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Phase diagrams for various tilt instabilities, as well as phase diagrams for possible coexistence of vortex
lines with different orientations in a tilted magnetic field of anisotropic type-II superconductors, are mapped
out and compared within anisotropic London theory. Double minima in the Gibbs energy as a function of
vortex orientation in the case of noninteracting vortex liquids may be found in a regime of mass anisotropy
where long-wavelength tilt instabilities do not occur, and are associated with coexisting species of flux lines of
different orientations with respect to the crystalĉ axis. At larger mass-anisotropies, long-wavelength tilt
instabilities do occur for tilt modes perpendicular to theab planes. For tilt modes parallel to theab planes,
instabilities only occur for very large wave numbers, beyond the regime of applicability of London theory. The
cutoff dependence on the phase diagrams for the isolated flux-line limit is investigated. It is essential that the
elliptic shape of the vortex core is accounted for. When interactions are accounted for in a dense flux-line
liquid, the tilt instabilities are removed.

I. INTRODUCTION

Theoretical investigations of the stability of vortex struc-
tures in anisotropic superconductors have recently been car-
ried out quite intensively.1–7 This followed, for instance,
from Bitter pattern decoration studies of magnetic-flux lines
emerging from surfaces of the high-Tc superconductor
Bi2.2Sr2Ca0.8Cu2O8,

8 where chains of flux lines embedded in
an approximately regular hexagonal Abrikosov vortex lattice
were seen when the external magnetic field was tilted with
respect to theĉ axis. This finding was unexpected: earlier
work had predicted the chains of vortices, but not their co-
existence with the background of an approximately regular
hexagonal vortex lattice.9

Various scenarios of how such a situation could occur,
were recently proposed. Basically, the main idea is due to
Huse,1 who suggested the possibility of an admixture of two
species of vortices in anisotropic superconductors in tilted
magnetic fields, one oriented almost parallel to theĉ axis,
and another oriented almost parallel to theab plane.

More recently, it was actually demonstrated rigorously
within the framework of anisotropic London theory that such
a situation could occur, at least at very low inductions, pro-
vided that the mass anisotropy of the material is large
enough.5 The hallmark of such a highly unusual effect was
established as the observation of two degenerate minima at
value zero of the Gibbs energy, for two distinct flux-line
orientations with respect to theĉ axis. Finally, it has been
demonstrated, also within anisotropic London theory,6 that
certain tilt instabilities~also to be discussed in this paper!
could occur for bending modes of the flux lines at large wave
numberskz , and it was speculated that there could be a con-
nection between the above-mentioned coexistence of flux-
line orientations, and such tilt instabilities.

Recent experimental work has claimed evidence for the
coexistence of flux lines of different orientations,10 but where
neither vortex orientation is parallel to the direction of the
applied field. This is consistent with the predictions of Ref.
5.

To our knowledge, a unique interpretation of the double
minimum in the Gibbs energy has not yet been conclusively
established. The issue is whether such double minima can be
uniquely interpreted as coexistence of flux lines with differ-
ent orientations, or whether they can be interpreted as tilt
instabilities of flux lines oriented at oblique angles with re-
spect to theĉ axis in very anisotropic and extreme type-II
superconductors. Such tilt instabilities would imply that an
assumption of a ground state consisting ofstraight flux lines
would be incorrect, and that the correct ground state rather
would consist of flux lines with spontaneously created kinks
~most probably on the length scale of interlayer distance!. In
this paper, we clarify the connection between tilt instabilities
and coexistence of vortex ‘‘species,’’ characterized by differ-
ent orientations relative to the uniaxial symmetry axis in an-
isotropic superconductors, in flux-line liquids. We emphasize
that we are not considering entropic contributions to the free
energy; thermal effects are ignored. Nonetheless, the phrase
flux-line liquid will be used frequently, a term usually re-
served for cases where thermal effectsare important. In this
paper, it will simply be used to denote a flux-line ensemble
with zero shear stiffness.

This paper is organized as follows. In Sec. II, we intro-
duce the anisotropic London theory and the tensorial inter-
action between flux lines of arbitrary shape in tilted magnetic
fields, with a derivation of the result given in Appendix A.
The elastic matrix is then given, along with cutoff procedures
described in detail in Appendix B. In Sec. III, we give the
Gibbs energy for noninteracting flux lines and study its prop-
erties, with a derivation of the self-energy given in Appendix
C. In Secs. IV and V we discuss elastic eigenmodes of flux-
line liquids, i.e., flux-line ensembles without a shear modu-
lus, both for the noninteracting and interacting cases. The
stability of tilted flux-line liquids are discussed for the dilute
and dense cases.

II. ANISOTROPIC LONDON THEORY

In the London theory, the total energy of an ensemble of
interacting flux lines of arbitrary shape, including vortex
loops, is given by
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where a summation over repeated indicesa,b is understood
and ~a,b!P(x,y,z). The expression for the tensorVab~r !
when the average induction is tilted an angleu away from
the symmetryĉ axis is given by11
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whereca is the projection ofĉ onto theath (x,y,z) axis,la
andlc are London penetration depths along theab plane and
ĉ axis, respectively, andG[AMz /M is the mass anisotropy
in the uniaxially anisotropic superconductor. Within this
effective-mass model, we haveG5lc/la . For the derivation
of this expression, see Appendix A.

Expanding the total energyE to lowest order in vortex
fluctuations around a ground-state Abrikosov vortex lattice
solution, which has an energy denoted byE0, we get
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where now~a,b!P(x,y), since displacements along the vor-
tex lines have no physical meaning, and$u% are the Fourier
transforms of the local distortions of the flux-line system
around its ground state of rigid flux lines arranged in a well
defined ~super!lattice, and which we assume to be small.
F ~$u%! is the linear elastic energy associated with the Gauss-

ian fluctuations of the flux lines around the ground state, and
for a flux-line liquid in a tilted field in a uniaxial anisotropic
superconductor, this elastic energy is given by12
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In this continuum limit of a flux-line liquid, we have four
different elastic moduli, due to the loss of symmetry in the
problem when the induction is directed away from theĉ axis.
c11 is the bulk modulus,c44

' is the tilt modulus associated
with tilts in the ~ĉ,B! plane,c 44

i (k! is a tilt modulus associ-
ated with tilts out of the~ĉ,B! plane, whilec14~k! is a mixed
bulk and tilt modulus which has no counterpart in the isotro-
pic case. For the geometry of the problem, see Fig. 1. In the
case of a very dilute flux-line liquid, the moduli associated
with the interactions between flux lines, i.e.,c11~k! and
c14~k!, become unimportant. Moreover, the components
(kx ,ky) of the Fourier modek also have no physical signifi-
cance any longer, and thusF ~$k%! reduces to the much sim-
pler expression
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The above expansion, using Eqs.~1!–~3!, gives the following
expression for the elastic matrixFab~k! of the flux-line
system3,13
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2. For the purposes of
the calculations to be presented in this paper, it is convenient

FIG. 1. Geometry of tilted vortex lines con-
sidered in this paper.X̂,Ŷ,Ẑ are the symmetry
axis of the crystal andx̂,ŷ,ẑ are the axis for the
vortex lines. The vortex frame can be obtained
from the crystal frame by rotating it an angleu
aroundŶ axis. The inset shows that the cylindri-
cal system in the calculation of the double
minima in Gibbs energy~coexistence!.
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to express the elements ofFab~k! in the form given in Ap-
pendix B. In the above expressions,Q is a set of reciprocal-
lattice vectors of an equilibrium lattice configuration,
K5Q1k. Such equilibrium configurations could, in prin-
ciple, be quite general, including vortex lattices with a basis,
depending on what the induction and orientation with respect
to ĉ axis are, and what material parameters such as mass
anisotropy and Ginzburg-Landau parameter, are considered.

Note that all of the above lattice sums, which are two-
dimensional, formally diverge logarithmically. The sums are
thereforedominatedby the region ofk space corresponding
to thevortex core, which is not explicitly described in Lon-
don theory. A prescription for cutting off these sums has been
described elsewhere,14,15 and it turns out to be crucial to
account for the deformation of the vortex core shape as the
average induction is tilted away from theĉ axis.3 The sum is
given an upper cutoff on an ellipse in (kx ,ky) space defined
by

ju
2kx

21ja
2ky

251,
~7!

ja
2 cos2 u1jc

2 sin2 u[ju
2,

whereja and jc are the superconducting coherence lengths
along theab plane andĉ axis, respectively, andja/jc5G.
This may either be implemented by a sharp cutoff on the
integrals~or sums! or by a Gaussian cutoff. For the results
presented in this paper, we have used both procedures, in
order to compare the results we obtain; it is always a matter
of concern that results in London theory could be artifacts of
the details of cutoff procedures. For the same reason, results
that appear in the large-kz limit within London theory should
also be viewed with suspicion. We note however, that the
elliptical cutoff in k space that we employ has been derived
from Ginzburg-Landau theory.16 We have found that the re-
sults do not depend on the details of the way the cutoff is
implemented.

III. GIBBS ENERGY, RIGID NONINTERACTING
FLUX LINES

We first briefly recapitulate the principle for detecting co-
existence, a brief version of what is presented below has
appeared elsewhere.3 The present calculation represents a
slight improvement in accuracy over previous results due to
a more precise numerical calculation of the vortex self-
energy of rigid flux lines tilted an arbitrary angleu away
from the ĉ axis, and which is given in general by5

J~u!5
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2
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2 cos2u,

which was previously approximated analytically in a manner
described in Appendix C. A cutoff of the formally logarith-
mically divergent sum, is understood. One may either em-
ploy a sharp cutoff, where the upper limit inkx ,ky space is
given by an ellipse reflecting the elliptic shape of the vortex
core when the flux line is tilted, or a Gaussian cutoff. The
procedure is described in Appendix B.

We consider a cylindrical superconductor with the applied
field perpendicular to the symmetry axis of the cylinder and
tilted an anglef away from the crystalĉ axis, see the inset
of Fig. 1. The Gibbs energy for such a system is given by

G5nJ~u!2HB cos~f2u!, ~9!

wheren is the areal density of flux lines,H is the applied
field, andB is the induction. This expression is valid atT50,
where the entropic contribution to the free energy is zero.
Previous analytical approximations to this expression3 are in
excellent agreement with the numerical results of Appendix
C, particularly in the large-k limit. The minimum criterion
for seeing double minima~not necessarily degenerate! in the
Gibbs energy is that

minu

]2G

]u2
,0. ~10!

Two precisely degenerate minima in the Gibbs energy at
G50 requires two distinct solutions to the coupled equations

G~G,k;u!50,
~11!

]G~G,k;u!

]u
50.

When minu ]2G/]u2,0, it turns out that there are precisely
three anglesu1,u2,u3 for which ]G/]u50, corresponding
to two minima~u1,u3! and one maximum~u2! in the Gibbs
energy. The maximum atu2 corresponds to a vortex orienta-
tion of an unstable state and will not be considered further. In
the isotropic case, or when a circular core cutoff is used in
the anisotropic case, it is well known that one unique orien-
tation of the flux lines exists, given by the condition

tan~f!5G22 tan~u!. ~12!

A circular cutoff is expected to be a reasonable and qualita-
tively correct approximation to the core cutoff for not too
large mass anisotropies, due to the fact that the self-energy
depends only weakly~logarithmically! on the details of the
cutoff. For not too large mass anisotropies, we thus expect
that the above expression essentially gives correct results for
the vortex orientation at given mass anisotropy and orienta-
tion of external field. Note that the Ginzburg-Landau param-
eter does not enter into the above expression.

From the above, it is immediately clear that there must
exist aminimummass anisotropy at a given value ofk to see
a double minimum in the Gibbs energy, if at all, at any value
of the direction of the applied field,f, and at any vortex
orientation. It is also clear that the elliptical core cutoff is
essential to bring about qualitatively new effects of the mass
anisotropy. The orientation~s! for the penetrating flux line~s!
inside the superconductor is determined from Eq.~11!

tan~f!5
tan~u!1J8/J

12J8/J tan~u!
, ~13!

whereJ85]J/]u. The right-hand side of Eq.~13! must be
nonmonotonic in order for the system to exhibit multiple
solutionsu for a given value off. Nonmonotonicity devel-
ops as a function of mass anisotropy due to the self-energy
cost associated with deforming the vortex core as the flux-
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line orientationu is varied. Figures 2 and 3 illustrate the
situation: Shown is the minimum mass anisotropyGmin as a
function of lnk required to see nonmonotonicity in the right-
hand side of Eq.~13!. Figure 2 shows the result of imple-
menting the cutoff Eq.~7! sharply, while Fig. 3 shows the
result of implementing it smoothly, as described in Appendix
B.

As can be seen, the results are quite insensitive to the
details of the implementation of the core cutoff. This is a
satisfactory feature, since the cutoff must be introduced in an
ad hocway within London theory due to the lack of an
explicit description of the vortex core. The only minor dif-
ference in the results given the two cutoff procedures is that
smooth cutoffs give a slightly smaller critical mass anisot-
ropy, i.e., coexistence is possible at a smallerGmin . The slight
difference in the values ofGmin compared to earlier results

3 is
due to the more accurate, numerical, evaluation of the self-
energy compared to earlier work, where an analytical ap-

proximation toJ~u! was used. The picture that emerges is
however identical: Ask increases, a monotonic increase in
Gmin is required to see double minima in the Gibbs energy
thus facilitating the coexistence of flux lines of different ori-
entations at the lower critical field. The inset shows the
angles at which precisely two degenerate minima atG50 are
found. Again, it is seen that the results are essentially inde-
pendent of the way the cutoff is implemented.

A physical interpretation of this result has been given
previously:3 The two degenerate minima atHc1 indicate that
the flux lines, upon entering the superconductor at the lower
critical field, may enter as straight flux lines at two different
orientations with respect to theĉ axis.

More recently, Sardella and Moore have detected certain
tilt instabilities at very large wave numbers in systems of
isolated flux lines,13 and also speculated that this could be
related to the results of Ref. 3. In particular they found criti-
cal angles at which tilt instabilities occurred which superfi-

FIG. 2. Critical value ofG as a function of
lnk, for seeing double minima in the Gibbs en-
ergy, using a sharp cutoff in the self-energyJ~u!.
The inset shows the corresponding angles of ori-
entations for two coexisting ‘‘species’’ of flux
lines as a function ofG, for two values of
k510,50.

FIG. 3. Same as Fig. 2, using a smooth cutoff.
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cially resemble the insets of Figs. 2 and 3; however we point
out that, contrary to Figs. 2 and 3, Ref. 13 found that these
critical angles depended onG, but notk, in the limit where
the wave numberkz→`.

The issue thus arises whether the interpretation of the
above result of two degenerate minima in the Gibbs energy
as coexistence of two species of straight flux lines is in fact
correct, or if they should rather be interpreted as an indica-
tion of the breakdown of the assumption of a ground state
consisting of straight rigid flux lines. The result of this sec-
tion relies on such an assumption, but if tilt instabilities were
to preemptthe onset of coexisting species of straight flux
lines oriented at two different orientations with respect to the
ĉ axis, our above results and conclusions would be invalid.

In order to investigate this, we will in the following sec-
tion consider in detail tilt instabilities of the noninteracting
flux-line liquid. We shall find that the tilt mode considered in
Ref. 13 is irrelevant for comparing with the results found in
the present section, since it involves tilting of flux lines par-
allel to theab planes, whereas the Gibbs energy of this sec-
tion involves tilting perpendicular to theab planes. We also
consider in detail a tilt mode associated with tilting perpen-
dicular to theab plane, and find that this tilt mode has an
instability, not in the limitkz→` as the case was for the
parallel tilt mode, but rather for the casekz→0, which is also
more physical within the London theory. Moreover, we map
out the phase diagram where such instabilities occur and
compare with Figs. 2 and 3. Again, we have found through-
out that results do not depend on details of implementations
of the core cutoff, and we thus only show results obtained by
using a sharp cutoff procedure.

IV. EIGEN „TILT … MODES, NONINTERACTING
FLUX-LINE LIQUID

The limit of a noninteracting flux-line liquid is obtained
from the general expression forFab(k) by converting the
summations over the reciprocal-lattice vectorsQ to an inte-
gration. This means that~i! all structure dependence of an
underlying lattice disappears and therefore all shear stiffness
vanishes,~ii ! the limit B→0 is implied sinceuQu;B1/2.

By comparing the expression for the linear elastic energy
in the dilute limit, Eq.~5!, with Eq. ~3!, it is seen that the
elastic matrix in the noninteracting case takes the form

Fxx~k!5c44
' ~k!kz

2,

Fyy~k!5c44
i

~k!kz
2, ~14!

Fxy~k!50.

For details of how to computec 44
' (kz) andc 44

i (kz), see Ap-
pendix B. In the isolated vortex liquid limit, the two tilt
moduli only depend on the variablekz , since the components
kx ,ky have no physical significance in this case. The eigen-
values of the elastic matrix for this case are given by

l~1 !5kz
2c44

' ,
~15!

l~2 !5kz
2c44

i .

At u50, we haveFxx5Fyy , due to the rotational symmetry
about theĉ axis in this case, hencec 44

' (kz)5c 44
i (kz). For

completeness, we give an analytical expression for
Fxx5Fyy[F in this case.

F~kz!5
B2kz

2

32p2nlc
2 ln Y~kz!1

B2

32p2nla
4 ln Z~kz!,

Y~kz!5
ja

221a~kz!/lc
2

q0
21a~kz!/lc

2 ,

~16!

Z~kz!5
Y~0!

Y~kz!
,

a~kz!511lakz
2; q0

25kBZ
2 /2; n5B/F0 ,

whereF05h/2e is the elementary flux quantum,b5B/Hc2,
andkBZ indicates the radius of a circularized Brillouin zone
of the flux-line lattice, which however vanishes in the limit
B→0. In principle, this expression shows the tendency to-
wards a crossover from the Lorentzian contributions to the
elastic moduli in the dense limitb;1, and the logarithmi-
cally dispersive elastic moduli in the extreme dilute limit,
b→0. The single vortex limit is obtained by settingb50 in
the factorsY andZ, and the logarithmically dispersive elastic
modulus for the isolated flux line atu50 is found by com-
paring Eqs.~14! and ~16!

c44~kz!5
BF0

32p2 F ln Y

lc
2 1

ln Z

kz
2la

4G . ~17!

Note that the first contribution tends to 0 forkz50 in the
extreme anisotropic limitG→`, whereas the latter contribu-
tion remains finite. It is interesting that London theory cor-
rectly produces both logarithms in the tilt modulus. For gen-
eral u, we havec 44

i
.c 44

' .
The elastic modulic44

' andc44
i at arbitraryu are obtained

numerically from the procedure described in Appendix B for
the dilute case. They are shown in Figs. 4–7.

The angular dependence of the the perpendicular tilt
modulusc44

' and the parallel tilt modulusc44
i for kz50 is

shown in Figs. 4 and 5. The main difference between these
two quantities atkz50 is that the parallel tilt modulus never
goes negative for any value ofu, whereas the perpendicular
does. Figure 4 shows that whenG increases,c44

' ~u! develops
a sharp peak atu5p/2. The rangeu1*,u,u3* wherec44

' ~u!
changes sign, increases, and the lower critical tilt angleu1*
moves towards 0, as expected on physical grounds. Note also
that u2* which gives the minimum in the Gibbs energy,
moves towardsp/2. ~For an explanation of the symbols
u1* ,u2* ,u3* , see Fig. 4!. In Fig. 4, a sharp cutoff on the
k-space integrals at large values ofk have been used. Figure
5 shows results for the parallel tilt modulus, which is positive
in the entire rangeuP@0,p/2# at kz50. The prominent peak
atu5p/2 which was found for the perpendicular tilt modulus
is not found for the parallel tilt modulus. This is because at
u5p/2, the parallel tilt modulusc44

i describes tiltingin the
ab plane, and the remnants of a lock-in transition found
within Lawrence-Doniach theory is no longer felt for this
geometry.
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The dispersion of both tilt moduli are shown in Figs. 6
and 7, for various values ofu. In Fig. 6 it is seen that for
u50 only a weak logarithmic dispersion is found for
c 44

' (kz), as previously found analytically in Ref. 17. It is also
seen thatc 44

' (kz) decreases with increasingu. For u1*,u
,u3* , the perpendicular tilt modulusc 44

' (kz) is negative for
small values ofkz and obtains a minimum foru5u2* . For
u.u3* ~not shown!, c 44

' (kz) is again positive for allkz , and
for u5p/2 ~not shown! c 44

' (kz) has a logarithmic dispersion,
similar as for the caseu50. In Fig. 6, a sharp cutoff on
k-space integrals have been used. Figure 7 shows theu de-
pendence forc 44

i (kz), obtained by using a sharp cutoff. Asu
increases, the parallel tilt modulusc 44

i (kz) decreases and
changes sign forlarge kz . For increasingu greater than a
critical u* ~not shown! c 44

i (kz) increases, and foru nearp/2,
c 44

i (kz) is again positive for allkz .
Based on the above discussions, we believe that the issue

of the ad hoc introduction of a core cutoff within London

theory is not a particularly serious one, provided only that a
qualitatively correctu-dependent shape of the core~elliptic
contours of constant currents, with correct aspect ratios! are
used.

A striking difference betweenc 44
' (kz) andc 44

i (kz) is the
range inkz in which these moduli become negative. Forc44

' ,
it happens at intermediate values ofu, and for small values
of kz . Forc44

i it also happens at intermediate values ofu, but
now only for large values ofkz . Results for large values of
kz must be viewed with a certain suspicion when obtained
within London theory, since it is a description of layered
superconductors in terms of an anisotropic continuum. For
large values ofG and large values ofkz , a description where
the discreteness of the layers is accounted for is undoubtedly
more appropriate, and the Lawrence-Doniach energy func-
tional provides a considerably more reliable starting point.

Again, we may map out a phase diagram~G,k! which
shows the minimum mass-anisotropy versus lnk, required to

FIG. 4. The ‘‘perpendicular’’ tilt modulus
c44

' ~u! for isolated flux lines, for fixedk520,
kz50 for various values ofG52,10,15,20. For
eachG the correspondingc44

' ~u;G! is normalized
such thatc44

' ~u50;G!51. A sharp cutoff has been
used.

FIG. 5. Same as Fig. 4, forc44
i ~u!, using a

sharp cutoff.
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see negative tilt moduli at any value ofu. This is shown in
Fig. 8 for c 44

' (kz) for various values ofkz and using a sharp
cutoff. Figure 9 shows the same forc 44

i (kz). Forc 44
' (kz), the

critical mass anisotropy is increased upon increasingkz ; the
trend is the opposite forc 44

i (kz). Comparing thekz50 result
with the results of Figs. 2 and 3, it is clear that the critical
values ofG required to see negative tilt moduli are quite
different from those required to see double minima in the
Gibbs energy. No negativity occurs atkz50 for the parallel
tilt modulusc44

i , which is the one considered for instance in
Ref. 13. On the other hand, we have seen that the perpen-
dicular tilt modulusc44

' may become negative atkz50. This
only happens at considerably larger value ofG than those
required to see double minima in the Gibbs energy, as dis-
cussed in the previous section. The critical angles~u1,u2!
discussed in Sec. III are shown in Figs. 10 and 11 forc44

' and
c44

i , respectively.
We conclude that the correct interpretation of the results

of the previous section is indeed that a situation has estab-
lished itself close to the lower critical field where straight
flux lines characterized by different orientations coexist in a
window of mass anisotropiesGc1,G,Gc2. Gc1 is found
from Figs. 2 and 3, whereasGc2 is found forkz50 in Fig. 6.
WhenG.Gc2, the ground state of noninteracting flux lines is
not one where the flux lines are straight and oriented ob-
liquely with respect to theĉ axis. What the actual ground-
state vortex configuration in this case is, in the limit of ex-
tremely low inductions, remains for future investigations,
and should presumably be investigated using the Lawrence-
Doniach theory.

V. EIGENMODES, INTERACTING FLUX-LINE LIQUID

In this section we consider the opposite situation of that in
the previous section, namely that of a dense vortex liquid. In
the dense limit, it is permissible to consider the ensemble of

FIG. 6. c 44
' (kz ;u) as a function of ln(lakz),

for fixed k520, G520 for various values of
u5@0, 0.7, 1.0, 1.3#. c 44

' (kz ;u) is normalized
such thatc 44

' (kz50;u50)51, and kz is mea-
sured in units ofla . A sharp cutoff has been
used.

FIG. 7. Same as Fig. 8, forc 44
i (kz ;u), using a

sharp cutoff.
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flux lines as a continuum where one averages spatially over
the distribution of flux lines, to arrive at a continuum de-
scription where all information about the structure of the
individual vortices are ignored. Thus, we retain only the
Q50 term in the lattice sums for the matrix elementsFab~k!.
This gives

Fxx~k!5c11~k!kx
21c44

' ~k!kz
212c41~k!kxkz ,

Fyy~k!5c11~k!ky
21c44

i
~k!kz

2, ~18!

Fxy~k!5c11~k!kxky1c41~k!kykz ,

where the elastic moduli are read off directly from the gen-
eral expressions forFab~k! ~Ref. 13! ~see Appendix B!

c11~k!5
B2

4p F 11la
2k21~lc

22la
2!cos2uk2

@11la
2k2#@11la

2k21~lc
22la

2!q2#G ,
c44

' ~k!5
B2

4p F 11la
2k21~lc

22la
2!sin2uk2

@11la
2k2#@11la

2k21~lc
22la

2!q2#G ,
~19!

c44
i

~k!5
B2

4p F 1

@11la
2k21~lc

22la
2!q2#G ,

c41~k!5
B2

4p F ~lc
22la

2!cosu sinuk2

@11la
2k2#@11la

2k21~lc
22la

2q2#G ,
whereq5k3ĉ. The modulusc41~k! is a mixed shear and
bulk modulus discussed by Sardella, and it has no counter-
part in the isotropic case.

FIG. 8. Critical value ofG as a function of lnk
for observing a change of sign inc 44

' (u,G,k;kz)
for isolated flux lines at any value ofu, for vari-
ous values ofkz ,kzla5@0, 0.1, 0.2, 0.3, 0.4#. A
sharp cutoff has been used.

FIG. 9. Same as Fig. 12, forc44
i ~u!, using a

sharp cutoff.
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When u50, the mixed bulk-tilt modulus vanishes, while
the two tilt moduli become identically equal. In this case, the
eigenvalues corresponding to the longitudinal and transverse
eigenmodes of the elastic matrix,lL andlT , respectively, are
given by the well-known expressions

lL5c11~k!k'
21c44~k!kz

2,
~20!

lT5c44~k!kz
2.

Note that foru50, positive elastic constants guarantee stable
nonsoft modes, i.e., no instabilities occur in the flux-line liq-
uid if elastic moduli are positive definite. Note also that in
the interacting flux-line-liquid limit,c 44

' .c 44
i , contrary to

the isolated vortex liquid case. Their dispersions are Lorent-
zians directly reflecting the screened Coulomb-type interac-
tion between flux-line elements~which has a tensorial na-
ture!; moreover they never change sign.

Whenu.0, the longitudinal and transverse eigenvalues of
a tilted flux-line liquid,lL andlT , are given by

lL5
1

2
@n1An1n2#,

lT5
1

2
@n2An1n2#,

n5c11k'
21~c44

' 1c44
i

!kz
212c41kykz , ~21!

n65c11k'
21~c44

' 2c44
i

!kz
212c̃41

6kykz ,

c̃41
6 5c416Ac11~c44' 2c44

i
!.

The stability of a tilted flux-line liquid is somewhat less of a
trivial matter than what one naively would have thought,
based simply on the positivity of all the elastic constants in

FIG. 10. The critical orientations~u1,u2!
wherec44

' ~u! for isolated flux lines changes sign,
as a function ofG, for fixed k510 for various
values of kz ,kzlab5@0, 0.1, 0.2, 0.3, 0.4#. A
sharp cutoff has been used.

FIG. 11. The critical orientations~u1,u2!
wherec44

i ~u! for isolated flux lines changes sign,
as a function ofG for fixed k510 for various
values ofkz ,kzlab52,3,5,10,1000. A sharp cut-
off has been used.
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the dense flux-line liquid limit Eq.~19!. The reason is the
following: due to the appearance of a termc41kykz even in
the eigenvalues, it is clear that even ifc41.0, this term does
not have a definite signand can be negative. We now inves-
tigate whether or not the lowest eigenvaluelT could give
rise to a soft modelT50 in this interacting case. Setting
lT50 leads to the condition

c44
i D1c11~c44

' 2c44
i

!ky
250,

~22!
c11k'

21c44
' kz

212c41kykz[D.

The appearance of a soft modelT requires at leastD,0,
sincec 44

' .c 44
i

.0. Such a lack of positive definiteness in an
eigenmode can only come from the third term inD. Hence,
an instability of the flux-line liquid, were it to exist, would
thus be due to a mixed bulk and tilt deformation of the flux
lines. Inserting the expression for the various elastic moduli
into the expression forD, we find the condition forD50

11l1u
2 k'

21l2u
2 kz

21~lc
22la

2!sin~2u!kykz50, ~23!

where l1u
2 5l a

2 sin2 u1l c
2 cos2 u, l2u

2 5l a
2 cos2 u1l c

2 sin2 u,
and where the last term on the left-hand side originates in
c41. We may use this condition to find a ‘‘dispersion rela-
tion’’ for a soft modekz5kz(kx ,ky), where however the con-
dition for real solutions is given by

~lc
22la

2!2ky
2 sin2u cos2u>l2u

2 ~11l1u
2 k'

2 !. ~24!

This inequality is most easily satisfied, if at all, forkx50.
After some algebra, it is found that this implies that
l a
2l c

2,0, which is not possible. We conclude that any ten-
dency toward a bulk-tilt instability in an interacting tilted
vortex liquid in uniaxially anisotropic superconductors, is
suppressed by interactions between flux lines reflected by the
presence of the bulk modulusc11. However, the mixed bulk-
tilt modulus discovered by Sardella13 leads to a softening of
the transverse elastic response of the flux-line liquid,in cer-
tain regions ofk space. Whether or not this result is of any
importance for such phenomena as flux-line-lattice
melting,18,19where the dominant Fourier modes contributing
to destabilizing the flux-line lattice are located at the
Brillouin-zone boundary,19,20remains to be investigated. This
requires incorporation, into the linear elastic energy, of the
easy and hard shear moduli discussed by Kogan and
Campbell,14 as well as the mixed shear and tilt modulus dis-
covered by a scaling approach by Blatter and co-workers.12,21

VI. CONCLUSION

A flux-line liquid with average induction tilted an angleu
away from the symmetry axis of a uniaxial superconductor
exhibits two different tilt modes associated with tilt compo-
nents perpendicular and parallel to the CuO2 planes. Atkz50
the perpendicular tilt mode may go soft for large enough
mass anisotropy, whereas the parallel tilt mode does not. At
large values ofkz , the situation is reversed. The situation
wherekz is largekzja;1 is presumably unphysical since the
London theory is a continuum theory of superconductors. A
more useful starting point for discussing short-wavelength
tilt instabilities is the Lawrence-Doniach theory.

We have shown that the softness ofFyy in the noninter-

acting case is not connected with the possibility of coexisting
species of flux lines characterized by different orientations
relative to the uniaxial symmetry axis in an anisotropic su-
perconductor. The relevant tilt instability to compare the co-
existence with is the one associated with the softness ofFxx .
Thekz50 tilt instability associated withFxx sets in at much
larger values of the mass anisotropy, and thus does not pre-
empt the coexistence of straight flux lines of different orien-
tations with respect to theĉ axis.

The above picture could conceivably be altered by the
correct physical interpretation of the large-kz instability
found inFyy(kz). This must await further treatment outside
the scope of anisotropic London theory, or any theory which
describes layered superconductors as an anisotropic con-
tinuum.This is not an issue of how to introduce core cutoffs
in London theory. Anisotropic Ginzburg-Landau theory
would suffer from the same short-comings as the London
theory in correctly describing the short-distance physics~in
the ĉ direction! of layered superconductors. The correct
framework for such an investigation appears to be the
Lawrence-Doniach theory. If the large-kz instability of
Fyy(kz) survives a correct treatment of the short-distance
physics in theĉ direction of layered superconductors, and the
kz→` tilt instability is found to be the most unstable mode,
then it is not ruled out that the phase diagram~G,k! for this
mode may be such as to entirely preempt coexistence of
straight flux lines.

An interesting issue is to what extent thermally excited
Fourier tilt modes will affect the melting of the flux-line
lattice in a tilted field configuration at low induc-
tions. When interactions between flux lines are taken into
account in a flux-line liquid, it is found that in the dense
case, all pure tilt moduli are positive. The tilt instabilities
discovered in the noninteracting case thus are suppressed by
interactions between flux lines. A modulus which mixes tilt
and bulk modes gives rise to a term in the eigenmode spec-
trum which is not positive definite, and, in principle, may go
soft. It is found that this tilt-bulk instability is also sup-
pressed by interactions between flux lines. The lack of posi-
tive definiteness of the mixed bulk-tilt term does however
soften the lowest eigenvalue. Thus, the tilt-bulk contribution
to the transverse eigenmode may also have important conse-
quences for such phenomena as flux-line-lattice melting in
tilted magnetic-field configurations.
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APPENDIX A: REAL-SPACE ANISOTROPIC
LONDON POTENTIAL

We start from the expression in momentum space for the
anisotropic London potential, when the average induction is
oriented at an angleu with respect to theĉ axis
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Ṽab~k!5
1

11L1k
2 Fdab2

L2qaqb

11l1k
21L2q

2G ,
~A1!

L15la
2; L25lc

22la
2; q5k3 ĉ,

where the real-space potential is given by

Ṽab~r !5E d3k

~2p!3
Ṽab~k!eik•r

5
dab

4pla
2

e2r /l

r
1V2

ab~r !,

V2
ab~r !52L2@@¹@„¹I ~r !…3 ĉ#a#3 ĉ#b , ~A2!

I ~r !5L2E d3k

~2p!3
eik•r

~11L1k
2!~11L1k

21L2q
2!
.

In the above,~a,b!P(x,y,z). The procedure for Fourier
transformingṼab~k! is described in Ref. 11, for the case
u50, and here we generalize it to the caseu.0. This result is
useful for considering for instance the stability of twisted
multiplets of vortices in vortex lattices and vortex liquids,
when the vortices are oriented at an average oblique angle
with respect to theĉ axis.

The first step foru.0 is to introduce new variables

kx5cosukx82sinukz8 ,

ky5ky8 , ~A3!

kz5sinukx81cosukz8 ,

and similarly in real space

x85cosux1sinuz,

y85y, ~A4!

z852sinux1cosuz.

Now we can express the auxiliary functionI ~r !, after an
angular integration, and redefiningk8→k

I ~r !5E
2`

` dkz
~2p!2

cos~kzz8!

11L1kz
2 F~kz ,r8!,

F~kz ,r8!5E
0

`

dk'k'F ~L11L2!J0~k'r8!

11~L11L2!k'
21L1kz

2

2
L1J0~k'r8!

11L1k'
21L1kz

2G , ~A5!

r85A~r3 ĉ!2.

The integrations in F are of a variety considered
previously,11 for the caseu50; all u dependence is now sub-
sumed in the variablesr8,z8, which are not involved in the
integrations. Thek' integrations produce modified zeroth-
order Bessel functions. We get

I ~r !5E
2`

` dkz
~2p!2

cos~kz!

11L1kz
2 @K0~z1!2K0~z2!#

[I 12I 2 ,

zi5a iA11L1kz
2, ~A6!

a i5air8; a151/AL11L2; a251/AL1,

whereK0 are modified zeroth-order Bessel functions. The
remaining integrations inI ~r ! appear difficult to perform, but
are not required: All we need are variousderivativesof I ~r !
which are easily obtained. We list two results that are useful
when working out the derivatives in Eq.~A1!

¹I i~r !5¹a i

]I i
]a i

1¹z8
]I i
]a i

,

~A7!
]I i
]a i

52
1

2p2

1

AL1

Ap

2

1

a i
Fa i

21
~z8!2

La
G1/4

3K1/2~Aa i
21~z8!2/L1!,

where K1/2(x)5Ap/2x exp(2x). Performing all necessary
differentiations, and adding together, we get the results listed
in Sec. II.

APPENDIX B: ELASTIC MATRIX ELEMENTS

For numerical calculations at arbitrary angleu, it is con-
venient to express the elastic matrix in the following form:

Fab~k!5
B2

4p (
Q

FNab~K !

D~K !
S~K'!2

Nab~Q!

D~Q!
S~Q!G ,

D~K !5~11L1K
2!~11L1K

21L2q
2!,

Nxx~K !5Kx
2@11~L11L2 cos

2 u!K2#

1kz
2@11~L11L2 sin

2 u!K2#1kzKx sin 2uK
2,

Nyy~K !5Ky
2@11~L11L2 cos

2 u!K2#1kz
2@11L1K

2#,

Nxy~K !5KxKy@11~L11L2 cos
2 u!K2#

1L2kzKy sinu cosuK2, ~B1!

whereK5k1Q, andq5K3ĉ. S~k'! formally denotes a cut-
off function introducedad hocinto the London theory as an
‘‘ultraviolet regularization,’’ due to the lack of an explicit
description of the vortex core. It may be chosen quite freely,
either as a sharp or a smooth cutoff. In this paper we con-
sider both sharp and smooth cutoff procedures, i.e., we have
chosen two model cutoff functions,S1 andS2, defined by

S1~k'!5Q@12g~k'!#,

S2~k'!5e2g~k'!, ~B2!

g~k'!5ja
2ky

21ju
2kx

2,

whereQ(x) is the Heavyside step function. Note that we
have little freedom in choosing the functiong(k'!, since the
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correct elliptical shape of the vortex core is essential at large
mass anisotropies, and must be accounted for to get correct
results; the ‘‘logarithmically weak’’ dependence of the core
cutoff on quantities such as self-energy and elastic constants
does become significant whenMz/M is very large.

In principle, the above expression for the elastic matrix
contains all information on the elasticity of the flux-line lat-
tice, since even structure-dependent terms emerge as a result
of the discrete summation over lattice vectorsQ. These vec-
tors should only belong to an equilibrium lattice configura-
tion, otherwise the expansion around the vortex state with
energyE0 is meaningless. There are two, in some sense op-
posite, limits of Eq.~B1!. The simplest one to treat analyti-
cally is the one involving only theQ50 term inFab~k!. The
assumption that theQ50 term is dominant amounts to a
high-densitylimit, since the remaining terms will be of order
1/~114pk2b/)! compared to the leading term, where
b5B/Hc2(T). The quality of this approximation increases
with increasingk, since vortex fields overlap to a stronger

degree when the penetration depth increases. Physically, this
approximation amounts to considering a dense, interacting
flux-line liquid, since all information stemming from any
structure dependence of the flux-line ensemble, is lost. When
the induction becomes low, such thatk2b!1, i.e., the dilute
limit, the terms inFab fall off sufficiently slowly that the
first term no longer adequately represents the entire sum. In
this case the summation overQ must be performed, in gen-
eral numerically. There is however a limit which leads to
drastic simplifications, namely the extreme low-induction
limit where the lattice vectors may be considered to span a
continuum. Then the sum may be converted to an integral,
which in turn implies that all structure-dependent informa-
tion again is lost. Physically, this corresponds to the limit of
a gas of flux lines with no interactionbetween differentflux
lines.

We first consider the dense flux-line-liquid limit. Retain-
ing only theQ50 term inFab~k!, we find

Fxx~k!5
B2

4p

kx
2@11~L11L2 cos

2 u!k2#1kz
2@11~L11L2 sin

2 u!k2#1L2kzkx sin 2uk
2

~11L1k
2!~11L1k

21L2q
2!

,

Fyy~k!5
B2

4p

ky
2@11~L11L2 cos

2 u!k2#1kz
2~11L1k

2!

~11L1k
2!~11L1k

21L2q
2!

,

Fxy~k!5
B2

4p

kxky@11~L11L2 cos
2 u!k2#1L2kzky sinu cosuk2

~11L1k
2!~11L1k

21L2q
2!

. ~B3!

Comparing this with Eq.~18!, we immediately identify the
elastic constants in Eq.~19!.

We next consider the elastic matrix elements in the limit
of a noninterating vortex liquid, i.e.,kx5ky50, and where
the discrete summation overQ is replaced by an integration.
In this case we have

Fab~kz!5
BF0

4p E dQ

~2p!2 FNab~Q,kz!

D~Q,kz!
2
Nab~Q!

D~Q! GS~Q!.

~B4!

Using Eq.~B1!, it is seen thatFxy(kz)50, moreover it can
be shown that linear terms inkz vanish by symmetry. The
above integral expressions define the two tilt modulic 44

' (kz)
andc 44

i (kz) for a noninteracting flux-line liquid. The neces-
sary integration can be carried out analytically atu50 and
u5p/2. For arbitrary values ofu the integrations have been
done numerically.

APPENDIX C: SELF-ENERGY OF RIGID FLUX LINES

The self-energy for a straight, rigid flux line is given by

J~u!5
F0

2

8p E d2k

4p2

11lu
2k'

2

@11la
2k'

2 #@11lu
2kx

21lc
2ky

2#
,

~C1!
lu
2[la

2 sin2u1lc
2cos2u,

where the symbols have been defined in the text. The
k-space summation is cutoff on an ellipse defined by Eq.~7!,
which we circularize by scaling thek variable

kx→kx85
ju

jab
kx ;ky→ky . ~C2!

This enables us to use simple two-dimensional polar coordi-
nates~f,k8! for the angular and radial integrations, at the
expense of introducing additional angular dependence into
the integrand

11la
2k'

2→11la
2k821@lc

22lu
2#

la
2

lu
2 k8

2 cos2f,

11lu
2k'→11lu

2k821@lc
22lu

2#k82 cos2f, ~C3!

11lu
2kx

21lc
2ky

2→11lc
2k82.

Inserting these transformed quantities into the expression for
the self-energy, and renaming the integration variablek8→k,
we get after performing the angular integration overf
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J~u!5
F0

2

16p2

ja
ju

E
0

ja
21 kdk

11lc
2k2 F 2c

A~b12a!22b2

1
d

b S 12
2a

A~b12a!22b2
D G ,

~C4!
a[11la

2k2,

b[
k2la

2

lu
2 ~lc

22lu
2!,

c[11lu
2k2,

d[~lc
22lu

2!k2.

Previous analytical approximations toJ~u! were obtained by
approximating the square roots 2/A(a12b)22b2

'1/(b1a/2), which is a good approximation in hard type-II
superconductors.
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