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Elastic interfacial waves in discrete and continuous media
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Phonon spectra of bicrystals with relaxed grain-boundary structure display a variety of localized modes
including long-wavelength acoustic modes. Continuum solutions for localized waves that incorporate atomic-
level elastic properties of the interface via discontinuity relations agree well with the latter modes. In contrast,
classical solutions that depend only on bulk elastic properties do not. This demonstrates that the distinct atomic
structure of the interface is a controlling factor, and it is shown how local, atomic-level properties can be
incorporated into continuum analyses of interfacial phenomena.

[. INTRODUCTION interfacial waves propagating parallel to the interface. For
the propagation direction along the tilt axis Stoneley-type
Distinct grain-boundary structure gives rise to local prop-solutions exist while for propagation perpendicular to the tilt
erties that are significantly different from those in the bulk.axis they do not; since gold and copper have very similar
In this paper we demonstrate the strong interplay betweeRulk anisotropies, the “perfect bonding” solutions are nearly
structure, local elastic properties, and long-wavelength interthe same for eachin contrast, interface phonons are quite
face waves. For this purpose we have considered crystaliglifferent for gold and copper. We show that continuum
graphically identical grain boundaries in gold and copper@nalyses can reproduce the long-wavelength interfacial
two fcc metals with nearly identical bulk anisotropy, and find Phonons only if the elastic properties of the relaxed grain-
that the localized phonons are strikingly different. For ex-boundary structuré are explicitly included.
ample, the long-wavelength acoustic phonons are highly lo-

callzgq in golq but not at all in copper, yvhﬂg traqunal Il GRAIN-BOUNDARY STRUCTURES
elasticity solutions essentially cannot distinguish the inter-
face waves in these two materials. Calculations presented in this paper have been made for

Phonons, i.e., elementary harmonic excitations in solidsthe %=5 (120) symmetrical tilt boundary with the rotation
can reveal important information about structure and properaxis [001] corresponding to the misorientation 36.9°. The
ties of interfaces. This has been fully recognized in the casemallest planar repeat cell of this boundary is delineated by
of surface? and a general finding is that surface relaxation/the vectors[001] and [210]. The bicrystal containing this
reconstruction must be accounted for to attain agreement b&oundary was first constructed geometrically using the coin-
tween experimental observations and lattice-dynamicatidence site lattice theofy. The atomic structure of this
calculations’ Studies of phonons at internal interfaces, suchboundary was then determined by minimizing the energy of
as grain boundaries, are rather rarpresumably because the bicrystal using a molecular statics method which does not
techniques for direct measurements of phonons at such inteemploy periodic boundary conditions in the direction normal
faces are less developed. On the other hand, the propagatitmthe boundary and simultaneously allows for both the local
of elastic waves along interfaces separating two continua haaomic relaxations and relative rigid-body displacements of
been analyzed extensively.However, in these studies nei- the adjoining grains? In these calculations, as well as when
ther the structure nor properties of the interface are taken intoonstructing the force constants matrix for the phonon stud-
account; the interface is simply regarded as a surface acrogss, we have employed Finnis-Sinclair central force many-
which bulk properties are discontinuous but tractions andody potentials for gold and coppet® which have been
displacements are continuo(erfect bonding conditionA  fitted to reproduce the lattice parameter, elastic moduli, co-
significant feature of these solutions is that the condition fohesive energy, and vacancy formation energy. These poten-
the existence of localized interface waves at subsonic velociials are analogous to the embedded atom méth8dand
ties (i.e., below the minimum velocity for bulk wavewith  their functional form was determined on the basis of the
the perfect-bonding assumption is rather restrictivéThese ~ second moment of the density of states approximation to the
solutions will be referred to as Stoneley waves. Related phatight-binding method with orbital charge neutraftfy.
non calculation¥! that neglect relaxation at grain bound-  Two alternate structures of this boundary have been
aries reached similar conclusions, as one would expect. found, as in previous pair-potential calculatiGAg! and

In this paper we present calculations of phonons for thehese are shown in Figs(a and Xb). In the following we
2=5 (120)/[001] symmetrical tilt boundary¥misorientation denote these structur@andB’, respectively. However, un-
36.99 in both gold and copper. We concentrate on longlike in the pair-potential studies where both structures were
wavelengths and identify acoustic phonons corresponding tfbund to be metastable, tH&' structure in gold is unstable
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FIG. 2. The reciprocal lattice in th@4—0) plane and the corre-
sponding Brillouin zone.

I'Y were divided into twenty steps.

The phonon dispersions calculated for the slab containing
the grain boundary in gol¢B structurg are shown in Fig.
3(a) and those for the grain boundary in copfBf structure
in Fig. 4(a). In order to illustrate the connection between
bulk and slab dispersion curves, calculations of slab-adapted
bulk spectra* have also been made in which the same repeat
cell as in the case of grain boundaries is used for the ideal fcc
lattice. In these spectra, shown in Figgb)3and 4b), there

[210] are 360 modes for each valuelobecause the cell contains
_ 120 atoms. Since there are just three acoustic modes for each

FIG. 1. Atomic structure of th&=5 (120)/[001] projected onto  wave vector in the case of the smallest repeat cell of the ideal
the (001 plane.(a) B structure in gold(b) B” structure in copper.  fcc |attice, the multiplicity of modes for the bulk crystal cor-
The white and dark circles represent atoms belonging to two differ'responds to the well-known folding of the Brillouin zofte.
ent (002 planes in th¢001] period. In the case of grain boundaries the lowest frequency

modes lie below those of the bulk, i.e., the so-called “peeling

off” of the lowest frequency modes occurs. New modes with
and theB structure in copper is unstable. This has been exfrequencies higher than any of the phonon frequencies in the
posed unambiguously in calculations of phonons forBhe pulk appear and, finally, vibrational modes fill gaps of the
structure in gold and structure in copper which show that spectrum for the ideal crystal. This is similar to what has
some of the phonon frequencies are imagirfa.This im-  peen observed in the case of surfat®The low-frequency
plieS that the atomic structures of the=5 (120)/[001] pee|ed_oﬁ modes are acousma)ﬁo as|k|_,0) while the
boundaries are not the same in gold and copp®is a new high frequency modes are optical and arise because

stable structure in gold ar8" in copper. there are nonequivalent atoms in the repeat cell owing to the
boundary region. While the phonon spectra are qualitatively
Ill. GRAIN-BOUNDARY PHONONS similar for gold and copper the “peel off” of the acoustic

modes is less pronounced and optical phonons much more
The phonon calculations have been made using the sldimited in the case of copper.

method similar to that commonly employed in surface pho- Since the goal of this paper is to discuss the link between
non studies. The repeat cell was defined by vecta{®10], lattice dynamics and continuum studies of interfacial waves
a[001], and 12[120], wherea is the lattice parameter, and we analyze in detail the long-wavelength acoustic modes.
it contains two boundaries of the above-mentioned typd-or this purpose Table | summarizes velocities of the long-
separated by 1324 The atomic positions within the repeat wavelength acoustic phonons in ideal lattices of gold and
cell were those determined by the molecular statics calculacopper for thek vectors parallel td210] (I'X) and [001]
tion and no additional relaxation of the three-dimensionally(I'Y) directions, respectively. These velocities, were de-
(3D) periodic structure has been carried out. The reciprocatermined on the basis of phonon dispersions shown in Figs.
lattice in the(240) plane is body centered tetragonal and has3(b) and 4b) using the formulay =dw/d|k|. They are in an
the basis vector$1/a)[002] and (2/5a)[210]. It is shown excellent agreement with the wave velocities calculated us-
together with the corresponding Brillouin zone in Fig. 2.ing the anisotropic elasticity theoty.
Using the usual notation, the calculations were carried out In order to investigate the spatial variation of these vibra-
for wave vectors parallel to the vectdrX=(1/5a)[210] and  tions we display the real parts of the amplitudes of the
I'Y=(3/10a)[002]. In the numerical calculation§’X and lowest-frequency modes for differe(®40) layers in the re-
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FIG. 3. Phonon dispersions féa) the bicrystal of gold contain-

. - . . FIG. 4. Phonon dispersions féa) the bicrystal of copper con-
:Zgifggf(;g?(; tilt boundary with theB structure andb) the perfect taining 2 =5 (120) tilt boundary with theB’ structure andb) the

perfect lattice of copper.

peat cell.(The amplitudes are real fde=0 and thus their _

imaginary parts must be small whékj—0.) The two grain  [001], and[120] are denoted by the symbols, (1, and A,
boundaries present in each repeat cell are positioned in thespectively(here, and again below, we note that these three
vicinity of layers 30 and 90, respectively. The real parts ofdirections correspond t®;, X,, andxs, respectively, in the

the amplitudes of the first fifteen lowest frequency modesontinuum analyses that followor three of these modes, 1,
corresponding t&k=I"Y/20 andk=I"X/20 are shown for the 2, and 9 in the case oFY and 1, 2, and 6 fol'X, the
case of goldB structure in Figs. 5a) and §b), respectively. dominant directions of vibrations have the largest amplitudes
The abscissa of these and following plots denotes the numbér the boundary region, minimum amplitudes between the
of a particular(240) layer in the repeat cell. The three com- boundaries and the amplitudes have the same sign at the two
ponents of the vibrational amplitudes in the directip2s0], boundaries present in the repeat cell. This indicates localiza-
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TABLE I. Velocities (in 10° m/se¢ of acoustic waves in the largest in the boundary region and decay away from the in-

bulk calculated from phonon dispersion curves. terface. In contrast, in copper the localization is very weak
and the amplitude of the waves is virtually the same for all
Gold Copper the atoms in the block. This suggests that the long-

wavelength vibrations propagating parallel to the interface

Wave vector in210] direction depend strongly on the local interface structure. If they did

1.10 2.07 not, these modes would be similar in gold and copper since
1.47 2.90 the cubic anisotropy of the bulk elastic moduli of these two
3.25 Wave vector in[001] directior?jg materials is quite similar. Furthermore, the same modes
1.47 290 would also exist for the_u_nrelaxet_:i structures and would re-
147 290 ser_nble continuum ela§t|0|ty solutions of the Stoneley type
210 434 which decay exponentially away from the interface. These

elastic solutions are rather restrictive even in terms of their
existenc® and, as will be discussed below, for tRe=5

; e 20) boundary Stoneley waves can propagate parallel to the
tion of these waves at the boundaries; the reason why theﬁ' X : i
amplitudes are also significant in the bulk is the use of peri-'lt axis ([001)) but not perpendicular to the tilt ax§210]).

odic boundary conditions in the direction perpendicular toThIS |S_0bV|ous!y inconsistent with phonon results. Th's and
ther incongruities between the phonon calculations and

the boundary. Most of the other modes also display Iarges? i hani luti h tive f
vibrational amplitudes in the boundary regions, but in some 0Mmon continuum mechanics sofutions are theé motive tor

cases these are of opposite sign at the two boundaries presélﬁ? devglopment of Fhe mec.hamcal models of interfaces dis-
in the repeat celle.g., 3,4,5 in the case &TY) or additional cussed in the following section.
maxima(minima) of the same magnitude occur in the region
between the boundariése.g., 7,8,10—15 in the case BY). IV. CONTINUUM ANALYSES
This suggests that these are in fact bulklike modes modified
by the presence of the boundaries. They correspond to the The long-wavelength, low-frequency vibrationg@ho-
wave vectok =I"Y/20+nK 3, where—60<n<60 is an inte- Non9 propagating parallel to and rapidly decaying away
ger andK 5 the reciprocal lattice vector in tH&20] direction ~ from the interface depend strongly on the local interface
the magnitude of which is fl/2a[120]); i.e., k is the wave structure, as they do in the case of surface phonons. Below
vector from the folded Brillouin zone of the perfect crystal. we develop a continuum model that incorporates the local
Modes of this type represent waves propagating in a direcelastic properties of the interfacial region, those that have
tion inclined to the boundary plane. They are bulklike andbeen calculated for relaxed structufés! and thereby re-
their deviation from the bulk modes in the ideal lattice is Solves discrepancies between the calculated phonons and tra-
mere|y a consequence of the imposed Configuration and péijtional continuum elasticity solutions that neglect interface
riodicity of the repeat cell. In contrast, the modes 1, 2, and groperties. The continuum solutions are for joined half-
in the case oY and 1, 2, and 6 foF X correspond tm=0  Spaces, whereas the phonon calculations are for superlattices
and represent waves propagating parallel to the boundatyhere each layefcrysta) has a finite thickness. Neverthe-
plane. less, when the waves are localized in the region of the grain
Since in this paper we are interested in waves propaga’[ingoundaries, as they are for the results shown in FIgS 6 and 7,
along the interfaces we always select three lowest frequenc§ne anticipates for wavelengths sufficiently less than the
modes whose dominant directions of vibrations have thdoundary spacing that the main features of such waves in
largest amplitudes of the same sign in the boundary region#at region are not affected significantly by the neighboring
and minimum amplitudes between the boundaries. These akRoundaries. This is found in the case of the calculated
the modes that will be compared to localized continuumPhonons. For a symmetrical bicrystal superlattice, with equal
waves. The real parts of the amplitudes for such modes cofhickness of each layer, formed by tilt about a cube axis, this
responding tok=I"Y/20 andk=I'X/20 are shown for the IS precisely the case for the continuum solutions. The proof
case of goldB structure in Figs. §a) and 6b), respectively, Wil be given in a subsequent paper.

and for the case of coppéB’ structurg in Figs. 7a) and _Imagine an inhomogeneous interfacial Iaye_r of average
7(b), respectively. The characteristics of these vibrationathickness & separating two perfect crystals. A simple ideali-
modes are summarized in Table II. zation of this inhomogeneity is obtained by relating jumps in

A common feature of the waves propagating along thdi€eld quantities across the surface between two bulk materials
>=5 (120) boundary is that for each direction the lowest Which involve interface constitutive properties. For example,
velocity waves are subsonic, i.e., they propagate slower tha Springlike idealization takes the tractions on the interface to
the lowest bulk wavésheay velocity in that direction. This be continuous, as in the case of perfect bonding, but dis-
is the case for both gold and copper, but other importanplacement jumps are permittédiif those jumps are linearly
features are different in these two materials. First, while thé€lated to tractions, with ] denoting a jump in field quantity
lowest velocity waves are of the same shear type fodtke across an interface with normal then
direction, i.e., vertical shear, for tHeY direction the lowest
veI_ociFy wave in gold cor_responds to the horizontal shear [o-n]=0, (18
while in copper to the vertical shear. However, the most pro-
nounced difference is found in the localization of the waves. ~
They are well localized in gold where their amplitudes are [u]=2hM'. o-n. (1b)
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An expression for the interface compliance matki, is in (2) with 2hM?,,(h), whereM* is the tensor of effective
derived below in terms of the effective properties of the layercompliances that relates the average stress to the average

that can be computed for the discrete, atomic sysfefie  giain ' in the heterogeneous layérThen comparing Egs.
caret is used to distinguish this second-order tesoBx 3 (1b) and (2)

matrix) from the fourth-order tensors of elastic compliance

denotedM below. (Many examples of spring models de- .

scribing interfacial behavior can be found in the Mi'k=(2—q-n)Mi’}k|(h)njn| (no sum oni), (3)

literature?®—39

Consider a 3D inhomogeneous elastic layer of thicknesg,oren* is the tensor of effective interface compliances: its
2h, in particular one with properties varying in the direction ;. arse is the effective modul* which, for the results pre-

normal to the layefxs), subject to traction boundary condi- genteq below, will be taken from calculations of relaxed
tionsT; =03 onX3=*h ando,;=0, @, f=1,2, where over- o gin houndary structurdé2’ Note, in general, thal' may
ba_rs denote volume averages. Integratl_ng the stress-strain 185 pe symmetric, although in the examples considered be-
lation 2e;3=U; 3+ U3 ; =2M;3(X3) o With respect_ toxs, _low it essentially is symmetric.

whereM denotes the fourth-order tensor of elastic compli- “Next consider two semi-infinite bulk materials with linear
ance, and assuming that the stress in the layer is uniform ang«tic modulifourth-order tensojsC® for n-x>0 andC?®

equal to the average stre§@euss approximationgives for n-x<0 joined by the spring conditiond) along a planar
h interfacen-x=0 wheren is the unit normal to the interface.
Aui=ui|ly, Interface wave solutions are sought in terms of the displace-
h ment fields given in each half-space in the foomaf (m-x
:(2_5‘3)“ Mi3k3(x3)dxs)gk3 (no sum oni). +pn-x—vt) wherem andn are orthogonal vectors anul
—h and a are eigenvalues and eigenvectors determined from

2) equilibrium considerations in terms of the Stroh matrices
Q=m-C-m, R=m-C-n, andT=n-C-n and the wave veloc-
In this caselor more generally when the stress is only inde-ity v. Let P be the diagonal matrix of eigenvalupsndA be
pendent ofx;) the direct volume average of Hooke's law the matrix of corresponding eigenvect@sassociated with
gi3=M,3(X3) oy leads to the identification of the integral equatiofi?
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TABLE Il. Acoustic phonon modes localized in the grain boundary for wave vectors parallel I6Xhe
([210)) andT'Y ([001]) directions. Velocities normalized by the corresponding minimum bulk veldfrioyn

Table )) are given in parentheses.

Gold Copper
Dominant Dominant
direction of Velocity direction of Velocity
vibrations Character (10° m/seg vibrations Character (10° m/seg
__ Wave vector parallel td"X ([210]) _Wave vector parallel t&"X ([210])
[120] Vertical shear 1.06 [120] Vertical shear 2.01
wave (0.96 wave (0.9
[007] Horizontal 1.45 [o071] Horizontal 2.95
shear wave (1.32 shear wave (1.43
[210] Longitudinal 3.25 [210] Longitudinal 4.73
wave (2.95 wave (2.29
Wave vector parallel t&"Y ([001]) _Wave vector parallel td'Y ([001])
[210] Horizontal 1.38 [120] Vertical shear 2.86
o shear wave (0.99 wave (0.99
[120] Vertical shear 1.54 [210] Horizontal 2.94
wave (1.0 shear wave (1.01
[001] Longitudinal 3.15 [o071] Longitudinal 4.39
wave (2.149 wave (1.5)

in copper and the wave vectors paralle(@T'Y
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{Q—pv2+p(R+R")+p?T}-a=0. (@) log(Ma) A
4
The general solutionsare constructed using the interface B
conditions(1) which introduce the only length scale in the [ | — hla=2
problem,h, and lead to dispersive waves. For harmonic so- 3 r
lutions, f(&)=e'k¢, waves propagate in the direction of -
and displacements decay exponentlally in the direction of 2 F
if Re(p) =0, Im(p™)>0, and Imp®)<0. The correspond- X
ing displacement and traction fields in the two half-spaces C
are forn-x>0 v r
3 [
uV=Rel >, dPAY exp{ik(m~x+p§l)n~x—vt)}}, o F
s=1 B
(58) _ '|||v||;|;||||r||||n|||r|lV/Vbu]k
3 0.75 0.8 0.85 0.9 0.95 1
a{Vn;=— Re{ iks§=)l dVBY @
log(Ma) Cu
: 4
x explik(m-x+ pgl)n-x—vt)}] (5b) C
B — hfa=2
and forn-x<0 3 3
u?=R E d@A? explik(m-x+p@'n-x—vt)} {, 2
(50 1 b
oiPn;= —Re{lkz d®B2 o F
B :....l....l....l....|....|v/vbulk

xexplik(m-x+pn- X—vt)}], (5d) 075 08 085 09 095 1
(b)
whereB=R"-A+T-A-P and P=diag{p;,p,,Pa}.
Substituting solutiong5) with n-x=0 into (1a and (1b) FIG. 8. Wavelengthh (normalized by lattice parameta) vs
one can write the interface conditions, respectively, as velocity v for subsonic interfacial waves propagating along the tilt
axis (I'Y) (a) for B structure in gold andb) for B’ structure in

3 copper(log=log,).
> dVBlY- 2 d 2>B(2)] (6a)
s=1 from the surface impedance matriceZ=iA(B) !
=i(R"+T-A-P-A"Y) 7! for each half-space ¥
3
(l) (2) 7 R
2 dg’ 2, dIAY defH+ 2khM']=0. 9

3 3 (The stationary-wave limif is recovered fow —0.) Perfect
—2hkiY, > d(sl)l\,)lierg)} =0. (6  bonding(Stoneley-typpsolutions are recovered frof) for
s=1r=1 h—0 or M'—0 where the very restrictive necessary condi-
tion for nontrivial solutions to exist is dgi)=0 and the
corresponding interfacial waves are nondispersive, i.e., their
I — ) velocity of propagation is independent of wave numbker
6X6

These conditions are equivalent to

/a1y -1_ Sl A Ry -1 Recall that the matrixd in (9) depends on the elastic
(B™) (2hki)M ATB) moduli of both materials as well as the velocity of propaga-
B(Lg® 0 tion v, and it is Hermitian in the subsonic range of
X gz)d(z)] :[O] (7)  velocities®® v<v,, wherev,, is defined as the minimum
6x1 6x1 bulk wave velocity(typically of shear typein either material
in the directionm. The matrixM' is real and always positive
defrnrte(whlch is guaranteed #1* is at least strongly ellip-
de[iA(l)(B(l))fl_’_(th),\')ll_iATZ)(EZ))fl]:O. ®) tic). When M' is symmetric the producH(M')™?! is also
Hermitian, and, therefore in this case, the eigenvalues
This dispersion relation can be also_rewritten in terms of th€—2kh) are real. 1M is nonsymmetric, the(@) may admit
interface impedance matrild=27 ®17®@ which is defined  solutions with the imaginary part & nonzero. The corre-

For nontrivial solutions of7) to exist
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sponding wave is called “leaky,” since froitba),(5¢) it does log(8/a)
not propagate parallel to the interface and is not strictly har- 4
monic in time. Finally, if the velocityv is regarded as an
independent variable we also note that the soluti@ge-
pend on velocity and bulk properties througf®, A{&, and
B{® and additionally on velocity, bulk, and interface prop-
erties througtk andd & which are the eigenvalues and eigen- 2
vectors, respectively, associated wit. If, alternatively, the
wave numbek is regarded as an independent variable, then 1
the velocity satisfying9) depends ork as do all the other
variables just listed.

These waves will now be investigated for infinite bicrys- 0
tals with theX =5 (120)/[001] symmetrical tilt grain bound-

ary considered above in gold and copper. For these bicrystals .y Ll o0 1 b w001 Vv,
with the effective interfacial compliances obtained from ato- 075 08 08 09 095 1
mistic calculation¥’ the off-diagonal elements ¢f')~* are (a)

several orders of magnitude smaller than diagonal elements,

so that antisymmetric part ¢M') ! is indeed smallnote for 4103(_5/3) Cu

symmetric tilt about thex, cube thatM' (3x3) derived from
1/2M®P+M @) in place ofM* in (3) is indeed symmetric
Hence the imaginary part & , i=1,3, is also several orders 3
of magnitude smaller than the real part and the correspond-
ing solutions are essentially propagating harmonic wates.
For this bicrystal, among the three mathematical branches of
solution(ky, k,, andks) only one is physically realistic in the
sense that the real part bfis positive for all velocities in the 1
subsonic rang& Also for this bicrystal type, i.e., with a
symmetrical tilt grain boundary formed by joining two cubic
crystals rotated about a cube axis, one partial interfacial 0
wave is uncoupled. For the=5 (120)/[001] grain boundary
under consideration, the latter partial wave is the only one ) RN A RA N A STAVAN B SFAVAVIN AVRTSUAE R A A
for which k>0 for all v <(vpyiImin - 075 08 08 09 095 1
Since the mode with Re}=0 propagates exactly along (b)
the interface and this mode is decoupled, only{f}e-0
modes will be used for comparison with the acoustical FIG. 9. Decay lengths (normalized by lattice parametey vs
phonons obtained from the discrete calculati¢8sc. IlI). velocity v for subsonic interfacial waves propagating along the tilt
The influence of the springlike interfacial conditions is in- @xis (I'Y) (& for B structure in gold andb) for B structure in
vestigated from dispersion, amplitude attenuation, and th&°PPer(iog=10gso).
polarization of the waves. In this problem the wave number
or wavelengthh=1/k, calculated as the eigenvalues (8,  |ength\ normalized by the lattice parametiis plotted as a
not only depend on the velocity for a given bicrystal but  function of velocity in Figs. 8) and &b) for gold and cop-
also on the interfacial propertidd'. Note that some of the per, respectively, and for different choices of the thickriess
characteristics of wave solutions are independent of interfasf the interfacial layer ir9); note thatM' which depends on
cial conditions. For example, only behavior of {lp} as a 1, s determined without any adjustable parameters from the
function ofv determines if such waves become bulklike in o115 of Ref. 12. There are two branches of solutions in the
the Iong—wavelgngth I|m|t,.|.e.2\—>oc or [k|-0. The S”_‘a” long-wavelength limit for these waves propagating along the
wave number limit is achieved whem approaches either tilt axis: one is fory— and the other o — (v
perfect bonding velocity , , from left or from right or when Y U~ Upb. ST , U bullmin
D— @ 1N this limit (-9) reduces to dét)—=0 which and in bpth cases thfa ve_Iouty is nearly mdependenlt of wave-
depenas only on the bulk properties and the velocity OHenth, i.e., the sol_utlon is nearly nondispersive. This non.d|s-
persive character is exactly found for the Stoneley solutions

propagation. hich onl ) B h : fth
First we consider continuum interfacial waves propagatVNich only existab =v,, . The attenuation of these waves

ing along the tilt axisx, or I'Y direction in theS =5 (120)/ IS Plotted in Figs. &) and gby); for these exponentially de-
[001] grain boundary. Recall that “perfect bonding” CaYing wave solutions, i.euocexp(—|x4/é), wherex is the
Stoneley-type solutiongh=0 in (9), i.e., deH=0, which coordinate normal to the interface adeEN/Im{p}. The at-
also corresponds tk=0] exist in this case at the calculated tenuation becomes weaker, relative to the lattice dimension,
velocitiesv/(v ) min=0.84 in gold and 0.81 in copp&(We  as\ increasesor k decreas@swhich, from Fig. 8, occurs as
find Stoneley solutions also exist for propagation directions)— vy, andv — (v pumin-

lying in the interface within a-5° range away from the tilt The (elliptical) polarization of these waves, i.e., the direc-
axis, but only for the wave propagating exactly along the tilttion of the displacement of material points, is defined from
axis is Rép} =0, otherwise the wave is “leaky)'The wave- the productsA'®.d'® in (5) and plotted in Figs. 1@ and

h/a=2

LIS I A M B M A B A
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0.75 0.8 0.85 0.9 0.95 1 FIG. 11. Wavelength\ (normalized by lattice paramete vs
(b) velocity v for subsonic interfacial waves propagating perpendicular

to the tilt axis (I'X) (a) for B structure in gold andb) for B’
FIG. 10. Polarization plot&};, ¢, vsv) for subsonic interfacial ~ structure in coppeflog=10g;).
waves propagating along the tilt axiFY) (a) for B structure in
gold and(b) for B” structure in copper. Next we consider continuum interfacial waves propagat-
ing in the interface and perpendicular to the tilt afis or
10(b) in terms of two angleg); and ¢, where for the wave I'X direction in the X =5 (120)/[001] grain boundary. Since
propagation in the, direction the Stoneley-type solutions do not exist in this casee
plots of wavelength versus velocitfFig. 11) and decay-
2 J[|us length versus velocityFig. 12 are simpler than for the case
$r=_tan 7 o= ) (108 of waves propagating along the tilt axis. Again, these waves
are dispersive with both wavelength and decay length in-
creasing as the velocity increases ugugy)min- The polar-
(10b) ization for these waves propagating in tke direction are
plotted in Fig. 13 in terms of the two angles

Us

2
Vem

uz
|ul

-3

For ¢,=0 the wave is purely transvers@heay; for ;=0

with ¢,=0 it is pure shear normal to the interface, and for ¢1:E tan~L
=1 with ¢,=0 it is in-plane shear. Fog,=—1 (any i) ™

the wave is purely longitudinal. The polarization depends on
v (or \) and can vary significantly from the perfect-bonding

and bulk waves which, in the present case, are both domi- Yy=—o
nated by in-plane shear for the direction of propagation par- ™

allel to the tilt axis. Therefore, the local properties of the

interface region affect both the dispersion and attenuation ofvith the same interpretation of wave type with limiting val-
these interface waves. ues ofyy and iy, as in the preceding paragraph.
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velocity v for subsonic interfacial waves propagating perpendicular

to the tilt axis ('X) (a) for B structure in gold andb) for B’

structure in copper. L . .
FIG. 13. Polarization plot§y,¢» vsv) for subsonic interfacial

V. COMPARISON BETWEEN CONTINUUM WAVES waves propagating perpendicular to the tilt aki3X) (a) for B
AND PHONONS structure in gold andb) for B’ structure in coppetlog=log; ).

Phonons localized in thE=5 (120)/[001] grain boundary they are in reasonable agreement. Recall that the latter are
and propagating perpendicular to and parallel to the tilt axigor superlattices while the continuum solutions are for joined
were calculated in Sec. lilparallel to the vectord'X=(1/  half-spaces. Also recall that “perfect bonding” Stoneley-type
5a)[210] and 'Y =(3/10a)[002], respectively. The results solutionslh=0 in (9), i.e., deH=0, which also corresponds
plotted in Figs. 5—7 correspond to wavelengths44.7a  to k=0] exist only for waves propagating in tl&r direction
andA=33.3a for the I'X andI'Y directions, respectively. at the velocitie® /(v yy)min="0.84 in gold and 0.81 in copper.
The continuum solutions developed in Sec. IV will be com-The components of the polarization vector, i.e., the vector
pared at these wavelengths. These solutions also depend AY-d in (5a and (5¢), are also listed in Table Il and
the half-thicknes# chosen to describe the interfacial region; normalized so that the largest component has value of unity
note thath enters(9) explicitly and throughv'(h), which is  consistent with the phonon plots of Figs. 5—7. These compo-
determined fron{3) using the atomistic resulté.Consistent nents also compare favorably with the peaks of each compo-
with the trends in elastic moduli variatio{see Figs. @)  nent in those figures which are also listed in Table Ill. In
and 8b) in that pape}, particularly the extent of the grain- particular, the wave propagating in the (I'Y) direction in
boundary region where the elastic properties differ fromgold is of the horizontal shear type, i.e., dominated byxhe
those of the ideal crystal being greater in gold than in coppergomponent of displacemefas also predicted by the perfect
we have choseh/a=4 for gold andh/a=2 for copper for bonding, Stoneley solutionwhile the corresponding wave
the comparisons discussed below. in copper is of the vertical shear type, i.e., dominated by the

Table 1l gives the predicted continuum velocitigs,,,) Xz component of displacemertivhich is inconsistent with
from the solution to(9) as well as the calculated phonon the perfect bonding, Stoneley solutjorFurthermore, the
velocities (v,,) at the same wavelengths, and it is seen thatontinuum solutions also satisfactorily reproduce trends in
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TABLE lll. Comparison of the continuum wave solutions with the subsonic phonon ni{edesTable .

Material/ Phonon

wave Wave- polarization Continuum
vector length U adUbulk (approx) U confU bulk polarization
AUTX 44.7a 0.96 [0.1,0,1 0.95 [0.5,0.02,1
Cull'x 44.7a 0.97 [0.1,0,1 0.96 [0.5,0.05,3
Aull'Y 33.3 0.94 [1,0,0.9 0.92 [1,0.17,0.2T7
Cul’y 33.3 0.99 [0.01,0, 0.99 [0.3,0.13,1

the decay length, where, as seen from Figa) 8nd 9b), the interface is lost and only bulk properties determine the form
decay length in copper tends to be longer than that in gold &fpolarization, attenuation, dispersion behaviof the wave
the same wavelength. solutions.

The strong influence of the distinct interface structure and |n summary, we have seen that phonon spectra of bicrys-
properties at these wavelengths that are considerably largesls with relaxed grain-boundary structure display a variety
(at least an order of magnitudéhan the thickness of the of |ocalized modes including long-wavelength acoustic
interfacial region has been demonstrated from detailed commnodes. Continuum solutions for localized waves that incor-
parisons of the phonons with continuum models of elastigyorate atomic-level elastic properties of the interface via dis-
interface waves. The magnitude of the wavelengths  continuity relations agree well with the latter modes. In con-
smallness of wave numbeconsidered were limited both trast, classical solutions that depend only on bulk elastic
from the separation of the grain boundaries in the superlatproperties do not. This demonstrates that the distinct atomic
tice and numerical considerations in the phonon calculationsstrycture of the interface is a controlling factor, and it is
Nevertheless, the continuum solutions for joined half-spaceshown how local, atomic-level properties can be incorpo-

can be interrogated at longer wavelengths where, from theated into continuum analyses of interfacial phenomena.
results presented in Sec. 1V, it is seen that the interface prop-

erties play an important role even at longer wavelengths.

Nevertheless, in the Iong—\./vaveleng.th limit, |.e.,)as»§o or ACKNOWLEDGMENT
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