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Tilt instabilities and multiple coexisting vortex orientations in flux-line liquids
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Phase diagrams for various tilt instabilities, as well as phase diagrams for possible coexistence of vortex
lines with different orientations in a tilted magnetic field of anisotropic type-ll superconductors, are mapped
out and compared within anisotropic London theory. Double minima in the Gibbs energy as a function of
vortex orientation in the case of noninteracting vortex liquids may be found in a regime of mass anisotropy
where long-wavelength tilt instabilities do not occur, and are associated with coexisting species of flux lines of
different orientations with respect to the crystalaxis. At larger mass-anisotropies, long-wavelength tilt
instabilities do occur for tilt modes perpendicular to tie planes. For tilt modes parallel to tleh planes,
instabilities only occur for very large wave numbers, beyond the regime of applicability of London theory. The
cutoff dependence on the phase diagrams for the isolated flux-line limit is investigated. It is essential that the
elliptic shape of the vortex core is accounted for. When interactions are accounted for in a dense flux-line
liquid, the tilt instabilities are removed.

I. INTRODUCTION To our knowledge, a unique interpretation of the double
minimum in the Gibbs energy has not yet been conclusively
Theoretical investigations of the stability of vortex struc- established. The issue is whether such double minima can be
tures in anisotropic superconductors have recently been caiquely interpreted as coexistence of flux lines with differ-
ried out quite intensivel§z” This followed, for instance, €Nt orientations, or whether they can be interpreted as filt
from Bitter pattern decoration studies of magnetic-flux Iines;n;’etil?':g'?ﬁegf;izg :Inn(\E/Ser?/rI:r?;segtr?)i)ﬁ:bg?wléeei?gr?eV:;getﬁ-
g?;'ig%z'g%&:éou?ojgaﬁﬁz c(r)l];iggeofrl]‘llg}-lir?ggzr;%r;?jléggrin superconductors. Such tilt instabilities would imply that an

“Gvould be incorrect, and that the correct ground state rather
o e X ould consist of flux lines with spontaneously created kinks
respect to the:_ axis. This fl_ndlng was unexpected: ea_rller (most probably on the length scale of interlayer distanire
work had predicted the chains of vortices, but not their cothjs paper, we clarify the connection between tilt instabilities
existence with the background of an approximately regulagnd coexistence of vortex “species,” characterized by differ-
hexagonal vortex latticg. ent orientations relative to the uniaxial symmetry axis in an-
Various scenarios of how such a situation could occurjsotropic superconductors, in flux-line liquids. We emphasize
were recently proposed. Basically, the main idea is due tehat we are not considering entropic contributions to the free
Huse! who suggested the possibility of an admixture of twoenergy; thermal effects are ignored. Nonetheless, the phrase
species of vortices in anisotropic superconductors in tiltedlux-line liquid will be used frequently, a term usually re-
magnetic fields, one oriented almost parallel to ¢haxis, served for cases where thermal effegts important. In this
and another oriented almost parallel to tie plane. paper, it will simply be used to denote a flux-line ensemble
More recently, it was actually demonstrated rigorouslywith zero shear stiffness.
within the framework of anisotropic London theory that such ~ This paper is organized as follows. In Sec. Il, we intro-
a situation could occur, at least at very low inductions, pro-duce the anisotropic London theory and the tensorial inter-
vided that the mass anisotropy of the material is |arg@ct|on be_tween flyxll_nes of arbitrary shape |_nt|Ited magnetic
enougt? The hallmark of such a highly unusual effect was fields, W|t_h a depyaﬂon of_the result given in Appendix A.
established as the observation of two degenerate minima %pe elastic matrix is then given, along with cutoff procedures
value zero of the Gibbs energy, for two distinct flux-line escrlbed in detail In Appen.dlx B. Ir] Sec. lll, we give the
orientations with respect to the axis. Finally, it has been Gibbs energy for noninteracting flux lines and study its prop-

demonstrated, also within anisotropic London thébtigat erties, with a derivation of Fhe self-ene_rgy _given in Appendix
certain tilt instabilities(also to be discussed in this paper C In.Se.cs. I.V and v we discuss elastlp eigenmodes of flux-
could occur for bending modes of the flux lines at large Wave{'ne liquids, i.e., qux-I|.ne ensgmbles V\.”thOUt a shear modu-
numbersk,, and it was speculated that there could be a con-4>: .t?Oth fqr the noninteracting and. Interacting cases. The
nection between the above-mentioned coexistence of fluXs_tabmty of tilted flux-line liquids are discussed for the dilute
line orientations, and such tilt instabilities. and dense cases.

Recent experimental work has claimed evidence for the
coexistence of flux lines of different orientatiotfdut where
neither vortex orientation is parallel to the direction of the In the London theory, the total energy of an ensemble of
applied field. This is consistent with the predictions of Ref.interacting flux lines of arbitrary shape, including vortex
5. loops, is given by

II. ANISOTROPIC LONDON THEORY
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FIG. 1. Geometry of tilted vortex lines con-
sidered in this paperX,Y,Z are the symmetry
axis of the crystal an&,y,z are the axis for the
vortex lines. The vortex frame can be obtained
from the crystal frame by rotating it an angte
aroundY axis. The inset shows that the cylindri-

N cal system in the calculation of the double
minima in Gibbs energycoexistence

ian fluctuations of the flux lines around the ground state, and
J J dri“drjﬁvaﬂ(ri—rj) (1)  for a flux-lineliquid in a tilted field in a uniaxial anisotropic
superconductor, this elastic energy is giveri’by

®3

E=gr

where a summation over repeated indiegg is understood 1
and (a,8) e(x,y,2z). The expression for the tensdf,(r) Fuh == (K (K- U2+ 2 (K) (Koto)
when the average induction is tilted an anglaway from 7un=3 ; Leak) i)™ ak) et

the symmetn¢ axis is given b
ymmeme given by +Chy(K) (Kyly) 2+ 204Ky (K- ). (4)

V(1) = 2;% G1(r) (8,5~ CaCp) In this continuum limit of a flux-line liquid, we have four
“ 4mhg(rxc) oW different elastic moduli, due to the loss of symmetry in the
(rX8).(rx8) proplem when the induction _is direcged away from ﬁmis.
—Gy(r) “—Azﬁ , Cq1 is the bulk rpoduluspﬁ4 is the tilt modulus associated
(rxc) with tilts in the (c,B) plane,cﬂm(k) is a tilt modulus associ-
5 ated with tilts out of thec,B) plane, whilec,4(k) is a mixed
Gy(r)=e Ma—e ", bulk and tilt modulus which has no counterpart in the isotro-
(2 pic case. For the geometry of the problem, see Fig. 1. In the
(rxe)?] (rxe)?] . case of a very dilute flux-line liquid, the moduli associated
Gy(r)=|2+—|e ra/T—| 24+ ——<—|e " : - - : :
Nl AT ' with the interactions between flux lines, i.e;4(k) and

c14(k), become unimportant. Moreover, the components
F=\(rxc)’>+T %(r-¢)?, (kx,ky) of the Fourier modé also have no physical signifi-
cance any longer, and thus({k}) reduces to the much sim-
wherec,, is the projection of onto theath (x,y,z) axis, \, pler expression
and), are London penetration depths along éteplane and L
C axis, respectively, anfi=+M,/M is the mass anisotropy . _ L 2, 2
in the uniaxially anisotropic superconductor. Within this 7{uh=3 % [Caa(K) (KUy) “+ Chq(Ky) (Kouy)“].  (5)
effective-mass model, we ha¥e=\/\ . For the derivation . . . .
of this expression, see Appendix A. The abo_ve expansion, using E({B)_—(B), gives the follow_lng
Expanding the total energl to lowest order in vortex ~€XPression for the elastic matrisp,z(k) of the flux-line
fluctuations around a ground-state Abrikosov vortex latticeSystert
solution, which has an energy denoted By, we get

BZ
E=Eq+.7({u}) %(IOZE% [fup(K) — Fap(Q)],

1 ~ ~ ~
= Eg+ 5 2 U (—K)® 5k us(k), 3) Fap(K) =KV ap(K) + Kok V7 K) — ko Vp(K)
k ~
- kzkﬁVZa( k) ) (6)
where now(a,8) e(X,y), since displacements along the vor-
tex lines have no physical meaning, ahd are the Fourier . 1 A0,
transforms of the local distortions of the flux-line system Vp(K)= T+ ALK Oap™ T+ ALK+ A2

around its ground state of rigid flux lines arranged in a well
defined (supejlattice, and which we assume to be small. where q=kx¢, A;=\2, A,=\2—\2. For the purposes of
FZ{u}) is the linear elastic energy associated with the Gaussthe calculations to be presented in this paper, it is convenient
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to express the elements @ 4(k) in the form given in Ap- We consider a cylindrical superconductor with the applied
pendix B. In the above expressior3,is a set of reciprocal- field perpendicular to the symmetry axis of the cylinder and
lattice vectors of an equilibrium lattice configuration, tilted an angle¢ away from the crystat axis, see the inset
K=Q+k. Such equilibrium configurations could, in prin- of Fig. 1. The Gibbs energy for such a system is given by
ciple, be quite general, including vortex lattices with a basis,

depending on what the induction and orientation with respect G=nJ(6)—HB cog¢—0), (©)

to C axis are, and what material parameters such as maggheren is the areal density of flux lined is the applied
anisotropy and Ginzburg-Landau parameter, are consideregie|d, andB is the induction. This expression is validBt0,

~Note that all of the above lattice sums, which are two-yhere the entropic contribution to the free energy is zero.
dimensional, formally diverge logarithmically. The sums arepyevious analytical approximations to this expresiane in
thereforedominatecby the region ok space corresponding excellent agreement with the numerical results of Appendix
to thevortex core which is not explicitly described in Lon- ¢ particularly in the largee limit. The minimum criterion

don theory. A prescription for cutting off these sums has beefy, seeing double miniménot necessarily degeneraia the
described elsewher8;'® and it turns out to be crucial to Gibps energy is that

account for the deformation of the vortex core shape as the

average induction is tilted away from tBeaxis® The sum is . PG
given an upper cutoff on an ellipse ik,.k,) space defined ming -2z <0. (10
by
Two precisely degenerate minima in the Gibbs energy at
§§k§+ §§k§= 1, G=0 requires two distinct solutions to the coupled equations
@ G(T,k;6)=0,

&2 cog 0+ &2 sir? 6=¢2, 1
where &, and & are the superconducting coherence lengths IG(I', k;6) —0.

along theab plane andc axis, respectively, and,/£.=T. a0

This may either be implemented by a sharp cutoff on th

integrals(or_ sums or by a Gaussian cutoff. For the results three anglesd,< 6,< 65 for which 9G/26=0, corresponding

presented in this paper, we have us_ed_ b.Oth procedures, {8 two minima(#6;,6;) and one maximungé,) in the Gibbs

order to compare the results we obtain; it is always a mattefnergy The maxli}num at, corresponds to a vortex orienta
g b -

8\Vhen min, #G/367<0, it turns out that there are precisely

?hf C(()jnct:e.:n trf1at rte?fults n I(_jondonFthe:)hry could be artifacts OI ion of an unstable state and will not be considered further. In
€ detalls ot cutoll proceadures. or the Same reason, resufge isotropic case, or when a circular core cutoff is used in

ﬂ?at atfpe"?“ n ;he l.‘;:gef“m't. W'th\'/r\‘/ Lonctionhtheory Shtcr)\wtdth the anisotropic case, it is well known that one unique orien-
aiso be viewed with suspicion. We note however, that &, of the flux lines exists, given by the condition
elliptical cutoff in k space that we employ has been derived

from Ginzburg-Landau theoﬁ;‘?.WQ have found that the re- tan(¢)=T"2 tan 6). (12
sults do not depend on the details of the way the cutoff is ) )
implemented. A circular cutoff is expected to be a reasonable and qualita-

tively correct approximation to the core cutoff for not too
large mass anisotropies, due to the fact that the self-energy
depends only weaklylogarithmically on the details of the
cutoff. For not too large mass anisotropies, we thus expect
We first briefly recapitulate the principle for detecting co- that the above expression essentially gives correct results for
existence, a brief version of what is presented below ha#he vortex orientation at given mass anisotropy and orienta-
appeared elsewhefeThe present calculation represents ation of external field. Note that the Ginzburg-Landau param-
slight improvement in accuracy over previous results due t@ter does not enter into the above expression.
a more precise numerical calculation of the vortex self- From the above, it is immediately clear that there must
energy of rigid flux lines tilted an arbitrary ange away exist aminimummass anisotropy at a given valuerofo see

Ill. GIBBS ENERGY, RIGID NONINTERACTING
FLUX LINES

from the¢ axis, and which is given in general %y a double minimum in the Gibbs energy, if at all, at any value
of the direction of the applied fieldp, and at any vortex
cpg d2k 1+)\§;kf orientation. It is also clear that the elliptical core cutoff is
J(0)==— f — 5> T RN ER essential to bring about qualitatively new effects of the mass
8m J Am” [1H MK+ NGk Acky] anisotropy. The orientatidg) for the penetrating flux ling)

y o ) ®) inside the superconductor is determined from 84)
NZ=\] sirfo+\g cog,
tan(6)+J'/J
which was previously approximated analytically in a manner tan(¢)= 1-373 t@an o)’ (13
described in Appendix C. A cutoff of the formally logarith-
mically divergent sum, is understood. One may either emwhereJ’' =3J/d6. The right-hand side of Eq13) must be
ploy a sharp cutoff, where the upper limit ky .k, space is nonmonotonic in order for the system to exhibit multiple
given by an ellipse reflecting the elliptic shape of the vortexsolutionsé for a given value of¢p. Nonmonotonicity devel-
core when the flux line is tilted, or a Gaussian cutoff. Theops as a function of mass anisotropy due to the self-energy
procedure is described in Appendix B. cost associated with deforming the vortex core as the flux-
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FIG. 2. Critical value ofl" as a function of
Ink, for seeing double minima in the Gibbs en-
ergy, using a sharp cutoff in the self-eneidfy).
The inset shows the corresponding angles of ori-
entations for two coexisting “species” of flux
7 lines as a function ofl’, for two values of
k=10,50.

line orientationd is varied. Figures 2 and 3 illustrate the proximation toJ(6) was used. The picture that emerges is
situation: Shown is the minimum mass anisotrdfy, as a however identical: As increases, a monotonic increase in
function of In k required to see nonmonotonicity in the right- T',;, is required to see double minima in the Gibbs energy
hand side of Eq(13). Figure 2 shows the result of imple- thus facilitating the coexistence of flux lines of different ori-
menting the cutoff Eq(7) sharply, while Fig. 3 shows the entations at the lower critical field. The inset shows the
result of implementing it smoothly, as described in Appendixangles at which precisely two degenerate minim@ &t0 are
B. found. Again, it is seen that the results are essentially inde-
As can be seen, the results are quite insensitive to thpendent of the way the cutoff is implemented.
details of the implementation of the core cutoff. This is a A physical interpretation of this result has been given
satisfactory feature, since the cutoff must be introduced in apreviously® The two degenerate minima ki, indicate that
ad hocway within London theory due to the lack of an the flux lines, upon entering the superconductor at the lower
explicit description of the vortex core. The only minor dif- critical field, may enter as straight flux lines at two different
ference in the results given the two cutoff procedures is thabrientations with respect to theaxis.
smooth cutoffs give a slightly smaller critical mass anisot- More recently, Sardella and Moore have detected certain
ropy, i.e., coexistence is possible at a smdllgy,. The slight  tilt instabilities at very large wave numbers in systems of
difference in the values df,;, compared to earlier resuttis  isolated flux lines? and also speculated that this could be
due to the more accurate, numerical, evaluation of the selfrelated to the results of Ref. 3. In particular they found criti-
energy compared to earlier work, where an analytical apeal angles at which tilt instabilities occurred which superfi-

FIG. 3. Same as Fig. 2, using a smooth cutoff.
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cially resemble the insets of Figs. 2 and 3; however we point #=0, we haved,,=®,,, due to the rotational symmetry
out that, contrary to Figs. 2 and 3, Ref. 13 found that thes@bout thec axis in this case, henoej,(k,) =cl4(k,). For
critical angles depended dn but notk, in the limit where  completeness, we give an analytical expression for
the wave numbek,—». ®,,=®d, = in this case.

The issue thus arises whether the interpretation of the
above result of two degenerate minima in the Gibbs energy 7
as coexistence of two species of straight flux lines is in fact ~ P(kz)= 3272nN2 In"Y(ky) + 3272n\2 In Z(ky),
correct, or if they should rather be interpreted as an indica- ¢ a

BZkZ 2

tion of the breakdown of the assumption of a ground state 2 2

- ; . ; . & “+a(ky)/N
consisting of straight rigid flux lines. The result of this sec- Y(k,) = %
tion relies on such an assumption, but if tilt instabilities were do+alky)/Ag
to preemptthe onset of coexisting species of straight flux (16)
lines oriented at two different orientations with respect to the Y(0)
C axis, our above results and conclusions would be invalid. Z(ky) = Tkz)

In order to investigate this, we will in the following sec-

tion consider in detail tilt instabilities of the noninteracting a(kz)=1+)\ak§; q(2)=k§2/2; n=B/d,,

flux-line liquid. We shall find that the tilt mode considered in

Ref. 13 is irrelevant for comparing with the results found inwhere®,=h/2e is the elementary flux quanturo=B/H_,,

the present section, since it involves tilting of flux lines par-andkg; indicates the radius of a circularized Brillouin zone
allel to theab planes, whereas the Gibbs energy of this secof the flux-line lattice, which however vanishes in the limit
tion involves tilting perpendicular to thab planes. We also B—0. In principle, this expression shows the tendency to-
consider in detail a tilt mode associated with tilting perpen-wards a crossover from the Lorentzian contributions to the
dicular to theab plane, and find that this tilt mode has an elastic moduli in the dense limit~1, and the logarithmi-
instability, not in the limitk,— as the case was for the cally dispersive elastic moduli in the extreme dilute limit,
parallel tilt mode, but rather for the cakg—0, which is also  b—0. The single vortex limit is obtained by settitbg=0 in
more physical within the London theory. Moreover, we mapthe factorsy andZ, and the logarithmically dispersive elastic
out the phase diagram where such instabilities occur anghodulus for the isolated flux line at=0 is found by com-
compare with Figs. 2 and 3. Again, we have found through-paring Egs(14) and (16)

out that results do not depend on details of implementations

of the core cutoff, and we thus only show results obtained by Bdy(InY Inz
using a sharp cutoff procedure. Cadky) = 35 N2 + kond| (17)
IV. EIGEN (TILT ) MODES, NONINTERACTING Note that the first contribution tends to O feg=0 in the
FLUX-LINE I:IQUID extreme anisotropic limit’—c, whereas the latter contribu-

tion remains finite. It is interesting that London theory cor-
The limit of a noninteracting flux-line liquid is obtained rectly produces both logarithms in the tilt modulus. For gen-
from the general expression fdp,4(k) by converting the eral 6, we havec),>c2,.
summations over the reciprocal-lattice vect@go an inte- The elastic modulc, andcl, at arbitraryé are obtained
gration. This means thdt) all structure dependence of an numerically from the procedure described in Appendix B for
underlying lattice disappears and therefore all shear stiffneshe dilute case. They are shown in Figs. 4—7.
vanishes(ii) the limit B—0 is implied sincdQ|~B2 The angular dependence of the the perpendicular tilt
By comparing the expression for the linear elastic energymoduluscy, and the parallel tilt modulus!,, for k,=0 is
in the dilute limit, Eq.(5), with Eq. (3), it is seen that the shown in Figs. 4 and 5. The main difference between these
elastic matrix in the noninteracting case takes the form  two quantities ak,=0 is that the parallel tilt modulus never
goes negative for any value @f whereas the perpendicular

D, (k) =c(k)K2, does. Figure 4 shows that whénincreasesgz,4(6) develops
a sharp peak afi=m/2. The rangef} <0< 65 wherecz,(6)
q)yy(k)zcgm(k)kg, (14) ~ changes sign, increases, and the lower critical ilt artle

moves towards 0, as expected on physical grounds. Note also
that 65 which gives the minimum in the Gibbs energy,
moves towardsz/2. (For an explanation of the symbols
For details of how to computel(k,) andc,(k,), see Ap- 01 .05 .65, see Fig. 4 In Fig. 4, asharp cutoff on the
pendix B. In the isolated vortex liquid limit, the two tilt K-Space integrals at large valueskohave been used. Figure

moduli only depend on the variabie, since the components 2 shows results for the parallel tilt modulus, which is positive
ke,k, have no physical significance in this case. The eigenin the entire rang@e[0,m/2] at k,=0. The prominent peak

®,,(K)=0.

values of the elastic matrix for this case are given by at = /2 which was found for the perpendicular tilt modulus
is not found for the parallel tilt modulus. This is because at
AP = k2ct 6=m/2, the parallel tilt modulus, describes tiltingin the
— Rz%44,

1 ab plane and the remnants of a lock-in transition found
(12l (15 within Lawrence-Doniach theory is no longer felt for this
A T=K;Chy. geometry.
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FIG. 4. The “perpendicular” tilt modulus
c44(6) for isolated flux lines, for fixedk=20,
k,=0 for various values of'=2,10,15,20. For
eachl the correspondingz4(6,I') is normalized
such thatc,(#=0;I")=1. A sharp cutoff has been
used.

The dispersion of both tilt moduli are shown in Figs. 6 theory is not a particularly serious one, provided only that a

and 7, for various values d. In Fig. 6 it is seen that for

qualitatively correctd-dependent shape of the cao@liptic

6=0 only a weak logarithmic dispersion is found for contours of constant currents, with correct aspect ratios
c14(K,), as previously found analytically in Ref. 17. It is also ysed.

seen thatc,(k,) decreases with increasing For 65 <6
< 0% , the perpendicular tilt modulus;,(k,) is negative for
small values ok, and obtains a minimum foé= 65 . For
6> 6% (not shown, cz4(k,) is again positive for alk,, and
for 6=/2 (not shown c,(k,) has a logarithmic dispersion,
similar as for the cas#=0. In Fig. 6, a sharp cutoff on
k-space integrals have been used. Figure 7 show® the
pendence fot;,(k,), obtained by using a sharp cutoff. As
increases, the parallel tilt modulus),(k,) decreases and
changes sign fotarge k,. For increasingd greater than a
critical ¢ (not shown cj,(k,) increases, and foff near/2,

cha(k,) is again positive for alk, .

A striking difference betweenz,(k,) andcl,(k,) is the
range ink, in which these moduli become negative. Eqy,
it happens at intermediate values @§fand for small values
of k,. Forcl, it also happens at intermediate valuesiobut
now only for large values ok,. Results for large values of
k, must be viewed with a certain suspicion when obtained
within London theory, since it is a description of layered
superconductors in terms of an anisotropic continuum. For
large values of" and large values df,, a description where
the discreteness of the layers is accounted for is undoubtedly
more appropriate, and the Lawrence-Doniach energy func-
tional provides a considerably more reliable starting point.

Based on the above discussions, we believe that the issue Again, we may map out a phase diagrdifix) which
of the ad hocintroduction of a core cutoff within London shows the minimum mass-anisotropy versus,Inequired to

FIG. 5. Same as Fig. 4, fatlh,(6), using a
sharp cutoff.
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2.5 T T T T T T
P00 — e T
0=07 .
2 F §=1.0 ...... -1
0=13
1.5 ~
~ FIG. 6. ci4(k,;6) as a function of In§,k,),
?;’of 1 ) T for fixed k=20, I'=20 for various values of
= < 6=[0, 0.7, 1.0, 1.3 ci4(k,;6) is normalized
ST 4 such thatcf,(k,=0;6=0)=1, andk, is mea-
sured in units of\,. A sharp cutoff has been
used.
0
-o.s .
-1 1 1 1 ! 1 1

see negative tilt moduli at any value 6f This is shown in  of the previous section is indeed that a situation has estab-

Fig. 8 forc4,(k,) for various values ok, and using a sharp lished itself close to the lower critical field where straight

cutoff. Figure 9 shows the same fof,(k,). Forc;,(k,), the  flux lines characterized by different orientations coexist in a

critical mass anisotropy is increased upon increakinghe  window of mass anisotropieF ,<I'<I',. I'.; is found

trend is the opposite far)y,(k,). Comparing thé,=0 result  from Figs. 2 and 3, whereds,, is found fork,=0 in Fig. 6.

with the results of Figs. 2 and 3, it is clear that the criticalWhenI'>T",, the ground state of noninteracting flux lines is

values ofI" required to see negative tilt moduli are quite not one where the flux lines are straight and oriented ob-

different from those required to see double minima in theliquely with respect to th& axis. What the actual ground-

Gibbs energy. No negativity occurs lat=0 for the parallel  state vortex configuration in this case is, in the limit of ex-

tilt moduluscy,, which is the one considered for instance intremely low inductions, remains for future investigations,

Ref. 13. On the other hand, we have seen that the perpeand should presumably be investigated using the Lawrence-

dicular tilt moduluscz, may become negative &=0. This  Doniach theory.

only happens at considerably larger value Ibfthan those

required to see double minima in the Gibbs enemgy dis- V. EIGENMODES, INTERACTING FLUX-LINE LIQUID

cussed in the previous section. The critical andlesé,) '

discussed in Sec. Il are shown in Figs. 10 and 11cfgrand In this section we consider the opposite situation of that in

ch,, respectively. the previous section, namely that of a dense vortex liquid. In
We conclude that the correct interpretation of the resultghe dense limit, it is permissible to consider the ensemble of

FIG. 7. Same as Fig. 8, far)4(k,;6), using a
sharp cutoff.

clikz0)
cly(0;0)
o
s
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e = 0,
o D = 0.3 -=--- -
e = 0.2 -ennns
2Ae = 0.1 .
2da = 0.0 __L
25 3 FIG. 8. Critical value of" as a function of Ix
'é __________________ for observing a change of sign oi,( 6,1, «;k,)
- T for isolated flux lines at any value & for vari-
_________________ ous values ok, ,k,\,=[0, 0.1, 0.2, 0.3, 0.4 A
20 LT i sharp cutoff has been used.

2.5 3 3.5 4 4.5
Ink
flux lines as a continuum where one averages spatially over B2 1+N2k%+ (A2=\2)coS ok?
istributi i i i - Cci(k)=— ,
the distribution of flux lines, to arrive at a continuum de 11(k) 47 | [T N K (D)7

scription where all information about the structure of the
individual vortices are ignored. Thus, we retain only the

Q=0 term in the lattice sums for the matrix elemesitg;(k). | B2 1+ N2k%+ (N2—\2)sir? ok?

This gives CuK)= 7 [l+>\§k2][l+k§k2+()\§—>\§)q2]}'
(19)
D, (K) = Ca(K)Kg+ (KRG + 2C41(K) ks ” B2 1
Culk)= 7 |1+ )\ik2+()\§—)\§)q2]}’
— 2 Il 2
Dyy(k)=cqa(k)ky+caqy(k)k7, (18 52 (2= \2)cos9 sindk?

calk)= 72 [1+)\§k2][1+)\§k2+(Ag—)\ng]}’

q)xy( k) =c11(k) kxky+ Ca1(K) kykz )
where g=kXxc¢. The modulusc,;(k) is a mixed shear and
where the elastic moduli are read off directly from the gen-bulk modulus discussed by Sardella, and it has no counter-

eral expressions fob,4(k) (Ref. 13 (see Appendix B part in the isotropic case.
30 T T T T T
3 S B e = 1000 ——
——————————— kdg= 10 --eme
"""""""""" ko= 5 e
""""""""" Fode = 3 e
20 r ko= 2 L. .
E ...........................................................
N | . | |
e FIG. 9. Same as Fig. 12, farl,(6), using a
...................................... sharp cutoff.
S ]
5 b 4
0 1 1 1 1 1
2.5 3 3.5 4 4.5
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0.5 T T T T T
0.4
0.3 F 4 FIG. 10. The critical orientations6,,6,)
- wherec;,(6) for isolated flux lines changes sign,
= as a function ofl’, for fixed k=10 for various
0.2 L kode =04 —— values of k,,k,\,,=[0, 0.1, 0.2, 0.3, O} A
e Tee sharp cutoff has been used.
ko Ae = 0.1
ke =00 ...
0.1 .
O 1 1 1 i 1
15 20 25 30 35 40

When 6=0, the mixed bulk-tilt modulus vanishes, while ~ When >0, the longitudinal and transverse eigenvalues of
the two tilt moduli become identically equal. In this case, thea tilted flux-line liquid,\, and\y, are given by
eigenvalues corresponding to the longitudinal and transverse
eigenmodes of the elastic matriy, and\;, respectively, are 1
given by the well-known expressions A=5[vFyver- ],

A =Ca1(K)KZ +cau(K)KZ, 1
(20) )\T_E[V_ \/VJer]:
A= Caa(K)KZ. s s
V:C]_lki‘i‘(cém‘i‘ C44)kz+2041kykz, (21)
Note that for6=0, positive elastic constants guarantee stable
nonsoft modes, i.e., no instabilities occur in the flux-line lig- V.= cllkf + (Cﬁ4— 0!14) k§+ zf:jlkykz,
uid if elastic moduli are positive definite. Note also that in
the interacting flux-line-liquid limit,c44>c 44, contrary to Eh=cat /—Cll(Cir ).

the isolated vortex liquid case. Their dispersions are Lorent-

zians directly reflecting the screened Coulomb-type interacThe stability of a tilted flux-line liquid is somewhat less of a
tion between flux-line elementavhich has a tensorial na- trivial matter than what one naively would have thought,
ture); moreover they never change sign. based simply on the positivity of all the elastic constants in

0.4
0.3 F . . )

FIG. 11. The critical orientations6,,6,)
£ wherecli,(6) for isolated flux lines changes sign
= 44 g an,

as a function ofl’ for fixed k=10 for various
0.2 r values ofk,,k,\,=2,3,5,10,1000. A sharp cut-

off has been used.
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the dense flux-line liquid limit Eq(19). The reason is the acting case is not connected with the possibility of coexisting
following: due to the appearance of a teaqk k, even in  species of flux lines characterized by different orientations
the eigenvalugst is clear that even i€4,>0, this term does relative to the uniaxial symmetry axis in an anisotropic su-
not have a definite sigand can be negativéVe now inves-  perconductor. The relevant tilt instability to compare the co-
tigate whether or not the lowest eigenvalug could give  existence with is the one associated with the softneds, pf
rise to a soft mode\;y=0 in this interacting case. Setting Thek,=0 tilt instability associated witkb,, sets in at much
Ar=0 leads to the condition larger values of the mass anisotropy, and thus does not pre-
empt the coexistence of straight flux lines of different orien-
tations with respect to the axis.
The above picture could conceivably be altered by the
correct physical interpretation of the largg-instability
The appearance of a soft mode requires at leash<0, found in®,, (k,). This must await further treatment outside
sincecs,>cl,>0. Such a lack of positive definiteness in an the scope of anisotropic London theory, or any theory which
eigenmode can only come from the third termAnHence, describes layered superconductors as an anisotropic con-
an instability of the flux-line liquid, were it to exist, would tinuum.This is not an issue of how to introduce core cutoffs
thus be due to a mixed bulk and tilt deformation of the fluxin London theory Anisotropic Ginzburg-Landau theory
lines. Inserting the expression for the various elastic modulivould suffer from the same short-comings as the London
into the expression fod, we find the condition fon=0 theory in correctly describing the short-distance physias
5o 2o o o the € direction of layered superconductors. The correct
1HNpKL+ gk, T (Ne—AP)siN(20)kyk, =0, (23 framework for such an investigation appears to be the
where \2,=\2 sir? 6+\2 cog 6, N3,=\2 cos 6+\2sin? ¢,  Lawrence-Doniach theory. If the lardg- instability of
and where the last term on the left-hand side originates ifPyy(K;) survives a correct treatment of the short-distance
c,,. We may use this condition to find a “dispersion rela- physics in thec direction of layered superconductors, and the
tion” for a soft modek,=k,(k,,k,), where however the con- k,— tilt instability is found to be the most unstable mode,
dition for real solutions is given by then it is not ruled out that the phase diagréri) for this
mode may be such as to entirely preempt coexistence of
(N2=N3)2KS siP0 cos9=N5,(1+ T ,K2). (24 straight flux lines.
This inequality is most easily satisfied, if at all, fkg=0. An intgresting issqe Is to what extgnt thermally expited
After some algebra, it is found that this implies that Fourier tilt modes will affect the melting of the flux-line

X 2\ 2<0, which is not possible. We conclude that any ten-lattice in a tilted field configuration at low induc-

dency toward a bulk-tilt instability in an interacting tilted tions. When interactions between flux lines are taken into

vortex liquid in uniaxially anisotropic superconductors, is@ccount in a flux-line liquid, it is found that in the dense
suppressed by interactions between flux lines reflected by tHease, all pure tilt moduli are positive. The filt instabilities
presence of the bulk modules;. However, the mixed bulk- discovered in the noninteracting case thus are suppressed by
tilt modulus discovered by Sardelfdeads to a softening of interactions between flux lines. A modulus which mixes tilt
the transverse elastic response of the flux-line ligindzer- ~ and bulk modes gives rise to a term in the eigenmode spec-
tain regions ofk space Whether or not this result is of any trum which is not positive definite, and, in principle, may go
importance for such phenomena as flux-line-latticesoft. It is found that this tilt-bulk instability is also sup-
melting;#*°where the dominant Fourier modes contributing pressed by interactions between flux lines. The lack of posi-
to destabilizing the flux-line lattice are located at thetive definiteness of the mixed bulk-tilt term does however
Brillouin-zone boundary?*’remains to be investigated. This soften the lowest eigenvalue. Thus, the tilt-bulk contribution
requires incorporation, into the linear elastic energy, of theo the transverse eigenmode may also have important conse-

easy and hard shear moduli discussed by Kogan anguences for such phenomena as flux-line-lattice melting in
Campbell* as well as the mixed shear and tilt modulus dis-tjjted magnetic-field configurations.

covered by a scaling approach by Blatter and co-workets.

I L2
CaaA +C11(Cyy— Ca0) Ky =0,

(22)
Cllki + Ci4k§+ 2041kykZE A.
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wherek, is largek,&,~1 is presumably unphysical since the LONDON POTENTIAL
London theory is a continuum theory of superconductors. A
more useful starting point for discussing short-wavelength We start from the expression in momentum space for the
tilt instabilities is the Lawrence-Doniach theory. anisotropic London potential, when the average induction is
We have shown that the softnessdy, in the noninter-  oriented at an anglé with respect to the& axis
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~ 1 A20.95
Ve = 102 [%‘ TN KE+ A2
(A1)
A1=>\§; Az=7\§—>\§: q=kXxc,
where the real-space potential is given by
Vo= [ 2 T tige
wp(l) = 2n7 ap(K)€
S efr/)\
_ _YapB af
= +
471')\51 r Vi (),
V3P == A[VI(VI(N)XEl]XEls,  (A2)

d3k eik~r

(=42 | o3 (T A KD (1 AK2T Ay

In the above,(a,B8)e(X,y,z). The procedure for Fourier ' _ _
transformlngvaﬁ(k) is described in Ref. 11, for the case 9¢;

6=0, and here we generalize it to the cased. This result is

useful for considering for instance the stability of twisted
multiplets of vortices in vortex lattices and vortex liquids,
when the vortices are oriented at an average oblique ang@

with respect to th& axis.
The first step for6>0 is to introduce new variables

k.= cosvk, — sindk ,

ky=ky, (A3)
k,= sindk; + cosok, ,
and similarly in real space
x' = co9x+ sindz,
y'=y, (Ad)

Z' = —sinfx+ coxz.

Now we can express the auxiliary functidfr), after an
angular integration, and redefinikg—k

dk,

(" cogk,z’)
=]

1+A k2 (k21p’)1

(A1+A2)do(kip")
1+(A+AKS + A K2

Fikeop')= [ dkik,

~ AqJo(kip')
1+ Ak +A k2

p'=(rxe)%.

: (A5)

The integrations

sumed in the variableg’,z’, which are not involved in the

integrations. Thek, integrations produce modified zeroth-

order Bessel functions. We get

inF are of a variety considered
previously' for the case#=0; all # dependence is now sub-

853
dk, cogk,)
|(r):f . a2 1A, k2 [Ko(z1) —Ko(22)]
Ell_lz,
Zi=a;\1+A kS, (AB)

ai=a;p’; a;=1A+A, a2=1/JA,,

where K, are modified zeroth-order Bessel functions. The
remaining integrations ih(r) appear difficult to perform, but
are not required: All we need are variodsrivativesof |(r)
which are easily obtained. We list two results that are useful
when working out the derivatives in EGAL)

V(=Y S pyy 2
i(r)= % G TV g
(A7)
al; 1 1 \/El , (z)?]v
5 —— af +
27 A, ¥ 24 Ag

XKl/Z(\ a2+ Z, 2/A )

where K,)(X) =y m/2x exp(—X). Performing all necessary
fferentiations, and adding together, we get the results listed
in Sec. Il.

APPENDIX B: ELASTIC MATRIX ELEMENTS

For numerical calculations at arbitrary andleit is con-
venient to express the elastic matrix in the following form:

Neag(Q)
D(Q)

D(K)=(1+AK?)(1+A K2+ A,0?),

B? Nos(K)
E% D(K)

D, p5(k)= S(K )~ S(Q) |,

Ny (K)=KZ[1+(A1+ A, cog 9)K?]

+K[1+ (A + A, sir? 9)K?]+k,K, sin 20K?,

Nyy(K)=

Ny (K) =K,K,[1+(A3+ A, cos 6)K?]
+A kK, sind cosgK?,

K1+ (Ay+ A, cos 9K+ K1+ AK?],

(B1)

whereK =k+Q, andg=K xc. S(k, ) formally denotes a cut-

off function introducedad hocinto the London theory as an
“ultraviolet regularization,” due to the lack of an explicit
description of the vortex core. It may be chosen quite freely,
either as a sharp or a smooth cutoff. In this paper we con-
sider both sharp and smooth cutoff procedures, i.e., we have
chosen two model cutoff function§; andS,, defined by

Si(k)=0[1—g(k,)],

Sp(k, )=e 9k, (B2)

a(k, )= £3kZ + £3K3

where O(x) is the Heavyside step function. Note that we
have little freedom in choosing the functighk, ), since the
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correct elliptical shape of the vortex core is essential at largelegree when the penetration depth increases. Physically, this
mass anisotropies, and must be accounted for to get corregpproximation amounts to considering a dense, interacting
results; the “logarithmically weak” dependence of the coreflux-line liquid, since all information stemming from any
cutoff on quantities such as self-energy and elastic constantgructure dependence of the flux-line ensemble, is lost. When
does become significant whéw,/M is very large. the induction becomes low, such th&b<1, i.e., the dilute

In principle, the above expression for the elastic matrixjimit, the terms in®,, fall off sufficiently slowly that the

tice, since even structure-dependent terms emerge as a resyj

of the discrete summation over lattice vect@QsThese vec-

tors should only belong to an equilibrium lattice configura—d
tion, otherwise the expansion around the vortex state Witq
energyE, is meaningless. There are two, in some sense op

posite, limits of Eq.(B1). The simplest one to treat analyti-
cally is the one involving only th@=0 term in® (k). The

assumption that th€=0 term is dominant amounts to a
high-densitylimit, since the remaining terms will be of order

1/(1+4mx’b/V3) compared to the leading term, where
b=B/H(T). The quality of this approximation increases

fs case the summation ovér must be performed, in gen-
eral numerically. There is however a limit which leads to
rastic simplifications, namely the extreme low-induction
limit where the lattice vectors may be considered to span a
continuum. Then the sum may be converted to an integral,
which in turn implies that all structure-dependent informa-
tion again is lost. Physically, this corresponds to the limit of
a gas of flux lines with no interactiopetween differenfiux
ines.

We first consider the dense flux-line-liquid limit. Retain-

with increasingx, since vortex fields overlap to a stronger ing only theQ=0 term in® ,4(k), we find

B2 K1+ (A1+A, cof O)kP]+K[1+ (A+ A, sir? 0)k?]+ Ak,k, sin 20k?

)_477

XX(

y

(1+A.K%)(1+ A k*+ A,q%) '

B2 KZ[1+(A,+A, cof 0)k]+K3(1+Ak?)

Cy0=77

Dy (k)=

B2 Kyky[1+(A1+ A, cos’ 9)k?]+ Ak kK, sing cosgk?

(1+ A% (1+ A K%+ A,0°%) ’

am

(1+A k%) (1+ A K%+ A,q°)

(B3)

Comparing this with Eq(18), we immediately identify the where the symbols have been defined in the text. The

elastic constants in E¢19).

k-space summation is cutoff on an ellipse defined by(E2yg.

We next consider the elastic matrix elements in the limitwhich we circularize by scaling thle variable

of a noninterating vortex liquid, i.ek,=k,=0, and where
the discrete summation ovér is replaced by an integration.
In this case we have

S(Q).

J
(B4)

Using Eq.(B1), it is seen thatb,,(k,) =0, moreover it can
be shown that linear terms ik, vanish by symmetry. The
above integral expressions define the two tilt moduli(k,)
andcl,(k,) for a noninteracting flux-line liquid. The neces-
sary integration can be carried out analyticallyéatO and
0=m/2. For arbitrary values ob the integrations have been
done numerically.

Bd,

Nos(Qko) N,
I B(Qk) Nog(Q)

D(Q.k)  D(Q

™

dQ
(2m)*

APPENDIX C: SELF-ENERGY OF RIGID FLUX LINES
The self-energy for a straight, rigid flux line is given by
®g

“ 8w

d?k 1+\2K2
47 [1+ N2 1+ NAC+ 2K
(Cy

J(0)

N2=M\2 sirfg+\2co,

ky— k;zﬁ

gab (CZ)

K ky— Ky -

This enables us to use simple two-dimensional polar coordi-
nates(¢,k’) for the angular and radial integrations, at the
expense of introducing additional angular dependence into
the integrand

}\2
1+N2K2 -1+ M2k 2+ [N2—\2] )\—2 k'2 code,
6

LN 1A 2NN cod, (€D

T+ NGKE+NZKG— 1+ N2k’ 2,

Inserting these transformed quantities into the expression for
the self-energy, and renaming the integration varidblek,
we get after performing the angular integration oger
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DF & ([ kdk 2¢c
‘](0)2_2_] 21,2 2 2
167 & Jo  1+A2K? | \(b+2a)>—b
d 2a )
+- |1l |
b (b+2a)2—
(CH
a=1+12k2,
2)\2
b=— (A2-12),
>\0
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c=1+\2%>,

d=(\2-\?)K>.

Previous analytical approximations d¢6) were obtained by
approximating the square roots \?A+2b)2—b?
~1/(b+a/2), which is a good approximation in hard type-I|
superconductors.
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