12e2 ika!uk
au2k

a ,

Ehole5bl(
ka

hk~12e2 ika!u2k
a . ~A6!

The displacementu may be eliminated by writingE in terms
of

ūk
a5uk

a2
l~12e2 ika!

2K1F~ka!
~ck

a1bhk!. ~A7!

Again ū50 defines the average state about which the oxygen
atoms fluctuate. The electronic part of the energy may then
be written

E52
1

2

l2

K1
(
ka

12coska
F~ka!

~ck
a1bhk!~c2k

a 1bh2k!. ~A8!

Fourier transformation yields Eq.~7! except for the term pro-
portional toA. This term arises from a lattice anharmonicity
of the form( iv i

3 . Use of Eq.~A7! yields several terms, of
which the largest isA cos(6u).

APPENDIX B: ANALYSIS OF STRUCTURE

In this appendix the LaMnO3 structural data obtained by
Ellemanset al..2 are analyzed. The magnitudes of the atomic
displacements observed in LaMnO3 in Ref. 2 are somewhat
greater than those reported in previous work.15 Indeed,
the displacements reported for LaMnO3 by Ref. 15 are
very similar to those reported by Ellemanset al., for
La1.95Ca0.05MnO3.

2 It will be assumed here that the larger
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values are most representative of the undoped material, and
that the LaMnO3 sample studied in Ref. 15 was inadvertently
doped.

The actual crystal structure of LaMnO3 is complicated;
for example, every Mn-O-Mn bond is buckled. It is assumed
here that the important quantities are the Mn-O bond lengths,
and that the remaining distortions are subsidiary, being
driven by rotations of the~distorted! MnO6 octahedra re-
quired to fit the rigid MNO6 octahedra into a lattice with
lattice constants smaller than twice the Mn-O distances.

LaMnO3 was found to be orthorhombic, with three un-
equal Mn-O distances, which are

ux52.187 Å,

uy51.905 Å, ~B1!

uz51.956 Å.

Hereux ,uy are the distances most nearly parallel to the
nearest-neighbor Mn-Mn bonds in the basic~orthorhombic
a-c) plane. Thex-y directions are about 45° rotated from the
orthorhombica-c axes.uz is the distance most nearly paral-
lel to the orthorhombicb axis.

The z oxygen ion is equidistant from the Mn above and
below it; thex and y oxygen ions are not equidistant from
the in-plane Mn; indeed, if one moves from one Mn to its
in-plane nearest neighbor, the roles are reversed. We there-
fore assume that the observed Mn-O bond lengths have been
obtained from an ideal peroviskite structure with Mn-O dis-
tance ofu05(uxuyuz)

1/3>2.01 Å by composing a uniform
tetragonal distortionDu520.112 Å (1,21/221/2) and a
staggered distortionDs50.15 Å (1,21,0). The mean lattice
constant is 4 Å; thusDu corresponds to a uniform strain
componentsexx5eyy50.014,ezz520.028, while the stag-
gered distortion isus50.038(1,21,0).

APPENDIX C: SOLUTION OF THE MEAN-FIELD
EQUATIONS

In this appendix details are given of the solution of the
mean-field equations and of the energetics of small devia-
tions from the mean-field solution.

Solution:Assume a two sublattice solution withu5u1 on
one sublattice andu5u2 on the other. TakeA.0 without
loss of generality and choose units in which 3k51. Write

u1,25
2n1,211

6
p1d1,2, ~C1!

with

2p/6<d1,2<p/6. ~C2!

From Eq.~7! one has

EMF5cosF2~n12n2!p

3
12d122d2G2

a

6
~cos6d1

1cos6d2!, ~C3!

with a5A/k.0.
Minimizing yields

2sinF2~n12n2!p

3
12d122d2G5asin6d1 ~C4!

and

sin6d152sin6d2 . ~C5!

Equation ~C5! implies either d152d2 or
d15d21(2n11)p/6; the latter solution would imply that
the anharmonicity energy vanishes. Such an extremum can-
not produce an absolute energy minimum. Ifd252d1 , then
Eq. ~C4! may be solved. Define

d5
p

12
2
1

2
arcsinFA11a2

4a2
2

1

2aG . ~C6!

Then d152d25d if n12n251 or 22 and
d152d252d in n12n2521 or 2. A different formula ap-
plies if n15n2; however, this case may be seen not to lead to
the global energy minimum because ifn15n2 , then the in-
tersite term is positive unlessp/8<udu<p/6, in which case
the anharmonicity term is positive. The mean-field energy is
thus minimized by any of the six configurations withn1
Þn2 and appropriated1 andd2 .

It is instructive to suppose that at all but one of the sites
the angles take values minimizingEMF and to study the en-
ergy functionE0 of the remaining angle. Assume the isolated
site is on the ‘‘1’’ sublattice andn150. Then

E052cosF2u2
p

3
2dG1

a

3
cos6u. ~C7!

For a,a*54/3, Eq.~C7! has only one minimum, at the
u which satisfies the mean-field equation. Fora.a* there
are three minima. Fora@a* these occur at

un5
~2n11!p

6
1
2sin2np/3

3a
1O

1

a2
~C8!

and correspond to energies

En52
a

3
12cos

2np

3

2

A3a
sin

2np

3
. ~C9!

This is the expected form of the energy of a three-state
Potts model with a first-neighbor ‘‘antiferromagnetic’’ and
second-neighbor ‘‘ferromagnetic’’ interactions. A precise
mapping is discussed in Appendix D.

Small deviations:Assume that on every site the angle is
close to one of the two-sublattice solutions; thus, ifa51,2

u i5ua1c i , ~C10!

with ua given by Eqs.~C1!, ~C6! according to whetheri is
on sublattice 1 or 2 andc small. Substituting Eq.~C10! into
Eq. ~7! and expanding yields

E5EMF1(
k

vk
2ckc2k . ~C11!

The energyvk
(n1 ,n1) depends on the quantitiesn1 ,n2 describ-

ing the possible ordered states. There are three independent

53 8439COOPERATIVE JAHN-TELLER EFFECT AND ELECTRON- . . .



choices@(n1 ,n2)5(0,1), (1,2), (0,2)#, each picks out a pre-
ferred axis a5x,y,z. We have @gk512(coskx1cosky
1coskz)#

vk
~0,1!5vk

x56acos6d14cosS p

3
24d Dgk

24Fcoskx2 1

2
~cosky1coskz!G . ~C12!

Similarly v1,25vy andv0,25vz. Note that because of the
relation of the anglesc to the physical lattice distortions, a
nearly uniform variation ofc corresponds to a nearly stag-
gered variation of the physical lattice distortions. For physi-
cally relevant values ofa the gap is relatively large and the
dispersion small.

APPENDIX D: DERIVATION OF THE POTTS MODEL

This appendix gives the details of the derivation of Eq.
~17! from ~Eq. 7!. It is assumedA is so large that only angles
near those minimizing the anharmonicity energyAcos6u i are
allowed. Thus write

u i5f i
a1d i , ~D1!

with f i
a one offx55p/6, fy5p/6, andfz5p/2, andd i a

small deviation. Note that the Jahn-Teller distortion corre-
sponding tofa is ua2

1
2(ub1uc). Substituting Eq.~D1! into

Eq. ~7! and expanding gives

E

3k
52

Na

3
1
1

3(ia cos@2f i
a12ca#cos@2f i1a

a 12ca#

16a(
i

d̄ i
22

8

27
a(
iab

sin@2f i
a12ca#sin@2f i

a

12cb#cos@2f i1a
b 12cc#cos@2f i1b

g 12cb#. ~D2!

HereN is the number of sites in the crystal,a5A/k, and
d̄ i5d i2d i

min , with ]E/]d i
min50. In the large-A limit the co-

efficient of thed̄ term is large, and so fluctuations ind̄ may
be neglected.

The energy may be more conveniently written in a dis-
crete notation. Denote the state on sitei by the continuous
variabled i and define a discrete quantityQ i which indicates
to which offx ,fy ,fz the angleu i is nearest. ChooseQ i to
be a three-component vector with a 1 in oneplace and 0 in
the other two.Q i5(1,0,0) meansu i is close to fx ,
Qi5(0,1,0) meansu i is close tofy andQ i5(0,0,1) means
u i is close tofz . The interaction term of order is then a
333 matrix Ia, which depends on the directionâ of the
bond connecting the two sites. One finds

I x5
1

3 S 1 21/2 21/2

21/2 1/4 1/4

21/2 1/4 1/4
D . ~D3!

I y,I z are obtained by permuting both row and column in the
obvious way.

The term of order 1/a is a rather complicated three-site
interaction; however, the important physics of this term is the
coupling it induces between sites on the same sublattice. To
determine this coupling it is convenient to restrict attention
to configurations~favored by the order 1 term! in which ad-
jacent sites are in different Potts states, i.e., to terms in the
order 1/a term in Eq.~D2! in which bÞg. If site i is taken
to be in statea5x, then the only nonconstant terms are
when a52bÞ x̂. If a56 ŷ, then the energy is24/9a if
both sites are in the ‘‘y’’ state,21/9a if both are in the ‘‘z’’
state, and 1/9a if the two are in different states; i.e., we may
write

E~2!52
1

9a(ib8
QW i

a~QW i1bJb
aQW i1b8 , ~D4!

with b56x,y,z and

Jb
x5S 0 0 0

0 4 22

0 22 1
D , ~D5!

etc.
The principal effect ofE(2) is to lift the degeneracies of

the antiferromagnetic three-state Potts model; this effect may
be mimicked by a simple second-neighbor ferromagnetic in-
teraction with magnitudeJ8 fixed, e.g., by the requirement
that it reproduce Eq.~C9!.

APPENDIX E: MEAN-FIELD Ts WITH HOLES

In the presence of a concentrationx of holes, one expects
Ts(x)5Tc0(12ax). In this Appendixa is derived using a
mean-field theory. In leading order inx one need only con-
sider configurations in which one of the six neighbors of the
distinguished site, say, the one in theb direction, has a hole.
From Eq.~21! one has

Eb~u!52kcos~2u12cb!@ccos2cb2ssin2cb1b#

14 (
p561

cosS 2u12cb1
2pp

3 D FccosS 2cb1
2pp

3 D
2ssinS 2cb1

2pp

3 D G . ~E1!

Substituting Eq.~E1! into Eqs. ~19!, ~20!, expanding in
c and s, rearranging, and discarding terms proportional to
cos2usin2cb or sin2ucos2cb , which will not contribute to
averages of interest, gives
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Zb5E
0

pdu

p
e2Acos6u/T2bcos2u/TF12

4ck

T
cos2ucos2cb2

6ck

T
sin2usin2cbG ~E2!

and, using also Eq.~22! and the results of Appendix C,

15
3k

Ts
@126x#2

1

c(b
1

Zb
E
0

p du

2p
eAcos6u/T2bcos2u/TF12

4ck

Ts
cos2ucos2cb2

6ck

Ts
sinusin2cbG3cos~2u22cb!. ~E3!

The integrals in Eqs.~E2!, ~E3! may be expressed in terms of products of Bessel functionsI n(A/T)I m(b/T). The expres-
sions become simple whenA→0 or ` or b→0 or `, and lead after straightforward calculations to Eqs.~22!, ~23!.
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