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Singularities in the classical inelastic neutron-scattering cross section are shown to arise when the scatterer
oscillates in a one-dimensional anharmonic potential such that the oscillation frequency contains an extremum
as a function of the energy. The effects of friction on the singularity are investigated using an argument due to
Soskin. The possible implications of these results for the soft potential model of glasses and undercooled
liquids are discussed.

I. INTRODUCTION

Neutron scattering is one of the most powerful tools avail-
able for the study of the geometry and dynamics of disor-
dered systems, such as glasses and proteins.1,2 Under certain
circumstances the scatterer is assumed to be confined by a
one-dimensional semiphenomenological anharmonic poten-
tial, whose relation with the detailed microscopic dynamics
of the system we would like to ascertain. A detailed investi-
gation of the relation between the main features of model
potentials and the energy dependence of the inelastic cross
section would therefore help us optimize the information we
extract from the experimental data. The analysis of the origin
of structures—such as characteristic peaks and
singularities—that are easy to identify in an experiment is of
special importance. One type of singularity in the inelastic
cross section is well known: If the scatterer moves in a har-
monic oscillator potential,d function singularities in the dy-
namic structure factor appear at the locations of the charac-
teristic oscillation frequency and its harmonics.3 Thesed
function singularities originate in the independence of the
oscillation frequency on the oscillator energy: Regardless of
its energy, the harmonic oscillator will always contribute to
the same scattering lines. In this paper we show that a sin-
gularity will also occur for an anharmonic oscillator, pro-
vided that the derivative of its oscillation frequency with
respect to the energy contains a zero, i.e., that there is an
energy at which the frequency variation is infinitely slow.

A few years ago, Soskin showed that the presence of an
extremum in the dependence of the oscillator frequency on
the energy of an anharmonic oscillator generates a peak in
the fluctuation spectrum of the dynamic variables.4 He ana-
lyzed in detail the case of quadratic extrema. Here we apply
Soskin’s analysis to the dynamic structure factor~which
gives the scattering cross section!, and generalize his discus-
sion to include nonquadratic extrema.

II. EXISTENCE AND NATURE OF THE SINGULARITY

The dynamic structure factor is defined as

S~k,V!5
1

2pE2`

`

eiVt^eikx~ t !e2 ikx~0!&, ~1!

wherex(t) is the scatterer coordinate at timet and the an-
gular brackets stand for the equilibrium average.

If the potentialV(x) has multiple minima, the intermedi-
ate maxima divide the allowed region of the position-energy
plane into domains corresponding to different types of peri-
odic solution. We will denote the lower and upper limits of
the j th energy domain byEjl and Eju , respectively. The
oscillation period in thej th domain is then given by a single-
valued functiont j (E), which can be calculated in the usual
manner5 as an integral between the turning pointsxj1(E)
and xj2(E). The corresponding frequency isv j (E)5
2p@t j (E)#

21.
Equation ~1! can be transformed into the exact

expression6–8
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whereZ is the partition function,b is the usual temperature
factor, andF jn is the Fourier coefficient

F jn~E!5
1

t j~E!
E
0

t j ~E!

dt e2 inv j ~E!eikxj ~E,t ! ~3!

with xj (E,t) being the solution of the equation of the motion
for the position coordinate at energyE in domain j .

The n50 term gives rise to the elastic component, and
will be of no concern to us in this work, while the others
generate successive inelastic components. Thed functions in
the nÞ0 terms can be rewritten as

d„V2nv j~E!…5(
r

d~E2Er* !

un~]v j /]E!E
r*
u
, ~4!

where theEr* ’s solve the equationnv j (Er* )5V. Equation
~4! suggestsS(k,V) will be singular if there are energies
E* such that (]v/]E)E*50. Soskin used this fact to discuss
the influence of quadratic extrema on the fluctuation spec-
trum of real-valued functions of the position and
momentum.4 We will now treat the effects of more general
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extrema onS(k,V). For simplicity we will henceforth as-
sume there is a singleE* and omit the indices.

Suppose that in the neighborhood ofE* the oscillation
frequency has the form

v~E!5v*1A~E2E* !q ~q.1!. ~5!

Application of Eq. ~4! immediately shows that thenth
component ofS(k,V) is singular atV5nv* ,

Sn~k,V!;~V2nv* !2~q21!/q. ~6!

Some features should be noted:
~a! The singularity arises because a large energy domain

nearE* contributes to a small frequency range nearv* .
Consequently, a flatterv(E) will originate a sharper singu-
larity.

~b! If v(E) has a constant segment, the singularity is a
d function. This is the case for the simple harmonic
oscillator3 and for the double parabola.8

~c! The singularity is always integrable.
~d! The wave numberk appears only through the Fourier

componentsF jn @see Eq.~3!#. Therefore, the singularity po-
sition and shape do not depend onk.

~e! Due to the presence of the Boltzmann factor in Eq.~2!,
the intensity will decrease as we move to higher bands, but
all bands will exhibit the same kind of singularity.

III. EXAMPLES

Next we indicate some simple potentials that may gener-
ate the frequency behavior described by Eq.~5!. First, we
consider single-minimum symmetric potentialsV(x) and set
the coordinate origin at the location of the minimum. The
energy minimum will also be taken to be zero. Under these
conditions,V(x) can be obtained using a standard formula5

x~V!5
1

2p~2m!1/2
E
0

V t~E!dE

~V2E!1/2
, ~7!

wherem is the oscillator mass. Let us now examine the
special case whenq is an integer andE*50. Near its mini-
mum, the potential is readily found to have the form

V~x!5
m

2
v* 2x21

ACq

v* Sm2 v* 2x2D q11

, ~8!

with

Cq5
~2q12!!!

~q11!~2q11!!!
. ~9!

The addition of a small anharmonic perturbation suffices
to give rise to the singularity. However, since we must have
q.1, a potential containing only quadratic and quartic terms
would generate no singularities. IfE*Þ0,V(x) can be found
by numerical inversion of Eq.~7!.

These results can be easily understood: While a nonzero
frequency range~as for the above-mentioned simple-
harmonic and double-parabola potentials! generates a
d-function singularity, a region wherev(E) varies very
slowly gives rise to a weaker~power-law! form of singular-

ity. This is the case for the potentials of Eq.~8!, which depart
very slightly from harmonicity near their minima.

A different class of potentials leading to singularities in
S(k,V) can be analyzed if we note that the energy depen-
dence of the oscillation frequency corresponding to poten-
tials having the form

V~x!5Duxuq ~10!

is given by

v~E!;E1/221/q. ~11!

It is therefore obvious that
~a! The frequency corresponding to a potential that be-

haves as a power law with an exponent smaller than 2 near
its minimum and as a power law with an exponent larger
than 2 in theuxu→` region must have a minimum at a non-
zero energy.

~b! The frequency corresponding to a potential that be-
haves as a power law with an exponent larger than 2 near its
minimum and as a power law with an exponent smaller than
2 in the uxu→` region must have a maximum at a nonzero
energy.

These potentials will thus generate singularities in
S(k,V). Possible generalizations of cases~a! and ~b! are
immediate.

We next analyze the case of the two-minima potential:

V~x!5Q2
1

2
gx2 uxu,b, ~12!

V~x!5a~ uxu2b! uxu.b, ~13!

for which v(E) can be computed exactly. It has a quadratic
maximum at the energy

Q̂5Q1aS Q2g D 1/2. ~14!

From the preceding discussion we can predict that
S(k,V) will be singular atV5nv* , with v*5v(Q̂). The
n51 component ofS(k,V) was evaluated fork51 using
Eqs.~2! and ~3! and the result is shown in Fig. 1. We chose
a5b5Q51. Hence,g52 andQ̂51.5. If we further choose

FIG. 1. First inelastic band (n51) corresponding to the poten-
tial of Eqs.~12! and~13! for two temperatures. See the text for the
parameter values. The singularity atV5v(Q̂) is evident.
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2m51, thenv*50.874. The resonance is clearly visible in
the figure asV→v* from below. The intensity on the upper
side of the resonance is much lower and cannot be seen on
the selected scale. Due to the larger transfer from the elastic
line, the inelastic intensity increases with the temperature.

IV. EFFECTS OF DISSIPATION

What happens if dissipative effects are present? Dissipa-
tive effects will smear out the singularity, transforming it into
a finite peak. We will now introduce a small frictional con-
stantG and estimate how the width and height of this peak
depend onG and the exponentq in Eq. ~5!. We follow the
argument in Ref. 4.

A correlation time tc can be defined as the time over
which the friction destroys the phase correlation. Soskin de-
finestc as the time over which a phase shiftDC5p emerges
between an oscillator subject to friction and its Hamiltonian
counterpart. This is the criterion we adopt.

We assume that the oscillator starts with an energyEo
close toE* . At short times the oscillator energy changes
mainly because of energy diffusion. The energy displacement
is thus approximately,

DE~ t !'@D~E!t#1/2, ~15!

whereD(E)5GTp2̄ is the diffusion coefficient for diffusion

along the energy coordinate andp2̄ represents the average of
the square of the linear momentum over a period.9 Since the
contribution to the singularity will essentially come from en-
ergies in the immediate neighborhood ofE* , we may choose
Eo so close toE* that uEo2E* u!DE(tc). In this case, we
can use Eq.~5! to find that the magnitude of the frequency
shift due to this energy displacement is approximately given
by

Dv'A~DE!q'A~GTp2̄t !q/2. ~16!

We can obtaintc from the condition thatDC(tc)5p, i.e.,
Dvtc5p. After solving for tc , we estimate the peak width
to be

DV;
1

tc
;Gq/~q12!. ~17!

Following Ref. 4, we can now check the consistency of
the approximation by estimating the contribution of energy
trajectories starting atuEo2E* u.DE(tc). These can be
shown to contribute very little to the central part of the peak.

We can next argue that the peak heightŜ will be propor-
tional to the width of the band of contributing energies and
inversely proportional to the peak width

Ŝ;
DE~ tc!

DV
;G2~q21!/~q12!. ~18!

These results reduce to Soskin’s ifq52. As we could
have expected, a sharp resonance~high q) will result in a
high, narrow peak. No singular behavior obtains ifq→1:
The frequency is varying too fast as a function of the energy
to allow for a peak in the cross section. Ifq→`, on the other
hand, the results are similar to those resulting from a har-

monic oscillator with friction, for which thed function sin-
gularity is replaced by a Lorentzian.11

V. AN APPLICATION: THE SOFT POTENTIAL MODEL

In this section we wish to address the possible relevance
of our calculation to the soft potential model of undercooled
liquids and glasses. In this model the scatterer is assumed to
be subject to the anharmonic potential,12,13

V1~x!5WSAx1
B

2
x21

1

4
x4D . ~19!

The energy dependence of the oscillator frequencyv(E)
for this potential was studied by Dykmanet al. for the spe-
cial caseB51.10 These authors showed thatv(E) has a
minimum if uAu.8/71.5.0.43. The minimum becomes wider
and shallower with increasinguAu. A larger range of energies
will then contribute to frequencies in the immediate neigh-
borhood ofv* , originating a sharper peak.

By shifting x by a constant, we obtain the form of the soft
potential model favored by the San Petersburg Group,14,15

V2~x!5WS ax21bx31
1

4
x4D . ~20!

We have obtained numerically the singularity-yielding do-
main in the parameter space (a,b), which is represented by
the shaded region in Fig. 2. The lineb5A8a/9 separates the
one- and two-minima domains. The two-minima domain ex-
tends over the whole of thea,0 half-plane. The figure is
symmetric about theb axis. No singularity appears in the
two-well domain because the minimum inv(E), which cor-
responds to the hilltop inV(x), is too sharp. According to the
discussion following Eq.~9! there can be no singularity
along theb50 line, either. Indeed, ifb is small enough,
v(E) is monotonical and theE50 minimum is of the

FIG. 2. Parameter space for the San Petersburg version of the
soft potential model of glasses. The shaded area indicates the
singularity-yielding region.
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q,1 type. In the ‘‘soft’’ one-well region there is, however, a
wide band of parameters that should generate resonant be-
havior.

Since in a real glass we will have a distribution of param-
eters (a,b),16 the divergences will be somewhat smeared
out. We expect, however, that a relatively well-defined in-
elastic peak will survive if the distribution is centered some-
where in the shaded region of Fig. 2. A feature that may help
with the identification of the origin of a given structure is
that the location of the peaks arising from extrema ofv(E)
should be independent of the magnitude of the momentum
transferk. The presence~absence! of peaks at the predicted
locations should help to validate~invalidate! the model and
to optimize the parameter choice.

VI. FURTHER APPLICATIONS

The peaks in the neutron-scattering cross section de-
scribed in this paper could be useful to identify sample im-
purities and other defects. In the last part of this paper we
describe two situations that may give rise to resonant behav-
ior.

~a! The potentialV1(x) of Eq. ~19! can be also used to
describe anharmonic vibrations in a doped crystal subject to
a uniform electrical field.10,17The size of the linear term may
be controlled by varying the field. According to the analysis
of Ref. 10 and the discussion following our Eq.~19!, we
predict no resonant behavior if there is no field or if the field
is weak. Resonances should appear if the field is increased
beyond the threshold valueAT58/71.5. Their sharpness
should grow with the field intensity.

~b! Some molecules in crystals have an orientational de-
gree of freedom. Their rotational motion can be described
using a periodic potential which we can expand in Fourier
components.1 The precise form of this potential will depend
on the symmetry of the structure surrounding the rotator. If
the rotation is hindered by two types of barriers, we may
keep only the two lowest Fourier components

V~w!52B@cos~w!2h cos~2w!#, ~21!

wherew is the rotation angle. Ifh.0.25, this potential has
two rounded maxima of different heights in each period. The
height of the smaller maximum is given by
V(0)5B(h21), while that of the larger maximum is
V(p)5B(h11). The intervening minima, located at
wm5arccos(1/4h), have all the same depth,
V(wm)52B(h11/8h). Since the frequency must go to
zero at the energies of the maxima,Em5V(0) and
EM5V(p), there must exist an intermediate energyE*
(Em,E*,EM) such thatv(E) has a maximum atE* . Con-
sequently, the dynamic structure factor will exhibit a reso-
nance atv*5v(E* ). Similar predictions can be made for
other variations of the potentialV(w).
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